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The quark mass function is computed both by solving the quark propagator Dyson-Schwinger equation
and from lattice simulations implementing overlap and domain-wall fermion actions for valence and sea
quarks, respectively. The results are examined and are seen to produce a very congruent picture, showing a
remarkable agreement for the explored range of current-quark masses. The effective running interaction is
based on a process-independent charge rooted on a particular truncation of the Dyson-Schwinger equations
in the gauge sector, establishing a link from there to the quark sector and inspiring a correlation between the
emergence of gluon and hadron masses.
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I. INTRODUCTION

The non-Abelian nature of QCD leads to fascinating
consequences in nuclear and hadronic physics, such as
quark-gluon confinement and the emergence of hadron
masses [1,2]. Naturally, this is tightly connected with the
way that QCD fundamental degrees of freedom, quarks,
and gluons interact. At its most fundamental level, this
needs to be understood from QCD Green’s functions—the
gauge sector of the theory playing an essential role in the
strong interaction mechanism. The nonperturbative self-
interacting nature of gluons is not only responsible for the
ultraviolet (UV) asymptotic freedom but, presumably, has
to be also related to the infrared (IR) slavery of colored
objects. Precisely within the IR domain, properties of the
low-dimension gluon Green’s functions have been argued
to entail profound dynamical implications. In particular,
longitudinally-coupled massless poles comprised in the
nonpertubative three-gluon vertex function have been
shown to trigger a dynamical mass generation mechanism
for the gluon [3–6]. This accounts for the observed
saturation of the gluon two-point Green’s function at

vanishing momentum [7–14]; while logarithmic singular-
ities in both the kinetic term of the two-point function and
nontransverse structures of the three-gluon vertex appear to
be intimately connected, and related to properties of the
ghost two-point function [15,16].
All these features can be conveniently exposed by the

appropriate continuum QCD calculations of Green’s func-
tions, where both are grounded and positively confronted to
lattice QCD (lQCD) results. Recent studies of gluon and
quark correlation functions can be found in literature, e.g.,
they can be obtained by solving their functional renorm-
alization group equations in a systematic vertex expansion
as in Refs. [17,18], or resulting from analyses of the
coupled system of relevant Dyson-Schwinger equations
(DSEs) as in Refs. [19–24]. Efforts paving a bridge from
the QCD gauge to matter sectors have been also made
for the last few years, e.g., in Refs. [25–28], by implement-
ing different truncation schemes and computational
approaches. We will herein proceed further on this track
and particularly focus on a scheme for the DSEs truncation
based on a combination of the pinch technique [3–5,29]
and background field method [30] (PT-BFM). Within this
framework, the connection of gauge and matter sectors of
QCD, linking the emergence of gluon and hadron masses
[2] depends on a sensible definition of the running
interaction for the quark propagator DSE, widely dubbed
as the gap equation. This interaction results from a
combination of continuum and lQCD analyses of QCDs
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gauge sector [31], from which a renormalization group-
invariant (RGI) process-independent (PI) effective charge
of QCD has been first derived [32,33] and subsequently
refined by employing modern lQCD configurations [34].
Additionally, an alternative effective charge phenom-

enologically defined to drive the all-orders Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution of
pion distribution functions have been seen to agree with
the PI charge within the IR domain, and make then contact
smoothly with the UV well-known perturbative behavior
defined by the evolution kernel [35,36]. In this paper, we
make one further step by redefining the running interaction
from this last phenomenological effective charge, then
apply it to solve the gap equation and derive therefrom
the quark mass function. We also compute this mass
function from lQCD gauge configurations with three
dynamical domain-wall fermions [37,38], tuning the cur-
rent quark mass by the use of different lattice setups, and
comparing the result to the corresponding gap equation
solutions. We also solve the gap equation in the chiral limit
and, evaluating then the pion decay constant and the quark
condensate in this limit, verify the Gell-Mann-Oakes-
Renner formula [39].

