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The transfer-matrix of the U(1) lattice gauge theory is investigated in the field Fourier space, the basis of
which consists of the quantized currents on lattice links. Based on a lattice version of the current
conservation, the transfer-matrix elements are shown to be nonzero only between current states that differ in
circulating currents inside plaquettes. In the strong coupling limit, a series expansion is developed for the
elements of the transfer matrix, to which a diagrammatic representation based on the occurrence of virtual
link and loop currents can be associated. With g as the coupling, the weight of each virtual current in the
expansion is 1=g2, by which at any given order the relevant diagrams are determined. Either by
interpretation or through their role in fixing the relevant terms, the diagrams are reminiscent of the Feynman
ones of the perturbative small coupling expansions.
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I. INTRODUCTION

According to the perturbative formulation of quantum
field theories, the transition amplitudes of physical proc-
esses are expressed by series expansions in the small
coupling constant. Whenever applicable, the perturbative
series makes it possible to calculate the transition rates up
to the desired accuracy. Based on the interpretation that the
expansion terms are representing the space-time virtual
events between the initial and final states [1], the pertur-
bative expansions are commonly represented by a set of
graphs: the Feynman diagrams. Apart from pure theoretical
interests, diagrammatic representations have found a cru-
cial role in determining and managing the relevant terms at
any given order of the coupling constant. As an example of
the role of Feynman diagrams in managing the perturbative
expansions, representatives of 891 diagrams contributing to
the anomalous magnetic moment of leptons at the order e8

are presented in Fig. 1 [2].
The main purpose of the present work is to introduce a

diagrammatic expansion for lattice gauge theories [3,4] in
the strong coupling regime. In particular, we consider the
transfer matrix of the U(1) lattice gauge theory in the field
Fourier space. In the common approach, the elements of the
transfer matrix are defined in the field space through the

Euclidean action between two adjacent times of the discrete
space-time. Due to the angle-variable nature of the gauge
fields in the lattice formulation, the Fourier conjugates of
fields turn out to be integer valued, being identified as
quantized currents on lattice links. It is for the matrix
elements between these currents that the series expansion in
the strong coupling and associated diagrammatic represen-
tation are derived. With g as the gauge coupling, the
expansion parameter is 1=g2, which is small in the strong
coupling limit. As we will see in detail, the expansion of
matrix elements between two current-states is interpreted as
the occurrence of all possible virtual link and loop currents
that transform the current states to vacuum (the state with
no current). In this sense, the diagrammatic expansion may
be considered as a “current expansion.” The weight of each
virtual current is 1=g2, which serves as the expansion
parameter. Either by interpretation or through managing the
relevant terms in a given order of the strong coupling
expansion, the diagrams play the role of Feynman diagrams
at the small coupling regime.
The use of a Fourier basis in lattice gauge models dates

back almost to the time of appearance of these models. The
transform of plaquette degrees to Fourier ones known as
dual variables [5], is used to qualitatively describe the
underlying mechanism governing the phases of the U(1)
model in three and four dimensions [6]. In particular,
performing the dual variable transform in the partition
function and using a certain small coupling model known
as Villain action [7], the U(1) model is reduced to that of a
gas of monopoles or monopole loops [6]. The dual
formulation of U(1) lattice model shows also clear advan-
tages for various numerical purposes; see Ref. [8] for a
recent review. The advantages include the replacement of
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the continuous variables by the more tractable integer ones,
and also the more efficient and accurate calculation of
expectation values in the presence of multiple or separated
source charges [9–13].
The present strong coupling expansion is different in two

respects to that of the perturbative approach, in which the
small coupling expansion is associated with the elements of
the Smatrix between initial and final states, usually with an
infinite time separation. First, the present strong coupling
expansion is between current states at two adjacent times,
as the transfer-matrix elements are defined based on the
Euclidean action between the adjacent times. The second
difference is related to the fact that, the S-matrix element
between equal states is not zero but supposedly infinite. In
the present expansion, however, the matrix-element
between equal current states other than vacuum is vanishing
in the extreme strong coupling limit 1=g2 → 0. As will be
discussed in detail, this simply is related to the fact that, for
a nonzero result, the Fourier integrals related to initial and
final states are to be nonzero independently. This promotes
the vacuum state as a seemingly passed intermediate state
in all transitions.
A manageable strong coupling expansion for the ele-

ments of the transfer matrix provides a basis to find the
energy spectrum of the model in the strong coupling limit,
especially when it is combined with numerical calculations.
The present diagrammatic expansion in the strong

coupling limit is based on Ref. [14], in which the elements
of the transfer matrix were obtained in the Fourier basis
through the plaquette-link matrix. Accordingly, it is
observed that by a lattice version of current conservation,
emerged through the construction, the transfer-matrix
elements are nonzero only between current states that
differ in loop currents circulating in one or more plaquettes.
By the mentioned version of current conservation, it is
found that the transfer matrix is block diagonal in the
Fourier basis [14]. The current states differing only in loop
currents belong to the same block.
The paper is organized as follows. In Sec. II, a short

review of the formulation of the transfer matrix in the field
Fourier basis is presented, in line with [14]. In Sec. III, a
detailed description of the emerged notions in the Fourier

basis is discussed. In particular, the exact connection
between current states belonging to the same block is
presented. In Sec. IV, first some examples of the strong
coupling expansions and then their elementary graphical
representations are presented, and then rules are set up for
diagrammatic expansions. Section V presents the detailed
application of the given rules at higher orders in several
examples. In Sec. VI the present expansion is used to
calculate the ground state and some excited energies of the
model in the strong coupling regime. In Sec. VII, based on
the observation that the lattice size dependence of expan-
sions can be factored out from the matrix elements and
eigenvalues, the physical interpretation of the results is
discussed. Section VIII is devoted to concluding remarks.
Some derivations and extended expressions, as well as
more examples of the application of expansion rules are
presented in Appendices A, B, and C.

II. REVIEW: TRANSFER MATRIX
IN FOURIER BASIS

In Ref. [14], a formulation of the pure U(1) lattice gauge
theory in the field Fourier basis is presented. In particular,
based on the plaquette-link matrix the elements of the
transfer-matrix V̂ in the Fourier basis are obtained explic-
itly, for which some mathematical statements are expressed
[14]. In this section, a short review of the mathematical
derivation of matrix elements is presented.
Following Refs. [15,16], the formulation is presented in

the temporal gauge A0 ≡ 0, in which the transfer matrix
takes a simple form. The link at site r in spatial direction “i”
is represented by ðr; iÞ. Conveniently, the gauge variables
on the spatial link ðr; iÞ at adjacent times nt and nt þ 1 are
replaced by the angle variables:

θðr;iÞ ¼ agAðr;iÞ
nt ;

θ0ðr;iÞ ¼ agAðr;iÞ
ntþ1; ð1Þ

taking values in ½−π; π� [3]. Above, “g” and “a” are gauge
coupling and lattice spacing parameters, respectively. The
Euclidean action symmetrized between θ and θ0 variables

FIG. 1. Thirteen representatives of 891 Feynman diagrams contributing the lepton’s g − 2 at the order α4. Reprinted from [2].
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for pure U(1) theory in temporal gauge on a lattice with d
spatial dimensions is given explicitly by [15,16]

SEðnt;ntþ 1Þ

¼−
1

2g2
X
r

Xd
i≠j¼1

½2− cosðθðr;iÞ þ θðrþî;jÞ − θðrþĵ;iÞ − θðr;jÞÞ

−cosðθ0ðr;iÞ þ θ0ðrþî;jÞ− θ0ðrþĵ;iÞ− θ0ðr;jÞÞ�

−
1

g2
X
r

Xd
i¼1

½1− cosðθðr;iÞ− θ0ðr;iÞÞ�; ð2Þ

with î as the unit vector along the spatial direction i. For a
spatial lattice with NL number of links and NP number of
plaquettes, it is convenient to define the plaquette-link
matrixM of dimension NP × NL, as following explicitly by
its elements

Mp
l ¼

8<
:
þ1; link l¼ðr;iÞbelongs to oriented plaquettep
−1; link l¼ðr;−iÞbelongs to oriented plaquettep
0; otherwise

:

ð3Þ
In Fig. 2, the above definition is presented graphically. The
explicit representations for d ¼ 2 case will be given later.
The elements of the transfer-matrix V̂ is defined in terms of
the Euclidean action between two adjacent times

hnt þ 1jV̂jnti ∝ eSEðnt;ntþ1Þ: ð4Þ
Setting

γ ¼ 1

g2
ð5Þ

and labeling links as l ¼ ðr; iÞ and plaquettes as “p,” in
terms of matrixM the elements of the transfer matrix V̂ are
given in the field basis by

hθ0jV̂jθi ¼ A
Y
p

exp
�
−
γ

2
½2 − cosðMp

l θ
lÞ − cosðMp

l θ
0lÞ�

�

×
Y
l

expf−γ½1 − cosðθl − θ0lÞ�g ð6Þ

in which the summations over repeated indices are under-
stood. Above, A is inserted to fix the normalization [17].

The aim is to formulate the theory in the field Fourier basis
jkli, which is related to the compact θ basis by

hθl0 jkli ¼
δl

0
lffiffiffiffiffiffi
2π

p expðiklθlÞ; kl ¼ 0;�1;�2; � � � : ð7Þ

Using an identity that involves the modified Bessel
function InðxÞ

expðx cosϕÞ ¼
X
n

InðxÞ expðinϕÞ ð8Þ

and the relation

Z
π

−π
dθ expðinθÞ ¼ 2πδðnÞ; ð9Þ

one directly finds the matrix elements of V̂ in the field
Fourier basis [14]

hk0jV̂jki ¼ Ae−γðNPþNLÞð2πÞNL

X
fnpg

X
fn0pg

Y
p

Inp

�
γ

2

�
In0p

�
γ

2

�

×
Y
l

Iml
ðγÞδ½ðnp þ n0pÞMp

l þ kl − k0l�; ð10Þ

in which ml ¼ kl þ
P

p npM
p
l ¼ k0l −

P
p n

0
pM

p
l . Above

np, n0p, and ml are all integer valued. The general solutions
of the δs in the summations are given by means of the
vectors satisfying [14]

n0 ·M ¼ 0: ð11Þ

These vectors include n0 ¼ 0. The general solution of the
delta is then given as

np þ n0p ¼ Qp þ n0p; ð12Þ

with Qps being integer valued. The above solution leads to
the following condition to have a nonzero matrix element
(10) in the Fourier basis

k0 ¼ kþ Q ·M: ð13Þ

Later the physical meaning of the above condition, by
means of the current conservation between initial and final
states at adjacent times, will be given. Accordingly, it is
shown that V̂ in the Fourier basis is block diagonal [14],
and all elements of a block can be represented by a Fourier
vector k�, whose coblocks are all constructed as

k�q ¼ k� þ q ·M; ð14Þ

in which q is a vector with NP integers as components. We
will see that the condition that two coblocks differ as above

-1

-1 +1

+1

p

+

+

FIG. 2. Graphical representation of definition (3).
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is a manifestation of the current conservation, allowing us
to have a nonzero matrix element. By setting Q ¼ q0 − q,
we have two coblock vectors

k�q ¼ k� þ q ·M; k0�q0 ¼ k� þ q0 ·M ð15Þ

for which the matrix element, using Im ¼ I−m and
np þ qp → np, is given by [14]

hk0�q0 jV̂jk�qik� ¼ Ae−γðNPþNLÞð2πÞNL

×
X
fn0pg

X
fnpg

Y
p

Iqp−np

�
γ

2

�
Iq0p−npþn0p

�
γ

2

�

×
Y
l

Ik�þ
P

p
npM

p
l
ðγÞ ð16Þ

in which no constraint on the summations is present, except
that n0ps satisfy (11). The important fact is that the allowed
n0ps are not dependent on k�, q, and q0, but only on the
matrix M.
As the final point in this part, since there are infinite

possible choices for qs, each block is in fact infinite
dimensional. One of the most special blocks is the one
represented by the vacuum state k� ¼ k0 ¼ 0. In Ref. [14],
it is shown that, provided that the ground state is unique, it
belongs to the vacuum block. The reason is simply that, in
the extreme large coupling limit g → ∞ (γ → 0), as all
elements except V00 are approaching zero, the energy and
V̂ eigenvalues are related,

εi ¼ −
1

a
ln vi; ð17Þ

and the ground state belongs to the vacuum’s block. By
uniqueness of the ground state, upon lowering the coupling,
no crossing between the ground state by other states occurs,
leaving the ground states in the vacuum block at any
coupling [14].

