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The hadron resonance gas (HRG) model is often believed to correctly describe the confined phase of
QCD. This assumption is the basis of many phenomenological works on QCD thermodynamics and of the
analysis of hadron yields in relativistic heavy ion collisions. We use first principle lattice simulations to
calculate corrections to the ideal HRG model. Namely, we determine the subleading fugacity expansion
coefficients of the grand canonical free energy, receiving contributions from processes like kaon-kaon or
baryon-baryon scattering. We achieve this goal by performing a two dimensional scan on the imaginary
baryon number chemical potential (μB)—strangeness chemical potential (μS) plane, where the fugacity
expansion coefficients become Fourier coefficients. We carry out a continuum limit estimation of these
coefficients by performing lattice simulations with temporal extents of Nτ ¼ 8, 10, 12 using the 4stout-
improved staggered action. We then use the truncated fugacity expansion to extrapolate ratios of baryon
number and strangeness fluctuations and correlations to finite chemical potentials. Evaluating the fugacity
expansion along the crossover line, we reproduce the trend seen in the experimental data on net-proton
fluctuations by the STAR collaboration.

DOI: 10.1103/PhysRevD.104.094508

I. INTRODUCTION

The study of the QCD phase diagram has been a very
active area of research for the last few decades. While much
is known about the thermodynamics of QCD at zero baryon
number chemical potential, such as the temperature of the
crossover transition [1–4] and the equation of state [5–8],
the properties of the theory at finite baryon densities remain
elusive. Effective models predict that the crossover tran-
sition turns into a real phase transition at a critical endpoint
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[9–11]. However, confirmation of this feature is needed
from a first principles approach and/or experiment. The
main goal of the currently ongoing experimental effort at
the second Beam Energy Scan program at the Relativistic
Heavy on Collider(RHIC) in 2019–2021 is locating the
supposed critical endpoint of QCD.
Direct first principle lattice simulations at finite chemical

potential are hampered by the infamous sign problem [12].
Methods to circumvent it include reweighting [13–18],
Taylor expansion around zero chemical potential [19–30],
and extrapolation from purely imaginary chemical potential
[31–46]. The first of these methods has so far proved too
expensive to apply on fine lattices. Therefore, no con-
tinuum extrapolated results exist with this approach so far.
The latter two methods, on the other hand, involve analytic
continuation, which is an ill-posed problem, regardless of
whether the available data is a number of Taylor coef-
ficients at zero chemical potential or the value of some
observable at a number of points at imaginary chemical
potential. In such a case, it is important to use physical
insight to argue what the functional form of a given
observable could be as a function of the chemical potential.
The confined phase of QCD is often assumed to be well

described by the ideal hadron resonance gas (HRG) model
[47–51]. The HRG model is based on the assumption that
a gas of interacting hadrons can be described as a gas of
noninteracting hadrons and resonances. The inclusion
of the resonances as free particles is an approximate way
of taking into account resonant interactions between the
stable hadrons [49,50]. The model describes bulk thermo-
dynamic observables—like the pressure or the energy
density—obtained from first principle lattice calculations
rather well at zero chemical potential [6,52–54]. However,
when looking at observables probing finite chemical
potentials, namely Taylor expansion coefficients in the
chemical potentials μB, μS and μQ near zero or in the
respective fugacities eμB=T; eμS=T and eμQ=T near 1, some
discrepancies start to emerge between the HRG model and
lattice calculations. Some of these discrepancies can be
traced back to the fact that some fugacity expansion
coefficients with baryon number zero and one are under-
estimated by the HRG model. Though this is not the only
possibility, this type of discrepancy can be interpreted
within the bounds of the HRG model itself, and has been
used to try to infer the existence of as of yet unobserved
hadrons [41,55–57]. The other possibility is that instead of
more resonances, a better treatment of resonances is
needed, taking into account finite widths and also non-
resonant interactions [48–50,58–60]. Of course, both state-
ments can be true at the same time. For a precise description
of the thermodynamics, we most likely need better knowl-
edge of the mass spectrum at higher energies, as well as a
more accurate treatment of resonances.
Other discrepancies between the ideal HRG model and

the lattice are impossible to resolve by supposing the

existence of more resonances. These discrepancies can
be traced back to the observation that even in the temper-
ature range below the crossover, the HRG model fails to
describe subleading fugacity expansion coefficients.
In principle, the hadron resonance gas can be system-

atically improved by the S-matrix formulation due to
Dashen, Bernstein and Ma [48–50], which allows for the
calculation of the fugacity expansion coefficients, if enough
information is known about the scattering matrix of the
hadrons. Applying the S-matrix formalism can lead to a
better description of QCD thermodynamics. Reference [60]
shows that the baryon-electric charge correlation χBQ11 is
particularly sensitive to pion-nucleon scattering phase
shifts and that the inclusion of these phase shifts into a
hadron gas analysis leads to an improved description of the
lattice data. This observable is somewhat special though, in
that if isospin symmetry is assumed jSj ¼ 1 hyperons
do not contribute at all to χBQ11 , and therefore it is only
pion-nucleon scattering that dominates the nonresonant
contributions.
For other observables more scattering data, e.g., infor-

