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We investigate the renormalon ambiguity from bubble-chain diagrams in the isovector unpolarized
quasiparton distribution function (PDF) of a hadron. We confirm the assertion by Braun, Vladimirov, and
Zhang [Phys. Rev. D 99, 014013 (2019)] that the leading IR renormalon ambiguity is an O(AéCD /x2P?)
effect, with x the parton momentum fraction and P, the hadron momentum, together with a new

O(8(x)Agcp/P?) contribution such that the quark number is conserved. This implies the convergence of

the perturbative matching kernel between a quasi-PDF and a PDF would eventually fail for small x.
However, in both the R-scheme designed to cancel the leading IR renormalon and the typically used
regularization-independent momentum subtraction scheme in lattice QCD for the same quasi-PDF, we find
good convergence in the kernel based on three-loop bubble-chain diagram analyses. These results are
encouraging for the quasi-PDF program. However, firm conclusions can only be drawn after the complete

higher loop QCD calculations are carried out.

DOI: 10.1103/PhysRevD.104.094501

I. INTRODUCTION

Large momentum effective theory (LaMET) enables
computations of parton distributions of hadrons on a
Euclidean lattice. LaMET relates equal-time spatial corre-
lators (whose Fourier transforms are called quasidistribu-
tions) to light cone distributions in the infinite hadron
momentum limit [1,2]. For large but finite momenta
accessible on a realistic lattice, LaMET relates quasidis-
tributions to physical ones through a factorization theorem,
which involves a matching coefficient and power correc-
tions that are suppressed by the hadron momentum. The
proof of factorization was developed in Refs. [3-5].

Since LaMET was proposed, a lot of progress has been
made in the theoretical understanding of the formalism
[4,6-62]. The method has been applied in lattice calcu-
lations of parton distribution functions (PDFs) for the
nucleon [20,26,27,29,63-76], = [77-79], and K [80]
mesons. Despite limited volumes and relatively coarse
lattice spacings, the state-of-the-art nucleon isovector quark
PDFs, determined from lattice data at the physical point,
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have shown reasonable agreement [66,67] with phenom-
enological results extracted from the experimental data.
Encouraged by this success, LaMET has also been applied
to AT [81] and twist-three PDFs [82-84], as well as gluon
[85], strange, and charm distributions [86]. It was also
applied to meson distribution amplitudes [21,87,88] and
generalized parton distributions (GPDs) [89-92]. More
recently, attempts have been made to generalize LaMET
to transverse momentum dependent (TMD) PDFs [93—100]
to calculate the nonperturbative Collins-Soper evolution
kernel [95,101,102] and soft functions [103] on the lattice.
LaMET also brought renewed interest in earlier approaches
[104-110] and inspired new ones [111-126]. For recent
reviews, see, e.g., Refs. [127-131].

The quark PDF in a proton is related to a light cone
correlator
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where the proton momentum P* is along the z direction,
P* = (P°,0,0, P?), and & = (¢ + z)/+/2 is the light cone
coordinate. x is the parton momentum fraction relative to
the proton. A™ is a gauge field and y is a quark field. The
expression in Eq. (1) is boost invariant along the z
direction. The corresponding quasi-PDF is related to an
equal time correlator [1,2]
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LaMET relates the flavor nonsinglet quark quasi-PDF and
PDF of a hadron through the factorization theorem

O(x.P, N)= /1ﬂz<f,ypz,/\’,/\> 0(y,A) +(’)(#>,
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(3)

where A’ and A are renormalization parameters and PDF is
defined in the infinite momentum frame with P, — oo
[1,2]. The (quasi-)PDF for negative momentum fraction
corresponds to the (quasi-)PDF of the antiparticle. In
particular, Q(—|y|,A) = —0(|y|,A) with O denoting an
antiquark PDF.

Let us first discuss the case that both the quasi-PDF and
the PDF are defined in cutoff schemes with UV cutoff A’
and A, respectively. The factorization theorem is based on a
large momentum expansion in powers of 1/P_.. The
O(1/P?) correction has a similar convolutional structure
to the first term: >,  Z,(A,A) ® Q,(A)/P?72. The
scales follow the hierarchy A’ > P, > A > Agcp, such
that the short distance (compared with 1/A) physics is
encoded in the matching kernels (or Wilson coefficients) Z
and Z, while the long distance physics is encoded in the
matrix elements Q and Q, with Q of twist-2 and Q,, of
twist-n. In this series, the long and short distance physics
are strictly separated by the scale A.

However, the PDFs extracted from experimental data are
typically defined in the modified minimal subtraction (MS)
scheme. This is because the PDFs convolute with Wilson
coefficients to form observables in high energy experi-
ments, and it is technically much easier to compute the
Wilson coefficients to higher loops in MS than a hard cutoff
scheme. However, there is no strict separation between long
and short distance physics in the MS scheme. This means
the Wilson coefficients could still contain nonperturbative
physics called renormalons [132-134] to cause slow
convergence in their perturbative expansions.

Mathematically, the renormalon effect could arise when
the Borel transform is applied to improve the convergence
of a perturbation series. Then an inverse Borel transform is
applied after the Borel series is summed. However, some-
times the bad convergence of the series cannot be tamed by
the Borel transform but appears as ambiguities in the
inverse Borel transform. When Q is defined in the MS
scheme with renormalization scale u and the quasi-PDF Q
is defined in the regularization-independent momentum
subtraction (RI/MOM) scheme [13] with scale 4/, Eq. (3)
can be rewritten as

- Idy [(x 1
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O(x, P, p) L P\Ge P H Oy, u) P

(4)

Since scale separation is not complete in MS and R/MOM,
low energy nonperturbative physics could still exist in Z,
which slows down the convergence of the perturbative
computation of Z. It can be shown that by resumming a
class of bubble-chain diagrams in Z with the help of the
Borel transform, there are ambiguities in the inverse Borel
transform that behave like nonperturbative functions
Q,/P"* with n > 4.

