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We find chiral non-Abelian vortices having windings only in one of the diquark condensations of left-
handed and right-handed quarks in the color-flavor locked phase of dense QCD. They are the minimum
vortices carrying half color magnetic fluxes of those of non-Abelian semisuperfluid vortices (color magnetic
flux tubes) and 1=6 quantized superfluid circulations of Abelian superfluid vortices. These vortices carryCP2

orientational moduli in the internal space corresponding to their fluxes. The CP2 moduli of two chiral non-
Abelian vortices with chiralities opposite to each other are energetically favored to be aligned while those of a
vortex and antivortex to be orthogonal, and then these vortices attract each other. They are attached by chiral
domain walls in the presence of the mass and axial anomaly terms explicitly breaking axial and chiral
symmetries. We numerically show that two chiral non-Abelian vortices with chiralities opposite to each other
are connected by a chiral domain wall, consisting a mesonic bound state which is nothing but a non-Abelian
semisuperfluid vortex. We also show that Abelian and non-Abelian axial vortices attached by chiral domain
walls are all unstable to decay into a set of chiral non-Abelian vortices. Furthermore, we find that chiral non-
Abelian vortices exhibit unique features: One is the so-called topological obstruction implying that unbroken
symmetry generators in the bulk are not defined globally around the vortices, and the other is color nonsinglet
Aharonov-Bohm (AB) phases implying that quarks encircling these vortices can detect the colors of magnetic
fluxes of them at infinite distances.

DOI: 10.1103/PhysRevD.104.094052

I. INTRODUCTION

What states of matter are at extreme conditions is one of
the challenging problems in modern physics. The ground
state of the cold QCD matter at high densities is expected
to exhibit color superconductivity, which may be realized
in cores of neutron stars [1]. Various phases have been
proposed for color superconductivity; the color-flavor locked
(CFL) phase [2] in three-flavor symmetric matter is realized
extremely high density limit, while the two-flavor super-
conducting (2SC) phase [3,4] was also proposed for two-
flavor symmetric matter. If a color superconductor is realized
in the core of neutron stars, there must appear quantum
vortices, i.e., vortices with quantized circulations, because of
rapid rotations. In color-superconducting quark matter,

quantum vortices or color magnetic flux tubes appear, as
reviewed in Ref. [5]. In the CFL phase, Abelian superfluid
vortices are created by rotations [6,7], which are dynamically
unstable to decay into more stable vortices [8–10]. The most
stable vortices are non-Abelian semisuperfluid vortices
carrying color magnetic fluxes and 1=3 circulation of the
Abelian superfluid vortices [5,8,11–13], which are analo-
gous to non-Abelian vortices in supersymmetric QCD
[14–19] (see Refs. [20–23] as a review) and two-Higgs
doublet models [24–28]. A non-Abelian vortex confines
massless particles in its core; one type is bosonic Nambu-
Goldstone CP2 modes originated from spontaneous break-
ing of the CFL symmetry in its core [5,8,29,30], and the
other is gapless Majorana fermions with more a topological
origin [31–33]. Under a rapid rotation, there appear a huge
number of vortices (about 1019 for typical neutron stars).
They will form a vortex lattice [34] that behaves as a
polarizer of photons [35]. One of the most recent pieces of
progress is vortices penetrating through crossover between
the CFL phase and hyperon nuclear matter within a quark-
hadron continuity [9,36–42]. While it was suggested that one
superfluid vortex in the hyperon nuclear matter is connected
to one non-Abelian vortex in the CFL phase [36], it was
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proved in Refs. [37,38] that three superfluid vortices meet
three non-Abelian vortices at a point called a Boojum [9].
The CFL phase is characterized by the two diquark

condensations of left and right-handed quarks qL;R,
ðΦL;RÞαa ∼ ϵαβγϵabcq

βb
L;Rq

γc
L;R with the color indices

α; β; γ ¼ r, g, b and the flavor indices a; b; c ¼ u, d, s.
In the ground states, they both develop VEVs asΦL ¼ −ΦR.
Thus, with defining Φ≡ΦL ¼ −ΦR, one has discussed
non-Abelian vortices in terms of Φ and gauge fields.
However, since the relation ΦL ¼ −ΦR holds only in the
ground state, we do not have to assume it for excited states
such as vortices. In fact, a similar situation can be found in
two-component condensed matter systems: two-gap super-
conductors [43–46] and two-component Bose-Einstein con-
densates (BECs) [47–53]. In these systems, there are two
condensationsΦ1 andΦ2. For a singly quantized vortex both
fields have the windingΦ1 ¼ Φ2 ∼ eiφ with azimuthal angle
φ. However, they also admit so-called half-quantum vortices
ðΦ1;Φ2Þ ∼ ðeiφ; 1Þ or ðΦ1;Φ2Þ ∼ ð1; eiφÞ, denoted as (1, 0)
or (0, 1), respectively. It is called half-quantum since it
carries a half magnetic flux in superconductors or half
circulation in BECs.1 When the system contains an inter-
action term Φ�

1Φ2 þ c:c. known as a Josephson term in
superconductors or Rabi coupling in BECs, (1, 0) and (0, 1)
vortices are connected by a sine-Gordon soliton [44,45,47]2;
they are confined to form a singly quantized vortex. When
there are no such terms, they are deconfined and are weakly
interacting each other. Thus, one may wonder if the same can
be considered for vortices in the CFL phase.
In this paper, we investigate non-Abelian vortices having

windings only in leftΦL or rightΦR condensation, while the
previously known non-Abelian vortices have windings in the
both components simultaneously. We call them “chiral non-
Abelian vortices” in the sense that quarks of only left or right
chirality participate in the vortices. A single non-Abelian
semisuperfluid vortex can be decomposed into chiral non-
Abelian vortices of chiralities opposite to each other. Chiral
non-Abelian vortices carry half color magnetic fluxes of
those of non-Abelian semisuperfluid vortices and 1=6
quantized superfluid circulations of Abelian superfluid
vortices. We find that a single chiral non-Abelian vortex
carries CP2 orientational moduli in the internal space
corresponding to its color magnetic flux. As the case of
the Josephson or Rabi term for two-component condensed
matter systems, a chiral non-Abelian vortex is attached by a

chiral domain wall [5,54] in the presence of mass and axial
anomaly terms explicitly breaking axial and chiral sym-
metries. We also study energetics of two chiral vortices in the
absence of mass and axial anomaly terms. In the coexistence
of a set of two chiral vortices with opposite chiralities, their
CP2 moduli must be aligned energetically and they attract
each other. On the other hand, in the coexistence of a chiral
vortex and an antichiral vortex, their CP2 moduli are
energetically orthogonal to each other, and they attract each
other. We show that in the presence of mass or axial anomaly
term, chiral non-Abelian vortices of opposite chirality are
connected by a chiral domain wall and are linearly confined.
Other interesting features that we find in this paper are

so-called topological obstruction (see the Appendix A 4)
[55–62] and non-Abelian Aharonov-Bohm (AB) phases.
First, the topological obstruction that chiral non-Abelian
vortices exhibit implies that generators of the unbroken
symmetry in the ground state are not globally defined
around the vortices. Second, the chiral non-Abelian vortices
exhibit color nonsinglet (generalized) AB phases so that the
quarks can detect the colors of magnetic fluxes of these
vortices at large distances. The bound state of two chiral
non-Abelian vortices with the opposite chiralities, equiv-
alent to a single non-Abelian semisuperfluid vortex at large
distance, exhibits only color singlet (generalized) AB
phases so that the quarks cannot detect the color magnetic
flux of such a bound state at large distances.
Finally, we will point out that chiral non-Abelian vortices

are the most fundamental elements among topological
solitons formed during the chiral symmetry breaking.
The CFL phase is accompanied by spontaneous breaking
of the chiral symmetry since the diquark condensations
ΦL;R of left and right-handed quarks qL;R both develop
VEVs. This breaking admits several vortices without color
magnetic fluxes. When the Uð1ÞA axial symmetry is
spontaneously broken, it admits an axial vortex winding
around Uð1ÞA. This vortex is attached by 2N domain walls
because of the anomaly term explicitly breaking the Uð1ÞA
axial symmetry, in contrast to an analogous axial string in
the linear sigma model for chiral symmetry breaking which
is attached by N domain walls [63]. The UðNÞL ×UðNÞR
chiral symmetry breaking admits a non-Abelian axial
string, which is attached by one (or two) chiral domain
wall(s) depending on the form of mass terms, analogous to
one in the linear sigma model for chiral symmetry breaking
[12,64–67]. The Uð1ÞA Abelian axial vortex mentioned
above is dynamically split into N non-Abelian axial strings
by domain wall tensions, where each non-Abelian string is
attached by one (or two) chiral domain wall(s), as an
analogous decay was studied in the linear sigma model for
chiral symmetry breaking [5,54]. We find that a single non-
Abelian axial string decays into a pair of a chiral non-
Abelian vortex and an antichiral non-Abelian vortex, while
a single Abelian axial string decays into a set of N chiral
non-Abelian vortices and N antichiral non-Abelian

1Strictly speaking, they are half quantized when the VEVs of
Φ1 andΦ2 are the same. When their VEVs hΦ1i ¼ v1, hΦ2i ¼ v2
are different, they are fractionally quantized as v21=ðv21 þ v22Þ and
v22=ðv21 þ v22Þ.