mation about baryon-baryon scattering, would also be
needed. This is especially the case at finite baryon density.
Unfortunately, information on these scattering processes is
only partially available. While the nucleon-nucleon elastic
scattering phase shifts are known experimentally [61–63],
the inelastic part of the S-matrix is not known. Even less is
known about scattering between hadrons other than nucle-
ons. Hyperon-nucleon and hyperon-hyperon interactions
have been studied in chiral effective theory [64,65]. In the
last few years, the analysis of momentum space correlations
for hadron pairs measured in pp and p-Pb collisions has
also been used to infer properties of hadron-hadron
interactions [66–68]. There are also some lattice results
available for baryon-baryon scattering [69–71], but not yet
with a continuum extrapolation. While these mentioned
research directions show a clear effort from the community
to learn about scattering between other hadrons, the
preliminary nature of these results makes the use of the
S-matrix formalism for the fugacity expansion impractical
at the moment.
One simple way to nevertheless go beyond the ideal

hadron resonance gas is to use some kind of mean field
model for the short range repulsion and the long range
attraction between the baryons. Such models were com-
pared to lattice results in Refs. [42,72–74]. These works in
particular emphasized the importance of the hard core
repulsive interactions between hadrons when describing
thermodynamics at finite baryon chemical potential. This
type of interaction is completely absent in the ideal HRG
model and leads to a sizable negative contribution to the
fugacity expansion coefficients with baryon number two.
Such approaches, while interesting, are very far from the
first principle approach that the S-matrix formulation could
provide, were the necessary S-matrix elements known. In

RENE BELLWIED et al. PHYS. REV. D 104, 094508 (2021)

094508-2



fact, the flavor dependence of excluded volume parameters
used in the literature so far have been quite arbitrary, often
assuming the same excluded volume for all hadrons. We
believe the present calculation of the fugacity expansion
coefficients can lead to the construction of more realistic
models.
Going beyond equilibrium in the grand canonical

ensemble, versions of the hadron resonance gas model
have also been used to interpret hadron yields in heavy ion
collision experiments. This approach is colloquially
referred to as thermal fits as they involve the estimation
of the temperature and chemical potential where the yields
of hadrons are frozen, the so-called chemical freeze-out
conditions. This approach was successful in describing
hadron yields [75–80], which is quite remarkable, consid-
ering that these yields at a single collision energy span
many orders of magnitude. Though an important under-
lying assumption here is the equilibration of the system
produced in heavy ion collisions [81–83], the fact that the
fits work also provides some evidence for this assumption.
In this context, it has been realized that including the pion-
proton phase shifts in the analysis changes the predicted
yields as compared to the ideal HRG model at LHC
energies [84]. Of course, for consistency, one should extend
such and S-matrix treatment to strange hadrons as well.
In lack of the necessary scattering data, this extension to
strangeness is not straightforward [85]. The inclusion of
these corrections is important to precisely test the
assumption of a single freeze-out temperature. As a
competitor to this assumption, in the context of ideal
HRG model, it was shown [86] that different freeze-out
temperatures for light and strange hadrons, can signifi-
cantly improve the description of the experimental yields at
the LHC and the highest RHIC energies.
Since comparisons with the available lattice data suggest

that the agreement between full QCD and the ideal hadron
resonance gas model gets worse at finite chemical potential,
we suspect that nonresonant scattering effects will be
even more important at the RHIC Beam Energy Scan
and future experiments at lower collision energies, like
FAIR and NICA.
In this work we calculate subleading fugacity expansion

coefficients with first principle lattice simulations. To this
end we perform simulations at imaginary chemical poten-
tials, where the fugacity expansion coefficients turn into
Fourier coefficients in the imaginary values of the chemical
potentials. This correspondence was already exploited in
our earlier works. In Ref. [41] we made a detailed analysis
of the fugacity expansion coefficients already appearing in
the Boltzmann approximation of the ideal HRG model, to
infer the existence of not yet discovered strange hadrons. In
Ref. [42], some of us used the fugacity expansion to
emphasize the importance of repulsive baryonic inter-
actions near the crossover region. In Ref. [87] we compared
the fugacity expansion with the Taylor expansion in the

chemical potentials for cross-correlators of conserved
charges. Here we go beyond our earlier works by perform-
ing lattice simulations on a two-dimensional grid in the
purely imaginary ðμIB; μISÞ plane. This allows us for the first
time to separate the scattering contributions to QCD
thermodynamics by the net strangeness quantum number
of the participants. In addition to giving insight on the
origin of the discrepancies between full QCD and the ideal
HRG model, we believe our results on the fugacity
expansion coefficients will also be useful to tune the
parameters of the freeze-out models in heavy ion
phenomenology.
We also use the truncated fugacity expansion to extrapo-

late experimentally measured ratios of baryon number and
strangeness susceptibilities to finite baryon chemical poten-
tials on the phenomenologically relevant strangeness-
neutral line. This provides an alternative extrapolation
procedure to the standard Taylor method. When we
extrapolate on the crossover line at strangeness neutrality,
these subleading coefficients approximately reproduces the
trend seen in the experimental data of the STAR collabo-
ration of net-proton fluctuations [88–90].
The structure of the paper is as follows. In the next

section, we introduce the basic notation and observables
used in our study. In Sec. III we discuss our lattice setup. In
Sec. IV we discuss our fitting procedure for the sectors and
we present the fugacity expansion coefficients. In Sec. V
we calculate the fluctuation-ratios using the fugacity
expansion and extrapolate to small finite density. Finally
in Sec. VI we give a brief summary and outlook for
future work.

