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We discuss the naive lattice fermion without the issue of doublers. A local lattice massless fermion action
with chiral symmetry and Hermiticity cannot avoid the doubling problem from the Nielsen-Ninomiya
theorem. Here we adopt the forward finite-difference deforming the γ5-Hermiticity but preserving the
continuum chiral symmetry. The lattice momentum is not Hermitian without the continuum limit now.
We demonstrate that there is no doubling issue from an exact solution. The propagator only has one pole in
the first-order accuracy. Therefore, it is hard to know the avoiding due to the non-Hermiticity. For the
second-order, the lattice propagator has two poles as before. This case also does not suffer from the
doubling problem. Hence separating the forward derivative from the backward one evades the doublers
under the field theory limit. Simultaneously, it is equivalent to breaking the Hermiticity. In the end, we
discuss the topological charge and also demonstrate the numerical implementation of the hybrid
Monte Carlo.

DOI: 10.1103/PhysRevD.104.094505

I. INTRODUCTION

It is hard to have an analytical solution in strongly coupled
systems. For studying physics, people adopted lattice regu-
larization for putting the systems on a lattice. In the high-
energy community, many fundamental problems rely on a
study of the quantum chromodynamics (QCD) model.
However, due to a lack of analytical tools, people need to
rely on a lattice method for exploring the QCD model.
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The gauge sector of lattice quantum chromodynamics
(LQCD) keeps the gauge invariance for any finite lattice
spacing (a) [1]. The lattice gauge symmetry leads to a
practical simulation method. However, LQCD is still time-
consuming due to the Nielsen-Ninomiya theorem [2–4].
This theorem prohibits a Hermitian construction of
d-dimensional fermion lattice action SF:

(i) DðxÞ is exponentially local, which implies that the
operator is bounded by ∼ expð−jxj=cÞ, where c ∝ a;

(ii) D̄ðpÞ ¼ iγμpμ þOðap2Þ for p ≪ π=a;
(iii) D̄ðpÞ is invertible for p ≠ 0 (no massless doublers);
(iv) γ5DþDγ5 ¼ 0 (continuum chiral symmetry),

where DðxÞ is a Dirac matrix satisfying

SF ¼ ad
X

all lattice points

ψ̄ðDþmÞψ : ð1Þ

The D̄ðpÞ is a Dirac matrix on a momentum space, the ψ̄
and ψ are independent Dirac fermion fields, and γμ and γ5
are the gamma matrices. The m, x, and pμ are the fermion
mass, position, and momenta, respectively. We label the
spacetime indices by μ ¼ 1; 2;…; d. A Dirac fermion
lattice theory should require the first three conditions.
People could avoid the no-go by modifying the chiral
symmetry condition (like overlap fermion). However, it is
necessary to accept the square root operation with a lattice
chiral-symmetry. Another way is to introduce the non-
physical degrees of freedom but lose chiral symmetry (like
Wilson-Dirac fermion). It should be problematic for study-
ing a light fermion mass. Hence the no-go provides a strong
constraint to the construction of lattice fermion. The
square-root operation or losing chiral symmetry all intro-
duce practical problems about simulation time or error bar.
In Refs. [5,6], one used a one-sided lattice difference

with the first-order accuracy to show the naive lattice
fermion with a chiral symmetry. In this explicit example,
the lattice momentum operator is not Hermitian, except
for the continuum limit [5]. The lattice action loses the
Hermiticity without violating the no-go. Hence breaking
the Hermiticity seems to be the successful reason for
solving the fermion doubling problem. However, the
first-order accuracy only provides one pole to the propa-
gator. It is also hard to argue that one pole is due to the non-
Hermiticity. The one-sided lattice difference breaks the
hypercubic symmetry [5]. Therefore, the lattice interacting
field theory suffers the issue of nonrenormalizability [7].
Hence it is necessary to impose the averaging over all
possible one-sided derivatives [5] to remove the non-
renormalizable terms [7].
The central question that we would like to address in this

paper is the following: How to construct and implement
naive lattice fermions without the doubling problem? For a
1d lattice fermion system, we can calculate all integration
exactly for each finite size. Hence we can explicitly study
the doubling problem of the first-order accuracy and the

