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The transfer-matrix of the U(1) lattice gauge theory is investigated in the field Fourier space, the basis of
which consists of the quantized currents on lattice links. Based on a lattice version of the current
conservation, the transfer-matrix elements are shown to be nonzero only between current states that differ in
circulating currents inside plaquettes. In the strong coupling limit, a series expansion is developed for the
elements of the transfer matrix, to which a diagrammatic representation based on the occurrence of virtual
link and loop currents can be associated. With g as the coupling, the weight of each virtual current in the
expansion is 1/g?, by which at any given order the relevant diagrams are determined. Either by
interpretation or through their role in fixing the relevant terms, the diagrams are reminiscent of the Feynman

ones of the perturbative small coupling expansions.
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I. INTRODUCTION

According to the perturbative formulation of quantum
field theories, the transition amplitudes of physical proc-
esses are expressed by series expansions in the small
coupling constant. Whenever applicable, the perturbative
series makes it possible to calculate the transition rates up
to the desired accuracy. Based on the interpretation that the
expansion terms are representing the space-time virtual
events between the initial and final states [1], the pertur-
bative expansions are commonly represented by a set of
graphs: the Feynman diagrams. Apart from pure theoretical
interests, diagrammatic representations have found a cru-
cial role in determining and managing the relevant terms at
any given order of the coupling constant. As an example of
the role of Feynman diagrams in managing the perturbative
expansions, representatives of 891 diagrams contributing to
the anomalous magnetic moment of leptons at the order ¢®
are presented in Fig. 1 [2].

The main purpose of the present work is to introduce a
diagrammatic expansion for lattice gauge theories [3,4] in
the strong coupling regime. In particular, we consider the
transfer matrix of the U(1) lattice gauge theory in the field
Fourier space. In the common approach, the elements of the
transfer matrix are defined in the field space through the
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Euclidean action between two adjacent times of the discrete
space-time. Due to the angle-variable nature of the gauge
fields in the lattice formulation, the Fourier conjugates of
fields turn out to be integer valued, being identified as
quantized currents on lattice links. It is for the matrix
elements between these currents that the series expansion in
the strong coupling and associated diagrammatic represen-
tation are derived. With g as the gauge coupling, the
expansion parameter is 1/g?, which is small in the strong
coupling limit. As we will see in detail, the expansion of
matrix elements between two current-states is interpreted as
the occurrence of all possible virtual link and loop currents
that transform the current states to vacuum (the state with
no current). In this sense, the diagrammatic expansion may
be considered as a “current expansion.” The weight of each
virtual current is 1/¢%>, which serves as the expansion
parameter. Either by interpretation or through managing the
relevant terms in a given order of the strong coupling
expansion, the diagrams play the role of Feynman diagrams
at the small coupling regime.

The use of a Fourier basis in lattice gauge models dates
back almost to the time of appearance of these models. The
transform of plaquette degrees to Fourier ones known as
dual variables [5], is used to qualitatively describe the
underlying mechanism governing the phases of the U(1)
model in three and four dimensions [6]. In particular,
performing the dual variable transform in the partition
function and using a certain small coupling model known
as Villain action [7], the U(1) model is reduced to that of a
gas of monopoles or monopole loops [6]. The dual
formulation of U(1) lattice model shows also clear advan-
tages for various numerical purposes; see Ref. [8] for a
recent review. The advantages include the replacement of

Published by the American Physical Society


https://orcid.org/0000-0001-6330-4085
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.094506&domain=pdf&date_stamp=2021-11-15
https://doi.org/10.1103/PhysRevD.104.094506
https://doi.org/10.1103/PhysRevD.104.094506
https://doi.org/10.1103/PhysRevD.104.094506
https://doi.org/10.1103/PhysRevD.104.094506
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

AFSANEH KIANFAR and AMIR H. FATOLLAHI

PHYS. REV. D 104, 094506 (2021)

e g S LS /s e o

I(a) 1(b) I(c)

1(d) 1I(a) 11(b) 11(c)

AR AR A

IV(a) IV(b)

FIG. 1.

the continuous variables by the more tractable integer ones,
and also the more efficient and accurate calculation of
expectation values in the presence of multiple or separated
source charges [9—13].

The present strong coupling expansion is different in two
respects to that of the perturbative approach, in which the
small coupling expansion is associated with the elements of
the S matrix between initial and final states, usually with an
infinite time separation. First, the present strong coupling
expansion is between current states at two adjacent times,
as the transfer-matrix elements are defined based on the
Euclidean action between the adjacent times. The second
difference is related to the fact that, the S-matrix element
between equal states is not zero but supposedly infinite. In
the present expansion, however, the matrix-element
between equal current states other than vacuum is vanishing
in the extreme strong coupling limit 1/¢g*> — 0. As will be
discussed in detail, this simply is related to the fact that, for
a nonzero result, the Fourier integrals related to initial and
final states are to be nonzero independently. This promotes
the vacuum state as a seemingly passed intermediate state
in all transitions.

A manageable strong coupling expansion for the ele-
ments of the transfer matrix provides a basis to find the
energy spectrum of the model in the strong coupling limit,
especially when it is combined with numerical calculations.

The present diagrammatic expansion in the strong
coupling limit is based on Ref. [14], in which the elements
of the transfer matrix were obtained in the Fourier basis
through the plaquette-link matrix. Accordingly, it is
observed that by a lattice version of current conservation,
emerged through the construction, the transfer-matrix
elements are nonzero only between current states that
differ in loop currents circulating in one or more plaquettes.
By the mentioned version of current conservation, it is
found that the transfer matrix is block diagonal in the
Fourier basis [14]. The current states differing only in loop
currents belong to the same block.

The paper is organized as follows. In Sec. II, a short
review of the formulation of the transfer matrix in the field
Fourier basis is presented, in line with [14]. In Sec. III, a
detailed description of the emerged notions in the Fourier
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Thirteen representatives of 891 Feynman diagrams contributing the lepton’s g — 2 at the order a*. Reprinted from [2].

basis is discussed. In particular, the exact connection
between current states belonging to the same block is
presented. In Sec. IV, first some examples of the strong
coupling expansions and then their elementary graphical
representations are presented, and then rules are set up for
diagrammatic expansions. Section V presents the detailed
application of the given rules at higher orders in several
examples. In Sec. VI the present expansion is used to
calculate the ground state and some excited energies of the
model in the strong coupling regime. In Sec. VII, based on
the observation that the lattice size dependence of expan-
sions can be factored out from the matrix elements and
eigenvalues, the physical interpretation of the results is
discussed. Section VIII is devoted to concluding remarks.
Some derivations and extended expressions, as well as
more examples of the application of expansion rules are
presented in Appendices A, B, and C.

II. REVIEW: TRANSFER MATRIX
IN FOURIER BASIS

In Ref. [14], a formulation of the pure U(1) lattice gauge
theory in the field Fourier basis is presented. In particular,
based on the plaquette-link matrix the elements of the
transfer-matrix V in the Fourier basis are obtained explic-
itly, for which some mathematical statements are expressed
[14]. In this section, a short review of the mathematical
derivation of matrix elements is presented.

Following Refs. [15,16], the formulation is presented in
the temporal gauge A° =0, in which the transfer matrix
takes a simple form. The link at site r in spatial direction ““i”
is represented by (r,i). Conveniently, the gauge Vanables
on the spatial link (r, i) at adjacent times n, and n, + 1 are
replaced by the angle variables:

o) = agA;r”,

g _agA,<1+>l, (1)

[TP=ll [T

taking values in [—r, z] [3]. Above, “g” and “a” are gauge
coupling and lattice spacing parameters, respectively. The
Euclidean action symmetrized between 6 and @' variables
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for pure U(1) theory in temporal gauge on a lattice with d
spatial dimensions is given explicitly by [15,16]

S (n,,n,+1)
ZZ [2—cos(0 g +9<’+U) or+ii) _ gr .,j))
roi#j=1
— COS(@/(u) 4 @) — g gl(r,j))]
1 d , ‘
—?z Z [1—cos(6") —g' )], (2)
r =1

with 7 as the unit vector along the spatial direction i. For a
spatial lattice with N; number of links and Np number of
plaquettes, it is convenient to define the plaquette-link
matrix M of dimension Np x Np, as following explicitly by
its elements

+1, link /= (r,i) belongs to oriented plaquette p
M7 =< -1, link = (r,—i) belongs to oriented plaquette p.

0, otherwise
3)

In Fig. 2, the above definition is presented graphically. The
explicit representations for d = 2 case will be given later.
The elements of the transfer-matrix V is defined in terms of
the Euclidean action between two adjacent times

(n,+ 1[V|n,) o eSelrenh), 4)
Setting
1
r=- (5)
7

and labeling links as / = (r,i) and plaquettes as “p,” in
terms of matrix M the elements of the transfer matrix V are
given in the field basis by

@)V)6) = AH exp{—g [2 — cos(MVO") — cos(MfG’l)]}
X Hexp{—y[l —cos(0' = 0]} (6)

in which the summations over repeated indices are under-
stood. Above, A is inserted to fix the normalization [17].

FIG. 2. Graphical representation of definition (3).

The aim is to formulate the theory in the field Fourier basis
|k;), which is related to the compact € basis by

, s ,
(0"k;) = \/—é—”exp(lkﬂl),

Using an identity that involves the modified Bessel
function I,,(x)

kj=0,+1,42, . (7)

exp(x cos¢p) =

ZI

exp(ing) (8)
and the relation

/_ " 49 exp(ind) = 215(n). 9)

one directly finds the matrix elements of V in the field
Fourier basis [14]

Ae~r Nt (27 NLZZHL,,,( ) n,,< )

{np} {n}}

X Hlml(y)é[(np + 1), )M} + k; — k], (10)
i

(K |Vk) =

in which m; =k, + 3, n,M] = k; =3 n,M]. Above
n,, n,, and m; are all integer valued. The general solutions
of the s in the summations are given by means of the
vectors satisfying [14]

n® M =0. (11)

These vectors include n®
delta is then given as

= 0. The general solution of the

np—l—n;,:Qp—l—ng, (12)

with Qs being integer valued. The above solution leads to
the following condition to have a nonzero matrix element
(10) in the Fourier basis

K=k+Q M. (13)

Later the physical meaning of the above condition, by
means of the current conservation between initial and final
states at adjacent times, will be given. Accordingly, it is
shown that V in the Fourier basis is block diagonal [14],
and all elements of a block can be represented by a Fourier
vector k., whose coblocks are all constructed as

kg=k.+q-M, (14)

in which ¢ is a vector with Np integers as components. We
will see that the condition that two coblocks differ as above
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is a manifestation of the current conservation, allowing us

to have a nonzero matrix element. By setting Q = ¢’ — ¢,

we have two coblock vectors
k*q == k* + q- M B

K=k tqg-M (5

for which the matrix element, using I, =1_, and
n,+q, — n,, is given by [14]

<k;q,|f/|k*q>k* = Ae 7WNetNL) (27) Mo

x Z Z H qu_nll <%> Iq/p_”p"'"?) <g>
p

{"(p)} {"1’}
X HIk*"PZP’l,}MIP O/) (16)
1

in which no constraint on the summations is present, except
that ngs satisfy (11). The important fact is that the allowed
ngs are not dependent on k,, ¢, and ¢’, but only on the
matrix M.