III. CURRENTS, STATES AND BLOCKS

In this section, the basic elements and notions that
emerged in the derivation of the previous chapter are
discussed. In particular, the role of kl and qp numbers,
the meaning of conditions (11) and (13), as well as some
graphical representations are presented. To cover the basic
idea, the detailed presentation is for the case of 2D spatial
lattice, although the general expectations and differences of
3D case are discussed as well.
The first step is to understand the physical interpretation

of the Fourier vectors k. That is most directly understood by
the way that these vectors appear, namely by Eqs. (1) and
(7) and their similar expressions in the continuum theory,
for the coupling of the current J to the gauge field A:

ei
P

l
klθl ¼ eiag

P
l
klAl

→ eig
R

J·Adx: ð18Þ

Above, kl is interpreted as the number of current quanta at
link l, coupled to the gauge field Al associated with this
link. So the current vector k consists of link currents kls.
The integer nature of kl reflects the fact that, due to the
compact nature of gauge fields in the lattice formulation,
the quantization of charge is satisfied automatically.
By the above interpretation of kls, the Fourier basis jki is

representing the state with a set of current quanta kl on link
l, with l ∈ links. Now by the definition of the transfer
matrix V̂ ¼ expð−aĤÞ, with the Hamiltonian Ĥ, the matrix
element hk0jV̂jki is the transition amplitude between states
with k and k0 currents during the imaginary time inter-
val “a.”
Before proceeding, it is useful to find an explicit

representation for the plaquette-link matrix M. For the
2D periodic lattice with Ns sites in each direction, there are
NP ¼ N2

s plaquettes and NL ¼ 2N2
s links. For the plaquette

and link numbering of the 3 × 3 periodic lattice given in
Fig. 3, using the definition (3), one finds the following form
for the 9 × 18 dimensional matrix M [14]

M ¼

0
BBBBBBBBBBBBBBB@

þ − 0 0 0 0 0 0 0 − 0 0 þ 0 0 0 0 0

0 þ − 0 0 0 0 0 0 0 − 0 0 þ 0 0 0 0

− 0 þ 0 0 0 0 0 0 0 0 − 0 0 þ 0 0 0

0 0 0 þ − 0 0 0 0 0 0 0 − 0 0 þ 0 0

0 0 0 0 þ − 0 0 0 0 0 0 0 − 0 0 þ 0

0 0 0 − 0 þ 0 0 0 0 0 0 0 0 − 0 0 þ
0 0 0 0 0 0 þ − 0 þ 0 0 0 0 0 − 0 0

0 0 0 0 0 0 0 þ − 0 þ 0 0 0 0 0 − 0

0 0 0 0 0 0 − 0 þ 0 0 þ 0 0 0 0 0 −

1
CCCCCCCCCCCCCCCA

: ð19Þ

AFSANEH KIANFAR and AMIR H. FATOLLAHI PHYS. REV. D 104, 094506 (2021)

094506-4



In the 2D lattice, each link is being shared by two
plaquettes, resulting in only one “þ” and one “−” in each
column. The general form of the matrix M can be given by
means of the Ns × Ns translation matrix T as follows [14]:

M ¼

0
BB@ 1Ns

⊗ T −T ⊗ 1Ns

1
CCA: ð20Þ

By construction, the matrixM is N2
s × 2N2

s dimensional, as
it should. The elements of T are given by Ref. [14]

Tab ¼ δab − δaþ1;b − δa;Ns
δb1; a; b ¼ 1;…; Ns: ð21Þ

By the explicit form of the matrixM, the meaning of the
condition (13) to have a nonzero matrix element can be
understood by means of the current conservation, as
follows. Let us begin with the vacuum state k0 ¼ 0, which,
according to (18), represents the state with no current on
any links. Now, by Eq. (13) and using

q1 ¼ ð1; 0;…; 0Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
NP

; ð22Þ

a coblock of the vacuum state is found as the following
current vector

k0;1 ¼ k0 þ q1 ·M; ð23Þ

in which only four links of the first plaquette have nonzero
unit currents, namely two þ1s and two −1s, making a
circulating unit current in the first plaquette, as represented
in Fig. 4. Then the nonzero matrix element hk0jV̂jk0;1i is
made possible since two states differ in a unit current
circulating in a plaquette, as required by current
conservation.

As seen in the above example, qp is determining the
number of current quanta circulating in the plaquette p. It is
befitted to call the qp numbers as plaquette currents or loop
currents. As another example from the vacuum block,
consider the state constructed by all qps zero, except two of
the nonadjacent plaquettes, as depicted in Fig. 5.
Let us go beyond the vacuum block by considering the

state represented by the vector current

k1 ¼ ð1; 0;…; 0Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
NL

; ð24Þ

which has one unit of current on the first link of the lattice,
with all other link currents zero. There is no set of plaquette
currents that could yield this vector from the vacuum.
Equivalently, one can say that there is no q ·M equal to
(24). So the state (24) does not belong to the vacuum block.
Two coblocks of this state are presented in Figs. 6 and 7,
one with the loop current in the first plaquette and one
nonadjacent to the first plaquette, respectively. It is easy to
check that there is a plaquette current that relates the
resulting states in Figs. 6 and 7 as well. Again as the
differences of these three current states are just loop
currents circulating in plaquettes, the transition between

FIG. 4. The graphical representation of (23) to construct k0;1 as
a coblock of k0 ¼ 0.

FIG. 6. k1;−1 ¼ k1 − q1 ·M as a coblock of k1 with three links
having a unit current.
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FIG. 3. The numbering of links and plaquettes for 3 × 3 2D
periodic lattice used in Eq. (19) as the representation of
matrix M [14].

FIG. 5. Construction of a coblock of k0 with two nonadjacent
plaquette currents.
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the two of them is possible, leading to the nonzero V̂
elements between them.
As another example, consider the state represented by

the vector current below

k2 ¼ ð2; 0;…; 0Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
NL

; ð25Þ

which has two units of current on the first link, with all
others zero. Again it is easy to check that this state does not
belong to the vacuum and k1 blocks. A coblock of this state
is presented in Fig. 8. The difference between the direction
of currents in the resulting state here with the last one in
Fig. 4 is to be noted.
The last example, which will be used later, is the first

vector in Fig. 9,

k1;−1 ¼ ð1;−1; 0;…; 0Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
NL

; ð26Þ

and its coblock on the right-hand side. The two vectors both
have one unit of current on only two links, and in this
respect are equivalent to be selected as representative of
the block.

By the representation of matrixM it is easy to check that
for the periodic 2D lattices, the subspace by vectors n0

satisfying (11) is one dimensional with the general form

n0 ¼ n0ð1; 1;…; 1Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
NP

; ð27Þ

leaving all link currents zero by equal n0 assigned to all
plaquettes [14]. The condition (11) and its solution (27)
may be represented by the graphical representation we used
in different examples for q ·M as depicted in Fig. 10. The
loop-current vectors n0 are specially important to manage
the orders of Bessels in Eq. (16), and more related to this
work, when the strong coupling expansion in γ is being
developed. We postpone the second for later when the
expansion in γ will be discussed. About the Bessels, for the
2D lattices, ranks of all Bessels Iq0p−np−n0 in Eq. (16) are

affected by n0 ≠ 0 equally. For definiteness, by setting
k� ¼ q ¼ q0 ¼ 0 in Eq. (16), let us consider the vacuum-to-
vacuum (VTV) element h0jV̂j0i for the 2D lattice case:

h0jV̂2dj0i0 ¼ Ae−γðNPþNLÞð2πÞNL

×
X
n0

X
fnpg

Y
p

I−np

�
γ

2

�
I−np−n0

�
γ

2

�

×
Y
l

IP
p
npM

p
l
ðγÞ; ð28Þ

in which by Eq. (27) the index “p” is dropped from n0p. The
formal expansion on Bessel functions in the strong cou-
pling γ ¼ 1=g2 ≪ 1 is mainly based on the ordering
relation between the Bessel’s as InðxÞ > ImðxÞ for
jnj < jmj, coming in the strong form when x ≪ 1

I0ðxÞ ≫ I�1ðxÞ ≫ I�2ðxÞ ≫ I�3ðxÞ ≫ � � � : ð29Þ

For example, let us compare two terms in Eq. (28) with all
nps equal to zero, but in one n0 ¼ 0 and in the other n0 ¼ 1,

FIG. 8. k2;−1 ¼ k2 − q1 ·M as a coblock of k2 with four links at
the first plaquette having unit current.

FIG. 9. k1;−1;−1 ¼ k1;−1 − q1 ·M as a coblock of k1;−1, both
with two links having a unit current.

FIG. 7. A coblock of k1 with five links having a unit current.

FIG. 10. Equally n0 current units in all plaquettes make the net
current at all links zero, provided that opposite edges are being
identified in the periodic 2D lattice.
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h0jV̂2dj0i0 ¼ Ae−γðNPþNLÞð2πÞNL

�
I2NP
0

�
γ

2

�
INL
0 ðγÞ þ INP

0

�
γ

2

�
INP
1

�
γ

2

�
INL
0 ðγÞ

	
þ � � � ;

¼ Ae−γðNPþNLÞð2πÞNLI2NP
0

�
γ

2

�
INL
0 ðγÞ

�
1þ

�
I1ðγ=2Þ
I0ðγ=2Þ

�
NP
	
þ � � � : ð30Þ

Now, for large lattice size NP ≫ 1 the term with the power
of NP can be dropped safely in comparison to one. In fact, a
simple inspection shows that, depending on q or q0 defining
an element, there are one or two choices for n0 in which the
Bessels of lowest order appear, and the other values of n0

for large lattices can be ignored in the summation. The 2D
latices may be contrasted to the 3D lattices, in which a finite
number of nonzero loop currents may generate a vector n0

satisfying n0 ·M ¼ 0. One case with the lowest number of
nonzero loop currents is presented in Fig. 11, in which six
plaquettes making a cube and their currents are presented.
By the right-hand rule, all currents in Fig. 11 point outward
the cube. The only other case with the lowest number is that
with all loop currents reversed, pointing inward the cube.
As all link currents by the configuration are zero, the loop
currents presented in Fig. 11 satisfy n0 ·M ¼ 0. As a
consequence, the term I1=I0 in Eq. (30) for a 3D lattice
would have the power of 6 instead of NP. Any number of
such cubes when sitting together also make a n0 vector that
satisfies the condition (11).

IV. CURRENT EXPANSION
AT LARGE COUPLING

The aim in this section is to provide the basic rules of the
strong coupling expansion in γ ¼ 1=g2 ≪ 1 for the ele-
ments of the transfer-matrix in the field Fourier basis. In the
next section and Appendix C, several examples of the
application of rules for the strong coupling expansion are
given. The samples of expansion in γ presented in this work
can be checked either by massive direct integration over
field space or by the expression (16), provided that the
Bessels with relevant ranks are identified.

In the previous section, the role of integer numbers kl,
qp, and n0p together with their graphical representations are
introduced. Based on the notions developed before, it will
be shown that the strong coupling expansion can be
regarded as the summations on currents. In particular, a
nonzero element of the transfer matrix, as the transition
amplitude between two current states belonging to the same
block, is interpreted as the summations on occurrences of
virtual loop and link currents, each weighted by γ, that
transform both states to the vacuum.
The presentation is coming in two subsections. First, by

working out some examples of the matrix elements at lower
orders, it is seen how the expansion based on loop and link
currents would emerge. In the second subsection, the set of
rules of current expansion in the strong coupling regime is
presented.