second-order accuracy for the forward finite-difference.
Both cases lose Hermiticity on a lattice. The second-order
provides two poles to the propagator. Hence it should be the
best way to justify the non-Hermiticity. Ones also proposed
that using the biorthogonal basis realizes the index theorem
[8–10] on a lattice [11]. The index theorem helps extract the
zero-modes of a Dirac matrix to obtain a topological
charge. One already showed that a consistent construction
of the Dirac matrix does not necessarily generate a correct
topological charge on a lattice [12]. The exponentially-
local, doublers-free, and a correct continuum behavior in
the Dirac matrix should just guarantee a correct homo-
geneous-solution of topological charge density under the
field theory limit (infinite size and continuum limits) [13].
For studying nonperturbative physics in the QCD model,
nontrivial topological charges should not lose [14]. Hence
analyzing the definition of topological charge is necessary
for a numerical implementation [15].
In this paper, we show that the second-order accuracy

evades the fermion doubling problem without breaking the
chiral symmetry. From the study of the exact solution, we
understand that the doubling problem occurs due to a
combination of forward and backward finite-difference.
After we only adopt one finite-difference scheme, it is
equivalent to decoupling the nonphysical poles from the
physical one (under the field theory limit). This approach
also directly brings a broken of the Hermiticity. Therefore,
we conclude that breaking the Hermiticity should be an
elegant idea for escaping the doubling problem. We also
show that the lattice index theorem only brings the trivial
topological charge. In the end, we demonstrate a numerical
implementation by the hybrid Monte Carlo for two lattice
fermions with a degenerate mass in 1d.

II. 1D LATTICE FERMION

We first review the continuum theory. We then show
exact solutions for forward finite-difference in 1d lattice
fermion. The result is consistent with the continuum
physics avoiding the fermion doubling problem.

A. Continuum theory

We first introduce the 1d Dirac fermion continuum theory.
The Euclidean action is SFC ¼ R

dx ψ̄ðxÞðγ1∂1 þmÞψðxÞ,
where

γ1 ≡
�
1 0

0 −1

�
; ∂1 ≡ ∂

∂x : ð2Þ

The propagator satisfies ðγ1ðd=dxÞ þmÞSðxÞ ¼ δðxÞ. The
solution is

SðxÞ¼
Z

∞

−∞

dp
2π

eipx
1

iγ1pþm
¼
�
θðxÞ 0

0 θð−xÞ

�
e−mjxj; ð3Þ

XINGYU GUO, CHEN-TE MA, and HUI ZHANG PHYS. REV. D 104, 094505 (2021)

094505-2



where

θðxÞ≡
�
1; x ≥ 0

0; x < 0
: ð4Þ

The fermion doubling problem generates one nonphysical
pole in the 1d lattice fermion. This pole gives a nonvanishing
contribution even under the field theory limit. Therefore, we
cannot obtain a correct continuum limit. Later we will
compare the result of a forward one to the continuum result.

B. 1st order

Now we adopt the forward finite-difference with the
first-order accuracy to write the following naive lattice
action:

SF1 ¼ a
XN−1

n¼0

ψ̄ðnÞ
�
γ1

ψðnþ 1Þ − ψðnÞ
a

þmψðnÞ
�

¼ a
X

n1;n2;α1;α2

ψ̄ðn1Þα1ðDðn1; n2Þα1;α2 þmδn1;n2δα1;α2Þ

× ψðn2Þα2 ; ð5Þ

where Dðn1; n2Þα1;α2 ≡ ðγ1Þα1;α2ðδn1þ1;n2 − δn1;n2Þ=a. We
label the matrix components of γ1 by α1; α2 ¼ 1, 2. The
N is the number of lattice points. The lattice fermion field
satisfies the antiperiodic boundary conditionψð0Þ¼−ψðNÞ.
We first show the lattice propagator for x≡ na > 0 as

the following:

SLðxÞ ¼
1

N

XN−1

j¼0

exp

�
i
ð2jþ 1Þπ

N
n

�0B@
1

expðið2jþ1Þπ
N Þ−1þma

0

0 1

− expðið2jþ1Þπ
N Þþ1þma

1
CA

¼ 1

N

I
C1

dw exp

�
i
2wπ
N

n

�0B@
−1

expð2πiwÞþ1

expði2wπN Þ−1þma
0

0
−1

expð2πiwÞþ1

− expði2wπN Þþ1þma

1
CA

¼

0
B@

ð1−maÞn−1
ð1−maÞNþ1

0

0 − ð1þmaÞn−1
ð1þmaÞNþ1

1
CA

≡
�
S11ðxÞ 0

0 S22ðxÞ

�
: ð6Þ

The closed loop C1 encloses the poles w ¼ 1=2; 3=2 � � � ; ðN − 1=2Þ. For x < 0, we need to replace expð2πiwÞ with
expð−2πiwÞ without a divergent boundary. The lattice propagator becomes:

SLðxÞ ¼
1

N

I
C1

dw exp

�
i
2wπ
N

n

�0B@
1

expð−2πiwÞþ1

expði2wπN Þ−1þma
0

0
1

expð−2πiwÞþ1

− expði2wπN Þþ1þma

1
CA

¼

0
B@− ð1−maÞn−1

ð1−maÞ−Nþ1
0

0
ð1þmaÞn−1

ð1þmaÞ−Nþ1

1
CA: ð7Þ

We include all poles by the contour C2 (as shown in Fig. 1).
Because the contour integration of SL is invariant under
w → wþ N, the contour integration alone the C2 vanishes.
In other words, we use another pole to calculate the contour
integration aloneC1. For analyzing the number of poles, we
first take the infinite size limit (N → ∞). Here we are
interested in the continuum result. Therefore, we only
considerma < 1 in this paper. The lattice propagator in the
infinite size limit is

S11ðxÞ →
� ð1 −maÞn−1; x > 0

0; x < 0
;

S22ðxÞ →
�
0; x > 0

ð1þmaÞn−1; x < 0
: ð8Þ

Here we show that the nonphysical contribution vanishes
under the infinite lattice size limit. We then take the
continuum limit (ma; a=x → 0). The lattice propagator is
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the same as the SðxÞ. From the study, we now only have one
pole. Because we replace i sinðpaÞ with expðipaÞ, the
number of poles reduces by half compared to the doubling
case. The sine function appeared before due to a combi-
nation of the forward and backward finite-difference. Each
dimension has only one pole now. Therefore, considering
the general d-dimension also evades the doubling problem.
It is easy to show that the Dirac matrix of the naive lattice

fermion satisfies the chiral symmetry condition

γ5DþDγ5 ¼ 0: ð9Þ

In the 1d case, we choose

γ5 ≡
�
0 1

1 0

�
: ð10Þ

It is necessary to apply a nonsymmetrized way to define a
lattice derivative for a naive fermion. Indeed, it leads to a
breakdown of the γ5-Hermiticity. We demonstrate this fact
explicitly in 1d case:

γ5Dγ5 ¼ −D; D† − γ5Dγ5 ¼ DþD†: ð11Þ

Because the Dirac matrix is at the order of 1=a, we cannot
take the continuum limit to recover the γ5-Hermiticity in
general. Now we show that the γ5-Hermiticity can recover
for the physical modes of the fermion field (the eigenvalues
of D are finite under the continuum limit). To give general
proof, we first introduce the gauge field as in the following:

SLG ¼ a
XN−1

n¼0

ψ̄ðnÞ
�
γ1

U1ðnÞψðnþ 1Þ − ψðnÞ
a

þmψðnÞ
�
:

ð12Þ

TheDiracmatrixbecomesDðj;kÞ¼γ1ðU1ðnÞδjþ1;k−δj;kÞ=a.
The gauge link is [1]

U1ðnÞ≡ eiaA1ðnÞ; ð13Þ

where A1 is the gauge field. We show that

ðDþD†Þψ ¼ OðaÞ ð14Þ

from the following expansion:

U1ðj� 1Þ ¼ 1þ iaA1ðjÞ þOða2Þ;
ψðj� 1Þ ¼ ψðjÞ � aψ 0ðjÞ þOða2Þ; ð15Þ

where ψ 0 is the derivative of a fermion field.
For evading the no-go, people used a Ginsparg-Wilson

relation defining a lattice chiral-symmetry. Under the
continuum limit, the Ginsparg-Wilson relation reducing
to chiral symmetry is only for physical modes. Now we use
the Wilson-Dirac fermion to demonstrate the problem of
nonphysical mode

SWD ¼ a
XN−1

n¼0

ψ̄ðnÞðγ1 ⊗ ðD̃ − D̃†Þ þ I ⊗ ðD̃þ D̃† þmÞÞ;

ð16Þ

where D̃ is the forward finite-difference of ∂1 at the first
order. The backward finite-difference of ∂1 with the same
accuracy is equivalent to −D̃†. The D̃þ D̃† is the familiar
Wilson mass term. Therefore, we can find that the first
diagonal block of the Dirac matrix corresponds to the
forward finite difference. The second diagonal block
corresponds to the backward finite difference. We know
that the Wilson term introduces a mass to the nonphysical
mode, which has a nonvanishing contribution of the Wilson
term. This mode does not vanish under the continuum limit
but will decouple due to an infinite mass. Because the
Wilson term is at the same order of a with the chiral
symmetry condition, a nonphysical mode does not respect
the chiral symmetry. Here the difference of forward and
backward finite-difference provides the Wilson mass term.
If one only adopts one finite-difference scheme, the
nonphysical mass goes away. The Dirac matrix has a
manifest Hermiticity but violates the chiral symmetry
condition. Here we choose to modify γ5-Hermiticity.
Preserving the chiral symmetry should be an advantage
point compared to the Wilson-Dirac formulation. Realizing
the chiral symmetry without a square root should reduce
the simulation time.