II. THE GAP EQUATION AND THE
EFFECTIVE CHARGE

The quark propagator is typically the first basic ingre-
dient for any hadron physics study based upon continuum-
functional methods and, more specifically, within the DSEs
framework [40]. Let us write

Sfð0ÞðpÞ ¼ ðiγ · pþmbm
f Þ−1; ð1Þ

for the bare tree-level quark propagator of flavor f, where
mbm

f stands for its bare quark mass. This propagator is then
dressed by incorporating all possible QCD quantum
corrections and, subsequently, regularization and renorm-
alization prescriptions need to be implemented; the latter
introducing a renormalization point ζ. A ζ-dependent
current quark mass mζ

f will thus result, being directly
related to the bare quark mass via Slavnov-Taylor identities
[41,42] (STI). The fully dressed propagator can be obtained
by solving the gap equation,

S−1f ðpÞ ¼ Z−1
f ðp2Þðiγ · pþMfðp2ÞÞ ð2aÞ

¼ Z2S−1fð0ÞðpÞ þ ΣfðpÞ; ð2bÞ

ΣfðpÞ ¼
4

3
Z1

Z
Λ

dq
g2Dμνðp − qÞγμSfðqÞΓf

νðp; qÞ: ð2cÞ

In Eq. (2a), the dressed quark propagator appears recast,
keeping the analogy with its bare counterpart given by
Eq. (1), in terms of the dressing functions Zfðp2Þ and

Mfðp2Þ, which capture both the perturbative and non-
perturbative facets of the propagator. In particular, the latter
one, independent of ζ, corresponds to the constituent quark
mass function which we shall focus on in this work.
Equations (2b) and (2c) properly display the gap equation,

where
R
Λ
dq ¼

R
Λ d4q

ð2πÞ4 stands for a Poincaré invariant regu-

larized integration, with Λ for the regularization scale.
The rest of the pieces carry their usual meaning; Dμν is the
gluon propagator and Γν the fully-dressed quark-gluon
vertex (QGV), Z1;2 are the QGV and quark wave-function
renormalization constants, respectively, and g is the
Lagrangian coupling constant. Every piece in Eqs. (2)
depends on ζ, although the explicit dependence has been
omitted for simplicity. Each Green’s function involved
obeys its own DSE, thus forming an infinite tower of
coupled integral equations.
The derivation of tractable solutions from this infinite set

of equations requires a truncation scheme, conveniently
grounded on a certain number of physically sound and
mathematically reliable assumptions for some suitable set of
Green’s functions. The reader is referred to Refs. [1,19,43]
for recent reports inwhich themodern formulation of the gap
equation and its truncation is thoroughly discussed. It is
worth highlighting that, following Ref. [44], the usual
dressing of propagators and vertices in a rainbow-ladderlike
fashion cannot preserve the Ward-Green-Takahashi iden-
tities playing a key role in the description of mesons.
A correct expression of the fully dressed QGV is therefore
a key step in deriving reliable gap equation solutions. Recent
investigations focus on direct computations of the QGV
dressings either from functional renormalization group
equations [45] or from self-consistent DSEs implemented
with the Landau-gauge gluon propagator as an external
input [24,46].
Alternatively, a typical phenomenological approach for

the gap equation truncation stems from assuming a par-
ticular form for the QGV [47–52], supplemented with a
suitable choice for the QCDs interaction strength [48,53]
assumed to incorporate effectively the QCD dynamics and
thus accounting for hadron observables. Additionally,
several requirements should be imposed to constrain the
QGV, as e.g., gauge invariance, multiplicative renormaliz-
ability, or absence of kinematic singularities [54].
Despite the observation of these well-grounded con-

straints, the correlated choices for the QGV structure and
interaction strength are crucial inputs in this approach, and
can be only corroborated by the practical applications of
thus derived results. We will elaborate further within this
last computational framework.
Owing to a veracious expression of key dynamical

QCD features in the gauge sector, such as the infrared
saturation of gluon propagators and the massless nature of
ghost propagators [7–14,55–60], the gap equation quark-
antiquark scattering kernel has been recently approached

LEI CHANG et al. PHYS. REV. D 104, 094509 (2021)

094509-2



from this gauge sector and shown to be consistent with a
matter-sector construction of the same kernel [25], based on
a nonperturtative symmetry-preserving truncation of the
bound-state equations and further comparison with empiri-
cal data [61–63]. Within this framework, Eq. (2c) can be
rewritten as (after fixing the Landau gauge)

ΣfðpÞ ¼
4

3
Z2

Z
Λ

dq
4πd̂ðk2ÞTμνðkÞγμSfðqÞΓ̂f

νðp; qÞ;

TμνðkÞ ¼ δμν − kμkν=k2; k ¼ p − q; ð3Þ

where one capitalizes on the PT-BFM scheme, which
makes a convenient redefinition of the QCD Green’s
functions possible via a systematical rearranging of classes
of diagrams in their DSEs, such that they result to satisfy
linear STIs. Rooting on the latter:

(i) In the gauge sector the PT-BFM gluon vacuum
polarization captures the required renormalization
group (RG) logarithmic behavior [31], leading there-
from to define a unique QCD running coupling from
the gauge-field two-point Green’s functions [32–34],

g2DμνðkÞ → g2D̂μνðkÞ ¼ 4πd̂ðk2ÞTμνðkÞ; ð4aÞ

k2d̂ðk2Þ ¼ αTðk2Þ
½1 − Lðk2; ζ2ÞFðk2; ζ2Þ�2 ; ð4bÞ

where Lðk2; ζ2Þ is a longitudinal piece of the gluon-
ghost scattering kernel obeying its own DSE [31] and
αTðk2Þ the running coupling derived from the ghost-
gluonvertex Taylor coupling [64–66], whose renorm-
alization flow is defined in terms of gluon and
ghost dressing functions,1 respectively Gðk2; ζ2Þ
and Fðk2; ζ2Þ,

αTðk2Þ ¼ αðζ2ÞGðk2; ζ2ÞF2ðk2; ζ2Þ; ð5Þ

with the Lagrangian coupling at the renormalization
scale, αðζ2Þ ¼ g2ðζ2Þ=ð4πÞ, as the starting point
for the evolution. In Eq. (4b), the explicit point-
renormalization dependence of the dressing functions
has been restored to highlight the RGI character of
d̂ðk2Þ, which naturally enters as the effective running-
interaction in the gap equation quark-antiquark scat-
tering kernel, Eq. (3). As made apparent in Eq. (4b),
one can construct with this running interaction a
quantity endowed with all the UV RG-features of a
QCD running coupling.2 Capitalizing upon the latter,

a process-independentQCD effective charge has been
derived in Refs. [32–34], defined through

d̂ðk2Þ ¼ α̂ðk2ÞDðk2Þ; ð6Þ

whereDðk2Þ is also a RGI function behaving in both
the far-infrared and far-ultraviolet as the propagator of
a free massive boson and, as explained in Ref. [34],
obtained from modern lattice lQCD estimates of the
gluon propagator.

(ii) In the matter sector the fully-dressed QGV is
modified to obey a linear STI,

Z1Γ
f
νðp; qÞ → Z2Γ̂

f
νðp; qÞ; ð7Þ

for which a sensible ansatz is

Γ̂f
νðp; qÞ ¼ Γf;BC

ν ðp; qÞ þ Γf;ACM
ν ðp; qÞ: ð8Þ

The first piece, Γf;BC
ν ðp; qÞ, corresponds to the well

known Ball-Chiu vertex [68], which completely
determines the longitudinal part of the vertex by
the requirement of gauge invariance [69–71]. The
second piece is associated with the anomalous chro-
momagnetic moment (ACM) term [62,72], whose
explicit structure can be conveniently written as

Γf;ACM
ν ðp;qÞ¼ ησναkα

Bfðp2Þ−Bfðq2Þ
p2−q2

Hðk2Þ; ð9Þ

still with k¼p−q [where BfðsÞ¼MfðsÞ=ZfðsÞ and
the profile function is ðs=m2

0ÞHðsÞ¼ð1−e−s=m
2
0Þ] is

defined such that it controls the ultraviolet con-
vergence and restricts the ACM effects to the
infrared domain [62]; m0 and η being flavor-
independent parameters that will be herein tuned
by comparison with lQCD data.

As stated above, Eqs. (8) and (9) entail a modeling
exercise by defining the structure of the fully dressed QGV.
The profile function distilled from the comparison with
lQCD data remains therefore correlated to its being thus
defined. The longitudinal components of the QGV are left
fixed by gauge-invariance requirements; a richer transverse
structure might have a non-negligible impact on the
determination of this profile function. As we approach
its determination, it can eventually be interpreted as an
effective piece of information of the QGV, ensuring that
gap equation solutions are compatible with lQCD results.
Then, replacing Eq. (2c) with (3), the gap equation can

be solved with the running interaction d̂ðk2Þ as a key
ingredient for the kernel, thus featuring a very appealing
connection between the QCD effective coupling defining
the running interaction and the quark mass function
Mfðq2Þ. Furthermore, a remarkable outcome from applying
the ansatz given by Eqs. (8) and (9) for the QGV is that all

1The dressing function is a widely used denomination for the
nonperturbative piece of the two-point scalar form factor; e.g., in
the case of the gluon propagator, Dab

μν ðkÞ ¼ δabDμνðkÞ ¼
δabTμνðkÞGðk2Þ=k2.