2While the Josephson coupling is inevitable in superconduc-
tors, the Rabi coupling is in general absent in BECs and one can
introduce it as an experimentally controllable parameter.
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vortices. Thus, chiral non-Abelian vortices are the most
fundamental strings.3

This paper is organized as follows. In Sec. II, we review
the Ginzburg-Landau (GL) theory paying attention to sym-
metries, and give the order parameter manifold (OPM) which
is a new result. In Sec. III, we review superfluid vortices:
Abelian Uð1ÞB superfluid vortices and non-Abelian semi-
superfluid vortices (color flux tubes). In Sec. IV, we discuss
Abelian and non-Abelian axial vortices. In Sec. V, we
construct chiral non-Abelian vortices in the absence of chiral
symmetry breaking terms, and show that they exhibit the
topological obstruction and (generalized) AB phases of
quarks encircling them. In Sec. VI, we discuss energetics
of a single chiral non-Abelian vortex, non-Abelian semi-
superfluid vortex, non-Abelian axial vortex, andmore general
composite vortices. We find that the CP2 orientations of two
chiral vortices with the opposite chiralities are energetically
favored to be aligned to each other and then they attract each
other, while those of chiral vortex and antivortex with the
opposite chiralities are energetically favored to be orthogonal
to each other and then they attract each other. In Sec. VII, we
show that Abelian and non-Abelian axial vortices are
attached by chiral domain walls in the presence of axial
and chiral symmetry breaking terms, and discuss decay of
these vortices. In Sec. VIII, we construct a mesonic bound
state of two chiral non-Abelian vortices with the opposite
chiralities. Section IX is devoted to a summary and dis-
cussion. In Appendix A, the terminologies used in this paper
are summarized. In Appendix B, we give detailed discussions
on symmetry breakings in the CFL phase, and determine
associated OPMs. In Appendix C, chiral non-Abelian vor-
tices in the CFL phase are compared with non-Abelian Alice
strings [68–70] in the 2SCþ dd phase of two-flavor quark
matter proposed recently [71,72].

II. COLOR-FLAVOR LOCKED PHASE OF THREE
FLAVOR QUARK MATTER

In this section, after we review the color-flavor locked
phase of dense QCD, we give OPMs and their topology as a
new result.
The (approximate) symmetry of N flavor quark matter is

(up to discrete groups)

G ¼ SUðNÞC ×Uð1ÞB ×Uð1ÞA × SUðNÞL × SUðNÞR;
ð2:1Þ

where SUðNÞC is the color gauge group, and the rests are
global symmetries: Uð1ÞB, Uð1ÞA, and SUðNÞL × SUðNÞR
are baryon number, axial, and chiral symmetries, respec-
tively. See Appendix B for a more precise description
including discrete groups. The light quarks qL;R ¼ ðqL;RÞαa
with α ¼ 1; 2;…; N (α ¼ r, g, b for N ¼ 3), a ¼
1; 2;…; N (a ¼ u, d, s for N ¼ 3), and heavy quarks
QL;R ¼ ðQL;RÞα transform under G as

qL → eiθB=2eiθA=2g�CqLU
T
L; qR → eiθB=2e−iθA=2g�CqRU

T
R

QL → g�CqL; QR → g�CqR; ð2:2Þ

where we have not introduced heavy quark flavor sym-
metry, and have assigned no Uð1ÞB and Uð1ÞA charges on
the heavy quarks.4 The case of N ¼ 3 corresponds to the
CFL phase of dense QCD, in which case the light quarks
constitute diquark condensations as ðΦL;RÞαa ∼ ϵαβγ
ϵabcq

βb
L;Rq

γc
L;R. Hereafter, we mostly consider the conden-

sates ðΦL;RÞαa as N by N matrices of complex scalar fields
on which the symmetries G act as

ΦL → eiθBþiθAgCΦLU
†
L; ΦR → eiθB−iθAgCΦRU

†
R

gC ∈ SUðNÞC; UL;R ∈ SUðNÞL;R; eiθB ∈ Uð1ÞB;
eiθA ∈ Uð1ÞA: ð2:3Þ

The vector symmetry SUðNÞLþR given by UL ¼ UR is a
subgroup of the chiral symmetry SUðNÞL × SUðNÞR, and
the rest of generators outside SUðNÞLþR defines the coset
space ½SUðNÞL × SUðNÞR�=SUðNÞLþR ≃ SUðNÞ which
we sometimes denote SUðNÞL−R although this does not
form a group.
In this paper, we use the static GL free energy for

studying vortices. The GL Lagrangian for the CFL phase
was obtained as [73–75]

L ¼ Tr

�
−
1

4
FijFij þDiΦ

†
LD

iΦL þDiΦ
†
RD

iΦR

�
− V;

ð2:4Þ

3The chiral non-Abelian vortex can be considered as a hybrid
of a non-Abelian semisuperfluid vortex (color flux tube) and a
non-Abelian axial string: the former winds around ΦL and ΦR
with the same windings, the latter winds around them with the
opposite windings, and the chiral non-Abelian vortex winds
around only either of ΦL and ΦR, achieved by a half non-Abelian
semisuperfluid vortex (color flux tube) and a half non-Abelian
axial string.

4The antifundamental representation � of quarks for the color
group is a convention to make the representation of the con-
densations ΦL;R introduced below to be fundamental in Eq. (2.3),
below. The situation in our mind is that only the light quarks are
condensed by forming diquark pairs while the heavy quarks are
not. Thus, we use the terminology “Uð1ÞB baryon symmetry” for
the spontaneously broken baryon symmetry associated only with
the light quarks with no charges for the heavy quarks, while the
heavy quarks are also charged under the conventional baron
symmetry.
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V ¼ −
m2

2
Tr½Φ†

LΦL þΦ†
RΦR� þ

λ1
4
Tr½ðΦ†

LΦLÞ2

þ ðΦ†
RΦRÞ2� þ

λ2
4
ðTr½Φ†

LΦL�2 þ Tr½Φ†
RΦR�2Þ

þ λ3
2
Tr½Φ†

LΦL�Tr½Φ†
RΦR� þ

λ4
2
Tr½ΦLΦ

†
LΦRΦ

†
R�

þ ½γ1TrðΦ†
LΦRÞ þ γ2Tr½ðΦ†

LΦRÞ2�
þ γ3 detðΦ†

LΦRÞ þ ðc:c:Þ�; ð2:5Þ

where the GL coefficients depending on the temperature,
density, and so on can be found in Refs. [73–75]. Among
the global symmetries, the axial Uð1ÞA and chiral sym-
metries are explicitly broken in the presence of the last
terms for γ1;2;3 ≠ 0 with Uð1ÞB × SUðNÞLþR remaining
exact. The GL theory is valid only near the transition
temperature Tc. Beyond the GL theory, we need
Bogoliubov–de Gennes (BdG) formulation [31,32].
The ground state is given by

ΦL ¼ −ΦR ¼ v1N; v≡
�

m2

λ1 þ Nλ2 þ Nλ3

�1
4 ð2:6Þ

for small γ’s. The symmetry G is spontaneously broken
down to the CFL symmetry given by

H ¼ SUðNÞCþLþR; gC ¼ UL ¼ UR: ð2:7Þ

The chiral symmetry, Uð1ÞA and Uð1ÞB symmetries are
spontaneously broken.
According to Appendix B, the full OPM for the

symmetry breaking can be written, with taking into account
discrete groups, as

M ¼ G
H

≃
UðNÞC−ðLþRÞþB ⋉ UðNÞL−RþA

ðZ2ÞAþB

¼ MV ⋉ MA

ðZ2ÞAþB
; ð2:8Þ

where ðZ2ÞAþB is generated by ð−1;−1Þ ∈ Uð1ÞB×
Uð1ÞA, and F ⋉ B denotes a fiber bundle with a fiber F
over a base manifold B. Here, we have defined the sub-
OPMs for the vector symmetry breaking and for the axial
and chiral symmetry breakings by

MV ≃UðNÞC−ðLþRÞþB ≃
Uð1ÞB × SUðNÞC−ðLþRÞ

ðZNÞC−ðLþRÞþB
;

MA ≃UðNÞL−RþA ≃
Uð1ÞA × SUðNÞL−R

ðZNÞL−RþA
; ð2:9Þ

respectively, with coset spaces

SUðNÞC−ðLþRÞ ≃
SUðNÞC × SUðNÞLþR

SUðNÞCþLþR
;

SUðNÞL−R ≃
SUðNÞL × SUðNÞR

SUðNÞLþR
: ð2:10Þ

For the details of derivation, see Appendix B.
The ðZ2ÞAþB in the denominator of Eq. (2.8) was not

recognized before (see Eq. (2.26) of Ref. [5]), and this is a
key point to understand chiral non-Abelian vortices found
in this paper. The nontrivial first homotopy groups of the
sub-OPMs

π1ðMVÞ ≃ Z; π1ðMAÞ ≃ Z ð2:11Þ

support non-Abelian semisuperfluid vortices (Sec. III B)
and non-Abelian axial vortices (Sec. IV B), respectively,
but they are not the minimum vortices. On the contrary, the
nontrivial first homotopy group of the full OPM

π1ðMÞ ≃ Z ð2:12Þ

supports chiral non-Abelian vortices as the minimum
vortices.
Here, one comment is in order. Considering N ¼ 1 in the

full OPM in Eq. (2.8), we obtain the OPM for two-
component BECs or superconductors, see Ref. [76], allowing
half-quantized vortices. Thus, our case is a non-Abelian
generalization of such two-component condensed matter
systems.
For later conveniences, we define gauge invariants

Σ≡Φ†
RΦL detΦL; detΦR: ð2:13Þ

Here, Σ is the chiral symmetry breaking order parameter.
These gauge invariants transform under the flavor sym-
metry as

Σ → e2iθAURΣU
†
L

detΦL → eNiθBþNiθA detΦL;

detΦR → eNiθB−NiθA detΦR: ð2:14Þ

In the following sections, we classify various vortices in
the CFL phase as summarized in Table I. To this end, let us
introduce labels of vortices by

ðm; nÞ∶ detΦL ∼ eimφ; detΦR ∼ einφ; ð2:15Þ

with winding numbers n and m of the gauge invariants
detΦL and detΦR, respectively. Here φ is the angle
coordinate of the polar coordinates in two dimensional
space perpendicular to the vortex.
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III. SUPERFLUID VORTICES AND COLOR
MAGNETIC FLUX TUBES

In this section, we review superfluid vortices in the CFL
phase: Abelian superfluid vortices and non-Abelian semi-
superfluid vortices.

A. Abelian superfluid vortices

The simplest vortex is an Abelian superfluid vortex
winding around Uð1ÞB [6,7], given in the polar coordinates
ðr;φÞ by

ΦL ¼ −ΦR ¼ eiφfðrÞ1N ¼ eiθBðφÞfðrÞ1N; ð3:1Þ

with eiθBðφÞ ¼ eiφ and the profile function f with the
boundary conditions fðr ¼ 0Þ ¼ 0 and fðr ¼ ∞Þ ¼ v.
This is unstable to decay into N non-Abelian semisuper-
fluid vortices introduced in Sec. III B [8–10].
In this notation of Eq. (2.15), the Abelian

superfluid vortex is labeled by ðN;NÞ because of
detΦL ∼ detΦR ∼ eNiφ. The gauge invariant Σ is Σ ¼ f21N
having no winding.