FIG. 1. We show the complex contours C1 and C2. The length
of horizon direction for each contour is N, where N is the number
of lattice points. The boundary of vertical direction for the C2

tends to ∞ and −∞.
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One cannot apply the Nielsen-Ninomiya theorem [2–4]
to this approach due to the non-Hermiticity. However, it is
hard to connect the non-Hermiticity to the number of poles.
In the second-order, the propagator has two poles. The
lattice theory still loses Hermiticity. We will show that only
a physical pole survives under the field theory limit. It is

one nontrivial example for showing that the non-
Hermiticity avoids the fermion doubling problem.

C. 2nd order

Using the second-order formula shows the lattice action

SF2 ¼
XN−1

n¼0

ψ̄ðnÞ
�
γ1

�
−
1

2
ψðnþ 2Þ þ 2ψðnþ 1Þ − 3

2
ψðnÞ

�
þmψðnÞ

�
: ð17Þ

For x > 0, the lattice propagator is:

SLðxÞ ¼
1

N

XN−1

j¼0

exp

�
i
ð2jþ 1Þπ

N
n

�0B@
1

−1
2
expð2ið2jþ1Þπ

N Þþ2 expðið2jþ1Þπ
N Þ−3

2
þma

0

0 1
1
2
expð2ið2jþ1Þπ

N Þ−2 expðið2jþ1Þπ
N Þþ3

2
þma

1
CA

¼ 1

N

I
C1

dw exp

�
i
2wπ
N

n

�0B@
−1

expð2πiwÞþ1

−1
2
expð2i2wπN Þþ2 expði2wπN Þ−3

2
þma

0

0
−1

expð2πiwÞþ1
1
2
expð2i2wπN Þ−2 expði2wπN Þþ3

2
þma

1
CA

¼
�
F1ðn;m;NÞ − F2ðn;m;NÞ 0

0 F2ðn;−m;NÞ − F1ðn;−m;NÞ

�
; ð18Þ

where

F1ðn;m;NÞ≡ ð2 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ma

p Þn
ð2 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ma
p ÞN þ 1

1

ð2 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ma

p Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ma

p ;

F2ðn;m;NÞ≡ ð2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ma

p Þn
ð2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2ma
p ÞN þ 1

1

ð2þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ma

p Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ma

p : ð19Þ

For x < 0, the lattice propagator is

SLðxÞ ¼
1

N

I
C1

dw exp

�
i
2wπ
N

n

�0B@
1

expð−2πiwÞþ1

−1
2
expð2i2wπN Þþ2 expði2wπN Þ−3

2
þma

0

0
1

expð−2πiwÞþ1
1
2
expð2i2wπN Þ−2 expði2wπN Þþ3

2
þma

1
CA

¼
�−F1ðn;m;−NÞ þ F2ðn;m;−NÞ 0

0 −F2ðn;−m;−NÞ þ F1ðn;−m;−NÞ

�
: ð20Þ

We first take the infinite lattice size limit for observing the
contribution of poles. The lattice propagator becomes:

S11ðxÞ →
� ð2− ffiffiffiffiffiffiffiffiffiffiffi

1þ2ma
p Þn−1ffiffiffiffiffiffiffiffiffiffiffi
1þ2ma

p ; x > 0

ð2þ ffiffiffiffiffiffiffiffiffiffiffi
1þ2ma

p Þn−1ffiffiffiffiffiffiffiffiffiffiffi
1þ2ma

p ; x < 0
;

S22ðxÞ →
� 0; x > 0

ð2− ffiffiffiffiffiffiffiffiffiffiffi
1−2ma

p Þn−1ffiffiffiffiffiffiffiffiffiffiffi
1−2ma

p − ð2þ ffiffiffiffiffiffiffiffiffi
1−2m

p Þn−1ffiffiffiffiffiffiffiffiffi
1−2m

p ; x < 0
: ð21Þ

The nonphysical poles contribute to the lattice propagators
as before. We then take the continuum limit, and the lattice

propagator becomes the SðxÞ as in the first-order case.
The nonphysical modes vanish only under the field theory
limit. For a generalization of the higher dimensions, the
conclusion is the same as the first-order accuracy. Hence we
expect that breaking the Hermiticity or γ5-Hermiticity
should be proper for evading the fermion doubling prob-
lem. Our study also shows that one can use a higher-order
accuracy to decrease the lattice artifact.