A. Basic observations on current expansion

To begin with, it is convenient to define the reduced form
of the transfer matrix as

V̂ ¼ Ae−γðNLþNPÞð2πÞNLV̂; ð31Þ

for which the extra numerical factors are dropped, with the
element in field basis as

hθ0jV̂jθi ¼ 1

ð2πÞNL

Y
p

exp

�
γ

2
½cosðMp

l θ
lÞ þ cosðMp

l θ
0lÞ�

�

×
Y
l

expfγ cosðθl − θ0lÞg: ð32Þ

The element of the reduced form in the Fourier basis is
given by

hk0jV̂jkik� ¼
1

ð2πÞNL

Z
π

−π

Y
l

dθ0ldθle
−ik0·θ0eik·θhθ0jV̂jθi; ð33Þ

in which the representative vector of the block is k�, and the
k and k0 vectors are given by means of loop currents q and
q0 as (15). Let us begin with the matrix elements in the
vacuum block by setting k� ¼ 0, for which we have

hq0 ·MjV̂jq ·Mi0
¼ 1

ð2πÞNL

Z
π

−π

Y
l

dθ0ldθle
−iq0·M·θ0eiq·M·θhθ0jV̂jθi: ð34Þ

FIG. 11. The six-plaquette cube configuration in a 3D lattice
that satisfies n0 ·M ¼ 0. All currents point outward by
right-hand rule.
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At the first order in γ it is easy to find the following terms:

hq0 ·MjV̂jq ·Mi0 ¼
Y
l

δððq0 ·MÞlÞδððq ·MÞlÞ

þ γ

4

Y
l

δððq ·MÞlÞ
X
p0

�Y
l0
δððq0 ·MÞl0 þMp0

l0 Þ þ
Y
l0
δððq0 ·MÞl0 −Mp0

l0 Þ
	

þ γ

4

Y
l0
δððq0 ·MÞl0 Þ

X
p

�Y
l

δððq ·MÞl þMp
l Þ þ

Y
l

δððq ·MÞl −Mp
l Þ
	

þ γ

2

X
l1

�Y
l

δððq ·MÞl þ δll1Þδððq0 ·MÞl þ δll1Þ

þ
Y
l

δððq ·MÞl − δll1Þδððq0 ·MÞl − δll1Þ
	
þ Oðγ2Þ; ð35Þ

in which ðq ·MÞl is the current on link l. It is noted that, in
the last term, the link index l1 is common between two δs
by q0 and q, as originated from the term cosðθ − θ0Þ, in
which θ and θ0 are appearing equally. The other point about
the last term is this: in the vacuum block and for any
plaquette vectors q and q0, there is no chance that all
multiplying δs would be satisfied, leading to zero value for
this term. This is simply because there are always nonzero
arguments for some of the δs, and so this term has no
contribution. The vacuum to vacuum (VTV) transition with
q ¼ q0 ¼ 0, by δðmÞ ¼ δð−mÞ takes the form

h0jV̂j0i0 ¼ 1þ γ
X
p

Y
l

δðMp
l Þ þ Oðγ2Þ: ð36Þ

Due to the nonzero elements of Mp
l at each plaquette, the

linear term in γ vanishes, leading to

h0jV̂j0i0 ¼ 1þ Oðγ2Þ: ð37Þ

At this order now, let us consider the element by vacuum
and the current vector (23), by setting q0 ¼ q1 and q ¼ 0
with one unit of loop current in the first plaquette as in
Fig. 4. By Eq. (35) then the transition between vacuum and
jk0;1i ¼ j1i is given by

h1jV̂j0i0 ¼
Y
l

δðM1
l Þ þ

γ

2

X
p0

Y
l0

δðMp0
l0 Þ

Y
l

δðM1
l Þ

þ γ

4

X
p0

�Y
l0
δðM1

l0 þMp0
l0 Þ þ

Y
l0
δðM1

l0 −Mp0
l0 Þ

	

þ Oðγ2Þ ð38Þ

in which the first and second terms do not contribute, due to

the nonzero elements by M1
l0 or Mp0

l0 . The third term,

however, contributes due to the term δðM1
l0 −Mp0

l0 Þ for
p0 ¼ 1 in the summation, leading to

h1jV̂j0i0 ¼
γ

4
þ Oðγ2Þ: ð39Þ

As a graphical representation for the cancellation between
link currents and loop current in the same plaquette in the δ,
one may consider the diagram in Fig. 12 for the tran-
sition 1 → 0.
In fact, Fig. 12 is similar to Fig. 4, except that the loop

current is plotted in a reversed and dashed form in the k0;1
side. The reason for being dashed is to emphasize its virtual
nature. As a space-saving representation, one may suggest
the following for Fig. 12

ð40Þ

It can be seen that, at the first order of γ, the only nonzero
elements are the third term of (38), like Fig. 12 or (40), with
one loop current to vacuum. In the vacuum block, the order
of γ2 can be obtained by the expansion of the exponential as
well. To present the long expressions in a compact form
from now on, the alternative representations are used as

q ·M → q; q0 ·M → q0;

ðq ·MÞl → =ql; ðq0 ·MÞl → =q0l; ð41Þ

in which at order γ2 in the vacuum block, we have

FIG. 12. The combination of k0;1 and virtual loop current.
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½hq0jV̂jqi0�γ2 ¼
γ2

32

Y
l

δð=qlÞ
X
p0
1
;p0

2

�Y
l0
δð=q0l0 þM

p0
1

l0 þM
p0
2

l0 Þ þ 2
Y
l0
δð=q0l0 þM

p0
1

l0 −M
p0
2

l0 Þ þ
Y
l0
δð=q0l0 −M

p0
1

l0 −M
p0
2

l0 Þ
	

þ γ2

32

Y
l0
δð=q0l0 Þ

X
p1;p2

�Y
l

δð=ql þMp1

l þMp2

l Þ þ 2
Y
l

δð=ql þMp1

l −Mp2

l Þ þ
Y
l

δð=ql −Mp1

l −Mp2

l Þ
	

þ γ2

16

X
p;p0

�Y
l

δð=ql þMp
l Þδð=q0l −Mp0

l Þ þ
Y
l

δð=ql þMp
l Þδð=q0l þMp0

l Þ

þ
Y
l

δð=ql −Mp
l Þδð=q0l −Mp0

l Þ þ
Y
l

δð=ql −Mp
l Þδð=q0l þMp0

l Þ
	

þ γ2

8

X
l1;l2

�Y
l

δð=ql þ δll1 þ δll2Þδð=q0l þ δll1 þ δll2Þ þ
Y
l

δð=ql þ δll1 − δll2Þδð=q0l þ δll1 − δll2Þ

þ
Y
l

δð=ql − δll1 þ δll2Þδð=q0l − δll1 þ δll2Þ þ
Y
l

δð=ql − δll1 − δll2Þδð=q0l − δll1 − δll2Þ
	

þ γ2

8

X
p0;l

�Y
l0
δð=q0l0 −Mp0

l0 þ δll0 Þδð=ql0 þ δll0 Þ þ
Y
l0
δð=q0l0 þMp0

l0 þ δll0 Þδð=ql0 þ δll0 Þ
	

þ γ2

8

X
p0;l

�Y
l0
δð=q0l0 −Mp0

l0 − δll0 Þδð=ql0 − δll0 Þ þ
Y
l0
δð=q0l0 þMp0

l0 − δll0 Þδð=ql0 − δll0 Þ
	

þ γ2

8

X
p;l0

�Y
l

δð=ql −Mp
l þ δll0 Þδð=q0l þ δll0 Þ þ

Y
l

δð=ql þMp
l þ δll0 Þδð=q0l þ δll0 Þ

	

þ γ2

8

X
p;l0

�Y
l

δð=ql −Mp
l − δll0 Þδð=q0l − δll0 Þ þ

Y
l

δð=q0l þMp0
l − δll0 Þδð=ql − δll0 Þ

	
: ð42Þ

Again the last four sums, containing the combination of one cosðMp
l θ

lÞ or cosðMp
l θ

0lÞ with one cosðθ − θ0Þ, has δs with
common link indices l or l0. Also, in the vacuum block, there is no chance that these terms would survive, as it is not possible
that all multiplying δs would be satisfied simultaneously. Let us consider the γ2 contribution for the VTV transition with
q ¼ q0 ¼ 0

½h0jV̂j0i0�γ2 ¼
γ2

8

X
p1;p2

�Y
l

δðMp1

l þMp2

l Þ þ
Y
l

δðMp1

l −Mp2

l Þ
	
þ γ2

4

X
p;p0

Y
l

δðMp
l ÞδðMp0

l Þ

þ γ2

4

X
l1;l2

�Y
l

δðδll1 þ δll2Þδðδll1 þ δll2Þ þ
Y
l

δðδll1 − δll2Þδðδll1 − δll2Þ
	
: ð43Þ

In the first term, only the second part may survive by cancellation between Ms, provided that p1 and p2 refer to the same
plaquette, developing a factor of NP by the summation over all plaquettes. The second term vanishes, as for each plaquette
there are four links for whichMp

l is nonzero. In the last term, again, the second part may contribute by cancellation between
δlli if l1 and l2 refer to the same link, giving a factor of NL. With these, we have

½h0jV̂j0i0�γ2 ¼
γ2

8
NP þ

γ2

4
NL: ð44Þ

The above may be represented graphically as follows:
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ð45Þ

The rules for associated numerical factors and the powers
of γ will be discussed later. Equation (37) combined with
(44) leads to

h0jV̂j0i0 ¼ 1þ
�
NP

8
þ NL

4

�
γ2 þ Oðγ3Þ: ð46Þ

For the 1 → 0 transition by setting q0 ¼ q1 and q ¼ 0, it
is easy to see that always unsatisfied δs would remain,
showing that this transition will not take contribution at
order γ2. Now consider the γ2 contribution for the 1 → 1,
for which the only surviving term is

½h1jV̂j1i0�γ2 ¼
γ2

16

X
p;p0

�Y
l

δðM1
l −Mp

l ÞδðM1
l −Mp0

l Þ
	
: ð47Þ

In the summation, the only contribution comes from

p ¼ p0 ¼ 1, by which Mp
l and Mp0

l are canceled by M1
l

in both δs, leading to

h1jV̂j1i0 ¼
γ2

16
þ Oðγ3Þ: ð48Þ

The naïve way of thinking about 1 → 1 may suggest that it
would always be possible as both initial and final states are
the same. However, as seen in the extreme large coupling
limit γ → 0, this transition vanishes as γ2. The expression
obtained after doing the Fourier integrals shows that the δs
related to initial and final states must be satisfied separately
to obtain a nonzero result. In other words, the final
expression should be interpreted as the result of the
transform of both initial and final states to the vacuum.
Accordingly, as the transforms 1 → 0 and 0 → 1 at lowest
order, each with a loop current transform to vacuum, are
both proportional to γ, the 1 → 1 transition should be of
order γ2. This crucial role of vacuum that, as if it is being
passed in 1 → 1 transition due to the nature of Fourier
integrals, is true for all other transitions, including 0 → 0 by
Eq. (46) and even those in blocks other than the vacuum. To
avoid misinterpretation, it is quite suitable to highlight this
role by the vacuum by changing the notation slightly from

1 → 1 to 1 → 0 → 1, or simply 1→
0
1. By this, the graphical

representation for the above transition may be given as
below

ð49Þ

The order of γ3 in the vacuum block is given in
Appendix A with about 80 terms. It is obvious that the
terms with one δlli or three δlli would not survive in the
vacuum block, as there is no chance that all multiplying δs
would be satisfied. So the surviving terms at third order in
the vacuum block are those of the first three lines of (A2).
For the VTV transition with q ¼ q0 ¼ 0, again we see that
there is no way that all multiplying δs would be satisfied.
By q0 ¼ q1 and q ¼ 0 with one unit of loop current in the
first plaquette as in Fig. 4, when one or three Ms are in the
q1 side, there is the chance that all δs would be satisfied.
The only thing is to calculate the combinatorial factors for
all possible states that would lead to satisfying all δs. For
the first term, the possible ways would be three combina-
tions of two −Ms and one þM,

q1;−M;−M;þM → 0; ð50Þ

in which q1 cancels with one of −Ms, and two others cancel
out each other. Depending on whether all Ms are in the q1
plaquette or not, we have the combinatorial factor