II. QCD IN THE GRAND CANONICAL ENSEMBLE

A. Susceptibilities and the Taylor expansion

There is a conserved charge corresponding to each quark
flavor of QCD. Working with three flavors, the grand
canonical partition function can be then written in terms of
three quark number chemical potentials: μu, μd and μs. The
generalized susceptibilities are defined to be derivatives of
the grand potential (or pressure) with respect to these
chemical potentials:

χudsijk ¼ ∂iþjþkðp=T4Þ
∂μ̂iu∂μ̂jd∂μ̂ks

; ð1Þ

with the dimensionless chemical potentials μ̂X ¼ μX=T. For
the purpose of hadronic phenomenology it is more con-
venient to work with the conserved charges B (baryon
number), Q (electric charge) and S (strangeness) instead,
with chemical potentials μB, μQ and μS, respectively. The
basis of μu, μd, μs can be transformed into a basis of μB, μQ,
μS with a simple linear transformation, whose coefficients
are given by the B, Q and S charges of the individual
quarks:
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μu ¼
1

3
μB þ 2

3
μQ; ð2Þ

μd ¼
1

3
μB −

1

3
μQ; ð3Þ

μs ¼
1

3
μB −

1

3
μQ − μS: ð4Þ

Analogously to the case of the quark number chemical
potentials, the susceptibilities are then defined as

χBQS
ijk ¼ ∂iþjþkðp=T4Þ

∂μ̂iB∂μ̂jQ∂μ̂kS
: ð5Þ

It is straightforward to express the susceptibilities defined
in Eq. (5) in terms of the coefficients in Eq. (1) [24,91,92].
The susceptibilities at μB ¼ μS ¼ μQ ¼ 0 are (up to a trivial
factorial factor) the Taylor expansion coefficients of the
pressure near that point. Due to charge conjugation
symmetry, only the even derivatives contribute. In the
present study, we always take μQ ¼ 0 and only consider
derivatives with respect to μB and μS. The Taylor expansion
therefore reads:

p
T4

¼
X∞
i¼0

X∞
j¼0

1

i!j!
χBSij μ̂

i
Bμ̂

j
S; ð6Þ

where χBS00 is just the dimensionless pressure at zero
chemical potential.
We note that the Taylor expansion is probably the most

natural expansion to work within the plasma phase of QCD.
As an exhibit of this, the pressure in the Stefan-Boltzmann
(or infinite temperature) limit reads

p
T4

¼ 8π2

45
þ 7π2

60
Nf þ

1

2

X
f

�
μ2f
T2

þ μ4f
2π2T4

�
: ð7Þ

In this approximation, all derivatives above 4th order are
zero, and therefore the Taylor expansion is rapidly con-
vergent. Calculating corrections to this free gas behavior in
resummed perturbation theory leads to a nonzero, but
small, value for the sixth-order derivatives [93], leaving
the qualitative conclusion of the fast convergence of the
Taylor series in the plasma phase unchanged.

B. Fugacity expansion of the free energy

An alternative to the Taylor expansion discussed in the
previous subsection is a Laurent expansion in the fugacity
parameters eμ̂B and eμ̂S near 1. Due to charge conjugation
symmetry, a combination emμ̂Bþnμ̂S and its reciprocal have
the same expansion coefficients, making the Laurent
expansion an expansion in hyperbolic cosines:

PðT; μ̂B; μ̂SÞ ¼
X
j;k

PBS
jk ðTÞ coshðjμ̂B − kμ̂SÞ: ð8Þ

The coefficients PBS
jk are also called fugacity expansion or

sector coefficients, alluding to the fact that they get
contributions from the Hilbert subspace corresponding to
the fixed values of the conserved charges B ¼ j and S ¼ k.
In the ideal HRG model, the expansion coefficients
PBS
00 ; P

BS
01 ; P

BS
10 ; P

BS
11 ; P

BS
12 ; P

BS
13 all get sizable contributions

from known hadrons and hadron resonances. In the
Boltzmann approximation to the ideal HRG model, co-
efficients like PBS

20 are zero, while in the full HRG model
they are nonzero, but very small in magnitude and
essentially negligible.
At purely imaginary chemical potentials μq ¼ iμIq, where

the sign problem is absent and lattice simulations can be
performed, we have a Fourier expansion of the form

PðT; μ̂IB; μ̂ISÞ ¼
X
j;k

PBS
jk ðTÞ cosðjμ̂IB − kμ̂ISÞ: ð9Þ

Differentiation with respect to the original chemical poten-
tials μB ¼ iμIB and μS ¼ iμIS gives

ImχBS10 ¼
X
j;k

jPBS
jk ðTÞ sinðjμ̂IB − kμ̂ISÞ; ð10Þ

ImχBS01 ¼
X
j;k

ð−kÞPBS
jk ðTÞ sinðjμ̂IB − kμ̂ISÞ; ð11Þ

χBS20 ¼
X
j;k

j2PBS
jk ðTÞ cosðjμ̂IB − kμ̂ISÞ; ð12Þ

χBS11 ¼
X
j;k

ð−jkÞPBS
jk ðTÞ cosðjμ̂IB − kμ̂ISÞ; ð13Þ

χBS02 ¼
X
j;k

k2PBS
jk ðTÞ cosðjμ̂IB − kμ̂ISÞ: ð14Þ

These formulas and the higher order derivatives of these
will be used in our fitting procedure, to be described
in Sec. IV.