III. TOPOLOGICAL CHARGE

The motivation of lattice formulation is due to an interest
in nonperturbative physics. Using the zero-mode of Dirac
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matrix does not guarantee to generate a correct topological
charge [12]. Therefore, it is necessary to discuss the
topological charge before implementing the simulation.
Here we show that using the biorthogonal basis [11] cannot
give any nontrivial topological charge.
The biorthogonal basis satisfies the following

relations [11]:

X
x;α

ðϕα
L;j1

ðxÞÞ�ϕα
R;j2

ðxÞ ¼ δj1;j2 ;

X
j1

ðϕα
L;j1

ðxÞÞ�ϕβ
R;j1

ðyÞ ¼ δαβδx;y;

X
y;β

Dαβðx; yÞϕβ
R;j1

ðyÞ≡ λj1ϕ
α
R;j1

ðxÞ;
X
y;β

ðϕβ
L;j1

ðyÞÞ�Dβαðy; xÞ ¼ λj1ðϕα
L;j1

ðxÞÞ�; ð22Þ

where ϕLðRÞ is the left (right)-eigenstate of D. Ones can
show that only zero-mode has a nonvanishing contribution
for Lj

hγ5iRj
[11]:

X
x;y;α;β

ðϕα
L;jðxÞÞ�ðγ5DÞαβðx; yÞϕβ

R;jðyÞ

¼ −
X
x;y;α;β

ðϕα
L;jðxÞÞ�ðDγ5Þαβðx; yÞϕβ

R;jðyÞ;

λjLj
hγ5iRj

≡ λj
X
x;α;β

ðϕα
L;jðxÞÞ�ðγ5Þαβϕβ

R;jðxÞ

¼ −λj
X
x;α;β

ðϕα
L;jðxÞÞ�ðγ5Þαβϕβ

R;jðxÞ: ð23Þ

We then show that:

X
x;j;α;β

ðϕα
L;jðxÞÞ�ðγ5Þαβϕβ

R;jðxÞ ¼
X
x;α;β

ðγ5Þαβδα;β ¼ 0: ð24Þ

Therefore, we obtain the chirality sum rule nþ þ Nþ ¼
n− þ N−, where nþ (n−) is the number of zero-mode of
positive (negative) chirality, and N� denotes the nonzero

mode case. Because we only have the zero-mode contri-
bution, the lattice topological charge vanishes:

QL ≡ n− − nþ ¼ 0: ð25Þ

Our proof only requires that a Dirac matrix satisfies the
continuum chiral symmetry condition. Therefore, the result
also holds when considering all possible forward and
backward derivatives in an interacting theory [5,7].
When one applies Fujikawa’s method [14] to investigate

the measure, the lattice measure is invariant under a chiral
transformation. Indeed, obtaining the chiral anomaly is
necessary to deform the chiral symmetry. The Ginsparg-
Wilson relation introduces a topological charge on a chiral
transformation. Therefore, Fujikawa’s method on a lattice
model will generate a chiral anomaly or topological charge
term. The generation of nontrivial topological charge is
also due to the nonvanishing contribution of Lj

hγ5iRj
from

nonphysical modes. We confirm this proof from the
following gauge configuration [15] in Fig. 2. The gauge
configuration is

A1ðxÞ ¼ −
2πQx2
L1L2

; A2ðxÞ ¼ 0; ð26Þ

where Q is the topological charge, Lμ ≡ Nμa, and
xμ ¼ 0; a;…; ðNμ − 1Þa. Here we choose the gauge links:

UE;1ðxÞ≡ expðiA1ðxÞaÞ;

UE;2ðxÞ≡ exp

�
iA2ðxÞaþ i

2πQx1
L1

δx2;ðN2−1Þa

�
: ð27Þ

For a 2d lattice fermion, we remain the anti-periodic
boundary condition on the temporal direction (x1). The
fermion field satisfies the periodic boundary condition in
another direction (x2).
The topological charge only depends on a gauge con-

figuration. If one uses plaquettes to define a topological
charge, it can be nontrivial. Therefore, one cannot use the
lattice artifact of fermion to imply that this lattice model

FIG. 2. We show the inconsistency between QL and Q for ðL1; L2Þ ¼ ð32; 16Þ; ð64; 32Þ.
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only has a trivia sector. Hence our proof only suggests that
this lattice model necessarily combines other methods of
defining a topological charge.