Since these ambiguities are associated with different
choices of the integration paths in the inverse Borel
transform, they are not physical. They should be canceled
by the Q,, terms. Therefore all the Q,,’s need to be defined
consistently. An independent determination of a higher
twist Q,, is not meaningful unless the treatment of renor-
malon ambiguity in the lower twist Q, is specified.
Furthermore, one can estimate the size of Q, by the size
of the renormalon ambiguity in Z. It was through this
analysis that Braun, Vladimirov, and Zhang asserted that the
leading IR renormalon ambiguity was an O(Agcp/x*P?)
effect [6], which was larger than the previous estimation
O(Agcp/ P?) based on dimensional analysis by a factor of

1/x?. Therefore, this result has a big impact to the LaMET
program. This motivates us to reinvestigate the renormalon
problem in quasi-PDF.

II. RENORMALON AMBIGUITY IN QUASI-PDFS

In this section we first briefly review the Borel transform
and the possible ambiguity in its inverse transformation.
After the discoveries of renormalons [132-134] and fur-
ther conceptual developments [134—139], higher order
behaviors of perturbation series in the context of renorma-
lon ambiguities became relevant phenomenologically
[140-142]. (See, e.g., Ref. [143] for a review.) We will
compute the renormalon ambiguity caused by the bubble-
chain diagrams to the quasi-PDF. We will compute the
Feynman diagrams in momentum space and then compare
our result with the coordinate space computation obtained
in Ref. [6].

We start with writing the matching kernel of Eq. (4) as a
series expansion in the strong coupling constant a,

20 -a0-9+3 (5) =0, ©
n=1

where we have only kept the £ = x/y dependence and
dropped the other quantities for brevity. In the MS scheme
with renormalization scale g,
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where ff, = %N c— % ny, N being the number of colors and
ny being the number of quark flavors, and Agcp is the
strong interaction scale. The series is more convergent after
the Borel transform

B[Z($)] = Pod(

+Z< ) Z"*‘ 8

After the Borel series is summed, one can perform an
inverse Borel transform back to the original series:

4zw
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If the integrant has poles on the real positive w axis, then
the above integral will depend on the path of integration on
the complex w plane. This uncertainty is called renormalon
ambiguity. In an operator product expansion with the MS
scheme, the renormalon ambiguities in the lower order
Wilson coefficients will be canceled by the higher order
matrix elements.

The existence of the renormalon ambiguity is usually
demonstrated in the large n, limit with powers of (a,ny)
counted as O(1) and summed to all orders. Then renor-
malon ambiguity can arise in the a, expansion of these
diagrams. However, it is also well known that QCD is not
asymptotically free in the large n, limit. Therefore, even
though the finite n, contribution can be formally included
by an 1/n, expansion, this expansion is not convergent in
QCD. However, if we take the QCD f function as a
reference, it is probably reasonable to expect that sublead-
ing 1/n; corrections are about the same magnitude as the
leading order. If this expectation turns out to be true, then
the large n; analysis will still be useful. Therefore, we focus
on the leading diagrams in the large ny limit to study the
renormalon ambiguity in the matching formula between a
quasi-PDF and a PDF defined in Eq. (4).

When (a,ns) is counted as O(1), the bubble-chain
diagrams that dress the gluon propagator in the second
row of Fig. 1 are all O(1). The gray bubble, which is the

Z(¢) =

s o] '
! !

FIG. 1.

gluon vacuum polarization, becomes a fermion loop dia-
gram in the large n, limit. We will add the gluon loop
contribution to the gluon vacuum polarization as an 1/n;
correction as performed in [6,143]. This is formally a
subleading effect in the 1/n, expansion, but numerically
important in QCD—it changes the sign of the QCD beta
function from positive to negative. Therefore, the grey
bubble in Fig. 1 is the gluon vacuum polarization at one-
loop [132,133,143,144]

nee) - -2 (n -3 o

where k is the gluon momentum and the 5/3 factor is

associated with the MS scheme. Summing the bubble
chains yields a factor modifying the gluon propagator:

1 dr [odw _sm s, (@ \Y
- 7 5 Boas T3 LA , 10
I-1(&)  a A b’ (—k2 (10)

which has a form of an inverse Borel transform with the
A2
QCD

(“" ) v
factor Wthh is moved to Eq. (12). Therefore, to compute
the diagrams of Fig. 1, one just has to replace the gluon
propagator by a dressed one to obtain the Borel series,

wo.
Borel series ** We will rewrite it as (—%3) times a

—Arw
L ) S (U MY
_k2 — je (—k2 _ i€)1+w (_k2 _ i6)1+w ’

where Eq. (6) is used.

Below we list the unpolarized isovector PDF and quasi-
PDF results of these diagrams. The Borel series of the
bubble-chain diagrams in Fig. 1 yields the quark-level
quasi-PDF g(x, p) [defined similarly to Eq. (2) but with the
external hadronic state replaced by a single quark state of
momentum p, |,

A(z)CD W 3w

B[EI@C,P)] - 8CCF< pz > ehoas 3
1 I'(1/2 -
XEH{ (c.p )]y, (12)

!