C. The hadron resonance gas and its extensions

In the ideal HRG model the free energy (or pressure) is
written as a sum of ideal gas contributions of all known
hadronic resonances H:

p
T4

¼ 1

T4

X
H

pH ¼ 1

VT3

X
H

lnZHðT; μ⃗Þ; ð15Þ

with
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lnZH ¼ ηH
VdH
2π2T3

Z
∞

0

dpp2 log ½1 − ηHzH exp ð−ϵH=TÞ�;

ð16Þ

where the subscript H indicates dependence on the specific
hadron or hadron resonance in the sum. The relativistic
energy is ϵH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

H

p
, where mH is the mass of the

given hadron. The fugacity is zH ¼ exp ðμH=TÞ, where the
chemical potential associated to H is μH ¼ μBBH þ
μQQH þ μSSH, and the conserved charges BH, QH and
SH are the baryon number, electric charge, and strangeness,
respectively. dH is the spin degeneracy, and the factor ηH is
1 for (anti)baryons (fermions) and −1 for mesons (bosons).
In the HRG model, the χBQS

ijk susceptibilities of Eq. (5)
can be expressed as

χBQS
ijk ðT; μ̂B; μ̂Q; μ̂SÞ ¼

X
H

Bi
HQ

j
HS

k
HI

H
iþjþk; ð17Þ

where the phase space integral at order iþ jþ k reads:

IHl ðT; μ̂B; μ̂Q; μ̂SÞ ¼
∂lpH=T4

∂μ̂lH : ð18Þ

The fugacity expansion coefficients, PBS
00 , P

BS
01 , P

BS
10 , P

BS
11 ,

PBS
12 and PBS

13 , can be obtained via the expansion of Eq. (16)
in terms of the modified Bessel functions K2:

lnZH ¼ VTm2
HdH

2π2
X∞
n¼1

ð−ηHÞnþ1znH
n2

K2

�
nmH

T

�
: ð19Þ

The Boltzmann approximation consists of taking only the
n ¼ 1 term in the above expansion, which accounts for the
lowest order in the fugacity parameters. In the Boltzmann
approximation, the sectors read:

PBS
jk ¼

X
H

δBH;jδSH;k
dHm2

H

2π2T2
K2

�
mH

T

�
: ð20Þ

In the full ideal HRG model, a hadron with BH ¼ 1 and
SH ¼ 0 will also give contributions to the higher order
sectors, such as PBS

20 and PBS
30 , due to the terms n ¼ 2 and

n ¼ 3 in Eq. (19), respectively. These are, however,
exponentially suppressed due to the behavior of the
Bessel function, K2ðxÞ ∼

ffiffiffiffi
π
2x

p
e−x as x → ∞. These con-

tributions are orders of magnitude smaller than the full
weight of the respective sectors as obtained from the lattice.
The HRGmodel is an approximation of the more general

formula by Dashen, Bernstein and Ma, which gives the
fugacity expansion coefficients in terms of the S-matrix:

PBS
jk ¼ 1

π3T3

Z
∞

MBS
jk

dEE2K2

�
E
T

�

1

4i
TrB¼j;S¼k

�
S†

dS
dE

−
dS†

dE
S

�
c
; ð21Þ

where MBS
jk is the mass threshold for the B ¼ j, S ¼ k

channel, the trace is taken over this Hilbert subspace, and
the subscript c signifies that only connected S-matrix
elements are to be taken. For the specific case of elastic
2 → 2 body scattering,

1

4i
TrB¼j;S¼k

�
S†

dS
dE

−
dS†

dE
S

�
c

→
X
J

ð2J þ 1Þ
�
dδJ;I¼0

dE
þ 3

dδJ;I¼1

dE

�
; ð22Þ

where the δJ;I are the scattering phase shifts for angular
momentum J and isospin I and the isospin singlet and
triplet contributions have been written separately. After
integration by parts with respect to E, we get to the
conclusion that the contribution of elastic scattering is
given by the integral of the phase shift with an exponential
weight. This leads to the expectation that dominantly
repulsive interactions will lead to a negative subleading
fugacity expansion coefficient. This fact was exploited
when constructing repulsive core HRG models and com-
paring them with lattice data in Refs. [42,74]. It is also
reasonable to expect, due to the exponential suppression of
the K2 Bessel functions, that in the hadronic phase there
will be a strong hierarchy of the fugacity expansion
coefficients with increasing quantum numbers, so e.g.,
PBS
01 ≫ PBS

02 ≫ PBS
03 as well as PBS

10 ≫ PBS
20 ≫ PBS

30 and
PBS
11 ≫ PBS

21 ≫ PBS
31 , etc. It is thus a reasonable expectation

that, in the hadronic phase, the fugacity expansion will
converge faster than the Taylor expansion. This is the
opposite situation as in the plasma phase, where the Taylor
expansion converges quickly, while the fugacity expansion
converges slowly. This makes the fugacity expansion
particularly useful for modeling the hadronic phase, and
therefore also for the study of chemical freeze-out in heavy
ion collisions.
Here we do not utilize any S-matrix formula or any mean

field approximation thereof, but rather calculate the sub-
leading sector coefficients PBS

20 , P
BS
21 , P

BS
22 , P

BS
02 etc., directly

from lattice simulations.

