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We show that massless Kähler-Dirac fermions exhibit a mixed gravitational anomaly involving an exact
Uð1Þ symmetry which is unique to Kähler-Dirac fields. Under this Uð1Þ symmetry the partition function
transforms by a phase depending only on the Euler character of the background space. Compactifying flat
space to a sphere we learn that the anomaly vanishes in odd dimensions but breaks the symmetry down to
Z4 in even dimensions. This Z4 is sufficient to prohibit bilinear terms from arising in the fermionic effective
action. Four fermion terms are allowed but require multiples of two flavors of Kähler-Dirac field. In four
dimensional flat space each Kähler-Dirac field can be decomposed into four Dirac spinors and hence these
anomaly constraints ensure that eight Dirac fermions or, for real representations, sixteen Majorana fermions
are needed for a consistent interacting theory. These constraints on fermion number agree with known
results for topological insulators and recent work on discrete anomalies rooted in the Dai-Freed theorem.
Our work suggests that Kähler-Dirac fermions may offer an independent path to understanding these
constraints. Finally we point out that this anomaly survives intact under discretization and hence is relevant
in understanding recent numerical results on lattice models possessing massive symmetric phases.
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I. INTRODUCTION

The Kähler-Dirac equation gives an alternative to the
Dirac equation for describing fermions in which the
physical degrees of freedom are carried by antisymmetric
tensors rather than spinors. These tensors transform under a
twisted rotation group that corresponds to the diagonal
subgroup of the usual (Euclidean) Lorentz group and a
corresponding flavor symmetry. In flat space the Kähler-
Dirac field can be decomposed into a set of degenerate
Dirac spinors but this equivalence is lost in a curved
background since the coupling to gravity differs from
the Dirac case. Indeed, unlike the case of Dirac fermions,
Kähler-Dirac fermions can be defined on an arbitrary
manifold without the need to introduce a frame and spin
connection. These facts were emphasized many years ago
by Banks et al. where an attempt was made to identify
the four Dirac fermions residing in each four dimensional
Kähler-Dirac field with the number of generations in the
Standard Model [1]. With precision Large Electron-
Positron Collider data ruling out a fourth generation this
idea had to be abandoned. However, in this paper, we will

argue that there may be another natural interpretation for
this degeneracy—it is required in order to write down
anomaly free, and hence consistent, theories of interacting
fermions.
These constraints arise because the partition function of a

massless free Kähler-Dirac field in curved space transforms
by a phase under a particular global Uð1Þ symmetry with
the phase being determined by the Euler character χ of the
background. The appearance of χ shows that the anomaly is
gravitational in origin but is distinct from the usual mixed
gravitational anomaly of Weyl fermions [2]. If we com-
pactify flat space to a sphere this anomaly breaks the Uð1Þ
to Z4 in even dimensions which is sufficient to prohibit
the appearance of fermion bilinear terms in the quantum
effective action. Four fermion terms are however allowed
and the simplest operator of this type requires two flavors
of Kähler-Dirac fermion. Since a massless Kähler-Dirac
field can be decomposed into two so-called reduced
Kähler-Dirac fields, each carrying half the original degrees
of freedom, four reduced fields are required for the minimal
four fermion interaction.
In even dimensions a reduced Kähler-Dirac field, in the

flat space limit, can be decomposed into 2D=2 Majorana
spinors and we learn that consistent interacting theories
in even dimensions possess 2D=2þ2 Majorana fields. These
fermion numbers agree with a series of anomaly cancella-
tion conditions associated with certain discrete symmetries
in dimensions two and four—see Table I and [3,4].
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Since cancellation of all ’t Hooft anomalies is a necessary
condition for fermions to acquire mass without breaking
symmetries this suggests it may be possible to build models
with precisely this fermion content where all fermions are
gapped in the IR. In fact there are examples in condensed
matter physics where precisely this occurs, see [5–12].
Similar results have been obtained in staggered fermions in
lattice gauge theory [13–18].
The plan of the paper is as follows. We start in Sec. II by