Bubble-chain diagrams for PDF and quasi-PDF for single quark states. The single lines are quark propagators, curly lines are

gluon propagators, and double lines are Wilson lines. The gray bubbles are gluon vacuum polarization diagrams at one-loop.
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where p=—p?/p? is the off-shellness parameter for external quarks. ¢ is the quark spinor factor ¢ = > uhially

K 41’:
Cr = (N2 —=1)/2N, with N, the number of colors. The plus function
[Flxpow)), = Foxpow) = ate=1) [~ deFee.pom). (13)
We have computed f up to an integral of the Feynman parameter y,
. I 14 22 p »" wx(l —y)y"~!
f(x,p,W)z/ dy{( - > +
0 I—x  2(1=x)) [(x=y)* +y(L=y)p"> " [(x=y)* +y(1 = y)p]"+'
1 1—x N 1 1 wy~!
w—1) [ =x["2 2w =11 =x[(x—y)* +y(1 = y)p]"/?
ytw p(1 = x)y"! _GAWGHwW)  xpP (1 =y
2014+ w) [(x=y)> +y(1=y)p 2 2(14w)  [(x=y)* +y(1=y)p]"
1
5+w px(1—y)y» 1 1
-2 . 14
2 [(X _ y)Z +y<1 _ y)p}w+3/2 + 2w —1 |1 _ x|1+2w ( )

It is easy to see that for positive and finite p, if x is  corresponding to the UV divergence of the Wilson line self-
different from O or 1 and w is different from 1/2 or —1, then  energy diagram, which can be subtracted away by the
the integrant in the above integral will not diverge. For  renormalization procedure, such as the RI/MOM scheme
x = 0, 1, the y integration diverges when w is bigger thana  used in this work. Therefore we do not consider it further
certain value. To see the poles in w, one performs the y  here. The w = —1 pole is not on the path of integration of
integration by assuming w is small enough such that the y  the inverse Borel transform and hence does not cause any
integration is finite. Then an analytic continuation of w is ~ ambiguity.
performed to look for poles in w. After this exercise, no Setting the external quark on-shell (p — 0), Eq. (14) for
additional pole at x =0, 1 is found. The w = 1/2 pole is  the unphysical region (x > 1 and x < 0) becomes
|

- 1—x+x? 1 1 1 x 1
f(x,O,W):< I—x —Wx> x|1+2wl+w2F1<1+W,1+2W,2+W,x)+|x|1+2W2F1<W,1+2W,1+W,x>

1 1 1
1 _x|x|1+2w2+ w

1 1
2w — 1|1 = x|+ (15)

1
2F1<2+w,1+2w;3+w;—> +
X

where , F is a hypergeometric function. There is no IR renormalon in this region, except the contribution near x = 1 which
yields the delta function in Eq. (20). The UV renormalon at w = 1/2 can be subtracted away by the renormalization
procedure discussed above and will not be discussed further.

In the physical region 0 < x < 1, IR renormalons exist. They correspond to single poles of f at all positive integer values
of w:

F(x,0.w) = <71 _sz—wx) [—1 +EDPTENd =2w) <_1>H2w—1 F1<1 +w,1+2w;2+w;%ﬂ

1—x 2x" r(1—w) X 14+ w?
L+ (=) D(1 +w)D(1 = 2w) (=12 1
- — F 14+ 2w; 1 -
T r'(1-w) x) 5! WA by
1 [1+ (=)™ D(=2w)02+w)  [=1\1#2 ] 1
— — F |2 1 +2w;3 ;=

l—x[ Xl rR2-w) x 2+ w2 ! T A S
1 1

. 16
+2w—1|1—x|2W+1 (16)

The leading IR renormalon ambiguity in the inverse Borel transform of § is proportional to the residue of the single pole at
w = 1. Equations (15) and (16) yield
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(== 0.0) - X RSB (2. 0]

A=) o@—wp).  (17) Po

1 —x|" _F 5 AéSD i, [9()6)9(1 —x)—6x-1)
1—x n

w=l1

=0(x)0(1 —x) —

(21)

. 0 Pz
When w — 1, the term (1 —w)/|1 — x|" is zero for x # 1
but undetermined for x = 1. It is in fact a delta function

) We stress that the IR renormalon is associated with the IR
since

divergence generated when all the particles in the loop

i become on-shell simultaneously. This is purely an IR

lim dx;ww = 1. (18) effect. Therefore, there is no dependence on the UV
w=1 J1- [T — x| regulator in Eq. (21).

After discussing the quasi-PDF, we now turn to the PDF.
The quark-level PDF ¢(x, _”—;2) is defined similarly to Eq. (1)
1 ®© (1 —w)tD) e ] — but with the external hadronic state replaced by a single

I Ww =6(1-x)+ Z ( W,) < ! 1‘ x|> . quark state of momentum p,,. The Borel series of the bubble-

1 —x] n=0 " L= /4 chain diagrams in Fig. 1 for a quark-level PDF can be

(19) obtained by taking p, to infinity before integrating the
spatial loop momenta in other directions. The result is

This is consistent with the result of Ref. [145]:

Equation (17) yields

B /"2 8CC A2QCD ﬂ‘toﬂJr%w F(W + 6)
. ~ X,— — - = ePoos -~ 7
}Vlfﬂ(] —x)(1=w)f(x,0,w) = 0(x)0(1 —x) = 5(1 — x), 1 -p? F\=x(1=x)p? r(1+w)
2
(20) X {f <x, e,”—z , WH ) (22)
_p +

and the leading IR renormalon ambiguity in the inverse
Borel transform of g is thus given by where

f(x,e,_’u—;z,w> - (%)exw{(l — )1 =x+w(l —x) = (w+e)]

1—x

. (23)