III. LATTICE SETUP

We use a staggered fermion action with four steps
of stout smearing [94] with the smearing parameter ρ ¼
0.125 and a tree-level Symanzik-improved gauge action.
This combination was first used in Ref. [24], where
information about the line of constant physics can be
found. For the scale setting we use the pion decay constant
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fπ ¼ 130.41 MeV [95]. We use lattices of temporal extent
Nτ ¼ 8, 10, and 12 to perform an estimation of the
continuum value of our observables. The spatial extent
of the lattice is given by the aspect ratio LT ≈ 3. Due to
technical reasons, some lattices had slightly different values
for this ratio, as given in Table I. Given the error bars on the
final results, we did not optimize this further.
For the continuum extrapolations, we assume a linear

scaling in 1=N2
τ . Since taste-breaking effects are still rather

large on these lattices, we only call our results continuum
estimates, as opposed to fully controlled continuum extrap-
olations, e.g., when Nτ ¼ 16 is part of the extrapolation.
For all values of Nτ, we use simulations at four different

temperatures: T ¼ 145 MeV; 150 MeV; 155 MeV and
160 MeV. At each temperature and each lattice spacing,
we perform a two-dimensional scan in the imaginary
chemical potentials, μIB and μIS, with the chemical potentials
taking the values ðμIB; μISÞ ¼ π

8
ði; jÞ, with i ¼ 0; 1;…; 15

and j ¼ 0; 1;…; 8, for a total of 9 × 16 ¼ 144 simulation
points. In each μi ≠ 0 point, we simulated one Rational
Hybrid Monte Carlo stream with several thousand trajec-
tories, evaluating every fifth configuration for the fluc-
tuation observables as detailed in Ref. [24]. Our statistics
are summarized in Table I.
The statistical errors are calculated using the jackknife

method. The estimation of the systematic errors is a more
elaborate process. Ambiguities appear at various points of
the analysis, e.g., in the way the continuum extrapolation is
calculated, or how many fit parameters we use for the
extraction of the fugacity expansion coefficients. We
consider all combinations of the possibilities and take
the spread of the results as systematic error.

IV. FUGACITY EXPANSION COEFFICIENTS

The estimation of the coefficients PBS
ij proceeds through

a correlated fit. On the μB ¼ μS ¼ 0 ensembles, the
fluctuations χBS20 ,χ

BS
11 ,χ

BS
02 ,χ

BS
40 , χBS31 ,χ

BS
22 ,χ

BS
13 and χBS04 are

included, while for the other ensembles we use ImχBS10
and ImχBS01 . This leads to a block-diagonal covariance
matrix with one 8 × 8 block corresponding to the μ ¼ 0
ensemble, and 143 blocks of size 2 × 2 corresponding to
the ensembles with a nonzero value of at least one of the

chemical potentials. The covariance matrix blocks are
estimated by the jackknife method with 24 jackknife
samples. The truncation of the fugacity expansion is
somewhat ambiguous, as there is no single small parameter
in which we actually perform this expansion. To estimate
systematic errors coming from the choice of the ansatz, we
therefore perform two fits for each ensemble, for which we
introduce the shorthand notations Bmax ¼ 2 and Bmax ¼ 3.
The sectors included in the Bmax ¼ 2 analysis are:

PBS
01 ; PBS

10 ; PBS
11 ; PBS

12 ;

PBS
13 ; PBS

1;−1; PBS
20 ; PBS

21 ;

PBS
22 ; PBS

23 ; PBS
02 ; PBS

03 : ð23Þ

The first five of these correspond to sectors that are already
present in the ideal HRG model in the Boltzmann approxi-
mation. They also set contributions from interactions,
though, e.g., nonresonant pion-nucleon interactions con-
tribute to PBS

10 , while K − Λ interactions contribute to PBS
12 .

The PBS
1;−1 sector gets no contributions in the Boltzmann

approximation of the HRG model from the usual hadron
states. It gets contributions, for example, from the valence
quark content uudds̄ which can correspond to pþ K0

scattering. We will see that this coefficient is negative,
which points to the interactions contributing to be domi-
nantly repulsive, as was already discussed in the S-matrix-
based study of Ref. [96]. The sectors PBS

2i get contributions
from baryon-baryon scattering: PBS

20 from N − N, PBS
21 from

N − Λ, PBS
22 from N − Ξ or Λ − Λ and finally PBS

23 from
N − Ω or Λ − Ξ. In each case, Σ can replace Λ. The
coefficients PBS

02 and PBS
03 get contributions from two- and

three-kaon scattering, respectively. The inclusion of the
PBS
03 sector with the omission of the PBS

30 sector is motivated
by the lower mass threshold of three-kaon scattering as
compared to three-baryon scattering. In addition to these,
we also performed an analysis where four sectors with
B ¼ 3 were added:

PBS
30 ; P

BS
31 ; P

BS
32 ; P

BS
33 : ð24Þ

These get contributions from three-baryon scattering, with
various strangeness contents. Our data is not yet suffi-
ciently accurate to obtain a reliable estimate of the sectors
with B ¼ 3, and the inclusion of these sectors does not
improve the χ2 of the fits. Whether we include these, or not,
the results for the B ¼ 2 sectors remain consistent, as we
show in the left panel of Fig. 1, where the sector
coefficients from the two different fits on the Nτ ¼ 12
lattices are shown. This way we demonstrate the stability of
the sectors included in the Bmax ¼ 2 set. Only at the highest
temperature, T ¼ 160 MeV, and only for one sector, PBS

20 ,
is the systematic error coming from, including the B ¼ 3
sectors comparable to the statistical error of the fits.