B. Non-Abelian semisuperfluid vortices

In this subsection, we review non-Abelian semisuper-
fluid vortices (color magnetic flux tubes) for comparison
with chiral non-Abelian vortices introduced in Sec. V.
The ansatz for a single non-Abelian semisuperfluid vortex
winding around the sub-OPM MV ≃UðNÞC−ðLþRÞþB for
the vector symmetry breaking is given in the polar
coordinates ðr;φÞ by

ΦL ¼ −ΦR ¼
�
fðrÞeiφ 0

0 gðrÞ1N−1

�

¼ e
i
Nφe

i
NφTN

�
fðrÞ 0

0 gðrÞ1N−1

�

¼ eiθBðφÞUðφÞ
�
fðrÞ 0

0 gðrÞ1N−1

�
;

Ai ¼ −ϵij
xj

Ngsr2
ð1 − hðrÞÞTN ð3:2Þ

with

TN ¼ diag:ðN − 1;−1;…;−1Þ ð3:3Þ

and

eiθBðφÞ ¼ eiφ=N; UðφÞ ¼ e
i
NφTN ; ð3:4Þ

with the boundary condition for the profile functions f, g
and h

ðf;g0;hÞr¼0¼ð0;0;1Þ; ðf;g;hÞr¼∞¼ðv;v;0Þ: ð3:5Þ

Explicit numerical solutions were constructed in Ref. [13].
This carries a 1=N Uð1ÞB circulation compared with a unit
circulation of an Abelian superfluid vortex given in
Eq. (3.1), and a color magnetic flux which is 1=N of that
of a pure color flux tube generated by a closed loop in the
SUðNÞC gauge group [77]. The latter is unstable to decay
into the ground state due to the trivial first homotopy group
π1½SUðNÞC� ¼ 0. In terms of the gauge invariants, the non-
Abelian semisuperfluid vortex is labeled by (1, 1) because
of detΦL ∼ detΦR ∼ eiφ.

TABLE I. A summary table for various vortices and color magnetic flux tubes. The N ¼ 3 case corresponds to
those in the CFL phase of dense QCD. NA denotes “non-Abelian.” “OPM” implies the sub-OPM that vortices are
supported by nontrivial first homotopy groups π1 (OPM), except for color flux tubes which are topologically trivial:
π1ðSUðNÞCÞ ¼ 0. MV, MA, and M are the OPM for vector symmetry breaking, OPM for axial and chiral
symmetry breakings, and full OPM defined in Eqs. (2.9) and (2.8). See Appendix B for details of these OPMs.
“Chiral circulation” would imply an amount of magnetic fluxes if the chiral symmetry is gauged, where the
normalization is taken such that a closed loop in SUðNÞL−R gives a unit flux.

Vortex OPM Label
Uð1ÞB

circulation
Color

magnetic flux
Uð1ÞA
winding

Chiral
circulation

Pure color magnetic flux tube SUðNÞC (0, 0) 0 1 0 0
Abelian superfluid vortex Uð1ÞB ðN;NÞ 1 0 0 0
NA semisuperfluid vortex MV (1, 1) 1

N
1
N

0 0
Abelian axial vortex Uð1ÞA ðN;−NÞ 0 0 1 0
NA axial vortex MA ð1;−1Þ 0 0 1

N
1
N

Chiral NA vortex M (1, 0) or (0, 1) 1
2N

1
2N

1
2N

1
2N
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More generally, the SUðNÞCþLþR transformation on the
ansatz in Eq. (3.2) yields a continuous family of solutions.
They are characterized by the moduli space [5,8,12]

CPN−1 ¼ SUðNÞCþLþR

SUðN − 1Þ ×Uð1Þ : ð3:6Þ

These modes are normalizable [5,30], and their effective
world-sheet Lagrangian was constructed in a singular
gauge [5,30] and a regular gauge [78]. The gauge invariant
Σ is Σ ¼ diagðf2; g2;…; g2Þ having no winding. This can
represent the CPN−1 orientation in Eq. (3.6) at r ¼ 0:
Σðr ¼ 0Þ ¼ diagð0; �;…; �Þ with � being a nonzero con-
stant in the case of the orientation in Eq. (3.2). Or, we may
define the orientational vector ϕ ∈ CN by ϕ · Σ ¼ 0, giving
rise to ϕT ¼ ð�; 0;…; 0Þ in the case of the orientation in
Eq. (3.2) [19,21].
The Abelian superfluid vortex is dynamically unstable to

decay into N non-Abelian semisuperfluid vortices [8–10].
This decay process can be expressed as

ðN;NÞ → Nð1; 1Þ: ð3:7Þ

IV. ABELIAN AND NON-ABELIAN AXIAL
VORTICES

In this section, we discuss Abelian and non-Abelian axial
vortices, which are global vortices without any color fluxes.

A. Abelian axial vortices

First, let us turn off the axial and chiral symmetry
breaking terms by γ1 ¼ γ2 ¼ γ3 ¼ 0. A single Abelian
axial vortex winding around Uð1ÞA is given by

ΦL ¼ −Φ†
R ¼ eiφfðrÞ1N ¼ eiθAðφÞfðrÞ1N; ð4:1Þ

with eiθAðφÞ ¼ eiφ and the profile function f with the
boundary conditions fðr ¼ 0Þ ¼ 0 and fðr ¼ ∞Þ ¼ v.
This vortex is labeled by ðN;−NÞ because of detΦL ∼
eNiφ and detΦR ∼ e−Niφ.
In the presence of the axial and chiral symmetry breaking

terms, γ1;2;3 ≠ 0, domain walls are attached to the vortex.
To see this, we consider an infinitely large circle with the
spatial angle φ encircling the axial vortex. Then, let us
substitute the ansatz in Eq. (4.1) to the potential V in
Eq. (2.5), with replacing the spatial angle φ by a function
ϕðφÞ depending on the angle φ with the boundary con-
dition ϕðφ ¼ 0Þ ¼ 0 and ϕðφ ¼ 2πÞ ¼ 2π. Then, the
potential can be evaluated at spatial infinities as

V ¼ 2Nγ1 cosð2ϕðφÞÞ þ 2Nγ2 cosð4ϕðφÞÞ
þ 2γ3 cosð2NϕðφÞÞ: ð4:2Þ

Along the large circle at infinity encircling the axial vortex,
there is also the gradient term. Thus, the effective energy for

ϕ at the large circle becomes Eeff ¼ Nv2ð∂φϕÞ2 þ V. This
is a variant of an N-ple sine-Gordon model.
In the case of ðγ1; γ2; γ3Þ ¼ ð0; 0; γ3Þ, the Abelian axial

vortex is attached by 2N domain walls. In this case, this
vortex is unstable to decay into N non-Abelian axial
vortices introduced in Sec. IV B, each of which is attached
by two domain walls. See discussion in Sec. VII B.
If we turn on γ1;2, these 2N domain walls would

constitute a composite wall in general. It is an open
question whether the decay is suppressed or not in such
a case.
Before closing this subsection, let us mention a relation

to analogous axial vortices in the context of chiral sym-
metry breaking at low density. In that case, the axial vortex
is attached by N domain walls [63], and it decays into non-
Abelian global strings each of which is attached by one
domain wall [5,54]. To compare these two cases, it is
convenient to see the gauge invariant Σ in Eq. (2.13). In
terms of this gauge invariant, the axial vortex in Eq. (4.1)
can be rewritten as

Σ ¼ −e2iφf2ðrÞ1N ¼ −e2iθAðφÞf2ðrÞ1N: ð4:3Þ

Thus, one can see that the minimum winding of the axial
vortex in the CFL phase corresponds to the double winding
of the axial vortex at low density [5,54,63].

B. Non-Abelian axial vortices

Here we discuss non-Abelian axial vortices winding in
the sub-OPM MA ¼ UðNÞL−RþA for the axial and chiral
symmetry breakings. An analogue of this at low density
was discussed in linear sigma models in Refs. [12,64–67].
First, let us turn off the axial and chiral symmetry breaking
terms by γ1 ¼ γ2 ¼ γ3 ¼ 0.
The ansatz for a single non-Abelian axial vortex is given

in the polar coordinates ðr;φÞ by

ΦL ¼
�
fðrÞeiφ 0

0 gðrÞ1N−1

�

¼ e
i
Nφ

�
fðrÞ 0

0 gðrÞ1N−1

�
e

i
NφTN

¼ eiθAðφÞ
�
fðrÞ 0

0 gðrÞ1N−1

�
UðφÞ;

−ΦR ¼
�
fðrÞe−iφ 0

0 gðrÞ1N−1

�

¼ e−
i
Nφ

�
fðrÞ 0

0 gðrÞ1N−1

�
e−

i
NφTN

¼ e−iθAðφÞ
�
fðrÞ 0

0 gðrÞ1N−1

�
U†ðφÞ; ð4:4Þ

with
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eiθAðφÞ ¼ eiφ=N; UðφÞ ¼ e
i
NφTN : ð4:5Þ

The boundary condition is

ðf;g0;hÞr¼0¼ð0;0;1Þ; ðf;g;hÞr¼∞¼ðv;v;0Þ: ð4:6Þ

Explicit numerical solutions can be found in Refs. [65,67].
This vortex is a purely global vortex without any color
magnetic flux, carrying a Uð1ÞA winding number which is
1=N of that of the Abelian axial vortex in Eq. (4.1). The
non-Abelian axial vortex is labeled by ð1;−1Þ because of
detΦL ∼ eiφ and detΦR ∼ e−iφ.
A set of solutions has CPN−1 moduli, which are non-

normalizable since the SUðNÞLþR transformation changes
the boundary.
In the presence of the axial and chiral symmetry breaking

terms, γ1;2;3 ≠ 0, domain walls are attached to the vortex. In
order to understand domain walls attached to the non-
Abelian axial vortex, let us substitute the ansatz in Eq. (4.4)
to the potential V in (2.5), with replacing the spatial angle φ
by a function ϕðφÞ depending on the angle φ with the
boundary condition ϕðφ ¼ 0Þ ¼ 0 and ϕðφ ¼ 2πÞ ¼ 2π.
Then, the potential can be evaluated at spatial infinities as