- —

[ e )

and where the dimensional regularization parameter € is  proportional to 1/p? as shown in Eq. (21), vanishes in this
kept because we want to perform a w expansion later, limit.

and this helps to keep the factor I'(w + ¢) regulated. We can now study how this leading renormalon ambi-
The quark-level PDF does not have any IR renormalon  guity 8Q,., affects the quasi-PDF of a hadron, 0, through
ambiguity as there is no pole in the Borel series in  the matching kernel of Eq. (4). The kernel can be converted
the positive w real axis. This result is expected, from Eq. (21) by replacing the quark momentum p, with
since the PDF is corresponding to a quasi-PDF in the  yP_, P, being the hadron momentum, and replacing x with

p, — oo limit and the leading IR renormalon, which is| x/y, such that

50,en(x. P.) = ﬁﬁoeWCF Aj%gD /_i |yd|§2 F(l - '961(%1; o ;_C')] +Q(y)
= x e, e [N L —an -0 L) couv
~ % e, AQP [ el - a0 -0 oo - o)
- % i, AQP { [ dei 50/ - 0] + 00 - x| (24)
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—— renormalon ambiguity 6éren(X,P1)
— PDF Q(x)

— quasiPDF Q(x,P;)

FIG.2. The leading renormalon ambiguity §Q,., (x, P.) in the proton isovector quasi-PDF together with the corresponding PDF, Q(x),
and the one-loop quasi-PDF Q(x, P.), all in the MS scheme. 8Q,, (x, P.) is generated with Eq. (24), P, = 1.5 GeV, and Q(x) from
Ref. [146] (CJ12). Q, which is also shown in Fig. 3, is generated by convoluting Q(x) with the one-loop matching kernel. §Q,, (x, P.)
has a large negative contribution near x = 0 such that the area under the curve is zero. This is a consequence of quark number
conservation. The size of Qe (x, P.) is bigger than Q(x, P.) for almost the entire region of —0.3 < x <0.1.

where the integration limit |x| in the second line can be
replaced by 0 since Q(x) vanishes outside of x = [-1, 1]
and we have expanded (6Q(x/¢&) — Q(x))/(1 = &) around
& =1 before it acts with §(1 — &) in the fourth line.

The plus function in Eq. (24) ensures quark number
conservation, such that [ dx8Q,, = 0. One can show the
first two terms in the last line of Eq. (24) cancel after
integrating over x, and the last two terms are proportional to
4 (Q(x)/x), which yields vanishing boundary terms after
integrating over x. Our Eq. (24) is the same as the
coordinate space calculation in Ref. [6].1

In Fig. 2, the leading renormalon ambiguity Qe (x, P)
in the proton isovector quasi-PDF is shown, together with
the corresponding PDF, Q(x), and the one-loop quasi-PDF
Q(x, P.), all in the MS scheme. Numerically, 6Q,.,(x, P.)
is a significant effect. Its size is bigger than Q(x, P,) for
almost the entire region of —0.3 < x < 0.1. In the compu-
tation, we have used Q from the proton isovector [i.e., the
(u — d) quark combination] PDF extracted by the CTEQ-
JLab Collaboration (CJ12) [146]. O, which is also shown in
Fig. 3, is computed with Q(x) convoluted with the one-loop
matching kernel. The renormalon ambiguity 6Q,., of O is
computed with Eq. (24) with P, =15 GeV and
Agep = 0.254 GeV. The areas under Q and O are both
one, the isovector charge, while the area under 6Q,, is
zero, with a large negative contribution near x = 0. This is
the result of fermion number conservation.

The singular behavior near x = 0 requires the introduc-
tion of an IR regulator

0(x) = Q(x)0(|x| - [&]). (25)

'Except our prefactor of Q(x) is —x rather than —|x| as in
Ref. [6]. But if one starts from the first line of Eq. (61) of Ref. [6],
then the prefactor Q'(x) will be —x. So this should be a typo of
Ref. [6].

When € — 0 is taken at the end of the calculation, the
contribution for |x| < |€| becomes §(x) with a divergent
prefactor. This illusive contribution could easily be over-
looked in a numerical analysis. But it is critical for the
demonstration of quark number conservation, which is a
property of the bubble-chain diagrams that we considered.

Both 80, (x, P,) and Q(x) have support in [—1, 1].
When x - O or x — 1,

2
AQep

50 , P —_—
Qren(x Z) & x2(1 —X)P%

Q(x). (26)
which is consistent with Ref. [6]. The quasi-PDF Q(x, P.),
however, has support for all values of x. Hence 5Q,, has no
1/(1 = x) enhancement compared to Q. Therefore,

2

N A -
5Qren(x. P.) ¢ 2 O(x. P.). (27)
x“Pz

Since the renormalon ambiguity discussed above
should be canceled by power corrections, one can rewrite
Eq. (4) as

qms (x)

— tree

— 1-loop
1+2-loop

— 1+2+3-loop

FIG. 3. Tsovector proton quasi-PDFs in the MS scheme derived
from convoluting the CJ12 proton PDF [146] (shown as the tree
level result) with the matching kernels computed with bubble-
chain diagrams with a; = 0.283, P, = 1.5 GeV,and y = 3 GeV.
The convergence of the series expansion is slow.
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~ Idy (x
Q(X’Pz’/"/) = /lmz<§’ypz’//7ﬂ)Q(y’ﬂ)

o)

where the first power correction has no 1/(1 — x) factor
and the second power correction has a divergent prefactor.