TABLE I. Number of evaluated configurations on the various
lattices and temperatures. The μI ≠ 0 statistics is distributed over
143 pairs of imaginary strange and baryon chemical potentials.

145 MeV 150 MeV 155 MeV 160 MeV

403 × 12 μI ¼ 0 10348 10520 10345 11611
323 × 10 μI ¼ 0 8518 8461 1695 9174
243 × 8 μI ¼ 0 40247 39996 19953 20015
363 × 12 μI ≠ 0 146968 154479 153513 144169
323 × 10 μI ≠ 0 124915 81814 300779 264647
243 × 8 μI ≠ 0 184896 171224 166034 161454
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The continuum limit estimation of the sectors proceeds
through a combined fit in temperature and lattice spacing
(or equivalently Nτ) via the ansatz

fðT;NτÞ¼ ða0þa1Tþa2T2Þþðb0þb1Tþb2T2Þ 1

N2
τ
:

ð25Þ

For the systematic error we compare this ansatz with and
without the coefficient b2. The continuum extrapolation of
the beyond-ideal-HRG sectors for the case of the Bmax ¼ 2
fits at fixed T and Nτ and b2, kept as a free parameter, is
shown in Fig. 1 (right). The other three fits look quanti-
tatively similar. All of the continuum fits have acceptable fit
quality, with Q values over 1%. As a conservative estimate
of the systematics, we combine them with uniform weights.
As can be seen in the right panel of Fig. 1, the slopes of the
continuum extrapolations of all beyond-ideal-HRG sectors

appear to be mild, except for the sector PBS
02 , which

corresponds to kaon-kaon scattering and changes its sign
during the continuum extrapolation. As expected, this
sector—being related to kaons—suffers from relatively
large taste-breaking effects.
The final results for the beyond-ideal-HRG sectors can

be seen in Fig. 2. Within the statistical precision of our
results, PBS

20 is roughly the same as PBS
21 , while PBS

22 is
smaller than the previous two. As a comparison, the ideal
HRG model prediction for the sum

P
k P

BS
2k at T ¼

155 MeV is of the order 10−5, orders of magnitude lower
than what we see here. The two-kaon scattering sector PBS

02

goes slightly below zero at around 155 MeV within 1σ
uncertainty. The three-kaon sector PBS

03 is consistent with
zero in the entire temperature range and is therefore not
included in the plot. An upper limit on its magnitude with
1σ uncertainty is 2 × 10−3. The PBS

1;−1 sector is rather large,
consistently with our earlier statistically independent

FIG. 1. Left: The four panels refer to four temperatures, each showing the obtained coefficients of the fugacity expansion on a
logarithmic scale (negative values are shown in blue). Only the leftmost five are accounted for by the ideal HRG model. The next seven
appear in the next order, which we use later for phenomenology. For the next order (last four coefficients with B ¼ 3) we see no stable
signal. There are two symbols per coefficient, triangles for the complete fit and circles for the case without the B ¼ 3 part. The data refer
to our finest lattice spacing. Right: Example for the combined continuum extrapolation of the extracted coefficients.
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finding in Ref. [87] on Nτ ¼ 12 lattices. We have already
published the leading sector coefficients for which the ideal
HRG model has a prediction in the Boltzmann approxi-
mation, namely PBS

01 , P
BS
10 , P

BS
11 , P

BS
12 , P

BS
13 in Ref. [41]. We

will not repeat the results for those sectors here.
Our lattice results confirm the order of magnitude

estimates of the effect of repulsive interactions from more
phenomenological approaches. As an example, a repulsive
mean field/excluded volume approach with the same
repulsive interactions for all baryons [42,74] predicts P2k

sectors roughly in agreement with ours: the PBS
20 and PBS

21

agree within 1σ, while PBS
22 agrees within 2σ for all

temperatures. As another example, the approach based
on KN scattering phase shifts [96] predicts the magnitude

of the PBS
1;−1 sector to be in agreement within 1σ for

T ¼ 150 MeV, and a magnitude around 2σ smaller than
ours at T ¼ 160 MeV.