giving a brief introduction to Kähler-Dirac fermions exhib-
iting their connection to Dirac fermions, and showing how,
in the case of massless fields, the theory is invariant under a
Uð1Þ symmetry whose generator Γ anticommutes with the
Kähler-Dirac operator on any curved background. Using Γ
one can project out half the degrees of freedom to obtain a
reduced Kähler-Dirac field. Section III shows that the Uð1Þ
symmetry suffers from a gravitational anomaly in even
dimensions and breaks to Z4. In Sec. IV we show using a
spectral flow argument that this remaining Z4 symmetry
suffers from a global anomaly in the presence of inter-
actions unless the theory contains multiples of four reduced
Kähler-Dirac fields. In Sec. V we point out that a necessary
condition for symmetric mass generation in such theories is
that these anomalies cancel and we give examples of
possible four fermion interactions that might be capable
of achieving this. Section VI points out the connections
between these continuum ideas and lattice fermions and a
final summary appears in Sec. VII.

II. REVIEW OF KÄHLER-DIRAC FIELDS

The Kähler-Dirac equation arises on taking the square
root of the Laplacian operator written in terms of exterior
derivatives. We start by defining the Kähler-Dirac operator
K ¼ d − d† with d† the adjoint of d. Clearly − K2 ¼ dd† þ
d†d ¼ □ since the derivative operators are nilpotent. This
suggests an alternative to the usual Dirac equation [19]:

ðK −mÞΦ ¼ 0 ð1Þ
where Φ ¼ ðϕ0;ϕ1;…ϕp;ϕDÞ is a collection of p forms.
The action of the derivative operators on these forms is then
given by [1,18]

dΦ¼
�
0;∂μϕ;∂μ1ϕμ2 − ∂μ2ϕμ1 ;…;

X
permsπ

ð−1Þπ∂μ1ϕμ2…μD

�

ð2Þ

−d†Φ ¼ ðϕν;ϕν
μ;…;ϕν

μ1;…;μD−1
; 0Þ

;ν: ð3Þ

An inner product of two such Kähler-Dirac fields A and B
can be defined as

½A;B� ¼
X
p

1

p!
aμ1…μDbμ1…μD: ð4Þ

Using this allows one to obtain the Kähler-Dirac equation
by the variation of the Kähler-Dirac action

SKD ¼
Z

dDx
ffiffiffi
g

p ½Φ̄; ðK −mÞΦ� ð5Þ

where Φ̄ is an independent (in Euclidean space) Kähler-
Dirac field.
It is easy to see that the Kähler-Dirac operator anti-

commutes with a linear operator Γwhich acts on the p form
fields as

Γ∶ ϕp → ð−1Þpϕp: ð6Þ

This anticommutation property can be used to construct a
Uð1Þ symmetry of the massless Kähler-Dirac action which
acts on Φ as

Φ → eiαΓΦ: ð7Þ

Furthermore, using Γ one can define operators which
project out even and odd form fermions—so-called reduced
Kähler-Dirac fields Φ� ¼ P�Φ with

P� ¼ 1

2
ð1� ΓÞ: ð8Þ

The Kähler-Dirac operator K couples even to odd forms
and hence the massless Kähler-Dirac action separates
into two independent pieces S¼R ðΦ̄þKΦ−þΦ̄−KΦþÞ.
Retaining just one of these terms one obtains an action for
such a reduced Kähler-Dirac (RKD) field

SRKD ¼
Z

dDx
ffiffiffi
g

p ½Φ̄−; KΦþ�: ð9Þ

Notice that the single flavor reduced theory admits no mass
term since Φ̄þΦ− ¼ 0. Finally if we relabel Φ̄− → Φ− this
reduced action can be rewritten in a Majorana-like form

SRKD ¼ 1

2

Z
dDx

ffiffiffi
g

p ½Φ; KΦ�: ð10Þ

Given that both the Dirac operator and the Kähler-Dirac
operator correspond to square roots of the Laplacian one
might imagine that there is a relation between the Kähler-
Dirac field and spinor fields. To exhibit this relationship we

TABLE I. Number of Weyl fermions needed for consistent
interacting theories in D ¼ 2 and D ¼ 4.