V ¼ 2ðγ1 þ γ3Þ cosð2ϕðφÞÞ þ 2γ2 cosð4ϕðφÞÞ: ð4:7Þ

Together with the gradient term, the effective energy for ϕ
on the large circle at infinity encircling the non-Abelian
axial vortex becomes Eeff ¼ v2ð∂φϕÞ2 þ V. This is the
double sine-Gordon model with a half periodicity π instead
of the usual case of 2π.
In the case of ðγ1; γ2; γ3Þ ¼ ðγ1; 0; γ3Þ, one non-Abelian

axial vortex is attached by two domain walls. These two
domain walls are attached from the opposite sides of the
vortex. This vortex is unstable to decay into two chiral non-
Abelian vortices introduced in Sec. V, each of which is
attached by one domain wall.5 See discussion in Sec. VII B.
If we turn on γ2, how these two domain walls attach to

the vortex depends on the parameters γ1, γ2 as classified in
Refs. [24,25] in the context of two-Higgs doublet models.
In some case, these two domain walls constitute a
composite wall. It is an open question whether the decay
is suppressed or not in this case.
In terms of the gauge invariant Σ in Eq. (2.13), the ansatz

in Eq. (4.4) can be rewritten as

−Σ ¼
�
FðrÞe2iφ 0

0 GðrÞ1N−1

�

¼ e
2i
Nφe

i
NφTN

�
FðrÞ 0

0 GðrÞ1N−1

�
e

i
NφTN

¼ e2iθAðφÞUðφÞ
�
FðrÞ 0

0 GðrÞ1N−1

�
UðφÞ; ð4:8Þ

with F≡ f2 and G ¼ g2, and U and θA in Eq. (4.5). It is
obvious that this vortex has a double-winding compared
with the corresponding one in the linear sigma model. In
fact, the one with unit winding in Σ discussed in Sec. 10 of
the review paper [5] corresponds to the chiral non-Abelian
vortex introduced in the next section.

V. CHIRAL NON-ABELIAN VORTICES

In this section, we introduce a novel vortex of non-
Abelian kind, that is, chiral non-Abelian vortices. Here, we
restrict ourselves to the case in the absence of the chiral
symmetry breaking terms: γ1 ¼ γ2 ¼ γ3 ¼ 0 in which the
axial and chiral symmetries become exact. We then discuss
the topological obstruction and AB phases around these
vortices.

A. Solutions of chiral non-Abelian vortices

Chiral non-Abelian vortices introduced in this section are
the minimum vortices in the CFL phase. There are two
kinds of chiral non-Abelian vortices, namely of left and
right chiralities, given by

Leftð1; 0Þ∶ detΦL ∼ eiφ; detΦR ∼ 1;

Rightð0; 1Þ∶ detΦL ∼ 1; detΦR ∼ eiφ; ð5:1Þ

respectively. In order to construct these configurations, we
note the relations for labels

ð1; 0Þ ¼ 1

2
½ð1; 1Þ þ ð1;−1Þ�;

ð0; 1Þ ¼ 1

2
½ð1; 1Þ − ð1;−1Þ�: ð5:2Þ

These imply that a chiral non-Abelian vortex can be
constructed as a sum of a half non-Abelian semisuperfluid
vortex and a half non-Abelian axial vortex. We thus reach
the ansatz for a chiral non-Abelian vortex of the left
chirality (1, 0), given in the polar coordinates ðr;φÞ by

5In the context of chiral symmetry breaking at low density, the
axial vortex is attached by one domain wall [64], and decays do
not occur.
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ΦL ¼
�
fðrÞeiφ 0

0 gðrÞ1N−1

�

¼ e
i
2Nφe

i
2Nφe

i
2NφTN

�
fðrÞ 0

0 gðrÞ1N−1

�
e

i
2NφTN

¼ eiθBðφÞþiθAðφÞUðφÞ
�
fðrÞ 0

0 gðrÞ1N−1

�
UðφÞ;

−ΦR ¼
�
cðrÞ 0

0 dðrÞ1N−1

�

¼ e
i
2Nφe−

i
2Nφe

i
2NφTN

�
cðrÞ 0

0 dðrÞ1N−1

�
e−

i
2NφTN

¼ eiθBðφÞ−iθAðφÞUðφÞ
�
cðrÞ 0

0 dðrÞ1N−1

�
U†ðφÞ

Ai ¼ −ϵij
xj

2Ngsr2
ð1 − hðrÞÞTN ð5:3Þ

with

eiθBðφÞ ¼ eiφ=2N; eiθAðφÞ ¼ eiφ=2N;

ðgC ¼ U†
L ¼ UR ¼ÞUðφÞ ¼ e

i
2NφTN : ð5:4Þ

The equations of motion for the profile functions are given
by

f00 þ f0

r
−
ððN − 1Þhþ ðN þ 1ÞÞ2

4N2r2
f þm2

2
f

−
1

2
½ðλ1 þ λ2Þf2 þ ðN − 1Þλ2g2 þ λ3c2

þ ðN − 1Þλ3d2�f ¼ 0; ð5:5Þ

g00 þ g0

r
−
ðh − 1Þ2
4N2r2

gþm2

2
g

−
1

2
½λ2f2 þ ðλ1 þ ðN − 1Þλ2Þg2 þ λ3c2

þ ðN − 1Þλ3d2�g ¼ 0; ð5:6Þ

c00 þ c0

r
−
ðN − 1Þ2ðh − 1Þ2

4N2r2
cþm2

2
c

−
1

2
½λ3f2 þ ðN − 1Þλ3g2 þ ðλ1 þ λ2Þc2

þ ðN − 1Þλ2d2�c ¼ 0; ð5:7Þ

d00 þ d0

r
−
ðh − 1Þ2
4N2r2

dþm2

2
d

−
1

2
½λ3f2 þ ðN − 1Þλ3g2 þ λ2c2

þ ðλ1 þ ðN − 1Þλ2Þd2�d ¼ 0; ð5:8Þ

h00 −
h0

r
−
2g2s
N

½ððN − 1Þf2 þ g2 þ ðN − 1Þc2 þ d2Þh
þ ðN þ 1Þf2 − g2 − ðN − 1Þc2 − d2� ¼ 0: ð5:9Þ

The boundary condition is

ðf; g0; c0; d0; hÞr¼0 ¼ ð0; 0; 0; 0; 1Þ;
ðf; g; c; d; hÞr¼∞ ¼ ðv; v; v; v; 0Þ: ð5:10Þ

Numerical solutions for several typical parameter combi-
nations in the case of N ¼ 3 are plotted in Fig. 1.
Compared with the ansatz for the usual non-Abelian

semisuperfluid vortex in Eq. (3.2), the Uð1ÞB and SUð3ÞC
actions are halves of those of the ansatz in Eq. (3.2)
winding in the sub-OPM MV ¼ UðNÞC−ðLþRÞþB, and the
rests are complemented by going through the other sub-
OPMMA ¼ UðNÞL−RþA for the axial and chiral symmetry
breakings, which are halves of non-Abelian axial vortices
in Eq. (4.4). A closed loop surrounding the chiral non-
Abelian vortex is mapped onto a closed loop in the full
OPM M given in Eq. (2.8), and consequently, this carries
1=2N Uð1ÞB circulation and the color magnetic flux, both
of which are halves of those of the usual non-Abelian
semisuperfluid vortex. The color magnetic flux is 1=2N of
that of a pure color flux tube.
In the above ansatz in Eq. (5.3), we have considered the

winding in the (1, 1) component. Instead, we can embed it
in other diagonal components, thus finding N solutions of
the same energy, as the case of the usual non-Abelian
semisuperfluid vortex. Again, more generally, the
SUðNÞCþLþR transformation on the ansatz in Eq. (5.3)
yields a continuous family of solutions, again characterized
by the moduli space

CPN−1 ¼ SUðNÞCþLþR

SUðN − 1Þ ×Uð1Þ : ð5:11Þ

Likewise, we also can construct a vortex of the right
chirality (0, 1) winding in ΦR in the same way:
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ΦL ¼
�
cðrÞ 0

0 dðrÞ1N−1

�

¼ e
i
2Nφe−

i
2Nφe

i
2NφTN

�
cðrÞ 0

0 dðrÞ1N−1

�
e−

i
2NφTN

¼ eiθBðφÞþiθAðφÞUðφÞ
�
cðrÞ 0

0 dðrÞ1N−1

�
U†ðφÞ

−ΦR ¼
�
fðrÞeiφ 0

0 gðrÞ1N−1

�

¼ e
i
2Nφe

i
2Nφe

i
2NφTN

�
fðrÞ 0

0 gðrÞ1N−1

�
e

i
2NφTN

¼ eiθBðφÞ−iθAðφÞUðφÞ
�
fðrÞ 0

0 gðrÞ1N−1

�
UðφÞ;

Ai ¼ −ϵij
xj

2Ngsr2
ð1 − hðrÞÞTN; ð5:12Þ

with the same profile functions as those in Eq. (5.3) and the
same boundary conditions for them with Eq. (5.10). This
carries the same Uð1ÞB circulation and the same color
magnetic flux with those with the left one in Eq. (5.3), but

the Uð1ÞA and SUðNÞL−R transformations are opposite to
those of the left one in Eq. (5.3):

eiθBðφÞ ¼ eiφ=2N; eiθAðφÞ ¼ e−iφ=2N;