V. FLUCTUATION-RATIOS AT FINITE
BARYON DENSITY

Having the coefficients of the fugacity expansion, the
thermodynamics can be readily obtained. In this section we
calculate the baryon number and strangeness fluctuations
and their ratios in the studied temperature range. There is
no difficulty in evaluating Eq. (8) and its μB- and μS-
derivatives at any chemical potential.
Heavy ion collisions involving lead or gold atoms

correspond to the conditions χS1 ¼ 0 and χB1 ¼ 0.4χQ1 .
For the purposes of the present study, we impose strange-
ness neutrality and leave the second conditions for future
work. In fact, we use the simplified form χB1 ¼ 0.5χQ1 ,
which is realized at vanishing electric charge chemical
potential.
To show the magnitude of the cutoff effects, we start with

a pair of quantities at μB ¼ 0. The fugacity expansion, and
more generally imaginary chemical potential simulations,
offer an efficient way to calculate susceptibilities at μB ¼ 0.
In Ref. [44] we calculated the ratios χB3 =χ

B
1 and χB4 =χ

B
2 at a

finite lattice spacing ofNτ ¼ 12with the same lattice action
used here. Here we show continuum estimates of the
fluctuation-ratios χB3 =χ

B
1 and χB4 =χ

B
2 at μB ¼ 0, together

with the data at finite Nτ in Fig. 3. In the ideal HRG model,
χB4 =χ

B
2 ¼ 1 for all temperatures, meaning that above T ¼

150 MeV our results show a clear deviation from the HRG
prediction, due to presence of the nonzero beyond-ideal-
HRG sectors. The difference between the two ratios
χB4 =χ

B
2 − χB3 =χ

B
1 is also shown. In the μS ¼ 0 case the

two ratios at μB ¼ 0 are identical. The difference between
the two ratios comes from imposing the strangeness
neutrality condition χS1 ¼ 0. This difference also shows
mild cutoff effects.
After the sectors are obtained, we perform extrapolations

to real chemical potentials using the ansatz of Eq. (8)
truncated at the Bmax ¼ 2 level. We extrapolate first at fixed
T and Nτ. We consider the fluctuation-ratios χB1 =χ

B
2 , χ

B
3 =χ

B
1 ,

χB4 =χ
B
2 and χBS11 =χ

S
2 on the strangeness-neutral line χS1 ¼ 0,

which determines μS as a function of μB. While the
extrapolation always uses the twelve sectors of the Bmax ¼
2 level, the values of these sectors are taken both from the
Bmax ¼ 2 and Bmax ¼ 3 fits to estimate the systematic
errors. We then perform a continuum estimation at fixed
values of μB=T with the same combined T and Nτ fit as in
the case of the baryon and strangeness sectors.
We had one sector, PBS

02 , with a steep continuum
extrapolation. Should we expect additional systematic
errors coming from the nontrivial continuum scaling in
the phenomenology? The answer is no, as we demonstrate
in Fig. 4. The multi-kaon sectors do not contribute to the

FIG. 2. Our continuum estimates of the beyond-ideal-HRG
sector coefficients. We show the results both from our combined
temperature and continuum fit (green bands) and of a T-by-T
continuum limit extrapolation (blue points). Systematic errors are
included, in the first case by varying Bmax ¼ 2 vs 3 and b2 ¼ 0 or
b2 ≠ 0, and in the second case by varying Bmax ¼ 2 vs 3.
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baryon fluctuations. The only ratio with phenomenological
relevance where the PBS

02 may be important is χBS11 =χ
S
2 . We

calculated this ratio with and without the multi-kaon sectors
and compared the results in Fig. 4 at T ¼ 160 MeV.
Although at this temperature and this lattice spacing we
have the largest value for this difficult sector, we see hardly
any significant effect from it, especially not when com-
pared to the statistical errors after the continuum extrapo-
lation step.
The final results for the fluctuation-ratios χB1 =χ

B
2 , χ

B
3 =χ

B
1 ,

χB4 =χ
B
2 , χ

BS
11 =χ

S
2 on the strangeness-neutral line can be seen

in Fig. 5. The first of these ratios is strongly dependent on
the chemical potential, but not on the temperature, making
it a proxy of the chemical potential, at least for small values
of μB. One has to remember though that if the critical

endpoint exists, the fluctuation χB2 diverges there, leading to
χB1 =χ

B
2 → 0 at the critical point, and therefore making this

quantity a nonmonotonic function of μB.
The other three are more strongly dependent on

the temperature and less strongly on the chemical
potential, therefore making them possible proxies for the
temperature. The ratios χB3 =χ

B
1 and χB4 =χ

B
2 can be regarded

as a baryon thermometer, while the ratio χBS11 =χ
S
2 as a

strangeness-related one. This latter ratio is of large phe-
nomenological interest, as experimental net-lambda and
net-kaon fluctuations can be used to construct the ratio
σ2Λ=ðσ2Λ þ σ2KÞ. It was shown in Ref. [87] that this is a good
experimental proxy of χBS11 =χ

S
2 , not strongly affected by

experimental effects, which makes it a prime target for
comparison with experiments.
We show the fluctuation-ratios in Fig. 5 as functions of

the dimensionless chemical potential μB=T at a few values
of the temperature, as well as on the crossover line
calculated to order μ2B in Ref. [45]:

TcðμBÞ ≈ T0
cð1 − κ2μ̂

2
BÞ; ð26Þ

with T0
c ¼ ð158.0� 0.6Þ MeV and κ2 ¼ 0.0153� 0.0018.