D Symmetry Critical number of Majoranas

2 Chiral fermion parity 8
4 Spin-Z4 16

BUTT, CATTERALL, PRADHAN, and TOGA PHYS. REV. D 104, 094504 (2021)

094504-2



construct a matrix Ψ by combining the p form components
of the Kähler-Dirac field Φ with products of Dirac gamma
matrices

Ψ ¼
XD
p¼0

1

p!
γμ1…μpϕμ1…μp ; ð11Þ

where γμ1…μp ¼ γμ1γμ2 � � � γμp are constructed using the
usual (Euclidean) Dirac matrices γμ ¼ γaeμa.

1 In flat space
it is straightforward to show that the matrix Ψ satisfies the
usual Dirac equation

ðγμ∂μ −mÞΨ ¼ 0 ð12Þ

and describes 2D=2 degenerate Dirac spinors corresponding
to the columns of Ψ. This equation of motion can be
derived from the action

S ¼
Z

dDxTr½Ψ̄ðγμ∂μ −mÞΨ�: ð13Þ

This action is invariant under a global SpinðDÞ × SUð2D=2Þ
symmetry where the first factor corresponds to Euclidean
Lorentz transformations and the second to an internal flavor
symmetry. In even dimensions we can write a matrix
representation of the Uð1Þ generator as Γ≡ γ5 ⊗ γ5 where
the two factors act by left and right multiplication on Ψ.
The matrix representation of a reduced Kähler-Dirac field is
then given by

Ψ� ¼ 1

2
ðΨ� γ5Ψγ5Þ: ð14Þ

Similarly the reduced action can be written as

Z
dDxTrðΨ̄−γ

μ∂μΨþÞ: ð15Þ

The condition Φ̄− ¼ Φ− then implies the matrix condition

Ψ� ¼ BΨBT ð16Þ

where B ¼ Cγ5 with C the usual charge conjugation
matrix. Using this one can write a Majorana-like matrix
representation of the reduced action as

1

2

Z
dDxTrðBΨTBTγμ∂μΨÞ: ð17Þ

Notice that after this reduction the free theory in flat space
corresponds to 2D=2−1 Dirac or 2D=2 Majorana spinors.
We can gain further insight into the reality condition

Eq. (16) by going to a chiral basis for the gamma matrices.
In four dimensions the full Kähler-Dirac field Ψ then takes
the form

Ψ ¼
�
E O0

O E0

�
ð18Þ

where O and O0 denote 2 × 2 blocks of odd form fields
while E and E0 denote corresponding even form fields. Each
block contains a doublet of Weyl fields which transform in
representations of the SUð2ÞL × SUð2ÞR Lorentz and an
SUð2Þ × SUð2Þ flavor symmetry. The condition Ψ� ¼
BΨBT implies O0 ¼ iσ2O�iσ2 and E0 ¼ −iσ2E�iσ2. This
suggests that the operation X → iσ2X�iσ2 can be interpreted
as a generalized charge conjugation operator that flips
both chirality and flavor representation of a given Weyl
doublet within the Kähler-Dirac field. It also implies that
both ðO;O0Þ and ðE; E0Þ constitute doublets of Majorana
spinors.
Finally we should note that while the Kähler-Dirac

equation Eq. (1) written in the language of forms does
not change in curved space, its matrix representation takes
the modified form

ðeμaγaDμ −mÞΨ ¼ 0 ð19Þ

where eaμ is the vielbein or frame and DμΨ ¼ ∂μΨþ
½ωμ;Ψ� is the covariant derivative associated to the spin
connection.