2One also needs [34,67] Lðk2; ζ2ÞFðk2; ζ2Þ ≃ 3αTðk2Þ=½8π� at
large momenta.
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flavor dependence in the resulting quarkmass function stems
from the choice for the current quark mass, with no further
tuning of additional parameters related to the kernel. This
universality of our bridging from theQCD effective coupling
to the quark mass function can and will be tested by a
comparison of lQCD and gap equation results obtained with
several different current quark masses in the light sector.

III. EFFECTIVE CHARGE AND QCD
EVOLUTION OF THE PION PDF

According to the seminal work of Ref. [73], an alter-
native, process-dependent approach to determining an
effective charge consists in its definition as being com-
pletely fixed by the leading-order term of the canonical
perturbative expansion of a given observable. An example
of charge thus defined is that fixed by the Bjorken sum
rule [74,75], which is compared to the PI charge in
Refs. [32,34]. Following the same process-dependent
approach, another effective charge, α̃ðk2Þ, for which the
evolution of all pion-parton distribution function (PDF)
moments is completely defined by the one-loop formula, is
introduced in Ref. [34], and it is therein conjectured to
agree within the IR with α̂ðk2Þ.
Further on the same track, it has been defined [35,36] as

α̃ðk2Þ ¼ γmπ

ln
h
K2ðk2Þ
Λ2
QCD

i ; ð10Þ

where nf accounts for the number of active quark flavors
(within the UV domain), γm ¼ 4=β0, β0 ¼ 11 − ð2=3Þnf,
and the interpolation function is

K2ðyÞ ¼ a20 þ a1yþ y2

b0 þ y
; ð11Þ

ensuring a smooth connection between both the correct IR
and UV behaviors. For the latter the approach introduced
and described in Refs. [35,36] works as follows: First, an
accurate parametrization of α̂ðk2Þ from Ref. [34] is
obtained using Eqs. (10), (11) but ΛQCD is replaced by
ΛT ¼ 0.52 GeV; this being the MOM-scheme value for
the QCD Λ-parameter imposed to the PI effective cou-
pling by the behavior of Eq. (4) at asymptotically large
momenta. Next, the so-fitted parameters (noted as primed
coefficients) undergo the following rescaling operation,
fa00; a01; b00g → fa0; a1; b1g ¼ fa00; a01; b00g × ðΛQCD=ΛTÞ2
and are then applied to Eqs. (10), (11). Thus, while α̃ðk2Þ
and the most refined estimate of α̂ðk2Þ obtained with lQCD
propagators [34] are kept in agreement within the IR
domain by the freezing of the saturation point,

α̃ð0Þ ¼ γmπ ln

�
b0Λ2

QCD

a20

�
¼ γmπ ln

�
b00Λ2

T

a020

�
; ð12Þ

the former makes contact with the one-loop level pertur-
bation theory for nf ¼ 4, and where ΛQCD defines a
suitable phenomenological scheme by taking the appro-
priate value. When fixing ΛQCD ¼ 0.234 GeV, one is left
with fa0;a1;b0g¼f0.104ð1Þ;0.0975;0.121ð1Þg (in appro-
priate powers of GeV2) and defines a new effective charge
[35,36]. The one which is proven to succeed in evolving
singlet and nonsinglet pion-parton distribution functions
from a given low-momentum hadronic scale ζH, at which
they can be estimated from valence-quark distributions
obtained with continuum-functional methods [76,77], up to
a large-momentum experimental scale ζex. Glue-, sea-, and
valence-quark pion PDFs at ζex come out with QCD
evolution [78]. All-orders evolution with the one-loop
DGLAP kernel supplemented with the effective charge
α̃ðk2Þ is assumed and the results are shown to be in
excellent agreement with experiments [35,36]. For the
sake of a single illustration, the following results (nf ¼ 4),

h2xðζexÞiq ¼ exp

�
−

8

9π
SðζH; ζexÞ

�
; ð13aÞ

hxðζexÞisea ¼
3

7
þ 4

7
h2xðζexÞi7=4q − h2xðζexÞiq; ð13bÞ

hxðζexÞiglue ¼
4

7
ð1 − h2xðζexÞi7=4q Þ; ð13cÞ

can be readily derived and shown to display a closed
algebraic relation between hxðζexÞiq, hxðζexÞisea, and
hxðζexÞiglue, the momentum fraction averages for the pion
valence quark (q ¼ u; d), sea quarks, and glue at the
evolved scale with