As the final point in this part, since there are infinite
possible choices for g¢s, each block is in fact infinite
dimensional. One of the most special blocks is the one
represented by the vacuum state k, = ky = 0. In Ref. [14],
it is shown that, provided that the ground state is unique, it
belongs to the vacuum block. The reason is simply that, in
the extreme large coupling limit ¢ — oo (y — 0), as all
elements except V, are approaching zero, the energy and

V eigenvalues are related,

1

£ = aln v, (17)
and the ground state belongs to the vacuum’s block. By
uniqueness of the ground state, upon lowering the coupling,
no crossing between the ground state by other states occurs,
leaving the ground states in the vacuum block at any
coupling [14].

+ - 0 0 0 0 0 O
O + - 0 0 0 0 O
- 0 4+ 0 0 0 0 O
0o 0 0 + - 0 00
M=|0 0 0 O + - 0 O
0 0 0 - 0 + 0 O
0o 0o 0 00 0 4+ -
0 0 0 0 0 0 0 +
0o 0 06 06 0 0 - 0

o O O o o o o

III. CURRENTS, STATES AND BLOCKS

In this section, the basic elements and notions that
emerged in the derivation of the previous chapter are
discussed. In particular, the role of k; and g, numbers,
the meaning of conditions (11) and (13), as well as some
graphical representations are presented. To cover the basic
idea, the detailed presentation is for the case of 2D spatial
lattice, although the general expectations and differences of
3D case are discussed as well.

The first step is to understand the physical interpretation
of the Fourier vectors k. That is most directly understood by
the way that these vectors appear, namely by Egs. (1) and
(7) and their similar expressions in the continuum theory,
for the coupling of the current J to the gauge field A:

eizlk,ﬂ’ _ eiagZ,k,A’ R eigffAdx. (18)
Above, k; is interpreted as the number of current quanta at
link [, coupled to the gauge field A’ associated with this
link. So the current vector k consists of link currents k;s.
The integer nature of k; reflects the fact that, due to the
compact nature of gauge fields in the lattice formulation,
the quantization of charge is satisfied automatically.

By the above interpretation of ks, the Fourier basis |k) is
representing the state with a set of current quanta k; on link
[, with [ € links. Now by the definition of the transfer
matrix V = exp(—aH ), with the Hamiltonian A, the matrix
element (k'|V|k) is the transition amplitude between states
with k and k' currents during the imaginary time inter-
val “a.”

Before proceeding, it is useful to find an explicit
representation for the plaquette-link matrix M. For the
2D periodic lattice with N, sites in each direction, there are
Np = N? plaquettes and N; = 2N? links. For the plaquette
and link numbering of the 3 x 3 periodic lattice given in
Fig. 3, using the definition (3), one finds the following form
for the 9 x 18 dimensional matrix M [14]

- 0 0 4+ 0 0 0 0 O
0O - 0 0 + 0 0 0 O
0 0 - 0 0 + 0 0 O
o 0 0 - 0 0 + 0 O
o 0 0 0 - 0 0 + O (19)
o 0 0 0 0 - 0 0 +
+ 0 0 0 0 0 - 0 O
o+ 0 0 0 0 0 - 0
o o0 + 0 0 0 0 0 -
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FIG. 3. The numbering of links and plaquettes for 3 x 3 2D
periodic lattice used in Eq. (19) as the representation of
matrix M [14].

In the 2D lattice, each link is being shared by two
plaquettes, resulting in only one “+” and one “—" in each
column. The general form of the matrix M can be given by
means of the N, x N translation matrix T as follows [14]:

M=|1y®T -T®1y, |. (20)

By construction, the matrix M is N> x 2N? dimensional, as
it should. The elements of T are given by Ref. [14]

Tah = 5uh - 6a+l.b - 5{1,Nl\.6h1? a, b= 19 [EER) N\ (21)

By the explicit form of the matrix M, the meaning of the
condition (13) to have a nonzero matrix element can be
understood by means of the current conservation, as
follows. Let us begin with the vacuum state ky, = 0, which,
according to (18), represents the state with no current on
any links. Now, by Eq. (13) and using

qIZ(l,O,...,O), (22)
—_——
Np

a coblock of the vacuum state is found as the following
current vector

koy =ky +q1-M, (23)

in which only four links of the first plaquette have nonzero
unit currents, namely two +1s and two —1s, making a
circulating unit current in the first plaquette, as represented
in Fig. 4. Then the nonzero matrix element (ko|V|ky.) is
made possible since two states differ in a unit current
circulating in a plaquette, as required by current
conservation.

O

FIG. 4. The graphical representation of (23) to construct ky.; as
a coblock of ky = 0.

As seen in the above example, g, is determining the
number of current quanta circulating in the plaquette p. Itis
befitted to call the g, numbers as plaquette currents or loop
currents. As another example from the vacuum block,
consider the state constructed by all g,s zero, except two of
the nonadjacent plaquettes, as depicted in Fig. 5.

Let us go beyond the vacuum block by considering the
state represented by the vector current

ky = (1,0,....0). (24)
N,

which has one unit of current on the first link of the lattice,
with all other link currents zero. There is no set of plaquette
currents that could yield this vector from the vacuum.
Equivalently, one can say that there is no q - M equal to
(24). So the state (24) does not belong to the vacuum block.
Two coblocks of this state are presented in Figs. 6 and 7,
one with the loop current in the first plaquette and one
nonadjacent to the first plaquette, respectively. It is easy to
check that there is a plaquette current that relates the
resulting states in Figs. 6 and 7 as well. Again as the
differences of these three current states are just loop
currents circulating in plaquettes, the transition between

FIG. 5. Construction of a coblock of k, with two nonadjacent
plaquette currents.

FIG. 6. ky_; =ky —qy - M as a coblock of k; with three links
having a unit current.
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+ Q j— A \

FIG. 7. A coblock of k; with five links having a unit current.

A

the two of them is possible, leading to the nonzero V
elements between them.

As another example, consider the state represented by
the vector current below

ky = (2,0, ...,0), (25)

which has two units of current on the first link, with all
others zero. Again it is easy to check that this state does not
belong to the vacuum and k; blocks. A coblock of this state
is presented in Fig. 8. The difference between the direction
of currents in the resulting state here with the last one in
Fig. 4 is to be noted.

The last example, which will be used later, is the first
vector in Fig. 9,

ky_1=(1,-1,0,...,0), (26)
—_—
Ny,

and its coblock on the right-hand side. The two vectors both
have one unit of current on only two links, and in this
respect are equivalent to be selected as representative of
the block.

9 Q ' \

FIG.8. kjy_y =k, —qy - M as a coblock of k, with four links at
the first plaquette having unit current.

: O |

FIG. 9. ky_ 4.1 =ky_1—¢q1-M as a coblock of ky_y, both
with two links having a unit current.

By the representation of matrix M it is easy to check that
for the periodic 2D lattices, the subspace by vectors n’
satisfying (11) is one dimensional with the general form

n® =n(1,1,...,1), (27)

leaving all link currents zero by equal n° assigned to all
plaquettes [14]. The condition (11) and its solution (27)
may be represented by the graphical representation we used
in different examples for ¢ - M as depicted in Fig. 10. The
loop-current vectors n’ are specially important to manage
the orders of Bessels in Eq. (16), and more related to this
work, when the strong coupling expansion in y is being
developed. We postpone the second for later when the
expansion in y will be discussed. About the Bessels, for the
2D lattices, ranks of all Bessels If/, o in Eq. (16) are
affected by n° # 0 equally. For definiteness, by setting
k. =q =¢q = 0inEq. (16), let us consider the vacuum-to-
vacuum (VTV) element (0|V|0) for the 2D lattice case:

,—Np—N

(0[V24]0)g = AerNe+h0) (27) e

S0 ()

n® {n,,} P

< TTts o ). (28)
I r

in which by Eq. (27) the index “p” is dropped from n?,. The
formal expansion on Bessel functions in the strong cou-
pling y =1/¢> < 1 is mainly based on the ordering
relation between the Bessel’s as I,(x) >L,(x) for
|n| < |m|, coming in the strong form when x < 1

Ip(x) > L (x) > Ly(x) > Ls(x)> -+, (29)

For example, let us compare two terms in Eq. (28) with all
n,s equal to zero, but in one n® = 0 and in the other n® = 1,

&)
)
)

FIG. 10. Equally n° current units in all plaquettes make the net
current at all links zero, provided that opposite edges are being
identified in the periodic 2D Ilattice.
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<0|V2d|0>0 g Ae_}’ NP+NL) (277,')NL |:12Np <g> IONL (y) + IE)VP <g> I]IVP <%> Ig)vL (y>:| + cee

— Ae~7(Np+NL) (2”)NLI(2)NP (%)I

Now, for large lattice size Np > 1 the term with the power
of Np can be dropped safely in comparison to one. In fact, a
simple inspection shows that, depending on ¢ or ¢’ defining
an element, there are one or two choices for n° in which the
Bessels of lowest order appear, and the other values of n°
for large lattices can be ignored in the summation. The 2D
latices may be contrasted to the 3D lattices, in which a finite
number of nonzero loop currents may generate a vector n’
satisfying n® - M = 0. One case with the lowest number of
nonzero loop currents is presented in Fig. 11, in which six
plaquettes making a cube and their currents are presented.
By the right-hand rule, all currents in Fig. 11 point outward
the cube. The only other case with the lowest number is that
with all loop currents reversed, pointing inward the cube.
As all link currents by the configuration are zero, the loop
currents presented in Fig. 11 satisfy n®-M = 0. As a
consequence, the term I; /I in Eq. (30) for a 3D lattice
would have the power of 6 instead of Np. Any number of
such cubes when sitting together also make a n® vector that
satisfies the condition (11).

IV. CURRENT EXPANSION
AT LARGE COUPLING

The aim in this section is to provide the basic rules of the
strong coupling expansion in y = 1/¢> < 1 for the ele-
ments of the transfer-matrix in the field Fourier basis. In the
next section and Appendix C, several examples of the
application of rules for the strong coupling expansion are
given. The samples of expansion in y presented in this work
can be checked either by massive direct integration over
field space or by the expression (16), provided that the
Bessels with relevant ranks are identified.

C
N

>

FIG. 11. The six-plaquette cube configuration in a 3D lattice
that satisfies n®-M =0. All currents point outward by
right-hand rule.

rol+(em) |

(30)

In the previous section, the role of integer numbers k;,
q,» and n?, together with their graphical representations are
introduced. Based on the notions developed before, it will
be shown that the strong coupling expansion can be
regarded as the summations on currents. In particular, a
nonzero element of the transfer matrix, as the transition
amplitude between two current states belonging to the same
block, is interpreted as the summations on occurrences of
virtual loop and link currents, each weighted by y, that
transform both states to the vacuum.

The presentation is coming in two subsections. First, by
working out some examples of the matrix elements at lower
orders, it is seen how the expansion based on loop and link
currents would emerge. In the second subsection, the set of
rules of current expansion in the strong coupling regime is
presented.