3ð2ðNP − 1Þ þ 1Þ ¼ 3ð2NP − 1Þ: ð51Þ

The second term may contribute by

q1;−M → 0;þM;−M ð52Þ

having two possibilities for þ=− signs on the second side,
giving the combinatorial factor

2NP: ð53Þ

The last term contribution comes from the combinations of

q1;−M;þδ;−δ → 0;þδ;−δ: ð54Þ

Having in mind that the place of link δs in the lattice in two
sides are the same, together with two possibilities for
þ=− signs for δs, leads to the combinatorial factor

2NL: ð55Þ

It can be shown by the following graphical representation:
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ð56Þ

All together, using Eqs. (39) and (56), we have the result as
follows:

h1jV̂j0i0 ¼
γ

4
þ
�
−1
128

þ NP

32
þ NL

16

�
γ3 þ � � � : ð57Þ

Before proceeding to the rules in the next subsection, it is
instructive to consider examples of the matrix elements in

the nonvacuum block by setting the representative state
k� ≠ 0 in Eqs. (15) and (33). In particular, we consider the
block with a representative state of (24) k� ¼ k1 ¼
ð1; 0;…; 0Þ from the previous section, with just one unit
of current on the first link. It is easy to see that the zeroth-
order γ0 belongs only to the VTVof the vacuum block, and
so up to the first order of γ in k1s block we find

hk1 þ q0jV̂jk1 þ qi1 ¼
γ

4

Y
l

δðk1l þ =qlÞ
X
p0

�Y
l0
δðk1l þ =q0l0 þMp0

l0 Þ þ
Y
l0
δðk1l þ =q0l0 −Mp0

l0 Þ
	

þ γ

4

Y
l0
δðk1l þ =q0l0 Þ

X
p

�Y
l

δðk1l þ =ql þMp
l Þ þ

Y
l

δðk1l þ =ql −Mp
l Þ
	

þ γ

2

X
l1

�Y
l

δðk1l þ =ql þ δll1Þδðk1l þ =q0l þ δll1Þ þ
Y
l

δðk1l þ =ql − δll1Þδðk1l þ =q0l − δll1Þ
	

þ Oðγ2Þ: ð58Þ

Using the fact that =q and q0 add loop currents to the
representative state k1, it is shown that the first order in this
block survives only for q ¼ q0 ¼ 0, leading to the matrix
element

hk1jV̂jk1i1 ¼
γ

2

X
l1

�Y
l

δðk1l − δll1Þδðk1l − δll1Þ
	

þ Oðγ2Þ; ð59Þ

for which, setting l1 ¼ 1 by the δs, we find

hk1jV̂jk1i1 ¼
γ

2
þ Oðγ2Þ: ð60Þ

The expression (59) shows explicitly how the separate
multiplying δs connect the initial and final states to the
vacuum state, although it does not belong to k1 block. The
crucial role of the vacuum state, as mentioned before, is
related to the fact that both δs by initial and final states are
to be satisfied, as if both passed through the vacuum state.
Accordingly, the graphical representation of the above is
expressed as follows:

ð61Þ

At the next order now let us consider the element by setting
q0 ¼ 0 and q ¼ q1 ¼ ð1; 0;…; 0Þ of Eq. (22). The current
vector k1 þ =q1 ¼ k1;1 with one unit of loop current and link
current in the first plaquette, may be represented as

ð62Þ

In the following, for the sake of clarity, we use the first of
the above. Then the surviving matrix element is found to be

hk1jV̂jk1;1i1 ¼
γ2

8

X
p1

X
l1

�Y
l

δðk1l − δll1Þ

× δðk1l þM1
l −Mp1

l − δll1Þ
	
þOðγ3Þ: ð63Þ

Above, the cancellation of link currents in both δs and loop
currents in the second δ by p1 ¼ 1 leads to
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hk1jV̂jk1;1i1 ¼
γ2

8
þ Oðγ3Þ: ð64Þ

Once again, the δs in expression (63) by the initial
and final states show explicitly how the connections
between two states and the vacuum, which do not
even belong to this block, determine the strength of
transition. Graphically the way of satisfying δs may be
represented as

ð65Þ

Let us consider the diagonal element by setting
q0 ¼ q ¼ q1, with one unit of loop current and link current
in the first plaquette, given by

hk1;1jV̂jk1;1i1 ¼
γ3

32

X
p;p0;l1

Y
l

δðk1lþM1
l −Mp0

l −δll1Þ

×δðk1lþM1
l −Mp

l −δll1ÞþOðγ4Þ: ð66Þ
This is the only term for this order. Four link currents are
canceled by loop currents if p ¼ p0 ¼ 1, however, k1
should be canceled by δll1s in both sides, leading to

hk1;1jV̂jk1;1i1 ¼
γ3

32
þ Oðγ4Þ ð67Þ

with the graphical representation as follows:

ð68Þ

B. Rules of current expansion in strong coupling

As announced earlier, in the present subsection the set of
rules is given in which at any order of γ in principle, one can
write the transfer-matrix element between two states. The
rules are based on determining the ways that transform
the initial and final states to the vacuum, accompanied by
the associated numerical and combinatorial factors of each
transition. As mentioned, the distinguished role of the
vacuum state simply comes back to the fact that the δs
related to the initial and final states’ Fourier integrals are to
be satisfied separately. Accordingly, and as seen in previous
examples, the transform can be represented by a set of
graphs in which a proper combination of virtual loop and
link currents would make the required pass through the
vacuum. Also, by the given examples, the transform to
vacuum is to be considered even for states that do not
belong to the vacuum block. This is because the coblocks of
a state are determined by adding loop-currents, via q ·M in
Eq. (15), but the concerned transform to vacuum is due to
both link and loop currents, the former via “cosðθ − θ0Þ”
term that is irrelevant for making coblocks. It is due to these
link currents that transforming any state into a vacuum is
made possible, even for those states in blocks other than the
vacuum.
For any state in the Fourier basis, there are infinite ways

to transform it into the vacuum. As seen before, this is
correct for the vacuum state itself. For two given states of
jki and jk0i in the same block, consider the case that they
transform to vacuum by m and m0 numbers of virtual loop
currents, respectively, accompanied by l numbers of virtual
link currents for both states. By Eq. (32) the mentioned
numbers of currents appear through the integration

of m, m0, and l numbers of cosðMp
l θ

lÞs, cosðMp
l θ

0lÞs,
and cosðθl − θ0lÞs, respectively. Now, as it can be derived
easily (see Appendix B), the numerical factor associated
with the matrix element of transition through the consid-
ered transform is

½hk0jV̂jki�m;m0;l¼Km;m0;l
1

22mþ2m0þl

1

m!m0!l!
γmþm0þl; ð69Þ

in whichKm;m0;l is the combinatorial factor representing the
number of ways that loop and link currents can be combined,
regarding the initial and final transforms to the vacuum.
In the previous subsection, graphical representations are

suggested to each term contributing to the transition at the
lowest orders of γ. In fact, and as we will see in several
examples, these graphical representations can be used to
determine and manage the channels that contribute to a
transition at a given order. In this respect, these graphical
representations can serve as the Feynman diagrams in
perturbative quantum field theory. The elements being used
in graphs are simply the currents, loop or link ones, being
characterized by their real or virtual natures. Accordingly,
the initial and final states, being determined only by link
currents, are interpreted as real and presented by a
combination of solid lines as

ð70Þ

and their rotated versions. Instead, the loop and link
currents that occurred during the transforms are interpreted
as virtual. The virtual loop currents, representing the�Mp

l s
inside multiplying δð·Þs, are coming as
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ð71Þ

The virtual link currents, representing the δll0s inside
multiplying δð·Þs, are drawn below and their rotated
versions

ð72Þ

The important point about the virtual link currents is, as
mentioned earlier, that they come in both sides of initial and
final transforms to vacuum equally, since they are origi-
nated from Fourier integration over cosðθ − θ0Þs.
Some general statements about the expansion for an

arbitrary element can be made and come in order. First, it
can be easily shown that two subsequent orders of γ in the
expansion of an element differ by two. By the previous
examples as well as several ones given later, that is evident.
This simply comes back to the fact that any order for an
element differs from a higher-order one by adding an even
number of virtual currents to transform both initial and final
states to vacuum. By this, the expansion for an element in
k� block looks like

hk0�q0 jV̂jk�qik� ¼ γhðc0þc2γ2þc4γ4þc6γ6þ�� �Þ; ð73Þ

in which h is the lowest order at which the transforms of
both initial and final states to vacuum, by adding virtual
link and loop currents, are made possible. So by γ ¼ 1=g2,
the subsequent increase of order is in fact 1=g4, which
makes the expansion fairly reliable for even not so large
values of g. The value of h can be determined as well, once
k�, q, and q0 are given. From Sec. III, we know that each
vector current inside a block can be selected as the
representative. To make things systematically, we use the
convention that the representative vector would have
the minimum value of

jkj ¼
XNL

l¼1

jklj: ð74Þ

In some blocks, the above specifies just one vector current.
For example, in the vacuum block, it is only the vacuum
and not, say, its coblock (23) in Fig. 4 with larger (74). The
other block with k1 in Eq. (24) and those in Figs. 6 and 7 as
coblocks, again k1 has a minimum (74), is being taken as
representative. The same is true for the block with k2 and its
coblock in Fig. 8. For some blocks, however, the condition
would not identify just one candidate as the representative.
An example is given in Fig. 9, in which both current vectors
have equal (74), and so both can be taken as representa-
tives. The least order of h can be obtained simply by
realizing how many link and loop currents are necessary to
transform the given states to the vacuum. It is here that the

representative k� with a minimum (74) is needed. By q and
q0 of (15) we then have

h ¼ jk�j þ jqj þ jq0j; ð75Þ

in which jk�j as (74) and

jqj ¼
XNP

p¼1

jqpj ð76Þ

and a similar one for jq0j. The relation for “h” is correct for
all blocks, including those with more than one candidate as
representative with a minimum (74), provided that q and q0
take those loop vectors, which satisfy (15) with the selected
representative. The above for “h” can be checked easily by
the previous examples and several ones given later.
As the last feature, it is befitting to discuss here the effect

of lattice dimension on the expansion. The first footstep of
lattice dimension is seen by the number of links and
plaquettes, NL and NP, in the expansion. For example,
for the 2D and 3D periodic spatial lattices with Ns sites in
each direction, we have the following

2d∶NL ¼ 2N2
s ; NP ¼ N2

s ; ð77Þ

3d∶NL ¼ 3N3
s ; NP ¼ 3N3

s : ð78Þ

The other impact of lattice dimension is related to the differ-
ence of null condition (11) for n0 in different dimensions.
In Sec. III for the 2D and 3D cases, the difference is
mentioned, and its effect on managing Bessel orders in
Eq. (16) is discussed. Here the effect of this difference in γ
expansion is pointed. The vector n0 affects the expansion as
it, via n0 ·M ¼ 0, can contribute to the transformations of
states to vacuum. As seen in the 2D case, n0 represents loop
currents in all NP plaquettes. So its presence affects the
order γNP, which is quite suppressed for supposedly large
lattices NP → ∞ in the strong coupling limit γ ≪ 1. In the
3D case, however, vector n0 may represent a six-plaquette
cubic configuration with net zero current, as shown in
Fig. 11. Of course, there are many other finite-plaquette
configurations with zero net currents, simply by combining
the lower number ones. By these, we conclude that in form
(73) the orders up to γ4þh are formally the same in all
dimensions, however, the number of links and plaquettes
should be replaced according to dimensions as in Eqs. (77)
and (78). The first difference due to the configurations that
do not fit in the 2D appears at order 6þ h. As an example,

in the next section, the orders γ4 and γ6 of transition 0→
0
0

are considered, which consist of the ways that combina-
tions of virtual currents can take place in 2D. The γ4 order
result is formally the same in both dimensions, but for the
γ6 order, one has to take into account also the cube
configuration in Fig. 11. Depending on whether the virtual
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currents on cube configuration are on the first or second
side, we have for numbers in Eq. (69) the following
possibilities

k0 side : m ¼ 0; m0 ¼ 6; l ¼ 0; ð79Þ

k side : m ¼ 6; m0 ¼ 0; l ¼ 0: ð80Þ

The evaluation of the combinatorial factor is given in the
next section. In general, as the difference between 2D and
3D comes in the fourth term in the expansion of (73),
namely in “c6γ6þh,” the difference between the third and
fourth terms is of order γ2 ¼ 1=g4, which for many
practical purposes is not significant even for not so large
coupling g.