III. REMOVING THE LEADING
RENORMALON AMBIGUITY

Although the bubble-chain diagrams employed in the
analysis above might not be numerically the dominant
|

- P20(x, P, ') = P2D(x, P, N)

QR(X,P,P/,A/):
z z P%—P'ZZ

contribution in QCD, we still expect that they will generate
all structures of the renormalon ambiguity [140]. Hence
Eq. (28) should be quite robust and is expected to be
free from the shortcoming of the bubble-chain diagram
analysis.

The R-scheme proposed in Ref. [147] is designed to
remove the leading renormalon ambiguity in a general
operator product expansion. In our case, the leading
renormalon ambiguity in the matching factor Z and the
leading power corrections are both proportional to
1/P? in Eq. (28). These 1/P? terms can be removed in
the following combination:

a;In(P./P;) 1

- / B {PEZ(,"évsz»A’»ﬂ) ~ P2Z(5. yPL.N )
PP

—1 ]yl

The remaining power corrections can in principle be
removed in a similar way as well. The logarithmic term
comes from the (a,InP,)/P? correction in the kernel Z

which can be recasted to anomalous dimension y such that

the leading renormalon ambiguity in Z scales as 1/ P§2+y>.

This power can be removed by replacing 2 — 2 + y in the
square brackets. Now the remaining power correction is
O(1/P?P?) ~ O(1/P%). So the procedure can be applied
again to remove this power correction. However, the
computation of the anomalous dimensions beyond the
bubble-chain diagrams could be a challenge in removing
subleading renormalon ambiguities with this method.

The authors of Ref. [6] also proposed a method to
remove the leading renormalon ambiguity by replacing the
y® of Eq. (2) with a combination of y* and y’. The idea is
that the PDF can be extracted using either y* or y* matrix
element. However, the leading renormalon ambiguity
contributes differently in the two cases. By choosing a
specific combination of the y* and y’ matrix elements, the
leading renormalon ambiguity is largely canceled.
However, knowing what combination to use is difficult
beyond the bubble-chain approximation. Also, this pro-
posal has another technical issue. On a lattice, the matrix
element using y* will mix with another operator of the same
dimension that needs to be removed, while the matrix
element using y’ does not have this problem. Therefore,
typically y’ is used in lattice computations. However, for the
purpose of this work, both of the choices are equivalent
since the analysis is performed in the continuum.

Jovn+ (55 )

IV. BUBBLE-CHAIN CONTRIBUTIONS IN FIXED
ORDER PERTURBATIONS

In the previous section, we have seen that the leading IR
renormalon ambiguity of Eq. (24) yields 1/P? power
corrections of Eq. (28) with singular prefactors after
summing the bubble-chain diagrams to all orders in «.
These 1/P? terms are canceled in the R-scheme by design
in Eq. (29). It is natural to ask, if the cancellation works
when the series is summed to all orders in ag, can the
cancellation also happen if the series is truncated to a fixed
order? It seems the answer should be yes if the cancellation
works for the infinite series and for different values of a;
(within the radius of convergence), and then the cancella-
tion ought to happen at each order in «, as well.

To answer this question, we need multiloop corrections
to the PDF and quasi-PDF. However, complete results
beyond one-loop do not exist yet because of their technical
difficulty. Therefore, we resort to large ny expansion again
and only include the bubble-chain diagrams. As we will see
in Fig. 4(b), the R-scheme could indeed introduce a large
cancellation of the bubble-chain diagrams at each order
in a,. This is consistent with what Ref. [147] advocated and
demonstrated that the R-scheme indeed improved the
convergences of QCD perturbation.

Now we show how to extract the fixed order result from
the bubble summed result. The bubble-chain contribution
to the (n + 1)th loop quasi-PDF in the MS scheme can be
extracted by expanding the Borel series of Eq. (12) in
powers of w:
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qMSR(X)
3.0
25
2.0 — tree
— 1-loop
1+2-loop
— 14+2+3-loop

05 \——tt— 5

(a)

FIG. 4.

amsR(X)

tree

1-loop
1+2-loop
1+2+3-loop

-0.5)-

(b)

Isovector proton quasi-PDFs in MS with the R-scheme for (a) P, =1 GeV and (b) P. =3 GeV, a;, = 0.283, P, = 1.5 GeV,

and ;¢ = 3 GeV. Rapid convergence of the series expansion is seen in (b).

. n+l1 d n _
7 ) = (22)" i () Bl
n+1 n
= 8LCy (Z?) 5.

Z<k> <1 er5/3> Crsi (x.p), (30)

0

where

w=0

Ck+1 (x,p) = IF

d {(4x\/):v11:(1/2+w) i }

[f(x. o W)l (31)

w=0

The bubble-chain contribution to the (n + 1)th loop PDF in the MS scheme is

q<)(_”7) ()" () Blalow

e (3

k=

where
2 k
u d
C —
. (x —p2> dwk {

The results for G, g™, together with the MS to MS

matching kernel

2
mP2)_1
g (5’/42) 4@“[

for n =1, 2, 3 are listed in Appendix.

These matching kernels are free from IR divergence from
diagram-by-diagram cancellations. Note that we should
have also included the convolutlon term zM ® gV in the

Z? kernel and the Z? ® ¢! ' ® ¢ term in the

( ) kernel were we to 1nclude all the n-loop diagrams
rather than just the bubble-chain diagrams. But here we

(&p=0)—q" (& —*/p?)]  (34)

I(w+e)
I'(1+w)

w=0

( )( 1—75;;;;2) n_kaH(xv _”—;z> (32)

(33)

w=0,e—0

rleedp)] )

only investigate how the bubble-chain diagrams which
could give rise to the renormalon ambiguities converge at
higher loops.