SðζH; ζexÞ ¼
Z

tðζexÞ

tðζHÞ
dtðζÞα̃ðtðζÞÞ; ð14Þ

and tðζÞ ¼ ln ðζ2=Λ2
QCDÞ. Equations (13) only rely on the

all-orders QCD evolution from the hadronic scale with the
effective charge and can provide with a fairly good
description of experimental [79] and lattice [80] results.
In addition, they make apparent the momentum sum rule
and the limit of glue- and sea-quark momentum fractions at
an asymptotically large evolved scale.
The phenomenological success reported in Refs. [35,36]

and described above strongly supports the conjecture about
the IR agreement of α̂ðk2Þ and α̃ðk2Þ within the IR. Then,
assuming that an effective charge with an UV behavior
featured by ΛQCD ¼ 0.234 GeV is more suitable for
phenomenological purposes, we argue that the running
interaction should be redefined just by replacing in Eq. (6)
α̂ðk2Þ with α̃ðk2Þ given by Eqs. (10), (11),

d̂ðk2Þ ¼ α̃ðk2ÞDðk2Þ; ð15Þ
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and it should be then applied to solving the gap equation
using (3) thus producing the quark mass function.
This is the key working assumption in the current

investigation, on the grounds of which we derive a
phenomenologically redefined kernel for the gap equation
and will obtain the results presented in the next section.
In Fig. 1, we display the result for d̂ðk2Þ given by

Eqs. (10), (15) and, for comparative purposes, also include
the one directly obtained from the PI charge, Eq. (6), and
the well-known phenomenological model dubbed as Qin-
Chang (QC) interaction [53]. This QC model often comes
along with the rainbow-ladder truncation of QCD’s, Dyson-
Schwinger, and Bethe-Salpeter equations [63,81,82], pro-
viding accordingly sensible results for the mass spectrum
and structural properties of the vector and pseudoscalar
mesons, and the ground-state baryons.
The way the interaction redefined in Eq. (15) smoothly

makes contact with PI and QC interactions at, respectively,
IR and UV momenta is clearly exhibited by the figure. The
comparison is made clearly apparent that, in using Eq. (15),
part of the effective strength of QC or PI interactions
becomes reallocated in the QGV, enhanced herein by the
ACM term given by Eq. (9).

IV. THE QUARK MASS FROM LATTICE QCD

As it has been stated above, the main aim of this paper is
confronting the quark mass function derived both from the
DSE gap equation, capitalizing on the running interaction
featured by the effective charge given in Eq. (10), and from
lQCD. For the latter, in order to obtain the mass function
accurately, the use of a discretized fermion action without
addtional chiral symmetry breaking is essential. An optimal

choice is the overlap fermion [83,84] which satifies the
Ginsburg-Wilson relation [85].
We have then employed the overlap fermion for the

valence quark on five RBC/UKQCD (2þ 1)-flavor
domain-wall fermion ensembles with Iwasaki gauge action
[37,38], with their setup described in Table I. Two of these
ensembles (labeled as 48I and 64I) are simulated with the
physical light and strange quarks, to control the discretiza-
tion error of the quark mass function; while the other three
ensembles (24I/24Ih/24Ih2) with larger sea-quark masses
(and then heavier-pion masses) are used to investigate the
sea-quark mass dependence of the mass function.3

The quark-mass function can be computed from these
lattice QCD ensembles as

MRI0
f ðp2Þ ¼ 1

12
Tr½S−1lat ðpÞ�=ZRI0

2 ðp2Þ; ð16aÞ

ZRI0
2 ðp2Þ ¼ 1

12
Tr½=pS−1lat ðpÞ�=p2; ð16bÞ

with SlatðpÞ≡P
x;y e

−ipxSðp; xÞ=V [V standing for the 4D
volume] defined in terms of the Landau-gauge propagator
at a fixed volume source, Slatðp; wÞ ¼ hψðwÞPy ψ̄ðyÞeipyi
(the statistical uncertainty is then reduced by a factor

ffiffiffiffi
V

p
,

thus allowing for a very precise result at low p2). The
superscript “RI” stands for the modifed-regularization
independence scheme.
However, ZRI0