V. APPLICATION OF RULES

The following examples are presented to see how the
expression (69) and the associated graphical representation
work in practice. The matrix-elements expansions up to
order γ3 are already presented, together with the associated
graphical representations. Similar to order γ3 in the vacuum
block, the δ expansion of order γ4 is given in Appendix A.
Again in the vacuum block the terms with an odd number of
δllis have no chance to survive, specifically those in the last
three lines in (A3). The VTV transition with q ¼ q0 ¼ 0,
also terms with an odd number ofMs at q and q0 sides, have
no chance [those in lines four and five of (A3)]. So only the

terms in lines one to three contribute to VTV transition, for
which the counting of combinatorial factors are given. For
the first term, the possible ways would be six combinations
of two −Ms and two þM, in which one þM cancels out
one of −Ms, and two others cancel out each other.
Depending on whether all Ms are in the same plaquette
or not

0→0;−M;−M;þM;þM

0;−M;−M;þM;þM→0

�
∶C2

4ð2NPðNP−1ÞþNPÞ; ð81Þ

in which

Cm
n ¼

�
n

m

�
¼ n!

m!ðn −mÞ! : ð82Þ

The possible ways for the second term would be four
combinations of two Ms and two δs, in which þM cancels
with one of −Ms, and δs cancel out each other in two sides.
So we have the combinatorial factor as

0;−M;þM;þδ;−δ → 0;þδ;−δ
0;þδ;−δ → 0;−M;þM;þδ;−δ

�
∶ C1

2C
1
2NPNL: ð83Þ

The third term may contribute as

0;þM;−M → 0;þM;−M∶ C1
2C

1
2NPNP: ð84Þ

And the last combination at this order is

0;þδ;þδ;−δ;−δ → 0;þδ;þδ;−δ;−δ∶ C2
4ð2NLðNL − 1Þ þ NLÞ; ð85Þ

which comes by considering whether all δs are in the same link or not. All of these can be expressed in the graphical
representation below:

ð86Þ

Using Eq. (46) results in
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h0jV̂j0i0 ¼ 1þ
�
NP

8
þ NL

4

�
γ2

þ
�
−
NL

64
þ N2

L

32
−

NP

512
þ NPNL

32
þ N2

P

128

�
γ4

þ � � � : ð87Þ

It is easy to check that at order γ4 the transition 1→
0
0 does

not find any contribution. Instead, the transition h1jV̂j1i0
gets contributions at this order by the combination of loop
and link currents as before. However, at this order, a new
combination for cancellation between the initial real loop
current and four virtual link currents takes place, graphi-
cally represented in Eq. (88).

ð88Þ

Let us start with already known combinations. First, we have
the possibility that one−M onone side andþM;−M;−M on
the other side would result in full cancellation toward
vacuum. The combinatorial factor is then

C1
3ð2NP − 1Þ: ð89Þ

The other possibility is one −M and two�δll0s in each side,
by the factor

C1
2NL: ð90Þ

The last is the new one (88), for which counting theways that
four �δll0s take place gives the factor

C2
44: ð91Þ

These all are summarized below

ð92Þ

combined with the result of order γ2 with this order giving

h1jV̂j1i0 ¼
γ2

16
þ
�
15

256
þ NL

64
þ NP

128

�
γ4 þ � � � : ð93Þ

At fifth order, it is easy to see that VTV does not get a

contribution. Instead, the 1→
0
0 transition takes the con-

tribution from combinations of the initial loop-current q1
and virtual loop and link currents as seen in previous
examples. However, apart from Eq. (40), a new combina-
tion takes place; that is, four link currents may cancel out a
virtual loop-current as shown in Eq. (94).

ð94Þ

Again we start with more familiar cases. The first
possibility is

q1;−M;−M;−M;þM;þM → 0; ð95Þ

in which q1 cancels with one of −Ms, and four others
cancel out each other. Depending on how many Ms sitting
in the q1 plaquette or are separated, we have the combi-
natorial factor

C3
5ð3ð2ðNP − 1ÞðNP − 2Þ þ NP − 1Þ þ 3 × 2ðNP − 1Þ þ 1Þ
¼ C3

5ð6N2
P − 9NP þ 4Þ: ð96Þ

The second may contribute as

q1;−M;−M;þM → 0;þM;−M ð97Þ

having possibilities for þ=− signs in each of two sides,
giving the combinatorial factor

C1
2C

2
3NPð2ðNP − 1Þ þ 1Þ ¼ C1

2C
2
3NPð2NP − 1Þ: ð98Þ

The third combination is

q1;−M → 0;þM;þM;−M;−M ð99Þ
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as q1 cancels −M, and on the other side, four virtual
currents cancel each other, with the combinatorial factor

C2
4ð2NPðNP − 1Þ þ NPÞ ¼ C2

4ð2N2
P − NPÞ: ð100Þ

By

q1;−M;−M;þM;þδ;−δ → 0;þδ;−δ ð101Þ
again q1 is canceled by −M, and for two other Ms
depending on sitting in the q1 plaquette or not, we have
the combinatorial factor

C2
3C

1
2NLð2ðNP − 1Þ þ 1Þ ¼ C2

3C
1
2NLð2NP − 1Þ: ð102Þ

The fifth term at this order is by the combination

q1;−M;þδ;−δ → 0;þM;−M;þδ;−δ: ð103Þ
In the second side, twoMs cancel out each other, and the δs
each other too, with the factor

C1
2C

1
2NLNP: ð104Þ

By the combination

q1;−M;þδ;þδ;−δ;−δ → 0;þδ;þδ;−δ;−δ; ð105Þ

the ways for cancellation of the four δs give the combi-
natorial factor

C2
4ð2NLðNL − 1Þ þ NLÞ ¼ C2

4ð2N2
L − NLÞ: ð106Þ

In the last one, the four currents by q1 are canceled with the
four δs

q1;þδ;þδ;−δ;−δ → 0;þM;þδ;þδ;−δ;−δ: ð107Þ

Having possibilities forþ=−with a fixed place for the δs in
the first plaquette the number of combinations is

C2
4 2 × 2: ð108Þ

The combinations associated with the transition are sum-
marized below:

ð109Þ

all together up to fifth order

h1jV̂j0i0¼
γ

4
þ
�
−1
128

þNP

32
þNL

16

�
γ3

þ
�

49

3072
−
3NL

512
þ N2

L

128
−
3NP

2048
þNLNP

128
þ N2

P

512

�
γ5

þ�� � : ð110Þ

Next is the sixth order of 0→
0
0, for which, as

mentioned in Sec. IV, the six-plaquette cube con-
figurations as in Fig. 11 are to be considered. Let
us first consider the contribution in the 2D case.
Here three þMs and −Ms cancel each other, and,
depending on whether Ms sitting in one plaquette or
not, we have
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0→ 0;−M;−M;−M;þM;þM;þM

0;−M;−M;−M;þM;þM;þM→ 0

�
∶

C3
6ð6NPðNP−1ÞðNP−2Þþ9NPðNP−1ÞþNPÞ: ð111Þ

The other is with 12 combinations of two Ms on one
side and four Ms on another side; they cancel each
other out:

0;−M;þM → 0;−M;−M;þM;þM

0;−M;−M;þM;þM → 0;−M;þM

�
∶

C1
2C

2
4ð2NPðNP − 1Þ þ NPÞNP: ð112Þ

The third term may contribute by cancellation between
the four Ms and two δs in two sides:

0;−M;−M;þM;þM;þδ;−δ → 0;þδ;−δ
0;þδ;−δ → 0;−M;−M;þM;þM;þδ;−δ

�
∶

C1
2C

2
4ð2NPðNP − 1Þ þ NPÞNL: ð113Þ

The fourth may contribute by canceling two Ms in
each side, and also δs in two sides as

0;þM;−M;þδ;−δ → 0;þM;−M;þδ;−δ∶

C1
2C

1
2C

1
2NPNPNL: ð114Þ

By this form, having possibilities for þ=− signs on the
first side, we have the combinatorial factor

0;−M;þM;þδ;þδ;−δ;−δ → 0;þδ;þδ;−δ;−δ
0;þδ;þδ;−δ;−δ → 0;−M;þM;þδ;þδ;−δ;−δ;

�
∶

C1
2C

2
4ð2NLðNL − 1Þ þ NLÞNP: ð115Þ

The other is six δs canceling each other out as follows:

0;þδ;þδ;þδ;−δ−δ;−δ→ 0;þδ;þδ;þδ;−δ−δ;−δ∶

C3
6ð6NLðNL−1ÞðNL−2Þþ9NLðNL−1ÞþNLÞ: ð116Þ

In the last one, cancellation is between four link
currents with the virtual loop current:

0;M;þδ;þδ;−δ;−δ → 0;M þ δ;þδ;−δ;−δ
0;−M;þδ;þδ;−δ;−δ → 0;−M þ δ;þδ;−δ;−δ

�
∶

C1
2C

1
2C

2
4NP: ð117Þ

The graphical representation with all the above at this
order will be as follows:

ð118Þ

DIAGRAMMATIC STRONG COUPLING EXPANSION OF A U(1) … PHYS. REV. D 104, 094506 (2021)

094506-17



all together leading to

h0jV̂j0i0¼ 1þ
�
NP

8
þNL

4

�
γ2

þ
�
−
NL

64
þN2

L

32
−
NP

512
þNPNL

32
þ N2

P

128

�
γ4

þ
�
NL

576
−
N2

L

256
þ N3

L

384
þ145NP

18432
−
5NLNP

2048
þN2

LNP

256

−
N2

P

4096
þN2

PNL

512
þ N3

P

3072

�
γ6þ�� � : ð119Þ

As mentioned earlier, for the 3D lattice, the above result
should be added by the contribution of cube configuration
like that in Fig. 11. The numerical factor is known by
cases (79) or (80), via (69). The last step is to find the
relevant combinatorial factor that counts the possible
ways that the cubic setup may take place. A simple
inspection shows that in either the configuration in
Fig. 11 or its all currents reversed version, there are
three þMs and three −Ms, by the convention introduced
for M matrix. This rises a 3! × 3! factor in which three
þMs and three −Ms can sit on cube facets. Also, the
number of δs containing six Ms by mentioned signs is
C3
6. As for the position of the cube, for the 3D periodic

lattice with Ns sites in each direction, the cube may sit in
N3

s places. These all together determine the contribution
of the cube configuration at sixth order by Eq. (69) as

ð120Þ

In the previous section, examples of the nonvacuum block
at the lowest orders were given by explicit δ expressions by
Fourier integrals that matched with given rules. It is useful to
see how the given rules work for these blocks at higher
orders. At γ3 order in k1 block, we consider terms by the
virtual current in this block for q0 ¼ q ¼ 0. For the first term,
the possible combinationwould be the cancellation of k1 and
“−δ” despite the presence of the virtual loop current

k1 − δ → k1 − δ −M þM

k1 − δ −M þM → k1 − δ

�
∶ C1

2NP: ð121Þ

For the second term, the possible ways would be three
combinations of two −δs and one þδ, in which k1 cancels
one of−δs, and two others cancel each other out. Depending
on whether all δs are in the same link or not, we have the
combinatorial factor

k1−δ−δþδ→ k1−δ−δþδ∶C1
3ð2ðNL−1Þþ1Þ: ð122Þ

These can be represented as

ð123Þ

All together leading to

hk1jV̂jk1i1 ¼
γ

2
þ
�
−

1

16
þ NL

8
þ NP

16

�
γ3 þ � � � : ð124Þ

At γ4 order with q0 ¼ 0 and q ¼ q1 the graphical representations and combinatorial factors will be as follows:

ð125Þ
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by which and (64) it ends with

hk1jV̂jk1;1i1¼
γ2

8
þ
�
−

5

256
þNL

32
þNP

64

�
γ4þ�� � : ð126Þ

It is easy to check that at order γ5 the element by q0 ¼ q ¼ q1 gets contributions as