III. A GRAVITATIONAL ANOMALY FOR
KÄHLER-DIRAC FIELDS

In the previous section we showed that the Kähler-Dirac
action is invariant under a Uð1Þ symmetry. However in the
quantum theory we should also be careful to examine the
invariance of the fermion measure. We will do this for a
generic four dimensional curved background using the
matrix representation of the Kähler-Dirac theory. The
curved space action in D ¼ 4 reads

S ¼
Z

d4x
ffiffiffi
g

p
TrðΨ̄eμaγaDμΨÞ ð20Þ

where DμΨ ¼ ∂μΨþ ½ωμ;Ψ� with ωμ the spin connection
and we have introduced the frame field eaμðxÞ to translate
between flat and curved space indices with eaμebνδab ¼ gμν.
In the standard way we start by expanding Ψ and Ψ̄ on a
basis of eigenstates of the Kähler-Dirac operator:

γμDμϕn ¼ λnϕn ð21Þ

1We will restrict ourselves to even dimensions in what
follows. Odd dimensions require twice as many spinor degrees
of freedom to match the number of components of a Kähler-Dirac
field—see [20].
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with
R
d4xeðxÞTrðϕ̄nðxÞϕmðxÞÞ ¼ δnm and e ¼ detðeaμÞ.

Thus

ΨðxÞ ¼
X
n

anϕnðxÞ; ð22Þ

Ψ̄ðxÞ ¼
X
n

b̄nϕ̄nðxÞ: ð23Þ

The measure is then written DΨ̄DΨ ¼ Q
n db̄ndan and the

variation of this measure under the Uð1Þ transformation

with parameter αðxÞ is given by e−2i
R

αðxÞAðxÞ where the
anomaly A is formally given by

AðxÞ ¼ Tr
X
n

eϕ̄nΓϕnðxÞ ð24Þ

where the operator Γ ¼ Γ5 ⊗ γ5 carries a flavor rotation
matrix γ5 acting on the right of the matrix field and a
curved space chiral matrix Γ5 acting on the left with
Γ5 ¼ γaγbγcγde1ae2be

3
ce4d ¼ γ5e. We need a gauge invariant

regulator for this expression so we try inserting the factor

e
1

M2ðγμDμÞ2 ð25Þ

into the expression for A. We can write

ðγμDμÞ2 ¼ DμDμ þ eμceνdσ
cd½Dμ; Dν� ð26Þ

where σcd ¼ 1
4
½γc; γd� are the generators of spinð4Þ.

Furthermore for KD fermions we have:

½Dμ; Dν�ψ ¼ ½Rμν;ψ �

where Rμν ¼ 1
2
Rab
μνσab. Plugging this expression into

Eq. (26) yields

ðγμDμÞ2ψ ¼ DμDμψ þ 1

2
eμceνdσ

cdRab
μν ½σab;ψ �:

The anomaly can then be written

AðxÞ ¼ lim
M→∞

Tr
X
n

e
�
ϕ̄nΓe

1

M2ðγμDμÞ2ϕn

�

¼ lim
M→∞

Tr
�
Γe

1

M2ðγμDμÞ2X
n

eϕnϕ̄n

�

¼ lim
x→x0

lim
M→∞

Tr
�
Γe

1

M2ðγμDμÞ2δðx − x0Þ
�

¼ lim
x→x0

lim
M→∞

Tr
�
eγ5e

1

M2ðDμDμþ1
2
eμceνdσ

cdRab
μν ½σab;:�Þ

× δðx − x0Þγ5
�
: ð27Þ

Expanding the exponential to Oð1=M4Þ to get a nonzero
result for the trace over spinor and flavor indices and acting

with e
1

M2DμDμ

on the delta function yields2

A ¼ 1

16π2

�
1

2!

��
1

4

�
trðeγ5σabσcdÞeμaeνbeρceλdRCD

μν REF
ρλ

× trðσCDσEFγ5Þ

¼ 1

128π2
ϵμνρλϵCDEFRCD

μν REF
ρλ ð28Þ

where we have also employed the result:

eϵabcdeμaeνbe
ρ
ceλd ¼ ϵμνρλ:

Thus the anomaly AðxÞ is just the Euler density and we find
that the phase transformation of the partition function under
the global Uð1Þ symmetry is then

Z → e−2iα
R

d4xAðxÞ ¼ e−2iαχZ: ð29Þ

This result for the anomaly agrees with a previous lattice
calculation that employed a discretization of the Kähler-
Dirac action on simplicial lattices [18]. The nonzero value
for the anomaly originates in the existence of exact zero
modes of the Kähler-Dirac operator. Such zero modes are
eigenstates of Γ and Eq. (24) shows that