A. Basic observations on current expansion

To begin with, it is convenient to define the reduced form
of the transfer matrix as

V = Ae7WitNe) Q)L Y, (31)

for which the extra numerical factors are dropped, with the
element in field basis as

@V)0) = I Hexp{ cos(MP o) + cos(M"Q’l)]}

X Hexp{y cos(6' — 9"} (32)
i

The element of the reduced form in the Fourier basis is
given by

A 1 = g
W = [T e, ()

in which the representative vector of the block is k.., and the
k and k' vectors are given by means of loop currents ¢ and
q' as (15). Let us begin with the matrix elements in the
vacuum block by setting k, = 0, for which we have

(¢ -M|V|g-M),
1

= G /_ Hda’dee—lqM"’ M| V]9).  (34)
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At the first order in y it is easy to find the following terms:

(q -M|V|g-M), = Hé( (q'-M),)5((q-M),)

yHa ((g-M), Z[Ha q-M), + M) +H5 q-M), Mgf’)]
yHé(q M),) Z[Ha q-M),+ M) +H5 q-M), - )]

* gz [H5((q M), +6y,)5((¢' - M), + 0y,
L

+ [ [ot(a- ), ~3u,)5((
1

in which (g - M), is the current on link /. It is noted that, in
the last term, the link index /; is common between two Js
by ¢’ and ¢, as originated from the term cos(6 — '), in
which 0 and @' are appearing equally. The other point about
the last term is this: in the vacuum block and for any
plaquette vectors ¢ and ¢’, there is no chance that all
multiplying 8s would be satisfied, leading to zero value for
this term. This is simply because there are always nonzero
arguments for some of the Js, and so this term has no
contribution. The vacuum to vacuum (VTV) transition with
qg=¢q =0,by 5(m) =5(—m) takes the form

1+yZH6M” )+ 0(r).

Due to the nonzero elements of M/ at each plaquette, the
linear term in y vanishes, leading to

(01V7]0), (36)

(0[¥10)g = 1+ 0(). (37)

At this order now, let us consider the element by vacuum
and the current vector (23), by setting ¢’ = ¢; and ¢ = 0
with one unit of loop current in the first plaquette as in
Fig. 4. By Eq. (35) then the transition between vacuum and
lko.1) = |1) is given by

(11210)o = T [s0a}) + 5 > T] stm) [ Joom)

- g > [Hé(M' +Mmy) + JJom) - Mﬁ/)}
L r
+0(r?) (38)

in which the first and second terms do not contribute, due to
the nonzero elements by M, I or M” . The third term,
however, contributes due to the term §(M) —Mff/) for
p' =1 in the summation, leading to

M), = &y, )} +0(r?).

(35)

11910)q = & +0). (39)

As a graphical representation for the cancellation between
link currents and loop current in the same plaquette in the J,
one may consider the diagram in Fig. 12 for the tran-
sition 1 — 0.

In fact, Fig. 12 is similar to Fig. 4, except that the loop
current is plotted in a reversed and dashed form in the kg
side. The reason for being dashed is to emphasize its virtual
nature. As a space-saving representation, one may suggest
the following for Fig. 12

— 0. (40)

It can be seen that, at the first order of y, the only nonzero
elements are the third term of (38), like Fig. 12 or (40), with
one loop current to vacuum. In the vacuum block, the order
of y? can be obtained by the expansion of the exponential as
well. To present the long expressions in a compact form
from now on, the alternative representations are used as

q-M—4,
(q-M), = d, (q

ql'M—)q/,

M), = i, (41)

in which at order y? in the vacuum block, we have

N

FIG. 12. The combination of kg and virtual loop current.

094506-8



DIAGRAMMATIC STRONG COUPLING EXPANSION OF A U(1) ... PHYS. REV. D 104, 094506 (2021)

2 / / / /
(@' VIa)] 2 = 73’—2 JIECD)D [Ha( L MY M) 2H5 + My =My + [ [y — My - M§72)]
1 A r

2

2
+alluny Lot -+ a7 + ) + 2 Jotd by =) + [ Jotds - i - up)

14D Z

2 /
N | | CURSALURIVORY | CURRTALURNYIS
pp =1

l

+ [t - mDyo(t, — M) + [ [o(ds — M7)s (o, + Mf’)}
[ 1

2
+t3 Z [Hé di + u, + 0u,)o(dy + ou, + ou,) + H5 di + 0u, — Ou,)5(d} + ou, — 6u,)
I L

+ H5(¢h — Oy, + u,)(dy — Su, +0u,) + H(s(ﬂl — 8, — O, )5 — oy, — 511)]

i
.
}/ / /
+ §Z H5( v =My +8)8(dy + i) + H5( MY+ 6)6(dy + 511’)}
P’;l Ly J4
, -
}/ / /
+ §Z H5( v =My = 8,)8(dy = by) + H5( My —8,)5(dy — 511’)]
p’,l Ly 14
, -
4
+ gz H‘S(d M7+ 8i)8(dy + i) + H5 di + MJ + 8)8(dy + 511’)}
pl b1
2
}/ /
+ gz H5 — M7 = 8yr)5(df) — ) + Hé(yj; + M7 = 8)d(di - 511’)] . (42)
i

pl -

Again the last four sums, containing the combination of one cos(M?6') or cos(M70'") with one cos(0 — @), has s with
common link indices  or /. Also, in the vacuum block, there is no chance that these terms would survive, as it is not possible
that all multiplying s would be satisfied simultaneously. Let us consider the y? contribution for the VTV transition with

q=q =0

(0020 = S [Toway +-p)+ Tlotur —p |+ ST a0upioon
i i T

P2

-l;|ﬁ, 5

Z |:H5(511| + 611,)6(8y, + 6u,) + H5 S, = Ou,)8(8y, — 5112)} (43)
i L

In the first term, only the second part may survive by cancellation between Ms, provided that p; and p, refer to the same
plaquette, developing a factor of Np by the summation over all plaquettes. The second term vanishes, as for each plaquette
there are four links for which M7 is nonzero. In the last term, again, the second part may contribute by cancellation between
oy, if [, and [, refer to the same link, giving a factor of Ny . With these, we have

« 7 r
[(0[V[0)y],» = §NP + ZNL' (44)

The above may be represented graphically as follows:
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BN
0+[i»)) — 0 2%%2]\[13
. P
(0[710)o] ,: 40 =0+ B 532N
o v " T
O+uy —0+4 552V

(45)

The rules for associated numerical factors and the powers
of y will be discussed later. Equation (37) combined with
(44) leads to

2 =1+ (E+ ) o). (9

For the 1 — 0 transition by setting ¢’ = ¢ and ¢ = 0, it
is easy to see that always unsatisfied 6s would remain,
showing that this transition will not take contribution at
order 2. Now consider the y* contribution for the 1 — 1,
for which the only surviving term is

(012100) =1 5 | To0} - ap)otaa; - 1)

In the summation, the only contribution comes from
p =p' =1, by which M and Mf’/ are canceled by M|
in both §s, leading to

2

(1[V]1), =g o0 (48)

The naive way of thinking about 1 — 1 may suggest that it
would always be possible as both initial and final states are
the same. However, as seen in the extreme large coupling
limit y — 0, this transition vanishes as y2. The expression
obtained after doing the Fourier integrals shows that the Js
related to initial and final states must be satisfied separately
to obtain a nonzero result. In other words, the final
expression should be interpreted as the result of the
transform of both initial and final states to the vacuum.
Accordingly, as the transforms 1 — 0 and 0 — 1 at lowest
order, each with a loop current transform to vacuum, are
both proportional to y, the 1 — 1 transition should be of
order y2. This crucial role of vacuum that, as if it is being
passed in 1 — 1 transition due to the nature of Fourier
integrals, is true for all other transitions, including 0 — 0 by
Eq. (46) and even those in blocks other than the vacuum. To
avoid misinterpretation, it is quite suitable to highlight this
role by the vacuum by changing the notation slightly from

1->1to1l - 0—1,orsimply 121 By this, the graphical
representation for the above transition may be given as
below

= = 2

1/\1 :| N —> ¥ —_— 49
(171} LA @)

The order of y* in the vacuum block is given in
Appendix A with about 80 terms. It is obvious that the
terms with one §; or three 6, would not survive in the
vacuum block, as there is no chance that all multiplying Js
would be satisfied. So the surviving terms at third order in
the vacuum block are those of the first three lines of (A2).
For the VTV transition with ¢ = ¢’ = 0, again we see that
there is no way that all multiplying s would be satisfied.
By ¢' = ¢, and ¢ = 0 with one unit of loop current in the
first plaquette as in Fig. 4, when one or three M are in the
gy side, there is the chance that all s would be satisfied.
The only thing is to calculate the combinatorial factors for
all possible states that would lead to satisfying all ds. For
the first term, the possible ways would be three combina-
tions of two —Ms and one +M,

q1.—M.—M.+M — 0, (50)

in which ¢, cancels with one of —M's, and two others cancel
out each other. Depending on whether all Ms are in the ¢,
plaquette or not, we have the combinatorial factor

32(Np—1)+1) =3(2Np - 1). (51)
The second term may contribute by
QI’_M - 0, +M9 -M (52)

having two possibilities for +/— signs on the second side,
giving the combinatorial factor

2Np. (53)
The last term contribution comes from the combinations of
qi,—M,+6,—6 — 0,46, —6. (54)

Having in mind that the place of link Js in the lattice in two
sides are the same, together with two possibilities for
+/— signs for &s, leads to the combinatorial factor

2Ny (55)

It can be shown by the following graphical representation:
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[(A7l0)o] Q1

3 Mo

All together, using Egs. (39) and (56), we have the result as
follows:

S -1 Np N\,
(1]7]0)y = 4+<128+ +16> +ooel (57)

Before proceeding to the rules in the next subsection, it is
instructive to consider examples of the matrix elements in
|

(ky + 1|V Ikey + 4),

0

— 0 533(2Np — 1)

AN
+li»)) 553 2Np : (56)

'z ux—l—n—)O—l—n 2—14%2]\&

the nonvacuum block by setting the representative state
k. # 0 in Egs. (15) and (33). In particular, we consider the
block with a representative state of (24) k, =k, =
(1,0, ...,0) from the previous section, with just one unit
of current on the first link. It is easy to see that the zeroth-
order y° belongs only to the VTV of the vacuum block, and
so up to the first order of y in kys block we find

H5 ki + 1) Z [H& ku + fy + M) + Hé(ku +4r - Mﬁ/)}
~ g

+2 Ha ky + ) Z[Hé (ki + s + M7) +H5 ky+ d; — )}

14
+ EZ {HfS(ku + i + 6, )0k + iy + 6y,) + H5(k11 + i — 6u,)8(kyy + o — du,)
L i

+O(y?).