ð127Þ

Using Eqs. (67) and (127) results in

hk1;1jV̂jk1;1i1¼
γ3

32
þ
�

5

512
þ NL

128
þ NP

256

�
γ5þ�� � : ð128Þ

VI. SPECTRUM IN A STRONG
COUPLING LIMIT

In the present section, it is shown how the expansion of
the elements of the transfer-matrix in the Fourier basis can
be used directly to calculate the energy spectrum in the
strong coupling regime. In particular, here we calculate
the ground state and the first excited energies using the
expansion obtained for the transfer matrix of the U(1)
model. The calculation is analytical, using simple matrix
and quantum perturbation methods, and the eigenvalues of
the mentioned states are calculated up to the fourth order in
γ. To calculate far beyond this order, the numerical methods
are needed to work with large matrices.
As it was seen in the previous sections, in the extreme

strong coupling limit γ ¼ 0 all the matrix elements are zero,
except h0jV̂j0i, which is 1. The γ ¼ 0 limit is considered as
the unperturbed case, corresponding to the following
eigenvalues for V̂0:

γ ¼ 0∶ vð0Þ0 ¼ 1; vð0Þq≠0 ¼ 0: ð129Þ

Using (17), the unperturbed energy values are obtained as

εð0Þ0 ¼ 0 for the ground state and εð0Þq≠0 → þ∞ for all other

states. The full transfer matrix, corresponding to a nonzero
but small γ is

V̂ ¼ V̂0 þ V̄: ð130Þ

It is useful to have the explicit expressions of perturbative
corrections to the eigenvalues up to the fourth order in the
present case

vð1Þq ¼ V̄qq; ð131Þ

vð2Þq ¼ V̄2
qq0

vqq0
; ð132Þ

vð3Þq ¼ V̄qq0 V̄q0q00V̄q00q

vqq0vqq00
− V̄qq

V̄2
qq0

v2qq0
; ð133Þ

vð4Þq ¼ V̄qq0V̄q0q00 V̄q00q000V̄q000q

vqq0vqq00vqq000
−
V̄2
qq0

v2qq0

V̄2
qq00

vqq00

− 2V̄qq
V̄qq0 V̄q0q00V̄q00q

v2qq0vqq00
þ V̄2

qq

V̄2
qq0

v3qq0
; ð134Þ

in which vqq0 ¼ vð0Þq − vð0Þq0 and V̄qq0 ¼ hqjV̄jq0i. The sum-
mations in the above expressions are understood over those
values of q0, q00, and q000, for which the denominators do not
vanish. It was mentioned at the end of Sec. II that the
ground state of the U(1) model belongs to the vacuum
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block [14]. The lowest order of γ in a matrix element was
already obtained in Eq. (75). Up to the order γ2, the only
nonvanishing elements in the vacuum block are those with
at most two units of loop currents in one or two plaquettes,
namely

V̄0;�1 ¼
γ

4
þ Oðγ3Þ ð135Þ

V̄�1;�10 or�1; V̄�10; or∓1; V̄0;�2; V̄0;�1�1; V̄0;�1∓1 ∝ γ2: ð136Þ

We also have

V̄00 ¼
�
NP

8
þ NL

4

�
γ2 þ Oðγ4Þ: ð137Þ

Using Eq. (132), it is easily understood that at the order of
γ2 there are 2NP elements V̄0;q with jqj ¼ 1 that contribute
to the ground state. Also by (129), in the perturbative
corrections to the ground state we have v0q ¼ 1 − 0 ¼ 1 in
the denominator. All together, it is seen that up to the
order γ2

v0 ¼ 1þ V̄00 þ 2NPV̄2
0;�1; ð138Þ

¼ 1þ 1

4
ðNP þ NLÞγ2 þ Oðγ4Þ: ð139Þ

Further, using the well-known expression for the correction
to the eigenvectors, we find for the ground state

v⃗0 ¼ ð1; 0; 0;…0Þ þ
X
jqj¼1

V̄0;qq⃗; ð140Þ

¼
�
1;
γ

4
;
γ

4
;…;

γ

4|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2NP

�
þ Oðγ2Þ: ð141Þ

Interestingly, we see that the expansion of the transfer-
matrix elements in the Fourier basis can be used to develop
an expansion for the energy and eigenvector of the ground
state. The physical meaning of the above vector based on
the current states is simple. In the extreme strong limit
γ ¼ 0, the ground state is simply the vacuum. For nonzero
but small γ, the ground state is represented by a linear
combination of the vacuum state and 2NP states constructed
by�1 unit of loop current in one plaquette, such as Eq. (23)
in Fig. 4.
It is instructive to find also the correction of order γ2 to

the ground state by a truncated version of the vacuum block
as following

V̂
¯
vacjγ2 ¼

�
A B
BT C

�
; ð142Þ

with BT being the transpose of B. The sub-blocks A, B, and
C are introduced in Table I.
Fortunately, the eigenvalues and eigenvectors of

Eq. (142) can be obtained analytically. For the eigenvalues
we find

v0 ¼
1

2

�
aþ 2NPcþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða − 2NPcÞ2 þ 8NPb2

q �
; ð143Þ

v1 ¼
1

2

�
aþ 2NPc −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða − 2NPcÞ2 þ 8NPb2

q �
; ð144Þ

vi¼2;…;2NPþ1 ¼ 0; ð145Þ

and the following for the ground-state eigenvector

v⃗0¼
�
1

2

�
a−2NPcþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða−2NPcÞ2þ8NPb2

q �
;b;b;…;b|fflfflfflfflffl{zfflfflfflfflffl}

2NP

�
:

ð146Þ

Expanding Eqs. (143) and (146) up to γ2, the expressions
(139) and (141) are obtained. Also as a by-product, using
Eq. (144), one also finds for the next eigenvalue in the
vacuum block

v1 ¼ 0 × γ2 þ Oðγ4Þ: ð147Þ

This is of the order γ4, so the first excited energy is not in
the vacuum block. As we will see, there are blocks with
eigenvalues of order γ, which are in fact the first excited
energies of the model. Before considering the excited
states, let us consider the ground-state energy at the order
γ4. First, we have the element

V̄00 ¼
�
NP

8
þ NL

4

�
γ2

þ
�
−
NL

64
þ N2

L

32
−

NP

512
þ NPNL

32
þ N2

P

128

�
γ4

þ Oðγ6Þ ð148Þ

and the elements

TABLE I. The sub-blocks in the truncated vacuum block.

Sub-block Dimension Elements

A 1 × 1 a ¼ 1þ V̄00

B 1 × 2NP b ¼ V̄0;�1 ¼ γ=4
C 2NP × 2NP c ¼

�
V̄�1;�10or�1 ¼ γ2=16
V̄�1;∓10or∓1 ¼ γ2=16
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V̄0;q¼
γ

4
þ
�
−1
128

þNP

32
þNL

16

�
γ3þOðγ5Þ; jqj¼1; ð149Þ

V̄0;q ¼
γ2

32
þ
�
−1
768

þ NL

128
þ NP

256

�
γ4 þOðγ6Þ; jqj ¼ 2;

ð150Þ

each having 2NP cases, by considering � signs. Second,
there are the elements

V̄q;q ¼
γ2

16
þ
�
15

256
þ NL

64
þ NP

128

�
γ4 þ Oðγ6Þ; jqj ¼ 1;

ð151Þ

V̄q;−q ¼
γ2

16
þ
�
−1
256

þNL

64
þ NP

128

�
γ4 þOðγ6Þ; jqj ¼ 1;

ð152Þ

each with 2NP numbers. The other relevant elements are

V̄q;q0 ¼
γ2

16
þ
�
−

1

256
þ NL

64
þ NP

128

�
γ4 þ Oðγ6Þ;

q ≠ q0; jqj ¼ jq0j ¼ 1; ð153Þ

V̄0;qq0 ¼
γ2

16
þ
�
−

1

256
þ NL

64
þ NP

128

�
γ4 þ Oðγ6Þ;

q ≠ q0; jqj ¼ jq0j ¼ 1; ð154Þ

with 4NPðNP − 1Þ and 2NPðNP − 1Þ numbers, respectively.
There are other elements at the order γ3 such as

V̄0;�3; V̄0;�1�2; V̄�1;�2; V̄0;�1�1�1; V̄�1;�1�1 ð155Þ

and also at the order γ4:

V̄0;�4; V̄�1;�3; V̄0;�1�3; V̄�2;�2; V̄0;�2�2; V̄1�;�1�2;

V̄0;�1�1�2; V̄0;�1�1�1�1; V̄�1;�1�1�1; V̄�1�1;�1�1: ð156Þ

However, a simple inspection based on corrections (131)–
(134) shows that none of the terms of the order γ3 in
Eq. (155), and none of γ4s in Eqs. (150)–(156) contribute at
the order γ4 to the ground state. It is also easy to check that
the correction at the order γ3 vanishes. So the next
correction is of the order γ4, which finds contributions
as following

vð1Þ0 ¼ V̄00 − ðγ2 orderÞ

¼
�
−
NL

64
þ N2

L

32
−

NP

512
þ NPNL

32
þ N2

P

128

�
γ4; ð157Þ

vð2Þ0 ¼ 2NPV̄2
0;1 þ 2NPV̄2

0;2 þ 2NPðNP − 1ÞV̄2
0;11;

¼ 2NP × 2
γ

4

�
−1
128

þ NP

32
þ NL

16

�
γ3 þ 2NP

�
γ2

32

�
2

þ 2NPðNP − 1Þ
�
γ2

16

�
2

;

¼
�
−7NP

512
þ NLNP

16
þ 5N2

P

128

�
γ4; ð158Þ

vð3Þ0 ¼ 2 × 2NPV̄0;1V̄1;1V̄0;1 þ 4NPðNP − 1ÞV̄0;1V̄1;10 V̄0;10

− 2NPV̄00V̄2
0;1;

¼ 4NP

�
γ

4

�
2
�
γ2

16

�
þ 4NPðNP − 1Þ

�
γ

4

�
2
�
γ2

16

�

− 2NP

�
γ

4

�
2
�
NL

4
þ NP

8

�
γ2;

¼ −
NLNP

32
γ4; ð159Þ

vð4Þ0 ¼−2NP ×2NPV̄2
0;1V̄

2
0;1¼−4N2

P

�
γ

4

�
2
�
γ

4

�
2

¼−
N2

P

64
γ4:

ð160Þ

All together we have for the ground-state energy

v0 ¼ 1þ 1

4
ðNP þ NLÞγ2

þ
�
−NL

64
þ N2

L

32
−
NP

64
þ NLNP

16
þ N2

P

32

�
γ4

þ Oðγ6Þ: ð161Þ

Now let us consider the first excited state by the transfer
matrix of the model. Using the previously obtained
expansions, the state with one unit of current on one link,
such as k1 of Eq. (24), leads to a diagonal element linear in
γ at the lowest order as Eq. (124). The first element of the
block up to order γ5, expressed in the notation of present
section, is

V̄k1
00 ¼

γ

2
þ
�
−

1

16
þ NL

8
þ NP

16

�
γ3

þ
�

7

384
−
3NL

128
þ N2

L

64
−

9NP

1024
þ NLNP

64
þ N2

P

256

�
γ5

þ Oðγ7Þ: ð162Þ

So the first excited states belongs to the blocks with current
states such as k1. Considering �1 units of current on one
link as the representative state, the number of such blocks
are 2NL. So the first excited energy has a degeneracy of
2NL. In fact, finding the corrections to the first excited
energy is simple and can be done in the same way done for
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the ground state. Factoring out γ=2 from the elements of the
k1 block, the very same calculation for the ground state can
be repeated. Similar to the method used for the vacuum
block, we have the following elements in the k1 block

V̄k1
00 ¼

γ

2

�
1þ

�
−
1

8
þ NL

4
þ NP

8

�
γ2 þ Oðγ4Þ

�
; ð163Þ

V̄k1
0;�1 ¼

γ

2

�
γ

4
þ Oðγ3Þ

�
; ð164Þ

in which we find for the first excited energy

vk10 ¼ γ

2

�
1þ

�
−
1

8
þ NL

4
þNP

8

�
γ2 þ 2NP

�
γ

4

�
2
	
þOðγ5Þ;