R
d4xAðxÞ ¼

nþ − n− where n� denotes the number of zero modes with
Γ ¼ �1. Our final result is then a consequence of the index
theorem

nþ − n− ¼ χ: ð30Þ

On the sphere (which can be regarded as a compactification
of R4) the presence of this phase breaks the Uð1Þ to Z4.
This nonanomalous Z4 is then sufficient to prohibit fermion
bilinear mass terms from appearing in the effective action
of the theory. This compactification of the space on a
sphere is similar to the strategy that is used to show the
importance of instantons in the QCD path integral. It places
constraints on the terms that can appear in the effective
action as the radius of the sphere is sent to infinity. Four
fermion terms are allowed but require at least two flavors
of Kähler-Dirac field to be nonvanishing.3 Since each
massless Kähler-Dirac field can be written in terms of
two independent reduced fields this implies consistent,
interacting theories require four reduced Kähler-Dirac
fields. In four dimensions, and taking the flat space limit,

2See Appendix for more details.
3Of course we can go further and demand that the anomaly be

canceled for manifolds with other values of χ. For example, on
manifolds with χ ¼ −4 only eight fermion terms are allowed, only
twelve fermion terms on spaces with χ ¼ −6 etc. Other work on
higher order multifermion interactions can be found in [21,22].
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each such reduced field corresponds to four Majorana
fermions and we learn that such theories contain sixteen
Majorana fermions. It is not hard to generalize this argu-
ment to any even dimension.

IV. A GLOBAL Z4 ANOMALY

In the last section we found that a system of free Kähler-
Dirac fermions propagating on an even dimensional space is
anomalous and remains invariant only under aZ4 symmetry.
In this section wewill examine such a theory in the presence
of interactions and show that this residual Z4 symmetry
suffers from a global anomaly unless the theory contains
multiples of four reduced Kähler-Dirac fields.
From Eq. (10) it is clear that the effective action for a

reduced Kähler-Dirac fermion is given by a Pfaffian PfðKÞ.
From the property ½Γ; K�þ ¼ 0 it is easy to show that
detðKÞ ≥ 0. However since PfðKÞ ¼ � ffiffiffiffiffiffi

det
p ðKÞ there is an

ambiguity in the phase of the Pfaffian.
To analyze this in more detail we will consider the theory

on the nonorientable manifold RP4 and deform the theory
to remove the one zero mode. The simplest possibility is to
couple a pair of such reduced Kähler-Dirac fields to an
auxiliary real scalar field σ. The fermion operator is then
given by

M ¼ δabK þ σðxÞϵab: ð31Þ

We will assume that the total action (including terms
involving just σ) is invariant under a discrete symmetry
which extends the fermionic Z4 discussed in the previous
section:

Φ → iΓΦ; ð32Þ

σ → −σ: ð33Þ

Notice that this fermion operator is antisymmetric and real
and hence all eigenvalues of M lie on the imaginary axis.
Let us define the Pfaffian as the product of the eigenvalues
in the upper half plane in the background of some reference
configuration σ ¼ σ0 ¼ constant. By continuity we define
the Pfaffian to be the product of these same eigenvalues
under fluctuations of σ. Furthermore, it is easy to see that as
a consequence of the Z4 symmetry

ΓMðσÞΓ ¼ −Mð−σÞ: ð34Þ

This result shows that the spectrum and hence the deter-
minant is indeed invariant under the Z4 transformation
σ → −σ. But this is not enough to show the Pfaffian itself is
unchanged since there remains the possibility that eigen-
values flow through the origin as σ is deformed smoothly to
−σ leading to a sign change. To understand what happens
we consider a smooth interpolation of σ:

σðsÞ ¼ sσ0s ∈ ð−1;þ1Þ: ð35Þ

The question of eigenvalue flow can be decided by
focusing on the behavior of the eigenvalues of the
fermion operator closest to the origin at small s. In this
region the eigenvalues of smallest magnitude correspond to
fields which are constant over the lattice and satisfy the
eigenvalue equation:

σ0sϵabvb ¼ λva: ð36Þ

The two eigenvalues λ ¼ �iσ0s. Clearly these eigenvalues
change sign as s varies from positive to negative values
leading to a Pfaffian sign change. This can also be seen
explicitly from Eq. (34) since

Pf½Mð−σÞ� ¼ det½Γ�Pf½MðσÞ� ¼ −Pf½MðσÞ�: ð37Þ

We thus learn that the Pfaffian of the two flavor system
indeed changes sign under the Z4 transformation. On
integration over σ the value of any even function of σ
including the partition function would then yield zero
rendering expectation values of Z4 invariant operators ill
defined. This corresponds to a mixed global ’t Hooft
anomaly between the discrete Z4 symmetry and a gauged
Z2 reflection symmetry in the interacting theory.
Clearly this global anomaly will be canceled for

any multiple of four reduced Kähler-Dirac fields provided
that they couple via a Yukawa term of the form
σðxÞΦaCabΦb with C a real, antisymmetric matrix. In that
case C can be brought to a canonical antisymmetric form
ðλ1iσ2 ⊗ λ2iσ2 ⊗ …Þ using a nonanomalous orthogonal
transformation. Positivity of the Pfaffian under σ → −σ
then depends on the Yukawa interaction in M containing
an even number of such 2 × 2 blocks. Decomposing
the reduced Kähler-Dirac field in a flat background into
spinors we see that anomaly cancellation occurs for eight or
sixteen Majorana fermions in two and four dimensions
respectively.
The spectral flow argument we have given is similar to

the one given by Witten in showing that a single Weyl
fermion in the fundamental representation of SUð2Þ is
anomalous [23].

V. SYMMETRIC MASS GENERATION

The cancellation of anomalies is crucial to the problem
of giving masses to fermions without breaking symmetries.
Since anomalies originate from massless states then any
phase where all states are massive in the IR must neces-
sarily arise from a UV theory with vanishing anomaly. In
particular, it is only possible to accomplish such symmetric
mass generation if one cancels off the ’t Hooft anomalies
for all global symmetries [24,25].
In the previous section we have seen that only multiples

of four reduced Kähler-Dirac fields have vanishing Z4
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anomaly. Thus we require that any interactions we intro-
duce in the theory respect this symmetry. The simplest such
interaction is a four fermion operator as we have already
discussed. It corresponds to adding a simple

R
σ2 term to

the Yukawa action discussed in the previous section.
We should note however that cancellation of anomalies is

a necessary condition for symmetric mass generation but it
may not be sufficient—the fact that four fermion terms are
perturbatively irrelevant operators in dimensions greater
than two may mean that a more complicated scalar action is
required—indeed this was the finding of numerical work in
four dimensions where a continuous phase transition to a
massive symmetric phase was found only by tuning an
additional scalar kinetic term [26].
With this caveat it is useful to give examples of possible

four fermion terms that might lead to symmetric mass
generation For example, one can imagine taking four
reduced Kähler-Dirac fields transforming in the fundamen-
tal representation of a SOð4Þ symmetry and employ the
term

Z
dDx

ffiffiffi
g

p ð½Φa;Φb�þÞ2 ð38Þ

where the þ subscript indicates that fermion bilinear is
projected to the self-dual (1,0) representation of SOð4Þ. In
practice this can be implemented in flat space via a Yukawa
term which is given in the matrix representation by

Z
dDxGTrðΨaðxÞΨbðxÞÞþσabðxÞ þ

1

2
σ2abðxÞ: ð39Þ

Notice that this Yukawa interaction is mediated by a scalar
σþab that also transforms in the self-dual representation
of SOð4Þ

σþab ¼
1

2

�
σab þ

1

2
ϵabcdσcd:

�
ð40Þ

In the next section we show how Kähler-Dirac theories
can be discretized in a manner which leaves the anomaly
structure of the theory intact and results in theories of
(reduced) staggered fermions. The four fermion interaction
that results from integrating over σþ in Eq. (39) has been
studied using numerical simulation and the results of this
work indeed provide evidence of a massive symmetric
phase in dimensions two and three [13–16] while an
additional scalar kinetic operator was also needed in four
dimensions [26].
As another example one can take eight flavors of reduced