Using the fact that ¢ and ¢/ add loop currents to the
representative state ky, it is shown that the first order in this
block survives only for ¢ = ¢’ = 0, leading to the matrix
element

(r[Vlky)y YZ[H (ki = 6u,)0 (k11—5zzl)]

+0(r*). (59)

for which, setting /; = 1 by the Js, we find
0 /4
(k| Vikey)y = E‘FO(YZ)- (60)

The expression (59) shows explicitly how the separate
multiplying s connect the initial and final states to the
vacuum state, although it does not belong to k; block. The
crucial role of the vacuum state, as mentioned before, is
related to the fact that both s by initial and final states are
to be satisfied, as if both passed through the vacuum state.
Accordingly, the graphical representation of the above is
expressed as follows:

(58)

[(k1|17|k1)1] o Oy oo % (61)
- Y

At the next order now let us consider the element by setting
¢ =0and ¢ =¢; = (1,0,...,0) of Eq. (22). The current
vector ky + ¢y = ky4 with one unit of loop current and link
current in the first plaquette, may be represented as

\ A or \ 4. (62)

- -
—

In the following, for the sake of clarity, we use the first of
the above. Then the surviving matrix element is found to be

=3[t

ri

(et | Vlker.1)y

x 8(ky+Mj — M} _5111)} +0(7%). (63)

Above, the cancellation of link currents in both s and loop
currents in the second 6 by p; = 1 leads to
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2

k,|V|k,.
(k| Vky1)q g

+0(y?). (64)

Once again, the os in expression (63) by the initial
and final states show explicitly how the connections
between two states and the vacuum, which do not
even belong to this block, determine the strength of
transition. Graphically the way of satisfying s may be
represented as

3

~ C - 0 ,’j\ ’y2
[<k1|‘_/\k1;1>1] ’ = — .\;//n 5
(65)
|
N RERY
|:<k?1;1|V’k?1;1>1:| A 14
— ~3 \;//

B. Rules of current expansion in strong coupling

As announced earlier, in the present subsection the set of
rules is given in which at any order of y in principle, one can
write the transfer-matrix element between two states. The
rules are based on determining the ways that transform
the initial and final states to the vacuum, accompanied by
the associated numerical and combinatorial factors of each
transition. As mentioned, the distinguished role of the
vacuum state simply comes back to the fact that the Js
related to the initial and final states’ Fourier integrals are to
be satisfied separately. Accordingly, and as seen in previous
examples, the transform can be represented by a set of
graphs in which a proper combination of virtual loop and
link currents would make the required pass through the
vacuum. Also, by the given examples, the transform to
vacuum is to be considered even for states that do not
belong to the vacuum block. This is because the coblocks of
a state are determined by adding loop-currents, via g - M in
Eq. (15), but the concerned transform to vacuum is due to
both link and loop currents, the former via “cos(6 — 6')”
term that is irrelevant for making coblocks. It is due to these
link currents that transforming any state into a vacuum is
made possible, even for those states in blocks other than the
vacuum.

For any state in the Fourier basis, there are infinite ways
to transform it into the vacuum. As seen before, this is
correct for the vacuum state itself. For two given states of
|k) and |k’) in the same block, consider the case that they
transform to vacuum by m and m’ numbers of virtual loop
currents, respectively, accompanied by £ numbers of virtual
link currents for both states. By Eq. (32) the mentioned
numbers of currents appear through the integration

Let us consider the diagonal element by setting
q' = q = q, with one unit of loop current and link current
in the first plaquette, given by

3
A }/ ’
(ky.1|Vky1)q kY] Z Hé(k11+le —MJ =dy,)
pp 1

x 8(ky +M} =M} =8,)+0(*).  (66)

This is the only term for this order. Four link currents are
canceled by loop currents if p = p’ =1, however, k;
should be canceled by 6;,s in both sides, leading to

3

0 14
(kra|Vikya); = o o(r*) (67)
with the graphical representation as follows:
R 0a
| | —
In 39 (68)

of m, m', and ¢ numbers of cos(M7@")s, cos(M70'")s,
and cos(0' — @")s, respectively. Now, as it can be derived
easily (see Appendix B), the numerical factor associated
with the matrix element of transition through the consid-
ered transform is

1 1
m,m' ’
s 22m+2m + mm’1£)

K

[(#|V k)] y" e, (69)

mm' .

in which /C,,, ./ » is the combinatorial factor representing the
number of ways that loop and link currents can be combined,
regarding the initial and final transforms to the vacuum.

In the previous subsection, graphical representations are
suggested to each term contributing to the transition at the
lowest orders of y. In fact, and as we will see in several
examples, these graphical representations can be used to
determine and manage the channels that contribute to a
transition at a given order. In this respect, these graphical
representations can serve as the Feynman diagrams in
perturbative quantum field theory. The elements being used
in graphs are simply the currents, loop or link ones, being
characterized by their real or virtual natures. Accordingly,
the initial and final states, being determined only by link
currents, are interpreted as real and presented by a
combination of solid lines as

[ —

or (70)
and their rotated versions. Instead, the loop and link
currents that occurred during the transforms are interpreted
as virtual. The virtual loop currents, representing the £M?'s
inside multiplying 5(-)s, are coming as
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or | [ (71)

The virtual link currents, representing the ;s inside
multiplying &(-)s, are drawn below and their rotated
versions

.- (72)

The important point about the virtual link currents is, as
mentioned earlier, that they come in both sides of initial and
final transforms to vacuum equally, since they are origi-
nated from Fourier integration over cos(6 — €')s.

Some general statements about the expansion for an
arbitrary element can be made and come in order. First, it
can be easily shown that two subsequent orders of y in the
expansion of an element differ by two. By the previous
examples as well as several ones given later, that is evident.
This simply comes back to the fact that any order for an
element differs from a higher-order one by adding an even
number of virtual currents to transform both initial and final
states to vacuum. By this, the expansion for an element in
k. block looks like

(K g |E|k*q>k* =7"(co+car* + eyt +eer®+--), (73)

in which 7 is the lowest order at which the transforms of
both initial and final states to vacuum, by adding virtual
link and loop currents, are made possible. So by y = 1/¢7,
the subsequent increase of order is in fact 1/g* which
makes the expansion fairly reliable for even not so large
values of g. The value of % can be determined as well, once
k., q, and ¢’ are given. From Sec. III, we know that each
vector current inside a block can be selected as the
representative. To make things systematically, we use the
convention that the representative vector would have
the minimum value of

Ny
k= Ikil. (74)
=

In some blocks, the above specifies just one vector current.
For example, in the vacuum block, it is only the vacuum
and not, say, its coblock (23) in Fig. 4 with larger (74). The
other block with k; in Eq. (24) and those in Figs. 6 and 7 as
coblocks, again ky has a minimum (74), is being taken as
representative. The same is true for the block with k, and its
coblock in Fig. 8. For some blocks, however, the condition
would not identify just one candidate as the representative.
An example is given in Fig. 9, in which both current vectors
have equal (74), and so both can be taken as representa-
tives. The least order of & can be obtained simply by
realizing how many link and loop currents are necessary to
transform the given states to the vacuum. It is here that the

representative k., with a minimum (74) is needed. By ¢ and
q' of (15) we then have

h= k.| + lq| + lq'|. (75)
in which |k,| as (74) and
Np
gl = la,l (76)
p=I

and a similar one for |¢’|. The relation for “A” is correct for
all blocks, including those with more than one candidate as
representative with a minimum (74), provided that ¢ and ¢’
take those loop vectors, which satisfy (15) with the selected
representative. The above for “A” can be checked easily by
the previous examples and several ones given later.

As the last feature, it is befitting to discuss here the effect
of lattice dimension on the expansion. The first footstep of
lattice dimension is seen by the number of links and
plaquettes, N; and Np, in the expansion. For example,
for the 2D and 3D periodic spatial lattices with N sites in
each direction, we have the following

2d:N; =2N2,  Np=N2, (77)

3d: Ny = 3N3, Np = 3N3. (78)
The other impact of lattice dimension is related to the differ-
ence of null condition (11) for n° in different dimensions.
In Sec. IIT for the 2D and 3D cases, the difference is
mentioned, and its effect on managing Bessel orders in
Eq. (16) is discussed. Here the effect of this difference in y
expansion is pointed. The vector n? affects the expansion as
it, vian® - M = 0, can contribute to the transformations of
states to vacuum. As seen in the 2D case, n’ represents loop
currents in all Np plaquettes. So its presence affects the
order y?, which is quite suppressed for supposedly large
lattices Np — oo in the strong coupling limit y < 1. In the
3D case, however, vector n° may represent a six-plaquette
cubic configuration with net zero current, as shown in
Fig. 11. Of course, there are many other finite-plaquette
configurations with zero net currents, simply by combining
the lower number ones. By these, we conclude that in form
(73) the orders up to y**" are formally the same in all
dimensions, however, the number of links and plaquettes
should be replaced according to dimensions as in Eqs. (77)
and (78). The first difference due to the configurations that
do not fit in the 2D appears at order 6 4 4. As an example,

in the next section, the orders y* and y° of transition 020
are considered, which consist of the ways that combina-
tions of virtual currents can take place in 2D. The y* order
result is formally the same in both dimensions, but for the
y® order, one has to take into account also the cube
configuration in Fig. 11. Depending on whether the virtual
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currents on cube configuration are on the first or second
side, we have for numbers in Eq. (69) the following
possibilities

k' side : m =0, m =6, ¢=0, (79)

k side : m =6, m =0, ¢=0. (80)
The evaluation of the combinatorial factor is given in the
next section. In general, as the difference between 2D and
3D comes in the fourth term in the expansion of (73),
namely in “cqy®™"” the dlfference between the third and
fourth terms is of order y*> = 1/g* which for many
practical purposes is not significant even for not so large

coupling g.

V. APPLICATION OF RULES

The following examples are presented to see how the
expression (69) and the associated graphical representation
work in practice. The matrix-elements expansions up to
order y* are already presented, together with the associated
graphical representations. Similar to order 7 in the vacuum
block, the & expansion of order y* is given in Appendix A.
Again in the vacuum block the terms with an odd number of
oy,s have no chance to survive, specifically those in the last
three lines in (A3). The VTV transition with ¢ = ¢’ =0,
also terms with an odd number of Ms at ¢ and ¢’ sides, have

no chance [those in lines four and five of (A3)]. So only the|

And the last combination at this order is

0,458,468, -8, =5 — 0,48, +6,—8. —5: C2(2Ny(Ny,

terms in lines one to three contribute to VTV transition, for
which the counting of combinatorial factors are given. For
the first term, the possible ways would be six combinations
of two —Ms and two +M, in which one +M cancels out
one of —Ms, and two others cancel out each other.
Depending on whether all Ms are in the same plaquette
or not

0-0,-M,-M,+M,+M
0,-M,-M,+M,+M -0

()
m

The possible ways for the second term would be four
combinations of two M's and two &8s, in which +M cancels

with one of —Ms, and s cancel out each other in two sides.
So we have the combinatorial factor as

}:Ci(zNP(NP—l)JrNP), (81)

in which

n!

cy (82)

m!(n—m)!’

0,-M,+M,+06,—06 — 0,+0,—0

: CICINpNL. (83
O,+6,—5—>0,—M,+M,+5,—5} 26Np N (83)
The third term may contribute as

0,+M,—M — 0,+M,—M: CLC\NpNp.  (84)

— 1)+ Ny). (85)

which comes by considering whether all s are in the same link or not. All of these can be expressed in the graphical

representation below:

0+ N Y 0 LLC22NZ-Np)
0—0>0+i§¢\ L LO2(2NE — Np)
) —°>0+{§1 1 L CICING

(0l710)o| LRSS §-D 04y LhCICINGN, (86)
04§50+ ;’»); b S e CICINeNL
0+§ n—) 0+H u w4 CE2NE — Ny

\ (T

Using Eq. (46) results in
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. Np N
0[V]0)y = 1 + [ oF 4 2L ),2
o =1+ (5
LN N Ne NN MY
64 32 512 32 128
o (87)

It is easy to check that at order y* the transition 1 % 0 does
not find any contribution. Instead, the transition (1|V|1),
gets contributions at this order by the combination of loop
and link currents as before. However, at this order, a new
combination for cancellation between the initial real loop
current and four virtual link currents takes place, graphi-
cally represented in Eq. (88).