ðgC ¼ UL ¼ U†
R ¼ÞUðφÞ ¼ e

i
2NφTN : ð5:13Þ

A continuous family of solutions is parametrized by a copy
of the moduli space in Eq. (5.11).
In terms of the gauge invariant Σ in Eq. (2.13), the chiral

non-Abelian vortex of the left chirality (1, 0) in Eq. (5.3)
can be rewritten as

−Σ ¼
�
FðrÞeþiφ 0

0 GðrÞ1N−1

�

¼ e
i
Nφe−

i
2NφTN

�
FðrÞ 0

0 GðrÞ1N−1

�
e−

i
2NφTN

¼ e2iθAðφÞUðφÞ
�
FðrÞ 0

0 GðrÞ1N−1

�
UðφÞ; ð5:14Þ

with F≡ fc, G≡ gd, and UðφÞ and e2iθAðφÞ in Eq. (5.4),
while the one of the right chirality (0, 1) in Eq. (5.12) can be
rewritten as
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FIG. 1. Numerical solutions of a single left (right) chiral non-Abelian vortex for N ¼ 3. The black-solid, red-solid, green-dotted, blue-
dashed, and orange-dashed lines correspond to fðrÞ, gðrÞ, cðrÞ, dðrÞ, and hðrÞ, respectively. The label at top of each panel shows the
parameter combination fm; λ1; λ2; λ3g. The profiles cðrÞ and dðrÞ are almost degenerate for all the cases, and the insets show small
deviation between cðrÞ and dðrÞ near the origin.
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−Σ ¼
�
FðrÞe−iφ 0

0 GðrÞ1N−1

�

¼ e−
i
Nφe−

i
2NφTN

�
FðrÞ 0

0 GðrÞ1N−1

�
e−

i
2NφTN

¼ e2iθAðφÞU†ðφÞ
�
FðrÞ 0

0 GðrÞ1N−1

�
U†ðφÞ; ð5:15Þ

with F≡ fc, G≡ gd, and UðφÞ and e2iθAðφÞ in Eq. (5.13).
These two just look like an antivortex to each other. In other
words, vortices labeled by (1, 0) and ð0;−1Þ have the same
form of Σ. However, the vortices (1, 0) and ð0;−1Þ are
distinct because the color magnetic fluxes that they carry are
opposite to each other, which are invisible in Σ.
With this regards, vortices in the linear sigma model in

terms of Σ discussed in Sec. 10 of the review paper [5]
actually describe chiral non-Abelian vortices discussed in
this section and should carry magnetic fluxes (invisible in
the linear sigma model), although this fact was not
recognized in Ref. [5].

B. Topological obstruction

Here we discuss the so-called topological obstruction
(see Appendix A 4 for its definition) common for the
vortices with the left and right chiralities in Eqs. (5.3) and
(5.12). If we encircle the vortex, the generators TA

(A ¼ 1;…; N2 − 1) of the SUðNÞC gauge group transform
accordingly as

TAðφÞ≡ UðφÞTAU†ðφÞ

¼ exp

�
iφ
2N

diag:ðN − 1;−1;…;−1Þ
�
TA

× exp

�
−
iφ
2N

diag:ðN − 1;−1;…;−1Þ
�

¼
� ðTAÞij eþiφ=2ðTAÞ1j
e−iφ=2ðTAÞi1 ðTAÞij

�
ð5:16Þ

with i; j ¼ 2;…; N. After complete encirclement (φ ¼ 2π),
these become

TAðφ¼2πÞ¼
� ðTAÞ11 −ðTAÞ1j
−ðTAÞi1 ðTAÞij

�
≠TAðφ¼0Þ; ð5:17Þ

implying that the off-diagonal blocks are not single-valued
around the vortex. Those off-diagonal blocks correspond to
the broken generators of the CPN−1 moduli in Eq. (5.11).
This phenomenon is known as the topological obstruction.
More precisely, the obstruction is present for the CFL
symmetry in Eq. (2.7) rather than the gauge symmetry itself.
The two complete encirclements give

TAðφ ¼ 4πÞ ¼ TAðφ ¼ 0Þ: ð5:18Þ

This also implies that there is no obstruction around the
usual non-Abelian semisuperfluid vortex in Eq. (3.2).
For vortices with different color magnetic fluxes corre-

sponding to the CPN−1 moduli in Eq. (5.11), corresponding
broken generators have the obstruction.

C. Generalized Aharonov-Bohm phases

AB phases around the usual non-Abelian semisuperfluid
vortices were studied for the electromagnetism [79], and for
color gauge field [37–39]. Here, we do not consider
electromagnetism. Let us discuss generalized AB phases
around a single chiral non-Abelian vortex. In the CFL
phase (N ¼ 3), the light quarks q and heavy quarks Q
receive the following transformations from Eqs. (5.3) and
(5.4) when they encircle the vortex.
The heavy quarks not participating condensations

receive ordinary AB phases contributed only from the
gauge symmetry as

QL → g�CðφÞQL ¼ exp

�
−
iφ
2N

diag:ðN − 1;−1;…;−1Þ
�
QL;

QR → g�CðφÞQR ¼ exp

�
−
iφ
2N

diag:ðN − 1;−1;…;−1Þ
�
QR:

ð5:19Þ

After complete encirclement (φ ¼ 2π), these phases
become

QL → exp

�
−
iπ
N
diag:ðN − 1;−1;…;−1Þ

�
QL ¼ diag:ðϵ−Nþ1; ϵ;…; ϵÞQL;

QR → exp

�
−
iπ
N
diag:ðN − 1;−1;…;−1Þ

�
QR ¼ diag:ðϵ−Nþ1; ϵ;…; ϵÞQR; ð5:20Þ

with ϵ is the 2N-th root of the unity,

ϵ ¼ expðπi=NÞ; ðϵ2N ¼ 1Þ: ð5:21Þ

These form a Z2N group. This is a color nonsinglet, implying that heavy quarks can detect the color of the magnetic flux
of the vortex from infinite distances. Note that, after two successive encirclements (φ ¼ 4π), they become
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QL → diag:ðϵ−2Nþ2; ϵ2;…; ϵ2ÞQL ¼ ϵ2QL;

QR → diag:ðϵ−2Nþ2; ϵ2;…; ϵ2ÞQR ¼ ϵ2QR: ð5:22Þ

Thus, even numbers of manipulations give a ZN group,
which is a color singlet.
On the other hand, the light quarks participate condensa-

tions, thus receiving generalized AB phases consisting of two
contributions from the vortex winding and AB phases purely
coming from the color gauge group, as was studied for usual
non-Abelian semisuperfluid vortices in theCFL phase [37,38]
as well as non-Abelian Alice strings in the 2SC+hddi phase
[68–70] (seeAppendixC). In our case, generalizedABphases
around a chiral non-Abelian vortex are

qL → eiθBðφÞ=2eiθAðφÞ=2g�CðφÞqLUT
LðφÞ

¼ eiφ=2N exp

�
−
iφ
2N

diag:ðN − 1;−1;…;−1Þ
�
qL

exp

�
−

iφ
2N

diag:ðN − 1;−1;…;−1Þ
�

¼
�
e−iðð2N−3Þ=2NÞφðqLÞ11 e−iððN−3Þ=2NÞφðqLÞ1j
e−iððN−3Þ=2NÞφðqLÞi1 eið3=2NÞφðqLÞij

�
;

qR → eiθBðφÞ=2e−iθAðφÞ=2g�CðφÞqRUT
RðφÞ

¼ exp

�
−
iφ
2N

diag:ðN − 1;−1;…;−1Þ
�
qR

exp

�
þ iφ
2N

diag:ðN − 1;−1;…;−1Þ
�

¼
� ðqRÞ11 e−iφ=2ðqRÞ1j
eþiφ=2ðqRÞi1 ðqRÞij

�
ð5:23Þ

with i; j ¼ 2;…; N. After complete encirclement (φ ¼ 2π),
they become

qL →

�
e−ðð2N−3Þ=NÞπiðqLÞ11 e−iððN−3Þ=NÞπiðqLÞ1j
e−iððN−3Þ=NÞπiðqLÞi1 e3πi=NðqLÞij

�

¼
�−ðqLÞ11 ðqLÞ1j

ðqLÞi1 −ðqLÞij

�
ðfor N ¼ 3Þ;

qR →

� ðqRÞ11 −ðqRÞ1j
−ðqRÞi1 ðqRÞij

�
: ð5:24Þ

For the case of N ¼ 3, even numbers of encirclements
give a trivial action.

VI. ENERGETICS OF VORTICES

In this section, we calculate the leading contributions to
tensions of vortices, in particular of chiral non-Abelian
vortices (1, 0) and ð0;�1Þ, non-Abelian semisuperfluid
vortices (1, 1), and non-Abelian axial vortices ð1;−1Þ. We

also calculate the tension of a composite state of two chiral
non-Abelian vortices (1, 0) and (0, 1) with different CPN−1

orientations, to show that these orientations are energetically
favored to be aligned to each other, whileCPN−1 orientations
of two chiral non-Abelian vortices (1, 0) and ð0;−1Þ are
energetically favored to be orthogonal to each other.

A. Two vortices with parallel CPN − 1 orientations

Since all vortices discussed in this model have global
Uð1ÞB windings, the leading contributions to their tensions
are logarithmically divergent with coming from the kinetic
term of ΦR;L, as usual for global vortices.
We consider the following asymptotic configuration

characterized by a set of two integers fkL; kRg:

ΦL → vdiag ðeikLφ; 1;…; 1Þ; ð6:1Þ

ΦR → vdiag ðeikRφ; 1;…; 1Þ; ð6:2Þ

as r → ∞. We have taken the CPN−1 moduli of the (1, 0)
vortex of the left chirality to be oriented to the first
component without loss of generality, and we assume that
of the (0, 1) vortex of the right chirality to be aligned to the
(1, 0) vortex in this subsection. The case that they are not
aligned is discussed in the next subsection.
The gauge fields should be chosen in such a way that the

kinetic energy of ΦL;R is minimized:

Ai → −ϵij
ðkL þ kRÞxj
2Ngsr2

TN: ð6:3Þ

Then, the scalar kinetic energy reads

K ¼ Tr½DiΦ
†
LDiΦL þDiΦ

†
RDiΦR�

→
v2

r2
N þ 1

2N
FNðkL; kRÞ; ð6:4Þ

where FN is given by

FNðkL; kRÞ ¼ k2L −
2ðN − 1Þ
N þ 1

kLkR þ k2R

¼ ðkL − kRÞ2 þ
4

N þ 1
kLkR: ð6:5Þ

We thus find that the leading term of the tension is given by

K¼2π

Z
Λ
drrK¼ðNþ1Þπv2

N
FNðkL;kRÞlogΛ; ð6:6Þ

where Λ is an IR cutoff parameter, or the size of the system.
We have FNð1; 0Þ ¼ FNð0; 1Þ ¼ 1 for a single chiral

non-Abelian vortex (1, 0) or (0, 1), and FNð1; 1Þ ¼
4=ðN þ 1Þ for a single non-Abelian semisuperfluid vortex
(1, 1). Comparing these two, we find FNð1; 0Þ < FNð1; 1Þ
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for N ≤ 2, FNð1; 0Þ ¼ FNð1; 1Þ for N ¼ 3 (relevant to
QCD), and FNð1; 0Þ > FNð1; 1Þ for N ≥ 4.
By using these results, we can discuss whether two

separated chiral non-Abelian vortices with the opposite
chiralities (1, 0) and (0, 1) are energetically bound to a
single non-Abelian semisuperfluid vortex (1, 1) or not. To
this end, we note that when the vortices (1, 0) and (0, 1) are
infinitely separated, the tension of such a composite state is
proportional to a sum of the tensions of individual vortices:
FNð1; 0Þ þ FNð0; 1Þ ¼ 2. Comparing this with FNð1; 1Þ of
a single non-Abelian semisuperfluid vortex, we find

FNð1;0Þ þFNð0;1Þð¼ 2Þ
�¼ FNð1;1Þ ¼ 2 for N ¼ 1

> FNð1;1Þ ¼ 4
Nþ1

for N ≥ 2
:

ð6:7Þ

This implies that two chiral non-Abelian vortices with the
opposite chiralities (1, 0) and (0, 1) attract each other for
N ≥ 2, while there is no force between them at this order
for N ¼ 1. The latter corresponds to two-component BECs
in which the absence of the leading order interaction is in
fact known [76].
In a similar way, we can discuss the stability of a non-

Abelian axial vortex ð1;−1Þ. When the vortices (1, 0)
and ð0;−1Þ are infinitely separated, the tension of such
a composite state is proportional to FNð1; 0Þþ
FNð0;−1Þ ¼ 2. Comparing this with FNð1;−1Þ ¼
4N=ðN þ 1Þ of a single non-Abelian axial vortex, we find

FNð1;0ÞþFNð0;−1Þð¼2Þ
�¼FNð1;−1Þ¼2 forN¼1

<FNð1;−1Þ¼ 4N
Nþ1

forN≥2
;

ð6:8Þ

implying that two chiral non-Abelian vortices with the
opposite chiralities (1, 0) and ð0;−1Þ repel each other for
N ≥ 2, while there is no force between them at this order
for N ¼ 1. We thus have found that for N ≥ 2 the non-
Abelian axial vortex ð1;−1Þ is unstable to decay into
(1, 0) and ð0;−1Þ chiral non-Abelian vortices.

B. Two vortices with orthogonal CPN − 1 orientations

In this subsection, we take the CPN−1 moduli of the
(1, 0) and (0, 1) vortices to be orthogonal to each other,
which is possible for N ≥ 2. To this end, without loss of
generality, we consider the following asymptotic configu-
ration characterized by the set of two integers fkL; kRg,

ΦL → vdiag ðeikLφ; 1;…; 1Þ; ð6:9Þ

ΦR → vdiag ð1; eikRφ;…; 1Þ; ð6:10Þ

as r → ∞. In this case, the gauge fields should be chosen in
such a way that the kinetic energy of ΦL;R is minimized:

Ai → −ϵij
kLxj

2Ngsr2
TN − ϵij

kRxj

2Ngsr2
T 0
N; ð6:11Þ

with T 0
N ¼ diagð−1; N − 1;−1;…;−1Þ. Then, the scalar

kinetic energy reads

K →
v2

r2
N þ 1

2N
GNðkL; kRÞ; ð6:12Þ

with G defined by

GNðkL; kRÞ ¼ k2L þ
1

N þ 1
kLkR þ k2R: ð6:13Þ

Thus, the leading contribution to the tension of the
composite state can be calculated, to give

K¼2π

Z
Λ
drrK¼ðNþ1Þπv2

N
GNðkL;kRÞ logΛ: ð6:14Þ

The tension of a set of two non-Abelian chiral vortices
(1, 0) and (0, 1) with the CPN−1 orientations orthogonal
to each other is thus found to be proportional to
GNð1; 1Þ ¼ 2þ 1=ðN þ 1Þ. Since we have an inequality

FNð1; 1Þ ¼
4

N þ 1
< GNð1; 1Þ ¼ 2þ 1

N þ 1
ð6:15Þ

for all Nð≥ 2Þ, the chiral non-Abelian vortices with
aligned CPN−1 orientations are energetically more favored
than those with orthogonal orientations, implying that
their CPN−1 moduli attract each other, to be aligned.
Again, in a similar way, we can discuss the case of two

chiral non-Abelian vortices with the opposite chiralities
(1, 0) and ð0;−1Þ. In this case, we have an inequality

FNð1;−1Þ ¼
4N

N þ 1
> GNð1;−1Þ ¼ 2 −

1

N þ 1
ð6:16Þ

for all Nð≥ 2Þ. Thus, two chiral non-Abelian vortices
(1, 0) and ð0;−1Þ with orthogonal CPN−1 orientations are
energetically more favored than those with aligned ori-
entations, implying that their CPN−1 moduli repel each
other. If we separate them infinitely, the tension becomes
GNð1; 0Þ þ GNð0;−1Þ ¼ 2. The inequality

GNð1; 0Þ þ GNð0;−1Þ ¼ 2 > GNð1;−1Þ ¼ 2 −
1

N þ 1

ð6:17Þ

implies that the two chiral non-Abelian vortices (1, 0)
and ð0;−1Þ with orthogonal CPN−1 orientations attract
each other, forming a bound state. It is, however, a highly
nontrivial dynamical question remaining as a future
problem.
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VII. VORTEX-DOMAIN WALL COMPOSITES

We consider the case of γ1; γ2; γ3 ≠ 0 in which the axial
and chiral symmetries are explicitly broken. This breaking
induces domain walls attached to the vortices.

A. Chiral non-Abelian vortices attached by chiral
domain walls

Let us turn on γ1; γ2; γ3 ≠ 0 to see their effects on
vortices. In this subsection, we consider a chiral non-
Abelian vortex. In Fig. 2, we present numerical simulations
in the case that either of γ1, γ2, γ3 is nonzero. We can clearly
see that one chiral non-Abelian vortex is attached by one or
two domain walls. The three columns correspond from the
left to the right to ðγ1; γ2; γ3Þ ¼ ð�; 0; 0Þ; ð0; �; 0Þ; ð0; 0; �Þ,
respectively. In the middle column γ2 ≠ 0, the vortex is
attached by the two domain walls with the same tension,
and thus the configuration is stable. In left-most and right-
most cases, the vortex is attached by one domain wall from
one side. The wall pulls the vortex and the configuration is
unstable, but it is static in the comoving frame.
To see why this happens, we consider an infinitely large

circle parametrized by the spatial angle φ encircling
vortices. Let us substitute the chiral non-Abelian vortex
ansatz of either the left chirality in Eq. (5.3) or the right
chirality in Eq. (5.12) to the potential term in Eq. (2.5), with
replacing the spatial angle φ by a function ϕðφÞ depending
on the angle φ with the boundary condition ϕðφ ¼ 0Þ ¼ 0
and ϕðφ ¼ 2πÞ ¼ 2π. It can be evaluated at spatial infin-
ities as

V ¼ 2ðγ1 þ γ3Þ cosϕðφÞ þ 2γ2 cosð2ϕðφÞÞ: ð7:1Þ

Together with the gradient term, the effective energy for ϕ
on the large circle at infinity encircling the chiral non-
Abelian axial vortex becomes Eeff ¼ v2ð∂φϕÞ2 þ V. This is
the double sine-Gordon model. Note that the periodicity is
2π in contrast to the case of non-Abelian axial vortices in
Eq. (4.7) in which the periodicity was π.
First, let us consider the absence of γ3 (γ3 ¼ 0). The

case of ðγ1; γ2; γ3Þ ¼ ðγ1; 0; 0Þ corresponds to the sine-
Gordon model, the case of ðγ1; γ2; γ3Þ ¼ ð0; γ2; 0Þ to the
sine-Gordon model with a half periodicity, and the case of
ðγ1; γ2; γ3Þ ¼ ðγ1; γ2; 0Þ to the double sine-Gordon model.
In the first case, a single chiral non-Abelian vortex is
attached by a single sine-Gordon soliton, and thus is
confined as shown in Figs. 2(a1)–2(a7). In the second
case, it is attached by two sine-Gordon solitons (or
domain walls) of the same tension from the opposite
sides, and therefore the composite state is stable, see
Figs. 2(b1)–2(b7). This case is a non-Abelian generali-
zation of chiral P-wave superconductors, for which the GL
theory is described by a Uð1Þ gauge theory coupled with
two complex scalar fields Φ1 and Φ2 with a potential term
V ∼ ðΦ�

1Þ2ðΦ2Þ2 þ c:c: [80,81]. In the third case, it is

attached by two sine-Gordon solitons (or domain walls),
but how they attach depends on the parameters γ1, γ2 as
classified in Refs. [24,25] in the context of two Higgs
doublet models. In these cases, the domain walls attached
to the chiral non-Abelian vortex are non-Abelian sine-
Gordon solitons carrying CPN−1 moduli [82,83]. This can
be clearly seen in Fig. 2; The component Φ11

L has the
vortex winding [(a1) and (b1)]. If one looks at the right
condensation along the domain wall, one finds that Φ11

R is
concave [Figs. 2(a3) and 2(b3)] while Φ22

R and Φ33
R are

convex [Figs. 2(a4) and 2(b4)]. The same happens in the
left condensations along the wall far apart from the vortex
[Figs. 2(a1), 2(a2), 2(b1), and 2(b2)]. Thus, the SUð3Þ
symmetry is spontaneously broken down to SUð2Þ ×Uð1Þ
along the domain wall, resulting in the CP2 NG modes
localized on the wall or attributing the CP2 moduli. These
moduli match those in Eq. (5.11) of the vortex along the
junction line of the vortex and domain walls.
When only γ3 is present, ðγ1; γ2; γ3Þ ¼ ð0; 0; γ3Þ, one

sine-Gordon soliton is attached to one chiral non-Abelian
vortex as shown in Fig. 2(c1)–(c7). This is Abelian,

carrying no moduli. Indeed, the profile functions jΦði;iÞ
L;R j2

behave almost the same along the domain wall far from
the vortex core. This implies that ΦL;R are proportional to
the identity, and so no symmetries are broken by the
domain wall.
When all γ1;2;3 are present, there appears either attraction

or repulsion among the domain walls attached to the vortex,
depending on its sign. If it is attraction, the domain walls
form a composite domain wall [5,54], thus confining the
chiral non-Abelian vortex. If repulsion, the chiral non-
Abelian vortex is attached by two domain walls with
different tensions from opposite sides. Such details of
the domain wall structure are worth studying on their
own, but are not relevant in the following subsections for
vortex molecules, as explained below.
If we do the same for the usual non-Abelian semi-

superfluid vortex in Eq. (3.2), there is no potential term,
implying that no domain wall is attached to the usual non-
Abelian semisuperfluid vortex.