Kähler-Dirac field which are taken to transform in the
eight dimensional real spinor representation of spinð7Þ. An
appropriate Yukawa term which might be used to gap those
fermions is given by

Z
dDxTrðΨaðxÞΓab

μ ΨbðxÞÞσμðxÞ ð41Þ

where Γμ; μ ¼ 1…7 are the (real) Dirac matrices for
spinð7Þ [8]. This interaction was shown by Fidkowski
and Kitaev to gap out boundary Majorana modes in a
(1þ 1)-dimensional system without breaking symmetries
[5]. This interaction may also play a role in constructing
Kähler-Dirac theories that target grand unified theory
(GUT) models. For example, if one is able to gap out
the ðE;E0Þ blocks occurring in Eq. (18) for a reduced
Kähler-Dirac field valued in spinð7Þ the remaining light
fields live in the representation (8, 2, 1). If the spinð7Þ is
subsequently Higgsed to spinð6Þ ¼ SUð4Þ then this rep-
resentation breaks to ð4; 2; 1Þ ⊕ ð4̄; 1; 2Þ which is the field
content of the Pati-Salam theory [27].

VI. EXACT ANOMALIES FOR LATTICE
FERMIONS

One of the most important properties of the Kähler-Dirac
equation is that it can be discretized without encountering
fermion doubling [28,29]. Furthermore this discretization
procedure can be done for any random triangulation of the
space allowing one to capture topological features of the
spectrum. The idea is to replace continuum p forms by p
cochains or lattice fields living on oriented p simplices in the
triangulation. The exterior derivative and its adjoint are
mapped to coboundary and boundary operators which act
naturally on these p-simplices and retainmuch of the structure
of their continuum cousins—for example they are both
nilpotent operators. Homology theory can then be used to
show that the spectrum of the discrete theory evolves
smoothly into its continuum cousin as the lattice spacing is
sent to zero—there are no additional latticemodes or doublers
that obscure the continuum limit. Furthermore, the number of
exact zero modes of the lattice Kähler-Dirac operator is
exactly the same as found in the continuum theory. This
immediately suggests that the anomaly encountered earlier
which depends only on the topology of the background space
can be exactly reproduced in the lattice theory. This was
confirmed in [18] where a lattice calculation revealed
precisely the samegravitational anomalyderived in this paper.
If one restricts to regular lattices with the topology of the

torus it is straightforward to see that the discrete Kähler-
Dirac operator discussed above can be mapped to a
staggered lattice fermion operator on a lattice with half
the lattice spacing [1]. One simply maps the p-form
components located in the matrix Ψa into a set of single
component lattice fermions χa via

ΨðxÞ ¼
X
nμ¼0;1

χðxþ nμÞγðxþnμÞ ð42Þ

where γx ¼ Q
D
i¼1 γ

xi
i and the summation runs over the 2D

points in a unit hypercube of a regular lattice. If one
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substitutes this expression into the continuum kinetic term,
replaces the continuum derivative with a symmetric finite
difference and carries out the trace operation one obtains
the free staggered fermion action. Indeed the operator Γ
acting on forms then becomes the site parity operator

ϵðxÞ ¼ ð−1Þ
P

D
i¼1

xi and the Uð1Þ symmetry of the massless
Kähler-Dirac action is just the familiar Uð1Þϵ symmetry of
staggered fermions. Indeed, it is possible to repeat the
arguments of section IV to show that a staggered fermion
theory equipped with a four fermion term is only well
defined for multiples of four reduced staggered fermions
under which the classical Z4 symmetry is preserved. This
helps to explain why these theories seem capable of
generating a massive symmetric phase [13–16,26].