Let us start with already known combinations. First, we have
the possibility that one —M on one sideand +M, —M, —M on
the other side would result in full cancellation toward
vacuum. The combinatorial factor is then
Ci(2Np - 1). (89)
The other possibility is one —M and two +§;;s in each side,
by the factor
CINy. (90)
The last is the new one (88), for which counting the ways that
four 6, s take place gives the factor

= c24. (91)
\ 14 (88)
e These all are summarized below
(7 EEIEERY
// 0 // ///"
1=y Y 53C5(2Np — 1)
;// \;// \:/// !
//j\ //’:\ O //j\
\z i —y P 2%%0:}(2]\713—1)
~ A P AN N :
(17110 s , )
- e I 0 . 1
Sa Y Sy — r,o e 5551 C3 NL
f:? 0 I :7
Ho—ypn =5 Ci4
L L,:,J L,:,J

combined with the result of order y> with this order giving

15 Np\
G%* ﬁ@y

At fifth order, it is easy to see that VTV does not get a

},2

16

Ny
s

(1[V[1)y = +o (93)

contribution. Instead, the 1 —0> 0 transition takes the con-
tribution from combinations of the initial loop-current ¢,
and virtual loop and link currents as seen in previous
examples. However, apart from Eq. (40), a new combina-
tion takes place; that is, four link currents may cancel out a
virtual loop-current as shown in Eq. (94).

o (94)

Again we start with more familiar cases. The first
possibility is

q1,—M,—M,—-M,+M,+M — 0, (95)

in which ¢, cancels with one of —Ms, and four others
cancel out each other. Depending on how many Ms sitting
in the ¢; plaquette or are separated, we have the combi-
natorial factor

C3(3(2(Np = 1)(Np =2) + Np— 1) +3 x 2(Np — 1) + 1)

= C3(6N} —9Np +4). (96)
The second may contribute as
q,—M,—-M,+M - 0,+M,-M (97)

having possibilities for 4+/— signs in each of two sides,
giving the combinatorial factor

CiC%NP(Z(NP -1)+1)= C;C%NP(ZNP -1). (98)
The third combination is
q,,—M — 0,+M,+M,-M,—-M (99)
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as g, cancels —M, and on the other side, four virtual
currents cancel each other, with the combinatorial factor
C(2Np(Np — 1) + Np) = C5(2N; — Np). (100)

By
q1,—M,-M,+M,+5,—6 - 0,+5,-5  (101)

again ¢q; is canceled by —M, and for two other Ms
depending on sitting in the g; plaquette or not, we have
the combinatorial factor

CICIN (2(Np — 1)+ 1) = C3CINL(2Np — 1).  (102)
The fifth term at this order is by the combination
q1,—M,+6,-6 - 0,+M,-M,+5,-5.  (103)

In the second side, two M's cancel out each other, and the s
each other too, with the factor

By the combination
q1,—M,+6,+6,-6,-6 - 0,+6,+6,-5,—-6,  (105)

the ways for cancellation of the four s give the combi-
natorial factor
CI(2NL(NL = 1) + Np) = C3(2N} — Np). (106)

In the last one, the four currents by ¢, are canceled with the
four s
q1,+6,4+6,-6,—6 = 0,+M, +6, +65,-5,—-6.  (107)

Having possibilities for 4/ — with a fixed place for the s in
the first plaquette the number of combinations is
Ci2x2. (108)

The combinations associated with the transition are sum-

CICIN| Np. (104)  arized below:
|
r g - -
Ry
v i \//1[{ M»—0 2%%0?(6]\7}2)—9Np—|—4)
A I R
ST rw o BN
T \/)—>0+ 4 \,) %%O&C%(?Ng—]\fp)
\;/ \:// \‘-—//
] o NN
/ ’ / » 1 1,2 2
1.\;//14 — 0—|—x{:/// Q»_/,"] 510 4104(2NP Np)
~ R N X
(1I710)o] 41, AL IE 0+ E g CROINN — 1) 1o
- Y - EEE I
Y S PSR
o o — 04+ )) 555151 C3C3 N, Np
RN I TP
| /HA‘Y‘AY_)O‘FA‘V‘A‘Y 2%%042(2NI%_NL)
s 0ay Licz
([t =

all together up to fifth order
A _}/ -1 NP NL 3
(U100 =7+ <1ngr 2" 16)7’
49 3N N3N NN MR
3072 512 128 2048 128 ' 512)7
+ e (110)

Next is the sixth order of 0&0, for which, as
mentioned in Sec. IV, the six-plaquette cube con-
figurations as in Fig. 11 are to be considered. Let
us first consider the contribution in the 2D case.
Here three +Ms and —Ms cancel each other, and,
depending on whether Ms sitting in one plaquette or
not, we have

094506-16



DIAGRAMMATIC STRONG COUPLING EXPANSION OF A U(1) ...

PHYS. REV. D 104, 094506 (2021)

O_)Oa_Ma_Mv_M,+M1+M7+M .
0,_M,_M,_M,+M,+M,+M—)O ’

C3(6Np(Np—1)(Np—2) +9Np(Np—1)+Np).  (111)

The other is with 12 combinations of two Ms on one
side and four Ms on another side; they cancel each
other out:

The third term may contribute by cancellation between
the four Ms and two os in two sides:

The fourth may contribute by canceling two Ms in
each side, and also §s in two sides as

07_M5+M_)07_M7_M7+M9+M
07_M5_M1+M7+M_)05_M1+M

C1C3(2Np(Np — 1) + Np)Np. (112)

O,_M,_M,+M,+M,+5,_6_) O,+57_6
09+51 _5_) 01_M1 _M,+M,+M,+5,_5

CLC3(2Np(Np — 1) + Np)N;.. (113)

0,+M,-M,+6,—0 - 0,+M,—-M,+0,—0o:

By this form, having possibilities for 4+/— signs on the
first side, we have the combinatorial factor

(115)

0,—M,+M,+5,+8,—8,—-8 = 0, +8, +6, =5, —6
0,+8,+6,-6,-6 = 0, =M, +M, +6, +8, =5, =6,
CIC2(2Ny (N — 1) + Ny )Np.

The other is six s canceling each other out as follows:

0,4+6,46,+6,-6—6,—-6—0,+6,+6,+6,-6— 6,6

C3(6NL(NL —1)(NL—=2)+ 9N (N.—1)+Np). (116)

In the last one, cancellation is between four link
currents with the virtual loop current:

(117)

0. M, +8,48,-5,—8 — 0, M + 5,48, -5, -8
0,-M,+05,+6,-6,-6 - 0,-M + 6, +5,—6,—6
CICIC2Np.

The graphical representation with all the above at this

C3C5CNpNpNL. (114) order will be as follows:
|
(0 2P0 TR 0T
0+ Mg Vi Y50 L ECH6NE — ONE + ANp)
O RN
02 0+ M NN grgCR6NE — INE + ANp)
P R
0+ M= 0+ WY L L CICH(2NE — Np)Np
S, Ny
0+ f{»)/n (&»)/n — 0+ '{»)/) 17 2,4,0102(2]\[13 — Np)Np
N
0+ =2 0+ NN ghalgCICTENE — Ne) Ve
//:\ //:\ N B 0 - H
N 0+ Ny hao—0+3  s55C3CT(2NE — Np)Ny,
(0[710)] NN AL )
- 2R y
0+ My 0+ AN ShmmCICICINeNe Ny
IR L
0+ Mpg—D0+ay A LCIC22NE — Ny )Np
N
0+ 2504 k‘/\/w A %5 C3CE(2NE — N, )Np
0+yy 20+ I 5 G Ce(6NE — ONE + 4Ny,
H | H H \L\\j
0 —I—A \v 20 —FA\ Yy and reversed 5 3;C3C3CENp
\ /,\ A
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all together leading to

Np Np
0[V]0)y =1 oLy,
=1+ ()
N. Ni Np NpN_ N3\,
+( 64 32 512 32 '128)7
N Ni  Ni 145Np 5N Np NiNp
576 256 384 ' 18432 2048 | 256
N3  NENL | N} ¢
— 119
2096 512 3072)7 T (119)

As mentioned earlier, for the 3D lattice, the above result
should be added by the contribution of cube configuration
like that in Fig. 11. The numerical factor is known by
cases (79) or (80), via (69). The last step is to find the
relevant combinatorial factor that counts the possible
ways that the cubic setup may take place. A simple
inspection shows that in either the configuration in
Fig. 11 or its all currents reversed version, there are
three +Ms and three —Ms, by the convention introduced
for M matrix. This rises a 3! x 3! factor in which three
+Ms and three —Ms can sit on cube facets. Also, the
number of §s containing six Ms by mentioned signs is
Cg. As for the position of the cube, for the 3D periodic

N 3d 11
_ 3 3 6
[<0|Y|O>0]@ 2% 2% 8 x 81CY N? o529
1 3.6
= ﬁNs’y
(120)

In the previous section, examples of the nonvacuum block
at the lowest orders were given by explicit  expressions by
Fourier integrals that matched with given rules. It is useful to
see how the given rules work for these blocks at higher
orders. At y* order in k; block, we consider terms by the
virtual current in this block for ¢’ = ¢ = 0. For the first term,
the possible combination would be the cancellation of k; and
“—¢§” despite the presence of the virtual loop current

k1—6—)k1
ky—6—M+M =k —

—5-M+M
5}: CINp.  (121)

For the second term, the possible ways would be three
combinations of two —ds and one +6, in which k; cancels
one of —§s, and two others cancel each other out. Depending
on whether all ds are in the same link or not, we have the
combinatorial factor

lattice with N, sites in each direction, the cube may sit in ~ k; —8—8+5—>k; —6—-5+6: C{(2(N.—-1)+1). (122)
N3 places. These all together determine the contribution
of the cube configuration at sixth order by Eq. (69) as These can be represented as
|
P (A
e (Y 503N
~ o - — ///"\\\ 0 ,,;,/, 1
[(k1|V|k1> } ot ) 7 C2 Np (123)
S TR
#—*_H_);R—i_q 233,01(2NL—1)
All together leading to
0 14
k|Vik); == —+—= 124
ik =5+ (- e+ 1o )P+ (124)
At y* order with ¢’ = 0 and ¢ = g, the graphical representations and combinatorial factors will be as follows:
( < R
L e 0 g /// 1
—— — 11\;//1 |§ //\/1 27—3'03 (QNP — 1)
2IN 0 |,
=5 - -+ \/1 — 1 1 4 ClN
[<k1|V|k1;1>1] \ N N 72 Ca N ’ (125)
Z oy e
s [
—— 4+ A\Y — Vl\ /Hl +H 2%3,03 (2NL — 1)
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by which and (64) it ends with

7/2

5

N Ny  Np
|Viki ) =% 4 —=—4+—=+— )y +--- 126
e s ) Lo (126
It is easy to check that at order y° the element by ¢’ = ¢ = ¢, gets contributions as
(= = _
. N 0 // ) ///"\ 1
v[\_/m — n\_/u +[§:c\/’] 595103 (2Np — 1)
,/'4\ SN ,/'4\ 1
vi\u//ux—i—%:}/w — 1) 595C3(2Np — 1)
(k11| VIkya)1| - . (127)
- v A TR T A N I
1o+ — 0 ity 502N, - 1)
N s
fif‘ 0 fif‘
ow— v 75086
|
Using Eqgs. (67) and (127) results in states. The full transfer matrix, corresponding to a nonzero
but small y is
3
A Y 5 NL Np 5
killVikeor ==+ =—=+-—=—=+-—— 128 A s =
v | Vlercs =35+ (512+128+256)y o (128) V=104V (130)

VI. SPECTRUM IN A STRONG
COUPLING LIMIT

In the present section, it is shown how the expansion of
the elements of the transfer-matrix in the Fourier basis can
be used directly to calculate the energy spectrum in the
strong coupling regime. In particular, here we calculate
the ground state and the first excited energies using the
expansion obtained for the transfer matrix of the U(1)
model. The calculation is analytical, using simple matrix
and quantum perturbation methods, and the eigenvalues of
the mentioned states are calculated up to the fourth order in
y. To calculate far beyond this order, the numerical methods
are needed to work with large matrices.