The errors on these numbers are included in the error
estimation, but are negligible. Note that since the crossover
temperature changes very little in the chemical potential
range of our study, the 1σ bands on the TcðμBÞ line always
overlap with the 1σ bands for a fixed T ¼ T0

c ¼ 158 MeV.
Our results on the ratios χB3 =χ

B
1 and χB4 =χ

B
2 are also shown

as a function of χB1 =χ
B
2 in Fig. 6. Within 1σ, our results are

consistent with recent lattice results on the susceptibility
ratios using the Taylor method [30]. In Fig. 6 we also
compare the results to the data on net-proton fluctuations
from the STAR collaboration [88–90], the net-proton

FIG. 3. Fluctuation-ratios χB3 =χ
B
1 and χB4 =χ

B
2 obtained from the

fugacity expansion truncated at the Bmax ¼ 2 level at μB ¼ 0 on
our Nτ ¼ 8, 10, and 12 lattices and our continuum estimates from
these data. The points at finite lattice spacing include a systematic
error coming from whether we used the 12- or the 16-parameter
fit to determine the Bmax ¼ 2 sectors. The continuum results
include systematic errors from four fits, in addition to the 12- vs
16-parameter fits at fixed Nτ and T. We also include a 5- vs
6-parameter combined T and Nτ continuum fit.

FIG. 4. Multi-kaon interactions have a negligible impact on the
fluctuations ratios studied in this work. Here we show the effect
of dropping the multi-kaon sectors from the fugacity expansion,
demonstrated on the Nτ ¼ 8 data, at T ¼ 160 MeV, where they
are the largest in our temperature range. Note also that, on the
Nτ ¼ 8 lattices, the magnitude of the multi-kaon sectors is larger
than our continuum estimate for them.
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skewness-to-mean ratio C3=C1 and the net-proton kurtosis-
to-variance ratio C4=C2, as functions of the net-proton
mean-to-variance ratio C1=C2 at chemical freeze-out. The
advantage of using these variables in the comparison is that
it does not involve any modeling of the freeze-out con-
ditions, other than assuming that chemical freeze-out
happens close to the QCD crossover on the phase diagram.
Our results are consistent with the experimental results.
While such a direct comparison suffers from many caveats
[87,97–101], the similarity in the trends supports the idea
that experimentally observed net-proton fluctuation-ratios
reflect with some accuracy the thermal fluctuations in an
equilibrated QCD medium.

VI. SUMMARY AND OUTLOOK

We have calculated fugacity expansion coefficients of
the QCD pressure beyond the ideal HRG model, separating
contributions to the QCD free energy coming from Hilbert
subspaces with different values of the baryon number and
strangeness quantum numbers. This allows one to quantify
the importance of processes like kaon-kaon and baryon-
baryon scattering when modeling the QCD medium in the
hadronic phase, but close to the crossover. We estimated the
continuum value of these coefficients with lattice simu-
lations of temporal extent, Nτ ¼ 8, 10, and 12 using the
staggered discretization. We observed large cutoff effects in
the kaon and multi-kaon sectors, only. To study these, and
to make the continuum extrapolation more robust, the
inclusion of finer lattices is desirable.
Note that our study was limited to an aspect ratio of

LT ≈ 3, and future studies should also investigate finite
volume effects in the baryon-strangeness sectors. However,
a strong volume dependence is more likely to be observed
in correspondence with the electric charge sectors. The full
picture of baryon interactions in the hadronic phase will
emerge from the three-dimensional mapping of the μB −
μS − μQ space. In this work we restricted the space to
μQ ¼ 0. The sectors we obtained are sums of various

charge sectors, PBS
ij ¼ P

k P
BSQ
ijk , and we cannot differ-

entiate between the terms, though it would be possible in a
more elaborate setup. Still, the level of separation achieved
in this work already provides plenty of new information for
hadronic modeling of the QCD medium.
We also used the truncated fugacity expansion to calculate

phenomenologically relevant fluctuation-ratios on the
strangeness-neutral line both as a function of the chemical
potential and as a function of the baryon number mean-to-
variance ratio, which can be regarded as a proxy of the baryo-
chemical potential.While a direct comparison is by nomeans
trivial, the fugacity expansion coefficients appear to describe
the trend in theSTARdata onnet-proton fluctuations [88–90].
It has been pointed out in the literature that the

modifications of the ideal HRG model that include the
effects of global baryon number conservation lead to a

FIG. 5. Continuum estimates of the fluctuation-ratios χB1 =χ
B
2 ,

χB3 =χ
B
1 , χ

B
4 =χ

B
2 , χ

BS
11 =χ

S
2 from a fugacity expansion truncated at the

Bmax ¼ 2 level, shown as a function of the dimensionless
chemical potential μB=T for fixed temperatures, as well as on
the crossover line TcðμBÞ.

FIG. 6. Our continuum estimates of the fluctuation-ratios
χB3 =χ

B
1 and χB4 =χ

B
2 compared with STAR data on net-proton

fluctuations from Ref. [88]. Both values of the fluctuations and
the trend as a function of baryon density are consistent.
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reduction in higher order fluctuations and therefore describe
the experimental data better. For a recent study of these
effects see [100]. In a recent paper, it was also pointed out that
the decrease in the kurtosis with increasing chemical poten-
tial observed in the data is likely not due to critical point
effects [102]. The corrections to the idealHRGmodel studied
in this work have a similar magnitude as the experimental
effects, like canonical effects and volume fluctuations. Since
both baryon interactions and the global conservation laws
appear to push the χB4 =χ

B
2 and χB3 =χ

B
1 ratios down, it is

important to have an estimate of the relative size of these
types of effects under realistic conditions. Performing a study
of this kind is an important task for the near future, as it will
guide the correct interpretation of STAR data.
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