To check the effect of the bubble-chain contribution at
the n-loop, we convolute the CJ12 proton isovector PDF
[146] with Z(") of Eq. (34) to obtain the corresponding
isovector quasi-PDF of the proton at n-loop in the MS
scheme. The result up to three-loops is shown in Fig. 3. We
see that the two-loop contribution is smaller than one-loop
but about the same size as the three-loop. Therefore the
convergence is already slow at three-loops for the MS
quasi-PDF. However, as shown in Fig. 4, the convergence is
much better when we use the R-scheme of Eq. (29),
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especially when a larger P’ is used. The need to use a large
P’Z can be understood because for a fixed order expansion,
the kernel only has powers of In P, dependence but not
1/P? dependence. Hence when we take P, — 0, the
R-scheme reduces to the usual MS scheme shown in
Fig. 3 and has slow convergence. Therefore, larger P’ tends
to yield a larger cancellation of the bubble-chain diagrams.

After establishing the power of the R-scheme in remov-
ing the bubble-chain diagram contributions in two- and
three-loop diagrams, we turn to the RI/MOM scheme
which is typically used in lattice QCD and see how
bubble-chain diagrams contribute in this scheme. In RI/
MOM, all the loop corrections to the matrix element of a
single quark state with momentum p, are subtracted

nonperturbatively at an off-shell kinematics —p? = u%
and p, = p%. In momentum space, this amounts to the
subtraction [13]

W) (x.p. %/ (P%)2)
=g (x,p) — |77|q(”)(1 +n(x— 1)»#%/([’%)2)7 (35)

with # = p,/p%. The RI/MOM renormalized quasi-PDF

qﬁ{” is UV finite, so it does not matter what UV regulator is

used to compute ") of Eq. (35). The UV regulator will be

removed at the end to obtain E]%‘). We will just replace ")

in Eq. (34) by 4" to get the MS to RUMOM matching
kernel. It is worth commenting that all the IR renormalon
ambiguity comes from the first term in Eq. (35). The second
term, the counterterm, takes the external quark off-shell,
and hence the Feynman diagrams do not experience IR
divergence using the gluon propagator of Eq. (11).
Therefore, the subtraction in the RI/MOM scheme does
not add additional renormalon ambiguity.

The effect of applying the RI/MOM renormalization to
the proton isovector quasi-PDF up to three-loop bubble-
chain diagrams is shown in Fig. 5. Convergence is seen for

gRIMOM (X)

— tree

— 1-loop
1+2-loop

— 1+2+3-loop

FIG. 5. Isovector proton quasi-PDFs derived from convoluting
the proton PDF of Ref. [146] with the matching kernels from
bubble-chain diagrams for (a) quasi-PDFs in the MS scheme (b) R/
MOM renormalized quasi-PDFs, witha, = 0.283, P, = 1.5 GeV,
u=3GeV, up =2.4 GeV, and p; = 1.201 GeV.

the whole range of x—the possible slow convergence due
to the renormalon effect does not appear up to three-loops
in the RI/MOM scheme. Of course, this result is not
conclusive for QCD due to the nonconvergence problem
of the 1/n; expansion mentioned above. However, the
convergence pattern in the large ny world is still interesting
on its own. It gives some hope that QCD might have a
similar convergence pattern. But one can only know after
carrying out the complete higher loop calculations.

Finally, we comment on whether we can take advantage
of choosing the BLM scales [148] to improve the con-
vergence of the series expansion. The BLM approach is
based on the observation that

20y —

o (1) (1 + Dﬁo? + ) (36)

o5 (ue

Hence by choosing a different renormalization scale for

each order in the expansion, one can completely remove all

the a%' B dependence in the expansion to speed up the
n+1

convergence. Interestingly, the o By dependence is

exactly what the bubble-chain diagrams yield [see, e.g.,
Eq. (30)]. Hence the BLM approach can cancel the
renormalon ambiguity from the bubble-chain diagrams to
improve the convergence. However, unlike the factor D of
Eq. (36) is a constant, the prefactors of our matching kernel
depend on the momentum fraction. It is not clear how to
absorb them into renormalization scales. Even if we
proceed by demanding the bubble-chain diagrams be
canceled only for a specific momentum fraction, we still
need to benchmark the convergence of this approach with
the complete multiloop results which are not yet available.
Therefore, we do not pursue this program here in this work.

V. CONCLUSION

We have investigated the renormalon ambiguity in
the flavor nonsinglet quasi-PDF of a hadron. We follow
the usual practice to study the diagrams in the large ny (the
number of fermion flavors) limit with powers of (a ny)
summed to all orders [143]. Although QCD is not asymp-
totically free in this limit, the qualitative features of the
renormalon ambiguity are expected to remain in QCD
[140]. Also, taking the f function of QCD as a reference, it
might be possible that the higher order 1/n; corrections of
our calculation are about the same magnitude as the leading
order. In that case, our large n; analysis could still be useful
although conclusive results can only be drawn with explicit
full QCD calculations.

The bubble-chain diagrams were computed in momen-
tum space and the result agreed with the coordinate space
computation of Ref. [6] up to one possible typo in a
prefactor. We confirmed the assertion of Ref. [6] that the
leading IR renormalon ambiguity from bubble-chain dia-
grams was an O(Agcp/x*P2) effect on the quasi-PDF.
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In addition, we have also found an O(6(x)Agcp/P?) term

with a divergent prefactor such that quark number con-
servation is not broken. This ambiguity is supposed to be
canceled by power corrections associated with higher-
twist contributions. Hence, if the power corrections were
not included in the analysis, then the error was
O(Ajep/X* P2, 8(x)Adep/P2), which is quite significant
at small enough x, rather than O(Agcp/P?) from dimen-
sional analysis.