IV. HYBRID MONTE CARLO SIMULATION

One lattice model is necessary to show how practical a
simulation is in the end. As in our discussion, the Dirac
matrix of the forward finite-difference cannot recover the
γ5-Hermiticity for nonphysical modes. In other words, the
Dirac matrix does not have a continuum limit in general.
The Monte Carlo simulation, in general, relies on the
determinant of a Dirac matrix for an importance sampling.
Now we hope to fill the gap between the theoretical
formulation and practical implementation. For two fermion
fields in 1d with a degenerate mass, the lattice action is

SFD ¼ a
XN−1

n¼0

ðψ̄1ðnÞðDðnÞ þmÞψ1ðnÞ

þ ψ̄2ðnÞð−D†ðnÞ þmÞψ2ðnÞÞ: ð28Þ

Here we adopt the forward finite-difference with the
first-order accuracy for the ψ1. Adopting the backward

finite-difference with the same accuracy is for the ψ2.
After we integrate out the fermion fields, we obtain a non-
negative determinant:

detðDþmÞdetð−D†þmÞ¼detðDþmÞdetðγ5ð−D†þmÞγ5Þ
¼jdetðDþmÞj2: ð29Þ

We can introduce the pseudofermion field (bosonic fieldϕf)
to rewrite the partition function as in the following

Z
Dψ̄Dψ expð−SFDÞ

∼
Z

Dϕf;RDϕf;I expð−ϕ†
fððDþmÞðD† þmÞÞ−1ϕfÞ;

ð30Þ

where ϕf ≡ ϕf;R þ iϕf;I . We then implement the hybrid
Monte Carlo algorithm to calculate:

Oαβ
jk ≡ 1

2
hϕ†α

f;jϕ
β
f;k þ ϕ†β

f;kϕ
α
f;ji

¼ ððDþmÞðDþmÞ†Þαβjk ; ð31Þ
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FIG. 3. We use the hybrid Monte Carlo (HMC) to get the consistent result with the exact solution. The number of measurement is 212

sweeps with thermalization 26 sweeps and measure intervals 25 sweeps. The error bars are less than 1%. The Nsteps is the number of
molecular dynamics steps.
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where j; k ¼ 1; 2;…; N; α, β ¼ 1, 2. We compare the exact
solution to the numerical result forN ¼ 16 and 32 in Fig. 3.
We replace the first-order derivative with the second-order
derivative and show the comparison in Fig. 4. The analysis
shows that the numbers of thermalization and autocorrela-
tion time are not high. Therefore, we expect that this lattice
model can have a practical implementation. The issue of
nonphysical modes should not give trouble to the
Monte Carlo simulation. When including the interaction
between fermions and gauge fields, it is necessary to average
over 2d possible orientations [5,7]. For even flavor cases,
one can apply our numerical algorithm to avoid the sign
problem.

V. OUTLOOK

Weknow that the transition of topological charge (defined
by the index theorem [8–10]) is problematic in an overlap
formulation. People still have not figured out the problem.
The continuum limit in the lattice topological charge is
subtle [12,13]. As in our study, the Dirac matrix of a forward
lattice formulation always shows a zero topological
charge. The lattice chiral-symmetry cannot go back to the

continuum symmetry for a nonphysical mode under the
continuum limit. Now one can extend our study to the 2d
Schwinger model for solving this issue. The 2d theory has
variousways to define a topological charge (like plaquette or
index theorem). One can compare the result of continuum
chiral symmetry to the lattice chiral symmetry case. Hence
the issue due to the lattice artifact in topological charge or
chiral symmetry should be clear. In 2d, one can also obtain
all eigenvalues of a Diracmatrix without restricting to a low-
lying mode. Hence the Schwinger model should be proper
for a clean test before implementing a nonsymmetrized
finite-difference to LQCD.
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FIG. 4. We use the hybrid Monte Carlo (HMC) to obtain the consistency from the exact solution. The number of measurement is 218

sweeps with thermalization 27 sweeps and measure intervals 26 sweeps. The error bars are less than 1%. The Nsteps is the number of
molecular dynamics steps.
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