B. Decay of Abelian and non-Abelian axial vortices

Here we discuss that Abelian and non-Abelian axial
vortices are all unstable to decay into a set of chiral non-
Abelian vortices once the axial and chiral symmetry
breaking terms are turned on.
One non-Abelian axial vortex discussed in Sec. IV B is

attached from the opposite sides by two [or four for
ðγ1; γ2; γ3Þ ¼ ð0; γ2; 0Þ] domain walls extending to infin-
ities, and thus decays into two chiral non-Abelian vortices
each of which is attached by one (or two) chiral domain
wall(s) as in Fig. 3(a); one of the left chirality and the other
of the right chirality with the opposite winding. This decay
process can be written as

CHIRAL NON-ABELIAN VORTICES AND THEIR CONFINEMENT … PHYS. REV. D 104, 094052 (2021)

094052-13



ð1;−1Þ → ð1; 0Þ þ ð0;−1Þ: ð7:2Þ

It is interesting to observe that there was no flux in the
initial state while the final states contain fluxes. Similarly,
the Abelian axial vortex is also unstable to decay as

ðN;−NÞ → Nð1;−1Þ → Nð1; 0Þ þ Nð0;−1Þ: ð7:3Þ

Another example is a doubly-wound chiral non-Abelian
vortex with the same chirality, say left. This is also attached
by two [or four for ðγ1; γ2; γ3Þ ¼ ð0; γ2; 0Þ] chiral domain

FIG. 2. The profile functions jΦði;iÞ
L;R j2 (i ¼ 1, 2, 3) of the vortex-wall composites. The left-most, middle, and

right-most columns have ðγ1; γ2; γ3Þ ¼ ð−0.1; 0; 0Þ, ð0;−0.1; 0Þ, ð0; 0;−0.2Þ, respectively. The other parameters are common for
all cases as ðm; λ1; λ2; λ3; λ4; gÞ ¼ ð ffiffiffi

2
p

; 1; 1; 1; 0; 1Þ.
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walls extending to infinities (but vortices of the same
chirality are placed at both L and R), and therefore it is also
unstable against decay into two chiral non-Abelian vortices
each of which is attached by one (or two) chiral domain
wall(s) as in Fig. 3(a). This decay process can be written as

ð2; 0Þ → 2ð1; 0Þ: ð7:4Þ

Similarly, an Abelian axial string having the minimum unit
winding in Σ can decay as

ðN; 0Þ → Nð1; 0Þ: ð7:5Þ

This decay was numerically simulated in the linear sigma
model [5,54].

VIII. NON-ABELIAN VORTEX MOLECULES

A. Structure of chiral non-Abelian vortex molecules

Before discussing the effect of explicit breaking terms
γ1;2;3 ≠ 0 for general case, let us make a comment on the
interaction between chiral non-Abelian vortices for γ1;2;3 ¼
0 in the case of N ¼ 1, in which the system reduces to two-
component BECs. In this case, the interaction energy
between (1, 0) and ð�1; 0Þ vortices at distance R is well
known Eint ∼� logR. Thus, a vortex and (anti)vortex repel
(attract) each other as usual for single component global
(superfluid) vortices. On the other hand, the interaction
energy between (1, 0) and (0, 1) vortices at distance R
vanishes at the leading order, to be consistent with
Eq. (6.8), and the next leading order is Eint ∼ λ logR=R2

[76] with λ being λ3 and/or λ4 in Eq. (2.5) (reducing the
same term for N ¼ 1). Thus, it can be either repulsive
(λ > 0) or attractive (λ < 0). Once we introduce the explicit
breaking terms γ1;2;3 ≠ 0, a pair of (1, 0) and (0, 1) vortices
forms a molecule in which constituents are separated at
finite distance, when they are repulsive (λ > 0) [48,51].
They collapse to form an Abelian vortex (1, 1) when they
are attractive (λ < 0).

Here, we show that the chiral non-Abelian vortices (1, 0)
and (0, 1) can form a molecule. They have the same color
magnetic fluxes. Now we put a (1, 0)-vortex on the left at
“L” and a (0, 1)-vortex on the right at “R” in Fig. 3(b). We
assume that the CPN−1 orientations of these vortices are
the same. The loop bR þ r encircles the (0, 1)-vortex while
the one bL − r encircles the (1, 0)-vortex. The large loop
bR þ bL encircles the both of them.
Along each of the large half circles bL and bR, the vector

transformations, i.e., the color gauge transformation and
Uð1ÞB transformation act as

bL; bR∶ gCðφÞ ¼ e
i
2NFðφ∓π

2
ÞTN ; Fð0Þ ¼ 0; FðπÞ ¼ 2π

ð8:1Þ

eiθBðφÞ ¼ eiBðφ∓π
2
Þ; Bð0Þ ¼ 0; BðπÞ ¼ π=N; ð8:2Þ

respectively, where F and B are monotonically increasing
functions (linear functions). On the other hand, along the
path r, we have

r∶ U†
L ¼UR ¼ e

i
2NRðyÞTN ; Rð−∞Þ ¼ 0; Rðþ∞Þ ¼ 2π

ð8:3Þ

eiθAðyÞ ¼ eiAðyÞ; Að−∞Þ ¼ 0; Aðþ∞Þ ¼ π=N;

ð8:4Þ

respectively, where we have parametrized the path r by the
coordinate y, and R and A are monotonically increasing
functions.
Therefore, along the path r, there appears a (composite)

domain wall stretching between the (1, 0)- and (0, 1)-vortices
once γ1;2;3 are turned on. The internal structure of the domain
wall depends on the values of γ1;2;3, as discussed in
Sec. VII A. In the presence of only γ1;3, there exists one
domain wall between the vortices, while there are two
domain walls in the presence of γ2. Nevertheless, all domain
walls must be stretched between the two vortices since there

FIG. 3. Pairs of chiral non-Abelian vortices (a) attached by domain walls extending to infinities, leading to the instability against a
decay, and (b) forming a chiral non-Abelian vortex molecule connected by a domain wall. For both cases, left (right) chiral non-Abelian
vortices placed at L and R are encircled by the closed loops bL − r and bR þ r, respectively. (a) They have the opposite windings (1, 0)
and ð0;−1Þ, and are attached by domain walls extending to infinities, leading the instability against decay. (b) These vortices have the
same windings (1, 0) and (0, 1), and are connected by a domain wall denoted by a red broken line to form a vortex molecule.
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is no wall along the path b1 þ b2 encircling the whole
configuration. Dynamically, the domain wall tension pulls
these chiral non-Abelian vortices and combine them to a
single non-Abelian semisuperfluid vortex. Thus, these chiral
non-Abelian vortices are confined to a “mesonic” configu-
ration, which is nothing but a non-Abelian semisuperfluid
vortex. We can express this confining process by

ð1; 0Þ þ ð0; 1Þ → ð1; 1Þ: ð8:5Þ
In Fig. 4, we present numerical simulations of a pair of

chiral non-Abelian vortices (1, 0) and (0, 1) separated at
finite distance. Clearly one can see that the domain walls
are stretched between them. In the case of ðγ1; γ2; γ3Þ ¼
ð�; 0; 0Þ (the left column), a single non-Abelian

sine-Gordon kink is stretched between them. In the case
of ðγ1; γ2; γ3Þ ¼ ð0; �; 0Þ (the middle column), two domain
walls are stretched between them forming a ring, like vortex
molecules in a chiral P-wave superconductor, see foot-
note 7.1. Finally, in the case of ðγ1; γ2; γ3Þ ¼ ð0; 0; �Þ (the
right column), a single Abelian sine-Gordon kink is
stretched between them.
The two vortices are linearly confined and these con-

figurations are on a way to collapse. It is an open question
whether, as the case of two-component BECs (N ¼ 1),
these constituents can be separated at finite distance and an
internal structure of the molecule is visible in certain
parameter regions. Possibly, it may occur when λ4ð> 0Þ
is large enough for which the (1, 0) and (0, 1) vortices

FIG. 4. The profile functions jΦði;iÞ
L;R j2 (i ¼ 1, 2, 3) of a pair of the (1, 0) and (0, 1) chiral non-Abelian vortices. They are stretched by a

chiral domain wall(s). The parameter choice of the left-most, middle, and right-most columns are ðγ1; γ2; γ3Þ ¼ ð0.01; 0; 0Þ, (0, 0.01, 0),
(0, 0,0.2), respectively. The other parameters are common for all cases as ðm; λ1; λ2; λ3; λ4; gÞ ¼ ð ffiffiffi

2
p

; 1; 1; 1; 0; 1Þ.
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would repel each other at short distances. Explicitly
constructing numerical solutions remains a future problem.