As it was seen in the previous sections, in the extreme
strong coupling limit y = 0 all the matrix elements are zero,
except (0|V|0), which is 1. The y = 0 limit is considered as
the unperturbed case, corresponding to the following
eigenvalues for V°:

(0)

, Vgt = 0.

(129)

Using (17), the unperturbed energy values are obtained as

(0) (0)

gy = 0 for the ground state and ¢, — oo for all other

It is useful to have the explicit expressions of perturbative
corrections to the eigenvalues up to the fourth order in the
present case

(1)

vy =V (131)
V2,
2
vy =42, (132)
Vgq
= 5 = 2
(3) _ VaeVaaVaa qu’
vg = v Vap o (133)
qq'Vqq L
1)(4) . qu/‘_/q/q//‘_/q//q/u‘_/qmq _ Véﬂl/ VCZI‘/”
9 = 2
qu/ qu// I}qqm ’[}qq, l)qq//
55 - 72
- V /V / //V 1" _ V /
_2qu qqzqq qq_l_véq 3‘]‘1 , (134)
v v " v /
qq' "9 qq

. . ()
in which v, = v,

- vf;,)) and V,, = (q|V|q'). The sum-
mations in the above expressions are understood over those
values of ¢’, ¢”, and ¢", for which the denominators do not
vanish. It was mentioned at the end of Sec. II that the

ground state of the U(1) model belongs to the vacuum
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block [14]. The lowest order of y in a matrix element was
already obtained in Eq. (75). Up to the order y?, the only
nonvanishing elements in the vacuum block are those with
at most two units of loop currents in one or two plaquettes,
namely

= 14
Vo+1 :Z‘FO(VS) (135)

\/ \/ \/ \/ \/ 2
Vil,il’orilvVil’,or¢l9V0,i29VO,ilil9V0,il$l Xy, (136)

We also have
(137)

Using Eq. (132), it is easily understood that at the order of
y* there are 2Np elements V, with || = 1 that contribute
to the ground state. Also by (129), in the perturbative
corrections to the ground state we have vp, =1 -0 =l in
the denominator. All together, it is seen that up to the
order y?

Vo = l + ‘700 + ZNPV(Z)’il, (138)
1
=1 +4—‘<NP + Np)y? +0>rY). (139)

Further, using the well-known expression for the correction
to the eigenvectors, we find for the ground state

By = (1,0,0,...0) + Y V4. (140)
lg|=1
vy 4 2
=(1,=,~,...,> .
(155 E) w0t aan
N———

Interestingly, we see that the expansion of the transfer-
matrix elements in the Fourier basis can be used to develop
an expansion for the energy and eigenvector of the ground
state. The physical meaning of the above vector based on
the current states is simple. In the extreme strong limit
y = 0, the ground state is simply the vacuum. For nonzero
but small y, the ground state is represented by a linear
combination of the vacuum state and 2/Np states constructed
by 41 unit of loop current in one plaquette, such as Eq. (23)
in Fig. 4.

It is instructive to find also the correction of order y° to
the ground state by a truncated version of the vacuum block

as following
. A B
Viacly2 = (B c>’ (142)

TABLE 1. The sub-blocks in the truncated vacuum block.

Sub-block Dimension Elements

A 1x1 a=1 + ‘700

B 1X2NP b:‘_/O.iIZY/Z"

C 2Np X 2Np _ {ViIA,il’oril = }’2/16
Vil,:Fl’orqzl = 7/2/16

with B” being the transpose of B. The sub-blocks A, B, and
C are introduced in Table 1.

Fortunately, the eigenvalues and eigenvectors of
Eq. (142) can be obtained analytically. For the eigenvalues
we find

1

N =

v =

(a + 2Npc — \/(a —2Npc)? + 8pr2> . (144)

(145)

and the following for the ground-state eigenvector

1
170: (E (Cl—szC+\/(a—zNPC)2+8NPb2>,b,b,...,b) .

2Np

(146)

Expanding Egs. (143) and (146) up to 72, the expressions
(139) and (141) are obtained. Also as a by-product, using
Eq. (144), one also finds for the next eigenvalue in the
vacuum block

vy =0xy2+ 0. (147)
This is of the order y*, so the first excited energy is not in
the vacuum block. As we will see, there are blocks with
eigenvalues of order y, which are in fact the first excited
energies of the model. Before considering the excited

states, let us consider the ground-state energy at the order
y*. First, we have the element

_ Np N
Voo = <—P + —L)72

§ ' 4
N Ni _Np  NeNo N3,
+< 64 "32 527 32 T12s)!
+0(r®) (148)

and the elements
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Vqu :Z+

-1 Np N_
4

I R S R 3 5 _
128+32+16>y +0(7°). lal=1. (149)

_ 2 -1 N N
VO,q _ 4 < L p

v (-1 N N\, ] B
2" 768+128+256> +0(r°).  lal=2

(150)

each having 2Np cases, by considering 4 signs. Second,
there are the elements

2

_ y 15 N N
Vg =772+ (—“‘_L"‘_P 7t +0(°),

16 " \256 " 64 T 128 lal =1,

(151)

72 -1 N  Np
16 256 64 128

Vuca =Tt (56 an i) +O0 lal=1.
(152)

each with 2Np numbers. The other relevant elements are

2
> 14 1 Ny  Np
Vi =16 * (‘ﬁ*@ﬂ—zg)?“ 00,
a#4q. lal=Iq]1=1, (153)
2
O 4 1 NL NP 4 6
V ;) = — —_— J— R, O ,
0.0 16+< 256+64+128>y +00Y)
a#4q. lal=Iq]=1. (154)

with 4Np(Np — 1) and 2Np(Np — 1) numbers, respectively.
There are other elements at the order y> such as

Voxs» Voxixss Varao. Vorizizrr Varzix (155)

and also at the order y*:

Voxar Varas, Voaias, Voo, Voo, Vieaiao,

Vosrit142s Vorroieiats Virsieia1s Ve o141 (156)

However, a simple inspection based on corrections (131)—
(134) shows that none of the terms of the order y° in
Eq. (155), and none of y*s in Egs. (150)—(156) contribute at
the order y* to the ground state. It is also easy to check that
the correction at the order y°> vanishes. So the next
correction is of the order y*, which finds contributions
as following

v(()1> = Vo — (y* order)
Ny, N} Np NpNp N3\,
_ (AN No Ne 2 (157
( o2 T2 st 3 tias)r U7

) = 2NpV2, + 2NpV2, + 2Np(Np — 1)V2
y (=1 Np N\ 4 r*\?
=2Np x 2% [ ——+ — +— 2Ne| 35
px 4<128+32+16>y Bt
7/2 2
INp(Np — 1) =),
+ P( P )<16>
~INp  N.Np 5NB\ ,
_ (Z/Np  NiNp , ONpY 4 158
(512 16 128)7 (138)

083) =2x2NpV Vi1 Vo1 +4Np(Np — 1)V 1 Vi1 Vo y
— 2NpVo V3 .

) e ()
~2Np (2)2 (% *%) -

_ _NLNP 4

) 159
3 ! (159)
4 0y - N\ _ N
vy = —2Np x2NpV2 V2 | = —4N3 <Z> (Z) ="
(160)
All together we have for the ground-state energy
1 2
Vo = 1 +Z(NP+NL)]/
-N. Ni Np N Np N} ,
- ( 64 R 6 16 ' 32)
+0(%). (161)

Now let us consider the first excited state by the transfer
matrix of the model. Using the previously obtained
expansions, the state with one unit of current on one link,
such as k; of Eq. (24), leads to a diagonal element linear in
y at the lowest order as Eq. (124). The first element of the
block up to order y°, expressed in the notation of present
section, is

] I N, N
V’é}):g+<——+—L+—P>y3

N 7 3Ny, N? O9Np N/ Np N N\ s
384 128 64 1024 ' 64 ' 256)7
+O(y"). (162)

So the first excited states belongs to the blocks with current
states such as ky. Considering +1 units of current on one
link as the representative state, the number of such blocks
are 2Ny . So the first excited energy has a degeneracy of
2Ny. In fact, finding the corrections to the first excited
energy is simple and can be done in the same way done for
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the ground state. Factoring out y/2 from the elements of the
kq block, the very same calculation for the ground state can
be repeated. Similar to the method used for the vacuum
block, we have the following elements in the k; block

_ 1 N N
v’éa;%(ﬁu<—§+TL+?P)7/2+0(74)>, (163)

- Y (v
V’gfil =3 <Z + O(y3)>, (164)

in which we find for the first excited energy

k74 _EE&ZZNZZ O(y5
vy 2[+<8+4+8y+ plg) | TO0).

(165)

1 N, N
:%—F (——+—L+—P>73 +0(r%). (166)

16 8 8

The gap of energy by the model can be calculated by the
ground-state energy (161) and the above as the excited one.
The eigenvector of the energy (166) can be obtained using
the perturbation method as well

|
' =(1.0,0,..0)+—= > "Vel.G.  (167)
12
vy v )
= (1.2 ..~ .
(155 B) w0, aes
—_———

It is noticed that the vector is exactly in the form of
Eq. (141) in the vacuum block, however, regarding the
current states, with a different physical meaning. Here, the
eigenvector is the linear combination of the k; state and
2Np states constructed by the k; state added by +1 unit of
loop current in one plaquette, such as Fig. 7.

The next correction can be obtained along the lines of
Eqgs. (157)—(160) but in the k; block, leading to

A A
+<16+8+8>7

(7 3N, N} 3Np NNp N}%) X
204 1m0 T 24 TAho - |7

3847128 64 128 32 o4
+0(y").

(169)

The above procedure to find the eigenvalues can be used
for the other blocks as well. For later use in the next section,
we present the lowest eigenvalue in the k, block,

23 11NL+N_§_ 1INy  N.Np  Np v
3072 1536 256 1536 128 256
+0(r*), (170)

the kyy block,

384 256 ' 128 256 = 64 | 128
+0(r*)

(7 5Ny, N? 5Np N Np N%,) ]

(171)

and the k3 block,

3
ky 7 1 Ny | Np 5
“o _48+( 256+192+192>y

7 N NE o Ne (NN Np
10240 768 1536 768 768 1536
+0(y?). (172)

VIL. LATTICE SIZE AND
OBSERVABLE VALUES

In the presented expansions of the transfer-matrix
elements and eigenvalues, all of the terms except the first
ones have positive powers of Np and Ny . So for an infinite
lattice, in which Np and N go to infinity, a proper
interpretation of the expansions is necessary. The purpose
of this section is twofold: first, to show how the presence of
the mentioned numbers in the expansions is expected, and,
second, to present a proper interpretation of the resulted
expansions, which are formally divergent in the large
lattice limit.

Let us consider the matrix-element (k’|V'|k) representing
the transition k' — k. It is shown that in the strong coupling
regime, the y expansion of this matrix element is represented
by virtual occurrences of loop and link currents that trans-
form both states to the vacuum. The weight of each virtual
current in expansions is y. The first term represents the
lowest number of virtual currents, in definite links and
plaquettes, necessary to perform the mentioned transform to
the vacuum. So, no Ny and Np is expected in the first term.
The other terms, however, represent all virtual currents in
any link and plaquettes that may contribute to the transform.
As a result, the number of links and plaquettes enter the
expansions. As seen in the previous examples, this is exactly
the way that powers of Np and Ny appear in the expansions.