ð165Þ

¼ γ

2
þ
�
−

1

16
þ NL

8
þ NP

8

�
γ3 þ Oðγ5Þ: ð166Þ

The gap of energy by the model can be calculated by the
ground-state energy (161) and the above as the excited one.
The eigenvector of the energy (166) can be obtained using
the perturbation method as well

v⃗k10 ¼ ð1; 0; 0;…0Þ þ 1

γ=2

X
jqj¼1

V̄k1
0;qq⃗; ð167Þ

¼
�
1;
γ

4
;
γ

4
;…;

γ

4|fflfflfflfflfflffl{zfflfflfflfflfflffl}
2NP

�
þ Oðγ2Þ: ð168Þ

It is noticed that the vector is exactly in the form of
Eq. (141) in the vacuum block, however, regarding the
current states, with a different physical meaning. Here, the
eigenvector is the linear combination of the k1 state and
2NP states constructed by the k1 state added by �1 unit of
loop current in one plaquette, such as Fig. 7.
The next correction can be obtained along the lines of

Eqs. (157)–(160) but in the k1 block, leading to

vk10 ¼ γ

2
þ
�
−1
16

þ NL

8
þ NP

8

�
γ3

þ
�

7

384
−
3NL

128
þ N2

L

64
−
3NP

128
þ NLNP

32
þ N2

P

64

�
γ5

þ Oðγ7Þ: ð169Þ

The above procedure to find the eigenvalues can be used
for the other blocks as well. For later use in the next section,
we present the lowest eigenvalue in the k2 block,

vk20 ¼ γ2

8
þ
�
−

1

48
þ NL

32
þ NP

32

�
γ4

þ
�

23

3072
−
11NL

1536
þ N2

L

256
−
11NP

1536
þ NLNP

128
þ N2

P

256

�
γ6

þ Oðγ8Þ; ð170Þ

the k110 block,

vk1100 ¼ γ2

4
þ
�
−

1

16
þ NL

16
þ NP

16

�
γ4

þ
�

7

384
−
5NL

256
þ N2

L

128
−
5NP

256
þ NLNP

64
þ N2

P

128

�
γ6

þ Oðγ8Þ ð171Þ

and the k3 block,

vk30 ¼ γ3

48
þ
�
−

1

256
þ NL

192
þ NP

192

�
γ5

þ
�

17

10240
−

NL

768
þ N2

L

1536
−

NP

768
þ NLNP

768
þ N2

P

1536

�
γ7

þOðγ9Þ: ð172Þ

VII. LATTICE SIZE AND
OBSERVABLE VALUES

In the presented expansions of the transfer-matrix
elements and eigenvalues, all of the terms except the first
ones have positive powers of NP and NL. So for an infinite
lattice, in which NP and NL go to infinity, a proper
interpretation of the expansions is necessary. The purpose
of this section is twofold: first, to show how the presence of
the mentioned numbers in the expansions is expected, and,
second, to present a proper interpretation of the resulted
expansions, which are formally divergent in the large
lattice limit.
Let us consider the matrix-element hk0jV̂jki representing

the transition k0 → k. It is shown that in the strong coupling
regime, the γ expansion of this matrix element is represented
by virtual occurrences of loop and link currents that trans-
form both states to the vacuum. The weight of each virtual
current in expansions is γ. The first term represents the
lowest number of virtual currents, in definite links and
plaquettes, necessary to perform the mentioned transform to
the vacuum. So, no NL and NP is expected in the first term.
The other terms, however, represent all virtual currents in
any link and plaquettes that may contribute to the transform.
As a result, the number of links and plaquettes enter the
expansions. As seen in the previous examples, this is exactly
the way that powers ofNP andNL appear in the expansions.
The way that NL and NP appear in the expansions

provides a physical basis to treat the behavior of expansions
in the infinite lattice limit. In particular, due to the
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mentioned role by the virtual currents in the transitions, a
distinguished role is expected to be given to the element
h0jV̂j0i as the amplitude of the VTV transition. The reason
is that the virtual events that derive the VTV transition are
expected to take place in the transitions between other

current states as well, leading to the appearance of NL and
NP in the expansions. As a specific example, let us consider
a 2D lattice, in which NL ¼ 2NP. By replacing NL by NP,
the VTV transition (119) in the 2D lattice finds the
following form

h0jV̂j0i2d0 ¼ 1þ
�
5γ2

8
−
17γ4

512
þ 209γ6

18432

�
NP þ

�
25γ4

128
−
85γ6

4096

�
N2

P þ
�
125γ6

3072

�
N3

P þ � � � : ð173Þ

Based on the above explanations, one expects that a footprint of the VTV transition can be traced in other transitions. In
particular, it is seen that the ratio of the other matrix elements to the VTV one is independent of NP. As examples in the
vacuum block, we have the following for the 2D lattice:

h0jV̂j1i0 ¼ h0jV̂j0i · γ
4

�
1 −

γ2

32
þ 49γ4

768
−
7691γ6

196608
þ � � �

�
; ð174Þ

h1jV̂j1i0 ¼ h0jV̂j0i · γ
2

16

�
1þ 15γ2

16
−
1525γ4

3072
þ 22861γ6

98304
þ � � �

�
; ð175Þ

h0jV̂j2i0 ¼ h0jV̂j0i · γ
2

32

�
1 −

γ2

24
þ 1163γ4

6144
−
9073γ6

81920
þ � � �

�
; ð176Þ

h0jV̂j3i0 ¼ h0jV̂j0i · γ3

384

�
1 −

3γ2

64
þ 1941γ4

10240
þ 168611γ6

1474560
þ � � �

�
; ð177Þ

in which we see that the NP dependence is totally factored out as the VTV transition element. As more examples by
composite current vectors in the vacuum block we have

h0jV̂j1; 1i0 ¼ h0jV̂j0i · γ
2

16

�
1 −

γ2

16
þ 203γ4

3072
þ 1325γ6

98304
þ � � �

�
; ð178Þ

h0jV̂j1; 2i0 ¼ h0jV̂j0i · γ3

128

�
1 −

7γ2

96
þ 137γ4

2048
þ 73319γ6

1474560
þ � � �

�
: ð179Þ

The above observation is expected to be true in blocks other than the vacuum block as well. As examples, from the k1 and k2
blocks we have

hk1jV̂jk1i1 ¼ h0jV̂j0i · γ
2

�
1 −

γ2

8
þ 7γ4

192
−
25γ6

1536
þ � � �

�
; ð180Þ

hk1jV̂jk1;1i1 ¼ h0jV̂j0i · γ
2

8

�
1 −

5γ2

32
þ 25γ4

384
−
6619γ6

196608
þ � � �

�
; ð181Þ

hk1;1jV̂jk1;1i1 ¼ h0jV̂j0i · γ
3

32

�
1þ 5γ2

16
−
721γ4

3072
þ 8369γ6

98304
þ � � �

�
; ð182Þ

hk2jV̂jk2i2 ¼ h0jV̂j0i · γ
2

8

�
1 −

γ2

6
þ 11γ4

384
−
11γ6

960
þ � � �

�
; ð183Þ

hk2jV̂jk2;1i2 ¼ h0jV̂j0i · γ
3

32

�
1 −

19γ2

96
þ 55γ4

768
−
103957γ6

2949120
þ � � �

�
; ð184Þ

hk2;1jV̂jk2;1i2 ¼ h0jV̂j0i · γ4

128

�
1þ 5γ2

48
−
421γ4

3072
þ 75107γ6

1474560
þ � � �

�
: ð185Þ
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It is interesting that the above expressions are valid for any
value of NP. Despite the fact that the whole dependence on
NP can be extracted equally from all elements, it does not
make them finite in the large lattice limit. The basic idea to
define physically finite values comes from the field theory
approach to Feynman diagrams. As mentioned before, the
present diagrammatic expansion has features similar to the
those of the Feynman diagrams of perturbative quantum
field theory. Here we see another example of these common
features. The n-point functions in the field theory approach
supposedly contain vacuum diagrams; those with no ex-
ternal legs originated from the theory with no source term.
Having no external legs, the vacuum diagrams are the only
ones that contribute to the VTV transition. The absence of
external legs has two important consequences. First, the
vacuum diagrams are infinite, as they can take place in the
infinite extent of the space [18,19]. Second, the vacuum
diagrams contribute equally as a multiplicative factor to all
transitions [18–20]. Hence, the total contribution of these
diagrams can be factored out from the S-matrix elements,
leaving only physically observable contributions to the
transitions [18–20]. In the field theory approach, the
contribution by the vacuum diagrams is extracted from
the n-point functions by defining the normalized generating
functional, through dividing the path-integral expression
with source “J” by the sourceless one [20]

Z½J� ¼
R
Dϕ exp ½i R dxðL þ JϕÞ�R

Dϕ exp ½i R dxL � : ð186Þ

It then can be shown that the n-point functions derived from
the normalized functional are free from the vacuum dia-
grams [19,20]. In a quite similar way, we see that the VTV
contribution can be extracted from the present strong
coupling expansion of matrix elements, leaving a finite
physical transition amplitude between the current states. As
mentioned in Sec. III, the current vector k plays the role of
the source. The origin of the divergent behavior of h0jV̂j0i
in the infinite lattice limit is the same as its counterpart in
the field theory approach.
We see that, by extracting h0jV̂j0i from the transfer

matrix, all elements become independent of NP. However,
that is not enough to guarantee that the eigenvalues are
independent of NP. This can be checked explicitly by the
eigenvalues obtained in the previous section. The reason for
this is simply that the number of off-diagonal elements
contributing to an eigenvalue may depend on NP. We
already have seen examples of this in the previous section,
for example Eqs. (138) and (158)–(160). Theoretically, for
a system with finite energy density we expect infinite
energy in the infinite size limit [19]. So, there is no surprise
about the divergent behavior of the obtained eigenvalues.
However, it is still expected that the observable values
related to energy would be finite. Fortunately the solution is
quite known that, as far as measurements are concerned,

the relevant quantity is the energy difference rather than the
energy itself. In our case, using vi ¼ expð−aεiÞ, it is
enough to check the behavior of the ratio vi=v0 ¼
exp½−aðεi − ε0Þ�. If the mentioned ratio is independent
of NP, then the difference between every two energies will
be too. As explicit examples, for eigenvalues obtained in
the k1, k2, k110 , and k3 blocks,

vk10
v0

¼ γ

2

�
1 −

γ2

8
þ 7γ4

192
þ � � �

�
; ð187Þ

vk20
v0

¼ γ2

8

�
1 −

γ2

6
þ 23γ4

384
þ � � �

�
; ð188Þ

vk1100

v0
¼ γ2

4

�
1 −

γ2

4
þ 7γ4

96
þ � � �

�
; ð189Þ

vk30
v0

¼ γ3

48

�
1 −

3γ2

16
þ 51γ4

640
þ � � �

�
; ð190Þ

in which all ratios are independent of NP. By the above
observation, to excite the system from the ground state a
finite amount of energy, independent of the lattice size, is
needed.