To remove this leading IR renormalon ambiguity, we
have investigated the proposed R-scheme [147], which is
designed to cancel all the O(1/P?) contributions. This
cancellation does not rely on the bubble-chain approxima-
tion. It is applicable in QCD. Furthermore, since the
R-scheme cancels the renormalon ambiguity nonperturba-
tively for different values of «y, it is possible that the
cancellation also happens at each order in @, to improve the
convergence of QCD perturbation [147]. Because the full
multiloop results in QCD are not available, we use the
bubble-chain diagrams to demonstrate this up to three-
loops in Fig. 4(b).

After establishing the power of the R-scheme in remov-
ing the bubble-chain diagram contributions, we turn to the
RI/MOM scheme which is typically used in lattice QCD
and see how bubble-chain diagrams contribute to the proton
isovector quasi-PDF in Fig. 5. Convergence is seen for the
whole range of x—the possible slow convergence due to

~ as p
gV (x,p) = 8Cr7 - Cilx.p),
T

where

[1—x|+ x| +VI=p x

the renormalon effect does not appear up to three-loops in
the RI/MOM scheme. Of course, this result is not con-
clusive for QCD due to the nonconvergence problem of the
1/n; expansion mentioned above. But it gives some hope
that QCD might have a similar convergence pattern. The
final result can only be known after carrying out the
complete higher loop calculations.
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APPENDIX: LOOP EXPANSION OF THE
BUBBLE-CHAIN DIAGRAMS
In this Appendix, we show the nth loop correction to the
light cone PDF ¢(") and quasi-PDF 4 for a single quark
state. We only show the result in the MS scheme. The

nonperturbative renormalization of the quasi-PDF in the
RI/MOM scheme can be constructed using Eq. (35).

1. One-loop result

The one-loop correction to quasi-PDF of a single quark
state is

(A1)

[T — x| — |x]| 1

_ 1 142 p
Ci(x,p) = (

NETACET: _Z(I—x)> In
(p =24 2x)|x| = (p — 2x)[1 — x|

[1=x|+[x[-vT=p ||

+ o+

1—x 1 — x|

(p—2x + 2x%) = 2|x(1 = x)|

(p —dx +4x%)|x(1 — x)|

(p—dx +4x*)[1 — x|

p? —4p + dpx + 8x(1 — x)?

X p? —4px + 8x* — 8x3
21 (p—4x+4x*)*|x]|
x(p =2+ 2x)[x| + (p = 29)|1 = x]

(p —4x + 4x*)?|1 — x|

(p—2x +2x%) = 2|x(1 — x)|

2 (p—dx+4x7)|x(1 = x)|
(p = 2x + 2x%) = 2|x(1 = x)|
(p—dx +4x*)[1 — x|

2(p — 4x + 4x?)|1 — x|

(1=2x)p*

L (14 1n2x—]+\/]—ﬂ_
T—p \ 1-x  2(1-x) 2x—1—/1=p

4x(xfl)+p +1- 2(1—x)(p—4x+4x?)?

x> 1

. 0<x<l. (A2)

x<0

(1-2x)p’
Sy (e
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' Taking the p — 0 limit and isolating the logarithmic IR g (x, =/ p?) = 8§CFZJC1 (x,—p%/p?), (A4)
divergence, we have z
where
| ,ox>1
. 2 o 2 142 2
Ci(x,p—0)= %ln%—l%x—l—zl(lfx) , 0<x<l1. (A3) Cl(x,'u2> _1t+x ln( 1z 2)
. -p 1—x —x(1-x)p
geibad . x<0 1 —2x
—(2—x)+2(1_x). (A5)
The one-loop correction to the light cone PDF of a
single quark state is nonvanishing only when 0 < x < 1, The  matching  kernel  for gV (x.,p—0) and
and | g (x, —u?/p?), both in the MS scheme, is
P\ _ 1
20(620) = 06— 0= )
H ¢
1+&
Hoinf+ 1 . ox>1
_ As ) 14, 460-8p2 2
=20, l—_iln%—l—_it—f—Z—f ., 0<x<l. (A6)
et . x<0

The IR divergence is canceled between the quasi-PDF and PDF in the matching kernel as we expect that the kernel only
compensates the UV difference between the quasi-PDF and PDF.
The kernel has the asymptotic behavior

3
Z1(O)inteo = — =5 A7
with Z, = Z" /(2Cy (£)"ps7"). This leading contribution is canceled in the RI/MOM to MS scheme matching which
yields better convergence numerically [13].
2. Two-loop result
The two-loop correction to quasi-PDF of a single quark state can be written as
) 27,2 a\*[ - pe s
=8LCrfo| =) |Ci(x.p)InZ=— + Cy(x.p)|. A8
%50 02) = 8Copn () | Cutr I+ Calp) (A8)

The first term comes from the subdivergence of the gluon vacuum polarization bubble. Taking the limit p — 0 and isolating
the logarithmic IR divergence, we have

b in 2+ 2 = Lo (1) ] + 15 L x>
b [1n22 — Lip(x) = % — In(1 = x) In# — J1n?(1 - )|
Cy(x,p) = +<2l(1_3§) —x) ln;i)— St (2(11—x) +12Txx> In(1 - x) (A9)
+lnx2[ll+—“‘fln/4;—12_xx+zl(l_f;)} , 0<x<1.
e [inast - mn2 25t 4 L (V)] - o . x<0
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The two-loop light cone PDF is only nonvanishing for 0 < x < 1,

2 2,5/3
O e R )RR XS (A10)
n (I-x)p
where
U _1—4—)62 1 5 u u? 3
oo dp) [ (G| e onaa) e

2
@ P2\ _ Lo (e _
VAS (é,ﬂz) —4§[q2(§,/)) q? (&, —u*/ p?)]