VII. SUMMARY

In this paper we have shown that theories of massless
Kähler-Dirac fermions suffer from a gravitational anomaly
that breaks a Uð1Þ symmetry down to Z4 in even dimen-
sions. We derive this anomaly by computing the symmetry
variation of the path integral for free Kähler-Dirac fermions
propagating in a background curved space. The remaining
Z4 prohibits fermion bilinear mass terms from arising in the
quantum effective action. We then use spectral flow argu-
ments to argue that multiples of four flavors of Kähler-
Dirac are needed to avoid a further global anomaly in this
Z4 symmetry in the presence of interactions. Since four
fermion interactions are allowed by these constraints we
argue that they may be capable of gapping such systems
without breaking symmetries.
In flat space each reduced Kähler-Dirac field trans-

forming in a real representation can be decomposed into
2D=2 Majorana fermions. Thus anomaly cancellation in
the interacting theory dictates a very specific fermion
content—multiples of eight and sixteen Majorana fermions
in two and four dimensions respectively. Remarkably, this
fermion counting agrees with independent constraints
based on the cancellation of the chiral fermion parity
and spin-Z4 symmetries of Weyl fermions in two and four
dimensions [3,11].4

Finally we discuss how this anomaly can be realized
exactly in lattice realizations of such systems and empha-
size how the results in this paper shed light on the
appearance of massive symmetric phases in recent simu-
lations of lattice four fermion models. The appearance of an
anomaly in a lattice system is notable as it contradicts the
usual folklore that anomalies only appear in systems with
an infinite number of degrees of freedom.

While the anomaly vanishes for closed odd dimensional
manifolds it is nonzero for odd dimensional manifolds with
boundary. For example the Euler characteristic of the three
ball is χðB3Þ ¼ 1 and the symmetry in the bulk is hence
broken to Z2 allowing for the presence of mass terms.
However the boundary fields living on S2 possess an
enhanced Z4 symmetry prohibiting such bilinear terms
and we learn that such boundary fields can instead be
gapped using four fermion interactions.
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APPENDIX: DELTA FUNCTION

Following [2]

δðx − x0Þ ¼
Z

d4k
ð2πÞ4 e

ikμDμσðx;x0Þ

where Dμ is now the Kähler-Dirac operator and σðx; x0Þ is
the geodesic biscalar [a generalization of 1

2
ðx − x0Þ2 in flat

space] defined by

σðx; x0Þ ¼ 1

2
gμνDμσðx; x0ÞDνσðx; x0Þ

with

σðx; xÞ ¼ 0

and

lim
x→x0

DμDνσðx; x0Þ ¼ gνμ:

Now,

D2δðx − x0Þ ¼ Dν

Z
d4k
ð2πÞ4 ½ikλDνDλσ

þ 1

2!
fðDνðik ·DσÞÞðik ·DσÞ

þ ðik ·DσÞðDνðik ·DσÞg þ � � �� ðA1Þ

¼
Z

d4k
ð2πÞ4 ½D

νðikλDνDλσÞ

þ ðikλDνDλσÞðikρDνDρσÞ þ � � ��: ðA2Þ

4One can also decompose a Kähler-Dirac fermion into two and
four Majorana spinors in one and three dimensions respectively.
Building four fermion operators for these Kähler-Dirac fields
then yields theories with eight and sixteen Majorana spinors
which is also in agreement with results from odd dimensional
topological insulators.
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Taking limx→x0 , other terms represented by … vanish, and
we obtain

D2δðx − x0Þ ¼
Z

d4k
ð2πÞ4 ½ðikλg

λ
νÞðikρgνρÞ þDνðikλgλνÞ�

ðA3Þ

¼
Z

d4k
ð2πÞ4 ½ðikνÞðik

νÞ þ iDνðkνÞ� ðA4Þ

¼
Z

d4k
ð2πÞ4 ½−k

2 þ iDνðkνÞ�: ðA5Þ

Which implies

lim
x→x0

eD
2

δðx − x0Þ ¼
Z

d4k
ð2πÞ4 e

½−k2þiDνðkνÞ�: ðA6Þ

Hence,

lim
x→x0

eD
2=M2

δðx − x0Þ ¼
Z

d4k
ð2πÞ4 e

½−k2þiDνðkνÞ�=M2 ðA7Þ

¼M4

Z
d4k
ð2πÞ4e

½−k2þiDνðkνÞ=M� ðA8Þ

¼M4
1

16π2
: ðA9Þ
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