2 remains not well defined at p2 ¼ 0 and
therefore prevents a direct extraction of Mfð0Þ. One can
alternatively define from the transverse part of the vertex
correction,

ZVer
2 ðp2Þ ¼ ZV

36
Tr½γνΛðp; γμÞTμνðpÞ�; ð17Þ

where ZV ¼ hπjψ̄γ4ψ jπi=hπjπi is defined through the
corresponding hadron matrix elements and

FIG. 1. RGI interaction, d̂ðkÞ. Effective running-interaction
given by Eqs. (10), (15) with the parameters therein displayed
(blue solid line), compared to the one resulting from the PI charge
(brown dot-dashed) and the QC interaction (red dashed), with
typical model parameters for the so-called DB kernel,
ω ¼ 0.5 GeV, Dω ¼ ð0.55 GeVÞ3, and ΛQCD ¼ 0.234 GeV
[53,63]. The two axes appear displayed in logarithmic scales
to magnify both the UV and IR regimes.

TABLE I. The parameters for the RBC/UKQCD (2þ 1)-flavor
configurations [37,38]; spatial/temporal size, lattice spacing, pion
mass with the degenerate light sea quark, kaon mass, and the
number of configurations.

Symbol L3 × T a (fm) mπðMeVÞ mKðMeVÞ Ncfg

64I 643 × 128 0.0837(2) 139 508 40
48I 483 × 96 0.1141(2) 139 499 40
24I 243 × 64 0.1105(3) 340 593 203
24Ih 243 × 64 0.1105(3) 432 626 143
24Ih2 243 × 64 0.1105(3) 576 660 85

3Note that the strange-quark mass used by the three heavier
ensembles is ∼20% larger than that on the physical-point
ensembles, such a difference provides sensible hints on the
impact of the strange-quark mass on the mass function Mf .
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Λðp;ΓÞ ¼ S−1lat ðpÞhΓiS−1lat ðpÞ
V

; ð18aÞ

hΓi ¼
�X

w

γ5S
†
latðp; wÞγ5ΓSlatðp;wÞ

�
; ð18bÞ

with ZRI0
2 and ZVer

2 being exactly the same under dimen-
sional regularization [86]; the latter defined at p2 ¼ 0
without singularity. Another ace of this vertex definition
of ZVer

2 is its being less affected by discretization errors,4 as
shown in the upper panel of Fig. 2.
Thus, one can define MVer

f ðp2Þ as in Eq. (16a) but
replacing ZRI0

2 with ZVer
2 given by Eq. (17). Results for

MVer
f ðp2Þ obtained from the two lattice ensembles at the

physical point and different lattice spacings are displayed in

the lower panel of Fig. 2, and are shown to be very
consistent, thus confirming that discretization errors are
systematically under control. Consequently, we will use
MVer

f ðp2Þ for the lQCD estimates of the quark mass
function, but will omit the superscript in the following.
On the other hand, the physical-point results of the mass

function appear compared in Fig. 3 to the same ones
computed from the three ensembles with heavier sea quark
(and pion) but the same valence-quark mass. The sea-quark
mass is clearly seen to have a sizeable impact at low
momenta and this therefore implies the need of approach-
ing the unitary point, at which valence- and sea-quark
masses are the same, aiming at a comparison with the gap
equation results.
To this purpose, the multimass algorithm has been

applied with the overlap fermions to produce mass function
results for ten different valence-quark masses on all three
ensembles with heavier pion masses in Table I. Then, we
made interpolations from the results with the three ensem-
bles and have therefrom produced mass functions observ-
ing the unitarity condition and four different current quark
masses roughly ranging from 2 to 60 MeV. This is the
output which the gap equation results are to be compared to
in the next section.

V. THE QUARK MASS FUNCTION
FROM THE GAP EQUATION

Then, the gap equation (2) reshaped in Eq. (3) is to be
solved as described in Secs. II and III, applying the running
interaction given by Eqs. (10), (15) and the QGV defined
through Eqs. (8) and (9). The former results from the
effective charge phenomenologically defined by the all-
orders pion PDF evolution [35,36] and, relying on its being
attached to the PI effective charge [32–34] within the IR,
derives from the PT-BFM truncation of DSEs in the QCD

FIG. 2. Z2 andMk from lattice QCD. The ZVer
2 using the vector-

vertex correction defintion Eq. (17) at two lattice spacings (blue
and purple data points) are quite close to each other; But ZRI0

2

from the quark propagator definition Eq. (16) suffer from obvious
discretization error while approch to ZVer

2 in the continuum limit
(upper panel). The consistency of MVer

k at two lattice spacings
shows that the discretization error is controlled with the vertex
definition (lower panel).