2e5/3 2 .
2@+ 5 o - Lo ()] + 5 >
; i 2T 2410 ¢ 2
—2Chp (as)z Zl(ﬁf,%) 1nm+llti [%IHZ%_LIZ@)_I—%M%]—5)},
- FFO\ 5, _ ,
| t2(1 - mBAE X m(1-g),  0<é<1

2,5/3 _ _ .
Zi@mbss + 55 It - w1 L ()] - L. ¢ <0

(A12)

1Y

which is again free from IR divergence as in the one-loop case. The IR divergence cancellation works diagram by diagram
between the quasi-PDF and the PDF. However, we should have also included the convolution term Z(!) @ ¢(!) in the kernel
were we to include all the two-loop diagrams rather than just the bubble-chain diagrams.

Again, asymptotically,

9 3 ﬂ2€5/3

Z))imro ¥ =I5 Al3
KOlemseo ™ =31~ 218 a2y A
The kernel will decay faster at large £ if we renormalize the quasi-PDF with RI/MOM as in the one-loop case.
3. Three-loop result
The three-loop quasi-PDF can be written as
4 o AR 125132 _ 2B
g (x,p. 2/ p2) = 8CCeB5( =) |Ci(xp) (T | +2Co(x,p) In"—— + C3(x,p) |, (Al4)
4z 4x* p? 4x”p;

where the logarithmic dependence in the first two terms come from the subdivergence of the gluon vacuum polarization
bubbles.
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Taking the p — 0 limit to isolate the logarithmic IR divergence, we have

{1” {ln3 2 2n? A 4+ L 1n——|—L13( ) —-2¢(3)
+2[L1 ( )—l—ln—Ll ( )+%ln3x%]+%ln(x—l)ln2x%l} +Li2(%)
54— 1) Ing] = 2[Lip (35) + 310 2 4+ In(x = 1) In 2 - %

2N - e v

<%2—|—111 )[ler ln——ﬂ—l-z( x)} +21Inx? { [%IHZ%—LiQ(X)

~In(1 —x)In# — 1 1n? l—x} (12X—)1nj-)—g%;

+ar +%) In(1 —x)} +%{§ln p~In(1 —x)ln*
Cy(x.p—=0) =< — {ff;— In2(1 —x)} In% + 2Li5 (x) + 4Lis (1 — x) + 41In(1 — x)Liy(x) (A15)
—Z1n(1 - x) + 2In*(1 — x) Inx + In*(1 —x)} i g (—1‘2" —X)

3 (1 = x) = HFEEE (1= x) + 2(1+ x = 2)Lia (x)

1—x

[1+2(1<2x> x)ln(l—x)]ln +(( o )mp 0<x<l.

2 [m a5t — 22 1+’f1n——L13( 20(3)

—2[Ll3( )+1nx1L12< )+11n }+L12( )
—%2+%1n2x1+1n(1—x)1nf}—2[L12( ) +In( 1—x)171—%}

2

I+xy, =1 2x=1_ 3 _ n°
2fEnst il 2ok x<o

The three-loop PDF is nonvanishing only at 0 < x < 1:

where

2 2 2 2 )
H 1+X 1 3 2 U
C ) -1 o | _Z¢3
3<X _Pz) I—x [3 —x(1-x)p* 6 n—x(l—x)p2 35( )}
2 2 )
H 2 H T
2=t -1 1+ (1-x). Al7
. x><n_x(1 —x)p? ! —x(1 —x)p2> T 3 (1-x) (A17)
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Again, we define the kernel without the Z?) ® ¢! and Z() ® ¢® terms:

]
ZOV(& pop) = —[GP(E p2/?) — ¢ (& -2/ pP)]

4¢
Z\(@)In s +22,(8) ln”; e
+2 lr_f; In? 5_—1 +2In° 55 + = ln -+ Li; (%)
+2 [Ll3 %) +1n§_ilLi2 (%) +11n° 5 4 Ln(e - 1)n? %]
+Lip (51) -2 +InE - 1) In g - 20(3) |
—4[Lis (%) + 3102 g - In( = 1) In 5y - 2
228 w4 2], £> 1
-7, (5, }’4’—2)1 2 4(,41%2/);% +27, (5, 5—2) 1 4(;41%;317%
4 {§ i U008 84 SUSD0E 91 (¢) + dLig (1 - €)
=2C:f3 (2—2)3 +21n(1 = &)Lip (&) + 2In%(1 — &) In& — 2 In(1 — &) + %g(3)} (A18)
12(1-¢8) [lnz 45(1”—;)17? +1n45<1,;5>"3} I 2<1 Ty —%)Liz(x)
S -2 (1o +%x) 420 iy g <é< 1,
Z)(@)In e +27,(8) Ik,
—1—211+_4;2 {1 n3 &L 21n2 4 1n——L1g< )
) [L13 (é) +Iné5 L, (g) +1In(1 - &)In2¢ 1}
+Li, (é_i,) —2 (1 - &) Il 4203 )}
4 [le (é) +In(1 - &) Il - %2}
+2[2}—j51n%+1n2§;‘—%_5—%2], £<0
where IR divergence is canceled. And the asymptotic behavior
27 +27> 9 w3 233
23(5)|§ﬁm~—ﬁ—2—5 n'Zpr?—ml ’;52 e (A19)

will again decay faster if RI/MOM renormalization is applied to the quasi-PDF.
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