The way that Ny and Np appear in the expansions
provides a physical basis to treat the behavior of expansions
in the infinite lattice limit. In particular, due to the
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mentioned role by the virtual currents in the transitions, a
distinguished role is expected to be given to the element
(0|V|0) as the amplitude of the VTV transition. The reason
is that the virtual events that derive the VTV transition are
expected to take place in the transitions between other

1+< )NP

Based on the above explanations, one expects that a footprint

572 17y*

& 512

209y°

0 0 0)2d —

current states as well, leading to the appearance of N}, and
Np in the expansions. As a specific example, let us consider
a 2D lattice, in which N, = 2Np. By replacing N; by Np,
the VTV transition (119) in the 2D Ilattice finds the

following form
+ < )NE, +

G555

of the VTV transition can be traced in other transitions. In

254 85y°

128 4096

125¢°
3072

(173)

particular, it is seen that the ratio of the other matrix elements to the VTV one is independent of Np. As examples in the

vacuum block, we have the following for the 2D lattice:

2 4 6
) oyl 494 7691y
o[V|1), = (o[7j0y- L (1 - 27 _ - 174
(0V[1)g = (0[V]0) -7 ( 327763 196608 S
2 2 4 6
X . v 1572 1525y* 22861y
Lo 7 ~ . |
{1V[1)e = (OIV0) - 2 < 16 3012 Tomso4 ) "7
2 4 6
A 22 11634 9073y
o — ot (17 _ L) 176
(01V]2)g = (0[V]0) - 5 < 241 6144 T 81020 T (176)
3 2 4 6
A (3 19414 168611y
. . |
(O[V13)y = (0V10) - o < 64 10240 1474560 )’ )

in which we see that the Np dependence is totally factored out as the VTV transition element. As more examples by

composite current vectors in the vacuum block we have

72 2 4 6

) 2034 1325y

| 010 7 2. 178
(O[V[1, 1) = (0[V]0) - = ( 16 3072 " os304 )
A . Ty 13774 733190

0V|1,2), = (0[V|0 - A v

(01V[1,2)4 = (0[V]0) - 128( 96 2048 ' 1474560 ) )

The above observation is expected to be true in blocks other than the vacuum block as well. As examples, from the k; and k,

blocks we have

Tt 250

. oy
k| Vlkey)y = (0910 L (1L 4 1 ). 180
k) = O910) - (1= T ) (150)
2 4 6
) PSP 25t 6619
Dy — ooy (157 257 L) 181
< 1|_| 1,1>1 < |_| > ] < 32 384 1966()8+ ( )
3 2 4 6
. oy 57 214 8369
APy — 2 2 182
(ra | Vikra)y = (01V]0) - 35 ( 6 3072 T og30s ) 152
% y lly 11]/
ko Vlks)y = (O[7]0) -2 (1 -y 2T 183
Ral¥lhe)s = 0710 - (1- 2 S-S, (18
3
, 19y L 557 103957,°
B v 5 184
<k2|V|kz 12 = (0[V]0) - 32< 768 2949120 LA (184)
g Pk ) = (O7(0) - L (1457 420" 75107° (185)
211 VK212 = (OIV]0) - 50 48 3072 ' 1474560 '
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It is interesting that the above expressions are valid for any
value of Np. Despite the fact that the whole dependence on
Np can be extracted equally from all elements, it does not
make them finite in the large lattice limit. The basic idea to
define physically finite values comes from the field theory
approach to Feynman diagrams. As mentioned before, the
present diagrammatic expansion has features similar to the
those of the Feynman diagrams of perturbative quantum
field theory. Here we see another example of these common
features. The n-point functions in the field theory approach
supposedly contain vacuum diagrams; those with no ex-
ternal legs originated from the theory with no source term.
Having no external legs, the vacuum diagrams are the only
ones that contribute to the VTV transition. The absence of
external legs has two important consequences. First, the
vacuum diagrams are infinite, as they can take place in the
infinite extent of the space [18,19]. Second, the vacuum
diagrams contribute equally as a multiplicative factor to all
transitions [18-20]. Hence, the total contribution of these
diagrams can be factored out from the S-matrix elements,
leaving only physically observable contributions to the
transitions [18-20]. In the field theory approach, the
contribution by the vacuum diagrams is extracted from
the n-point functions by defining the normalized generating
functional, through dividing the path-integral expression
with source “J” by the sourceless one [20]

_ [ Dpexpli [dx(ZL + Jp)]
[Z¢expli [dxZ]

Zl] (186)

It then can be shown that the n-point functions derived from
the normalized functional are free from the vacuum dia-
grams [19,20]. In a quite similar way, we see that the VTV
contribution can be extracted from the present strong
coupling expansion of matrix elements, leaving a finite
physical transition amplitude between the current states. As
mentioned in Sec. III, the current vector k plays the role of
the source. The origin of the divergent behavior of (0]V|0)
in the infinite lattice limit is the same as its counterpart in
the field theory approach.

We see that, by extracting (0|V|0) from the transfer
matrix, all elements become independent of Np. However,
that is not enough to guarantee that the eigenvalues are
independent of Np. This can be checked explicitly by the
eigenvalues obtained in the previous section. The reason for
this is simply that the number of off-diagonal elements
contributing to an eigenvalue may depend on Np. We
already have seen examples of this in the previous section,
for example Eqgs. (138) and (158)—(160). Theoretically, for
a system with finite energy density we expect infinite
energy in the infinite size limit [19]. So, there is no surprise
about the divergent behavior of the obtained eigenvalues.
However, it is still expected that the observable values
related to energy would be finite. Fortunately the solution is
quite known that, as far as measurements are concerned,

the relevant quantity is the energy difference rather than the
energy itself. In our case, using v; = exp(—ag;), it is
enough to check the behavior of the ratio v;/vy =
exp[—a(e; — g)]. If the mentioned ratio is independent
of Np, then the difference between every two energies will
be too. As explicit examples, for eigenvalues obtained in
the kq, k,, kqy, and k3 blocks,

v Y v
2 _Zl1-+= , 187
vy 2 ( g T2 " (187)
v yz 7,2 23],4
B I [P St A , (188)
vy 8 6 384
kyy 2 2 4
vy Y r- T
= (1-=+C , 189
vy 4 ( PRI ) (189)
w_r (3 st (190)
vy 48 16~ 640 ’

in which all ratios are independent of Np. By the above
observation, to excite the system from the ground state a
finite amount of energy, independent of the lattice size, is
needed.

VIII. CONCLUSION AND DISCUSSION

The formulation of the transfer matrix of the U(1) lattice
model in the field Fourier basis was studied. It was
discussed in detail how the states in the Fourier basis
correspond to quantized currents on links. The constraint to
have a nonvanishing element by two states was shown to be
in fact the condition that, as a lattice version of current
conservation, the two states differ in loop currents circu-
lating inside plaquettes. These features provide a basis to
develop the strong coupling expansion and its diagram-
matic representation for the elements of the transfer matrix
in the field Fourier basis. Each term of the expansion
represents the occurrence of virtual loop and link currents
that transform the initial and final states to the vacuum state.
Accordingly, the diagrams correspond to combinations of
the initial and final current states and the occurred virtual
currents that transform both states to the vacuum. The
weight of each virtual current is 1/g?, which is small in the
strong coupling regime. Either by interpretation or through
managing the relevant terms at a given order of the strong
coupling expansion, the diagrams play the role of Feynman
diagrams at the small coupling regime. The present
expansion of the transfer-matrix elements are used to
develop the expansion of the ground state and some excited
energies at the lowest orders in the strong coupling regime.
Based on the observation that the lattice size dependence of
expansions can be factored out from the matrix elements
and eigenvalues, the physical interpretation of the results is
discussed.
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The existence of the manageable strong coupling expan-
sion, combined with the available perturbative small
coupling expansion, might be useful as it could provide
some knowledge about the phase structure of the model. A
classic example is the 2D Ising model, for which it can be
shown that the small coupling (high temperature) expan-
sion of the partition function is equivalent to the strong
coupling (low temperature) expansion of the same model
but on the dual lattice [21,22]. Accordingly, this leads to the
fact that the 2D Ising model exhibits a phase transition with
a known critical coupling (temperature) [22], even before
the exact solution at any coupling is found [23]. These
kinds of extra benefits of a strong coupling expansion are
especially important in the case of lattice gauge theories, as

they are expected to capture the essential features of phase
transitions of gauge models. In particular, any relation
between the small and the strong coupling expansions may
be considered as a piece of evidence for a phase transition
in an intermediate coupling value.
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APPENDIX A: THIRD AND FOURTH ORDERS OF y IN THE VACUUM BLOCK

Presenting the contribution at order > needs a more compact notation, for which we define the new A as following with

the summations on all = sign combinations

A(gl;Mf',...,Mf’

/
1. agP 4
MY MY

X (£ MP o MY £ 5y £ 8y

, ;51,1,...,5,,,> => 1o =M £ M £6y, + - +5)
+ [

(A1)

with this caution that the place in lattice and sign of each §;, is the same in both 6(¢, - - -) and (¢f; - - -), as they come from
the term cos(6 — €). The total number of terms is then 2”57, At third order in the vacuum block, we have 80 terms, which

may be presented in the compact A notation as

3
I 14 41
(@)l = L [A(
0y 384 4
L [A< di M
128 £~

3 - MP
Ly Hﬂf’ d
all p.1.1 t

3 . AP P2
y qisM;" M,
L E A2
+64 { <
all p.ly

1

}’3 4 73
+4—81%:11A<%;5”1’5”2’5”3> +3—2 Z A

N A d];M;)l9Mfst{]3
[ M} MM i

Py a P sl
M M2 (s

1. gl
Aty

q
3001, » 5112) +A <—l

3011, » 515)}

i
;5”‘> +A< 7P P’z;all‘
MM,
;Mpl
(qf ;/ 25111)- (A2)
all p.l; I;Mll
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At fourth order having 15 x 24 — 240 terms, the element in the compact notation comes to the form

A 7 i di M} M> M MY
" A A
[<q |_|q>0] 6144 |: < ;;Mf',Mfz,MfS,Mlp4> * ( %

4 P1 123
/4 diM;" M d
+ [A <— i1, O Al —— 57501, 0u
256 Z A AV AT R
th;’ ,Mp2 4 %l .
1024 < /. MP3 MP4 + 384 § A ]951117511275113»5114
P RCNERA l
4 . AfP1 P2 P3 . AfP1 4
Y %lvM[ 7M[ 9M] %[,Ml Y ql,
A A — E A ,6 0
+ 1536 ’ < ;;Mf4 + g;M;h,MlP}’M?M + 128 ,Z’Mpz 1> Yll,
allp L allp.ly,l,

4 r V4 P2 P3
7/ 4Z’Ml aMl ’M[ . %l .
" 768 Zl _A( 4 o |+ A g e o

all pl
4 I Vs gD Pa
Y dlle ql’Ml ’Ml
256 A\ o= g5 20 A2
4
Y %17 %l
+19—2 Z [A< 7 511] 5112,511;> +A(§_—M§,;5,ll,6ﬂz,5%)]_ (A3)
Pl ;

APPENDIX B: NUMERICAL FACTOR

Here the numerical factor appearing in Eq. (69) is derived. By definitions

A= cos(M/O"), (B1)
B= cos(M"), (B2)
C=> cos(¢ —0"), (B3)

we can expand the exponent as follows

© n n—
PUSICINS ol o N - <i‘ N §> ‘.

non!f:of'("—f)' 22
:iy_n . g (n—f)' <é>m<§>n—f—mcf’
n=0n' :Of' f)!mzom (l’l—f—m)! D) )
0o n n—t
7" A>m<B>n—If’—m .
- B - ce. (B4)
nz:; Om:Om' 'f' < 2

Setting n — ¢ —m = m/, and changing the phase in Fourier integrals

cosa = — (e + e~¥), (BS)

N[ =
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we find the numerical factor in Eq. (69) as

1 1
22m+2m’+f m!m'\ ¢ (B6)

APPENDIX C: MORE BY THE RULES

As applications of the rules for y expansion of the matrix elements, here more examples are presented.