FIG. 3. The quark mass function obtained as explained in the
text, with ZVer

2 given by Eq. (17), from the physical-point
ensembles and from the three others with larger sea-quark masses
(Table I). A sea-quark mass effect is clearly made apparent at
small k.

4This can be well understood as ZRI0
2 is defined through the

quark proapgator Slat, affected by large discretization errors
which become majorly canceled by its inverse in the vertex
defintion ZVer

2 .
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gauge sector and the lattice inputs for the two-point Green’s
functions. The QGV is expected to capture efficaciously all
the relevant nonperturbative dynamics and, if so, the two
only free parameters, m0 and η, should serve for any flavor.
In practice, this means that, by tuning these two parameters,
the quark mass functions resulting from lQCD and from
solving the gap equation should consistently agree with
each other for any fixed value of the current quark mass; in
particular, for those introduced in the last section.
Indeed, as it is shown in Fig. 4, after specializing

m0 ¼ 2 GeV,5 η ∈ ½1.27; 1.32�, and applying the same
current quark masses, the agreement of lQCD and gap
equation results is strikingly good; the gap equation
solutions accurately reproduce the lQCD estimates for
all the considered quark masses, roughly ranging from
2 to 60 MeV.
These solutions rely on the effective charge phenom-

enologically motivated by the all-order pion PDF evolution.
This is made apparent by Eq. (15), where the running
interaction is expressed in terms of the effective charge.
This charge is frozen and attached to the PI one in the IR
limit, as conjectured in Ref. [34], and smoothly interpolates
from there to the UV regime, where it takes the one-loop
perturbative expression. The UV behavior is controlled by
the QCD Λ parameter which, defined phenomenologically
as in Refs. [35,36], takes the value ΛQCD ¼ 0.234 GeV.

At this stage, it is worth pointing out that we also repeated
the analysis by letting ΛQCD be a free parameter to be fitted,
together with η for the ACM term, in order to account for
the lQCD results. In doing so, we are only left with good
fits6 for ΛQCD ∼ 0.23 GeV.
All this can be interpreted as a strong indication in favor

of the effective charge approach to solve the gap equation
for phenomenological applications. With the latter in mind,
we have also solved the gap equation in the chiral limit (the
gray band in Fig. 4) and then applied the formula derived in
Refs. [87,88],

ðfð0Þπ Þ2 ¼ 3

8π2

Z
dp2p2B2ðp2Þðσ2v − 2½σsσ0s þ p2σvσ

0
v�

− p2½σsσ00s − σ0sσ0s� − p4½σvσ00v − σ0vσ0v�Þ; ð19Þ

where Bðp2Þ, defined from Eq. (9), is here specialized for
vanishing current quark mass [the superscript “(0)” denotes
this particular limit], and the functions σs;v ¼ σs;vðp2Þ are
simply quark-propagator dressing functions,

SðpÞ ¼ −iγ · pσvðp2Þ þ σsðp2Þ; ð20Þ

thus reading

σsðp2Þ ¼ Mðp2Þσvðp2Þ;

σvðp2Þ ¼ Zðp2Þ
p2 þM2ðp2Þ ; ð21Þ

in terms of the quark mass functionMðp2Þ and the dressing
function Zðp2Þ from Eq. (2) in the chiral limit. We have

therewith obtained fð0Þπ ¼ 89.5ð1.8Þ MeV, where the error
accounts for the variation of η. This result is fairly
consistent with the lQCD average at the Nf ¼ 2 chiral
limit, 86.2(5) MeV [89], both agreeing within an error
uncertainty of two σs. In the chiral limit, the renormaliza-
tion point-dependent chiral-quark condensate (CQC) can
be expressed as follows:

−hq̄qið0Þζ ¼ Z4NcTr
Z

Λ

q
Sðq; ζÞ; ð22Þ

where Z4 is the mass term renormalization constant,
such that Z4m

ζ
f ¼ Z2mbm

f . The CQC is often considered
as an order parameter of dynamical chiral symmetry
breaking [90], since its nonzero value appears only

FIG. 4. Mass functions. lQCD mass functions (data points) and
DSE results from the ansatz in Eqs. (3)–(9). The current quark
masses are (in MeV): 57.8, 38.5, 19.3, 2.1, and the chiral limit
(top to bottom). The gray band at the bottom corresponds to the
chiral limit. The band in the gap equation results accounts for the
variation of η ∈ ½1.27; 1.32�. Statistical errors for the lattice data
and uncertainties rooting on the interpolation applied to reach the
unitary point are of the order of 1% and have not been displayed,
given the comparative purpose of the plot and its accurateness.