VIII. CONCLUSION AND DISCUSSION

The formulation of the transfer matrix of the U(1) lattice
model in the field Fourier basis was studied. It was
discussed in detail how the states in the Fourier basis
correspond to quantized currents on links. The constraint to
have a nonvanishing element by two states was shown to be
in fact the condition that, as a lattice version of current
conservation, the two states differ in loop currents circu-
lating inside plaquettes. These features provide a basis to
develop the strong coupling expansion and its diagram-
matic representation for the elements of the transfer matrix
in the field Fourier basis. Each term of the expansion
represents the occurrence of virtual loop and link currents
that transform the initial and final states to the vacuum state.
Accordingly, the diagrams correspond to combinations of
the initial and final current states and the occurred virtual
currents that transform both states to the vacuum. The
weight of each virtual current is 1=g2, which is small in the
strong coupling regime. Either by interpretation or through
managing the relevant terms at a given order of the strong
coupling expansion, the diagrams play the role of Feynman
diagrams at the small coupling regime. The present
expansion of the transfer-matrix elements are used to
develop the expansion of the ground state and some excited
energies at the lowest orders in the strong coupling regime.
Based on the observation that the lattice size dependence of
expansions can be factored out from the matrix elements
and eigenvalues, the physical interpretation of the results is
discussed.
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The existence of the manageable strong coupling expan-
sion, combined with the available perturbative small
coupling expansion, might be useful as it could provide
some knowledge about the phase structure of the model. A
classic example is the 2D Ising model, for which it can be
shown that the small coupling (high temperature) expan-
sion of the partition function is equivalent to the strong
coupling (low temperature) expansion of the same model
but on the dual lattice [21,22]. Accordingly, this leads to the
fact that the 2D Ising model exhibits a phase transition with
a known critical coupling (temperature) [22], even before
the exact solution at any coupling is found [23]. These
kinds of extra benefits of a strong coupling expansion are
especially important in the case of lattice gauge theories, as

they are expected to capture the essential features of phase
transitions of gauge models. In particular, any relation
between the small and the strong coupling expansions may
be considered as a piece of evidence for a phase transition
in an intermediate coupling value.
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APPENDIX A: THIRD AND FOURTH ORDERS OF γ IN THE VACUUM BLOCK

Presenting the contribution at order γ3 needs a more compact notation, for which we define the new Δ as following with
the summations on all � sign combinations

Δ
�
=ql;M

p1

l ;…;Mpr
l

=q0l;M
p0
1

l ;…;Mp0
s

l

; δll1 ;…; δllt

�
¼

X
�

Y
l

δð=ql �Mp1

l � � � � �Mpr
l � δll1 � � � � � δlltÞ

× δð=q0l �M
p0
1

l � � � � �Mp0
s

l � δll1 � � � � � δlltÞ ðA1Þ

with this caution that the place in lattice and sign of each δlli is the same in both δð=ql � � �Þ and δð=q0l � � �Þ, as they come from
the term cosðθ − θ0Þ. The total number of terms is then 2rþsþt. At third order in the vacuum block, we have 80 terms, which
may be presented in the compact Δ notation as

½hq0jV̂jqi0�γ3 ¼
γ3

384

X
allp

�
Δ
�

=ql
=q0l;M

p1

l ;Mp2

l ;Mp3

l

�
þ Δ

�
=ql;M

p1

l ;Mp2

l ;Mp3

l

=q0l

�	

þ γ3

128

X
allp

�
Δ
�

=ql;M
p1

l

=q0l;M
p0
1

l ;M
p0
2

l

�
þ Δ

�
=ql;M

p1

l ;Mp2

l

=q0l;M
p0
1

l

�	

þ γ3

32

X
allp;l1;l2

�
Δ
�
=ql;M

p1

l

=q0l
; δll1 ; δll2

�
þ Δ

�
=ql

=q0l;M
p0
1

l

; δll1 ; δll2

�	

þ γ3

64

X
allp;l1

�
Δ
�
=ql;M

p1

l ;Mp2

l

=q0l
; δll1

�
þ Δ

�
=ql

=q0l;M
p0
1

l ;M
p0
2

l

; δll1

�	

þ γ3

48

X
l1;l2;l3

Δ
�
=ql
=q0l
; δll1 ; δll2 ; δll3

�
þ γ3

32

X
allp;l1

Δ
�
=ql;M

p1

l

=q0l;M
p0
1

l

; δll1

�
: ðA2Þ
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At fourth order having 15 × 24 ¼ 240 terms, the element in the compact notation comes to the form

½hq0jV̂jqi0�γ4 ¼
γ4

6144

X
allp

�
Δ
�

=ql
=q0l;M

p1

l ;Mp2

l ;Mp3

l ;Mp4

l

�
þ Δ

�
=ql;M

p1

l ;Mp2

l ;Mp3

l ;Mp4

l

=q0l

�	

þ γ4

256

X
allp;l1;l2

�
Δ
�
=ql;M

p1

l ;Mp2

l

=q0l
; δll1 ; δll2

�
þ Δ

�
=ql

=q0l;M
p1

l ;Mp2

l
; δll1 ; δll2

�	

þ γ4

1024

X
allp

Δ
�
=ql;M

p1

l ;Mp2

l

=q0l;M
p3

l ;Mp4

l

�
þ γ4

384

X
l1;l2;l3;l4

Δ
�
=ql
=q0l
; δll1 ; δll2 ; δll3 ; δll4

�

þ γ4

1536

X
allp

�
Δ
�
=ql;M

p1

l ;Mp2

l ;Mp3

l

=q0l;M
p4

l

�
þ Δ

�
=ql;M

p1

l

=q0l;M
p2

l ;Mp3

l ;Mp4

l

�	
þ γ4

128

X
allp;l1;l2

Δ
�
=ql;M

p1

l

=q0l;M
p2

l
; δll1 ; δll2

�

þ γ4

768

X
allp;l1

�
Δ
�
=ql;M

p1

l ;Mp2

l ;Mp3

l

=q0l
; δll1

�
þ Δ

�
=ql

=q0l;M
p1

l ;Mp2

l ;Mp3

l
; δll1

�	

þ γ4

256

X
allp;l1

�
Δ
�

=ql;M
p1

l

=q0l;M
p2

l ;Mp3

l
; δll1

�
þ Δ

�
=ql;M

p1

l ;Mp2

l

=q0l;M
p3

l
; δll1

�	

þ γ4

192

X
p;l1;l2;l3

�
Δ
�
=ql;M

p
l

=q0l
; δll1 ; δll2 ; δll3

�
þ Δ

�
=ql

=q0l;M
p
l
; δll1 ; δll2 ; δll3

�	
: ðA3Þ

APPENDIX B: NUMERICAL FACTOR

Here the numerical factor appearing in Eq. (69) is derived. By definitions

A ¼
X
p

cosðMp
l θ

lÞ; ðB1Þ

B ¼
X
p

cosðMp
l θ

0lÞ; ðB2Þ

C ¼
X
l

cosðθl − θ0lÞ; ðB3Þ

we can expand the exponent as follows

eγð12Aþ1
2
BþCÞ ¼

X∞
n¼0

γn

n!

Xn
l¼0

n!
l!ðn − lÞ!

�
A
2
þ B

2

�
n−l

Cl;

¼
X∞
n¼0

γn

n!

Xn
l¼0

n!
l!ðn − lÞ!

Xn−l
m¼0

ðn − lÞ!
m!ðn − l −mÞ!

�
A
2

�
m
�
B
2

�
n−l−m

Cl;

¼
X∞
n¼0

Xn
l¼0

Xn−l
m¼0

γn

m!ðn − l −mÞ!l!
�
A
2

�
m
�
B
2

�
n−l−m

Cl: ðB4Þ

Setting n − l −m ¼ m0, and changing the phase in Fourier integrals

cos α ¼ 1

2
ðeiα þ e−iαÞ; ðB5Þ
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we find the numerical factor in Eq. (69) as

1

22mþ2m0þl

1

m!m0!l!
: ðB6Þ

APPENDIX C: MORE BY THE RULES

As applications of the rules for γ expansion of the matrix elements, here more examples are presented.
In vacuum block, we consider the state with two units of currents in the first plaquette, as jq2 ·Mi ¼ j2i with

q2 ¼ ð2; 0;…; 0Þ, represented by (C1).

ðC1Þ

Then, by the rules we find for the matrix element h0jV̂j2i0,

ðC2Þ

leading to

h0jV̂j2i0 ¼
γ2

32
þ
�
−

1

768
þ NL

128
þ NP

256

�
γ4 þ

�
779

196608
−

5NL

6144
þ N2

L

1024
−

11NP

49152
þ NLNP

1024
þ N2

P

4096

�
γ6 þ � � � : ðC3Þ
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Also for the element below we have

ðC4Þ

leading to

h1jV̂j2i0 ¼
γ3

128
þ
�

185

12288
þ NL

512
þ NP

1024

�
γ5 þ � � � : ðC5Þ

As the last example by j2i we consider

ðC6Þ

leading to

h2jV̂j2i0 ¼
γ4

1024
þ
�

47

12288
þ NL

4096
þ NP

8192

�
γ6 þ � � � : ðC7Þ

As the next example, we consider the state with three units of currents in the first plaquette jq3 ·Mi ¼ j3i with
q3 ¼ ð3; 0;…; 0Þ, represented by Eq. (C8).

ðC8Þ

The rules for the matrix element h0jV̂j3i0 give
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ðC9Þ

leading to

h0jV̂j3i0 ¼
γ3

384
þ
�
−

1

8192
þ NL

1536
þ NP

3072

�
γ5 þ � � � : ðC10Þ

As another example, we consider the state with one unit of current in two neighbor plaquettes, for which we take the first
plaquette and its right-side neighbor. By the numbering in Fig. 3 and made as jq1;1 ·Mi ¼ j1; 1i with
q1;1 ¼ ð1;…; 0|fflfflffl{zfflfflffl}

NP

; 1; 0;…; 0Þ, this is represented by (C11).

ðC11Þ

It is obvious that the net current in the shared link is zero. In this case, we have the following:

ðC12Þ

giving

h0jV̂j1; 1i0 ¼
γ2

16
þ
�
−

1

256
þ NL

64
þ NP

128

�
γ4 þ � � � : ðC13Þ

Another example is by the state with one unit of current in the opposite direction of j1i, that is jq−1 ·Mi ¼ j − 1i with
q−1 ¼ ð−1; 0;…; 0Þ, for which, with special care about the direction of arrows, we draw
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ðC14Þ

leading to

h1jV̂j − 1i0 ¼
γ2

16
þ
�
−

1

256
þ NL

64
þ NP

128

�
γ4 þ � � � : ðC15Þ

As the other example transition between j1i and one unit of current in another plaquette than the first one, showing as j10i,
is represented as

ðC16Þ

for which we find for the matrix element

ðC17Þ

leading to

h1jV̂j10i0 ¼
γ2

16
þ
�
−

1

256
þ NL

64
þ NP

128

�
γ4 þ � � � : ðC18Þ

As a final example in the vacuum block, we consider j1i and the state with two units of currents in opposite directions as
j − 2i, represented by Eq. (C19).

ðC19Þ

Then the rules, with special care about the direction of arrows, give the following:
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ðC20Þ

leading to

h1jV̂j − 2i0 ¼
γ3

128
þ
�
−

7

12288
þ NL

512
þ NP

1024

�
γ5 þ � � � : ðC21Þ

Samples of the nonvacuum block of k1 are already given. Here as extra examples in the nonvacuum block, first we
consider the coblocks of vector k2 ¼ ð2; 0;…; 0Þ with two units of currents on the first link. The lowest order of this block
occurs when q0 ¼ q ¼ 0, given by

ðC22Þ

leading to

hk2jV̂jk2i2 ¼
γ2

8
þ
�
−

1

48
þ NL

32
þ NP

64

�
γ4 þ � � � : ðC23Þ

As a coblock of k2 we consider k2;1 ¼ k2 þ =q1, which has three units of currents on the first link, and two units of currents
on other links of the first plaquette. Similar to Eq. (62) we may represent it as (C24).

ðC24Þ

The graphical representation for q0 ¼ 0 and q ¼ q1 will be given as follows:
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ðC25Þ

all together leading to

hk2jV̂jk2;1i2 ¼
γ3

32
þ
�
−

19

3072
þ NL

128
þ NP

256

�
γ5 þ � � � : ðC26Þ

The graphical representation for the last example of this nonvacuum block is q0 ¼ q ¼ q1:

ðC27Þ

leading to

hk2;1jV̂jk2;1i2 ¼
γ4

128
þ
�

5

6144
þ NL

512
þ NP

1024

�
γ6 þ � � � : ðC28Þ

As the last example, we consider the block by the representative state k1;10 in which two separated links have one unit of
currents, showing them as (C29).

ðC29Þ
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Then by the rules we have

ðC30Þ

leading to

hk1;10 jV̂jk1;10 i1;10 ¼
γ2

4
þ
�
−

1

16
þ NL

16
þ NP

32

�
γ4 þ � � � : ðC31Þ
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