In vacuum block, we consider the state with two units of currents in the first plaquette, as |g, - M) = |2) with
q> = (2,0, ...,0), represented by (C1).

\ ! (C1)
> 2
Then, by the rules we find for the matrix element (0|V[2),,
( o [°n 11
2. 77N Ll
00—y Y
! Vo 2
e = _
///"\ ///"\
O—)w\k‘}/u +|{»)u = 5C1(3Np — 2)
il 2 4 -7
SN0 TR
o O+|i»)1—)v[\%»}/ux QigﬁQNp
— - ;/ 9
o0 R 1
O+H—)hl‘»:‘,/‘i ++V‘ 2%%2NL
\ 1 4 \;/ 2 1
0 AN NN 1 1
0— v[\&»}/u +l§»c\/’] li‘) 5 C6(12Ng — 22Np + 11)
- 2 - -
> ST 0 TR
(0[V]2)o : O+'§»)) Ii»”\/’] — "'tj/”‘ 52 57C4(2N3 — Np) . ()
- R}
RN TR AN
0+ \/l—o)vi& W+ suspC3CiNp(3Np — 2)
N Sl N =
b0 ,z;\ SN
’yﬁ O—FAV—)YH‘ ‘,H —|—l{ \/Y—FAV %%010 NL(3NP_2)
A IR\
" - 2 - "
T N P !
0+|{»))+\AX—)M\E»}/H ++Y 210 2'2|210101NLNP
-7 1 - 2 1
O_)Vl\k\»///“ R\l 28 o1 1(2Nf — Nv)
;/ 9 HA 1
0—1—;’\ )*—)Ovﬂ':}v:x %3C3 4
\ \ - Li;ij 2

leading to

32 768 ' 128 ' 256 B

2 2
. y 1 N. o Np) 779 5N, N? 11Ny N Np N3 5
V2=t (-t L P - _—
(O1Vi2)y +< tis " > 196608 6144 T 1024 49152 T 1024 4096)7
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Also for the element below we have

( - -

3 //-\ 0 /// \‘\ 1 1
DA 1y I 5691
ML oz’ ) 26 2!
(T = -
SN 0 TR PN
o= M+ s Ci(BNp —2)
- ot ) ot
N R S R PR
(11V]2)o : 1 =y Y 51555 C3 (2Np — 1)
- 5 w7 w2 w2 )
v = ! =<
1o+ r— 0 W+ 550Ny
har sl B Aol PR
5] o0 [T L1
oo/ wC14
L - — ! L= :
\ > 2

leading to

3
A Y 185 NL NP 5
1V2 = — _— _ _— o e
(HV[2)0 = 155+ (12288+512+1024 r+

As the last example by |2) we consider

;

///;\ 0 /’,;\ ]. 1
74; T ‘/H — T ‘/U 58 5101
\ X -2/ 28 2121
" =7
N B P TN
T i — 1 il + g ¥ 2%2%31(741(3]\&’_2)
w2 w2’ w2t o
> 2 > 2 -
~ ///:\ ///:\ 0 //’:\
(2|V]2)o : O }/1—)1“& ‘//ux 2%2%3,041(3]\@—2)
z -2 N N .
,.)/6 e 2 - 2
PERY Lo [ 7R w11
s 1 54 1
Y [i» )/1 4+ A\Y —>Y [i» :‘,/H + ‘AY 2T02!2!2!2NL
-~ I - n
- 2 —2
oL 0 | 11,2
e M — g muCid
. (L2 il

leading to

4
A, Y 47 NL Np 6
2(V)2), =
@V[2)0 = 10555+ (12288+4096+8192 r

(Co)

(C7)

As the next example, we consider the state with three units of currents in the first plaquette |g3-M) = |3) with

g3 = (3,0, ...,0), represented by Eq. (C8).

The rules for the matrix element (0|V|3), give
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( o [°x 11
3.0 — vy ==
g \ X , 26 31
( = -
0 ,//i\ ///—\
O—M.\&:’_ﬁ)x +l§ )) g%écg(‘lNP—?))
(0[V[3)o : - 3 ?\_ ) (C9)
_ o= 0 ,’,/1
75 0+[§»)/]_)h\&::?/’” 2%0%2]\]1:
- —="13
oo | gy
0+*V‘—)Vl&(_)/“i ‘I‘A‘Y 2%2113!2NL
L o \i/ 3 1
leading to
3
N V4 1 N Np \ 5
013y — _ C10
(O[V13)0 384+< 8192+1536+3072>y * (€10

As another example, we consider the state with one unit of current in two neighbor plaquettes, for which we take the first
plaquette and its right-side neighbor. By the numbering in Fig. 3 and made as |g;;-M)=|1,1) with
q11=(1,...,0,1,0,...,0), this is represented by (C11).

’ ——

Np

Y ¥ ! (C11)
It is obvious that the net current in the shared link is zero. In this case, we have the following:
( o [T, 7"~ 11
2. 00—y —C}
7 NIPCE NS B T T
p = ==
0 //-\ //’\ //’:\
0— Vi\ /‘ i\ /U +ni \//1 2%%6&6(]\[13 — 1)
(0[V[1,1)0 : P /;?\ j; ; (C12)
- 4 1" 0, |/ / 1 1
Yy 0+li://\/}—)ih\_//l l\_,’” 2—8ﬁ022Np
Lo [T L
O+3—71 ' U4y %5::C32Ny
R S T I
\ \ s -
giving
2
A Y 1 NL NP 4
0VI1, 1)y =+— _——t =+ — C13
(0111, 1o 16+< 256+64+128>7 * (C13)
Another example is by the state with one unit of current in the opposite direction of |1), that is |g_; - M) = | — 1) with

q_1 = (—1,0,...,0), for which, with special care about the direction of arrows, we draw
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2 ST o [T 1
Y v[\_/m—)u\_/w ?
; - >
Y T S B
1A= Y 5 Ci(2Ne - 1)
e \_// \_// \:/// .
(117 = 1) : e e S o
v 1(\ 4 — Ty 53,C3(2Np — 1)
Y I T
R R e X ¥ ‘H—%—p %52 Ca Ny
\ \ \A’ " S -7 "
leading to
2
A Y 1 NL NP 4
1V|-1)y =—= -——t =4 — C15
(V] = 1o 16+( 256+64+128)y - (C15)

As the other example transition between |1) and one unit of current in another plaquette than the first one, showing as [1'),
is represented as

Y 4 (C16)
for which we find for the matrix element
4 - - /
5 o N IR I\ 1
oo — 1 ¥ —
7 N N 24
p > S~
SN o [N AN
o=y o+ 55C3(2Ne - 1)
. \_// \_// \:/// !
A1) = =T , 1)
- // ///" 0 //
v 1 +|§»)) =t 5% 3C3(2Np — 1)
= Sum—"
A BT I A |
1oy —ayl 4y %5 CoNL
L L \;’ 1 \;’ "
leading to
2
A Y 1 NL Np
1|V]1))y =~ _—— =+ C18
(VI 16+< 256+64+128>V * (C18)

As a final example in the vacuum block, we consider |1) and the state with two units of currents in opposite directions as
| — 2), represented by Eq. (C19).

4 Y (C19)
- -2

Then the rules, with special care about the direction of arrows, give the following:
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( ~ = 11
3 e 0 ///—\\ - -
¥ v.\_/ux — u\{;‘w 56 51
p— 3—?
RN T I
vl\ I S VORI +|§»>’] 2%0%6&(3]\713—2)
AP = 2)0 4 o e SN
- . i 0 /T
3 I, //Hl—'—[i»}/]_)‘l\l“//’]v 51555 C5 (2Np — 1)
= R
2N BTN PV |
v[\ /u;—i—q—)mk»\;v +a Q%ﬁcglNL
L L -7 I S -7 _9 I
leading to
3
A Y 7 NL Np 5
1V|-2)) == -_—— C21
(Y] =2 128+< 12288+512+1024>y N (c21)

Samples of the nonvacuum block of k; are already given. Here as extra examples in the nonvacuum block, first we
consider the coblocks of vector k, = (2,0, ...,0) with two units of currents on the first link. The lowest order of this block
occurs when ¢’ = g = 0, given by

4 9 - 0 _ __ 1
Ny — ey 8
i S EEN N o= iijl mC%NP
(ka|V]k2)2 : P e +{§, Uy 55331 Ca Np ’ (C22)
R R e B R EHCAAE)

leading to
A 2 1 N N
(o V), =%+ (——+—L+—P)y4+~-. (C23)

As a coblock of k, we consider k,.; = k, + ¢, which has three units of currents on the first link, and two units of currents
on other links of the first plaquette. Similar to Eq. (62) we may represent it as (C24).

‘ 4 (C24)

The graphical representation for ¢’ = 0 and ¢ = ¢; will be given as follows:
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3 . 0 N 1
Ty — 1 14 —
7 2 N 32
A,
( RN BTN
e -— — 0 ’ e
——— —> V\\ //Hi"‘ii» }/‘ #@C§<2NP — ].)
<k2’V’k2;1>2 . - 2 " , (C25)
- - -—— — ///" 0 //
& 2 +i\/] N 75011 C2 Ve
=
- gy SON
N\ v 7 5mCi(BNL = 2)
\ W:WZ
all together leading to
3
A )/ 19 NL NP
k,|V0kyq)y = — —_—— = )P C26
(kalVlkz1) 32+< 3072 7128 T256)7 T (C26)

The graphical representation for the last example of this nonvacuum block is ¢’ = g = ¢;:

/ - ~-

4o Oy N
N A 4 Y A -
fy \_// \_// 27
N N )
(< < R
// 0 // /7
T —)m\ //u%\»}) 5555 C5 (2Np — 1)
774772 774772
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(Roa |V o) WAL O e GeNe 1) (c7)
6.) 2 =2
v - -
A TR N P N
11\ //‘4+A‘V‘—)Vl\ //‘ H‘A‘V‘ %%Ci(gNL—Q)
774772 774772
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\ (2 =2
leading to
4
A }/ 5 NL NP
ky1|Vlkyq1)y = —— ST T i B R C28
ez |Vlkeza)2 128t <6144+512+1024>7 * (C28)

As the last example, we consider the block by the representative state ky y in which two separated links have one unit of
currents, showing them as (C29).

— (C29)
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Then by the rules we have

9 - - -/ - - - =/ 1]_
- .- C5—-
v SR 2g
( -—- --—/ - - -/ ///:\ 1 1 1
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