5Although the running interaction and the QGV are both
expected to be flavor independent, and hence independent on the
current quark mass, the interaction is affected by the mass of the
light sea quark. Then, as the masses of one or another are tuned to
be the same in the unitary point through interpolation, we account
for the latter by attributing a small range of uncertainty to η.

6If we take ΛQCD → ΛT , and hence α̃ðk2Þ → α̂ðk2Þ, the
corresponding running interaction provides too much strength
that, combined with our ansatz for the fully-dressed QGV,
Eqs. (8), (9), cannot produce constituent quark masses consistent
with phenomenology.
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nonperturbatively. Moreover, it coincides with the
Nf ¼ 2 chiral limit value of the so-called in-pion con-

densate [91,92] and, at ζ¼19GeV, amounts to −hq̄qið0Þζ ¼
ð0.283ð4Þ MeVÞ3 from the quark propagators herein
obtained for η ∈ ½1.27; 1.32�. We eventually appeal to the
Gell-Mann-Oakes-Renner formula [39],

m2
π� ¼ −mζ

ud

hq̄qið0Þζ

ðfð0Þπ Þ2
þOðm2

udÞ; ð23Þ

where mud ≔ mζ
u þmζ

d ≈ 0. In order to be left with

mπ� ¼ 0.140 GeV, the obtained CQC and fð0Þπ demand
mζ

ud ≃ 6.8 MeV, which is in excellent agreement with the
empirical value [93]. This result encourages the perspective
of an accurate extraction of mπ from a fully symmetry-
preserving approach to solve the meson Bethe-Salpeter
equation. It is worthwhile highlighting that the CQC and
quark mass values herein derived are not under the MS-bar
scheme, and a comparison with lQCD averages [89]
requires thus further investigation.

VI. CONCLUSION

A gap equation running interaction has been defined
on the ground of a phenomenological effective charge,
which in its turn shares the IR behavior, and particularly
the vanishing-momentum saturation, with the process-
independent effective charge defined within the framework
of the PT-BFM truncation of gauge-field DSEs.
TheUVbehavior of thephenomenological effective charge

allows the running interaction to make contact at large
momenta with the Qin-Chang interaction, built to account
for some relevant hadron properties within the framework
of Dyson-Schwinger and Bethe-Salpeter equations, while
running assymptotically as the one-loop QCD coupling.
Furthermore, a smooth transition from an IR process inde-
pendent of a UV Qin-Chang regime is also driven by the
invoked charge, thus defining the running-interaction effec-
tive strength at intermediatemomenta. This strength is closely
tied to the modeling of the transverse structure for the fully-
dressed quark-gluon vertex and, altogether, they are the key
inputs in our obtaining the quark mass function from the gap
equation. We have thus bridged the gap from the QCD gauge
sector, where key nonperturbative features endows the gluon
with a dynamical runningmass, to thematter sector where the
emergence of hadron masses takes place.

Aiming at validating this connection of gauge and matter
sectors results for the quark mass function from the gap
equation and lattice QCD have been successfully con-
fronted. In solving the gap equation, the fully-dressed
quark-gluon vertex became enhanced by an anomalous-
chromomagnetic moment term, tuned by fixing two flavor-
independent parameters which, amounting to sensible
values, made possible an accurate description of the lattice
results. For the latter, domain-wall and overlap-fermion
actions have been respectively applied for the sea and
valence quarks, guaranteeing the best chiral properties on
the lattice. Five different lattice sets of configurations
simulating dynamical quarks with different masses, includ-
ing two at the physical point with different lattice spacings,
have been used to produce quark propagators with ten
different valence-quark masses each. We then combined the
results to extract and deliver the quark mass function for
four different current quark masses; the same ones that
were implemented for the gap equation.
Finally, after succeeding with a congruent comparison of

lattice and gap equation results for the quark mass
functions, we have computed the pion decay constant
and quark condensate in the Nf ¼ 2 chiral limit; and have
accommodated their values into the Gell-Mann-Oakes-
Renner formula with empirically consistent values for
the pion and light quark masses.
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