B. Generalized Aharonov-Bohm phases

Let us discuss generalized AB phases around a vortex
molecule in Fig. 3(b). We restrict to N ¼ 3 relevant for the
CFL phase.
When the light quarks encircle the (1, 0)-vortex at L

along the path bL − r, they receive the generalized AB
phases

qL →

�−ðqLÞ11 ðqLÞ1j
ðqLÞi1 −ðqLÞij

�
;

qR →

� ðqRÞ11 −ðqRÞ1j
−ðqRÞi1 ðqRÞij

�
: ð8:6Þ

These constitute a Z2 group, which is a color nonsinglet.
On the other hand, when they encircle the (0, 1)-vortex at R
along the path bR þ r, they receive the generalized AB
phases

qL →

� ðqLÞ11 −ðqLÞ1j
−ðqLÞi1 ðqLÞij

�
;

qR →

�−ðqRÞ11 ðqRÞ1j
ðqRÞi1 −ðqRÞij

�
; ð8:7Þ

constituting a Z2 group, which is a color nonsinglet.
Thus, when they encircle the both vortices along the

large circle bL þ bR, they receive the generalized AB
phases

qL → −qL; qR → −qR; ð8:8Þ

constituting a Z2 group. This is a color singlet. These
generalized AB phases are precisely those of a single non-
Abelian semisuperfluid vortex [31,32]. Interestingly, the
light quarks can detect the color of fluxes of the chiral
non-Abelian vortices (1, 0) and (0, 1) at the large distance by
the generalized AB phases in Eqs. (8.6) and (8.7) which are
color nonsinglets, but they cannot detect the color of the flux
of the whole molecule by the generalized AB phase in
Eq. (8.8) which is a color singlet.
As for heavy quarks, they detect only gauge fields. Thus,

they do not distinguish the (1, 0)- and (0, 1)-vortices unlike
the light quarks, since the gauge structures are identical
between these two vortices carrying exactly the same color
magnetic fluxes. Therefore, when they encircle either of the
(1, 0)- and (0, 1)-vortices, they receive the AB phases in
Eq. (5.20) which is a color nonsinglet, while when they
encircle the both of them along the path bL þ bR, they
receive the AB phases in Eq. (5.22) which is a color singlet.

The latter forming a color singlet Z3 group are precisely
those of a single non-Abelian vortex [37].
In summary, chiral non-Abelian vortices are not confined

and can exist alone when γ1;2;3 ¼ 0, while they are confined
when γ1;2;3 ≠ 0. In the deconfined phase, chiral non-
Abelian vortices exhibit color nonsinglet (generalized)
AB phases so that the light/heavy quarks can detect the
colors of magnetic fluxes of these vortices at large
distances. In the confined phase, chiral non-Abelian vor-
tices exhibit only color singlet (generalized) AB phases so
that the light/heavy quarks cannot detect the colors of
magnetic fluxes of these vortices at large distances. Thus,
stable states exhibit color-singlet (generalized) AB phases.
The opposite is not always true. Not all states with color-

singlet (generalized) AB phases can exist stably in the
confined phase. For instance, the two examples ð1;−1Þ and
(2, 0) in Sec. VII B exhibit color-singlet (generalized) AB
phases; the (2, 0) made of two (1, 0) with the same color
magnetic fluxes exhibits the singlet AB phase for heavy
quarks in Eq. (5.22) and the trivial phases for light quarks
obtained from two successive phases of Eq. (5.24);
ðQL; QR; qL; qRÞ → ðϵ2QL; ϵ2QR; qL; qRÞ, which are color
singlet. Nevertheless, they are attached by the two chiral
domain walls extending to infinities as in Fig. 3(a), and are
unstable against decay into two chiral non-Abelian vortices
each of which is attached by one (or two) chiral domain
wall(s): ð1;−1Þ → ð1; 0Þ þ ð0;−1Þ and ð2; 0Þ → 2ð1; 0Þ.
The ðN; 0Þ vortex made of N (1, 0) vortices with all
different color magnetic fluxes give generalized AB phases
as ðQL; QR; qL; qRÞ → ðQL; QR;−qL; qRÞ, which are color
singlets. It is, however, broken as ðN; 0Þ → Nð1; 0Þ.

IX. SUMMARY AND DISCUSSION

In the CFL phase of dense QCD, we have found chiral
non-Abelian vortices winding only around either of left or
right diquark condensation ΦL or ΦR labeled by (1, 0) and
(0, 1), respectively. As can be expected from ð1; 0Þ ¼
1
2
½ð1; 1Þ þ ð1;−1Þ� and ð0; 1Þ ¼ 1

2
½ð1; 1Þ − ð1;−1Þ�, they

carry half color magnetic fluxes and half Uð1ÞB circulation
of those of a non-Abelian semisuperfluid vortex labeled by
(1, 1), and half Uð1ÞA winding and half chiral circulation
[around the sub-OPM MA ¼ UðNÞL−RþA] of a non-
Abelian axial vortex labeled by ð1;−1Þ. A single chiral
non-Abelian vortex carries CPN−1 orientational moduli in
the internal space corresponding to its color magnetic flux.
We have discussed the energetics of vortices and have
found that CPN−1 orientations of two chiral non-Abelian
vortices (1, 0) and (0, 1) are energetically aligned, while
those with a chiral vortex (1, 0) and antivortex ð0;−1Þ are
energetically orthogonal to each other. Then, the two chiral
non-Abelian vortices attract each other forming bound
states. We have shown that chiral non-Abelian vortices
exhibit the topological obstruction implying that the
unbroken symmetry generators are not defined globally
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around the vortices, and color nonsinglet (generalized) AB
phases implying that quarks at large distances can detect
the colors of magnetic fluxes by encircling these vortices.
In the presence of the axial and chiral symmetry breaking
terms γ1;2;3 ≠ 0, these vortices are confined by chiral
domain walls, while they are deconfined in the absence
of those terms. In the confined phase, two chiral non-
Abelian vortices (1, 0) and (0, 1) with chiralities opposite to
each other are connected by a chiral domain wall, con-
stituting a mesonic bound state (1, 1) which is nothing but a
non-Abelian semisuperfluid vortex, exhibiting only color
singlet (generalized) AB phases implying that the quarks
cannot detect the color of magnetic flux of such a bound
state at large distances. We also have shown that the
Abelian axial vortices ðN;−NÞ and non-Abelian axial
vortices ð1;−1Þ attached by chiral domain walls are both
unstable to decay into a set of chiral non-Abelian vortices.
Before closing this paper, let us address several dis-

cussions and future directions.
The confinement does not imply that the mesonic bound

state necessary collapses to an axisymmetric non-Abelian
semisuperfluid vortex. It remains as a future problem to
numerically construct solutions of vortex molecules in
certain parameter regions, in which the constituent (1, 0)
and (0, 1) vortices are separated at finite distances. At least
the axial and chiral symmetry breaking terms should be
relatively small. At finite temperature, it does not have to
be the case at least in 2þ 1 dimensions because of the
Berezinskii-Kosterlitz-Thouless (BKT) transition. The
BKT transition was explicitly shown in Ref. [53] by
numerical simulations for the Abelian case N ¼ 1.
In this paper, we have constructed numerical solutions

for single chiral non-Abelian vortices (1, 0) or (0, 1), in the
absence of the axial and chiral symmetry breaking terms:
γ1;2;3 ¼ 0. In the presence of these terms, chiral domain
walls are attached to them. We have constructed solutions
in the case that only one of γ1;2;3 is nozero. In particular, if
we turn on all γ1;2;3’s, the situation is close to the two-Higgs
doublet models [24,25]. Explicitly constructing numerical
solutions of such domain-wall vortex composites in general
cases remains as one of future problems. A particularly
important problem is to construct a vortex molecule
ð1; 0Þ þ ð0; 1Þ. This would reduce to a single non-
Abelian semisuperfluid vortex in the most parameter region
because of the domain wall tension, but we should examine
whether these two constituents can be separated in some
parameter region particularly for small γ1;2;3’s and/or small
gauge coupling gs for which there is a repulsion between
constituent vortices. This problem is important in a relation
with higher-form symmetries discussed in the next para-
graph. Finally, we also should numerically verify decays of
axial and chiral vortices as discussed in Sec. VII B, such as
a non-Abelian axial vortex ð1;−1Þ → ð1; 0Þ þ ð0;−1Þ and
an Abelian axial vortex ðN;−NÞ → Nð1; 0Þ þ Nð0; 1Þ, as
we did a similar problem in the linear sigma models [5,54].

In particular, in the presence of the mass terms γ1;2 ≠ 0, 2N
domain walls attached to one Abelian axial vortex ðN;−NÞ
constitute a composite wall as can be expected from
Eq. (4.2), and it is an open question whether this fact
suppresses the decay. To perform simulations, we may do
either a relaxation method or real time dynamics. For the
latter, we need a time-dependent GL theory.
Higher-form symmetries [84] related with a linking

between Wilson loops and vortices are an indispensable
tool to study phases of matter such as the so-called
topological order. Higher form symmetries in the presence
of non-Abelian semisuperfluid vortices and the absence or
presence of a topological order of the CFL phase were
studied in Refs. [39–42,85]. In this case, a linking between
a Wilson loop and a non-Abelian semisuperfluid vortex is
rather trivial in the sense that AB phases are color singlets.
Contrary to this, a linking between a Wilson loop and a
chiral non-Abelian vortex is nontrivial because AB phases
are color nonsinglets as we have seen in Sec. V C. Thus,
the phase separating a non-Abelian semisuperfluid vortex
(1, 1) into two chiral non-Abelian vortices (1, 0) and (0, 1)
may be characterized in terms of a higher-form symmetry.
As mentioned in introduction, in the context of quark-

hadron continuity, vortices penetrate through the CFL
phase and hyperon nuclear matter [9,36–42]. In particular,
from the AB phases of quarks around vortices, one can
conclude the existence of a boojum at which three hyperon
vortices and three non-Abelian semisuperfluid vortices
must meet [9,37,38]. This structure is modified if the
deconfined phase is realized in the CFL phase. In fact,
this situation is similar to two-flavor quark matter (see
Appendix C).
Beyond the GL description, we could study fermion

structure by the BdG formulation. In fact, fermion zero
modes were studied for non-Abelian semisuperfluid vor-
tices in the BdG equation [31–33], in which triplet
Majorana fermion zero modes were found. Such
Majorana fermions endow these vortices non-Abelian
exchange statistics in d ¼ 2þ 1, turning them into non-
Abelian anyons [86,87]. Apparently, it is a very interesting
question whether fermion zero modes exist on chiral non-
Abelian vortices and if so what their exchange statistics are.
The CP2 modes of the chiral non-Abelian vortex are

probably non-normalizable, unlike those of a single non-
Abelian semisuperfluid vortex [5,30]. However, around a
constituent of a vortex molecule (1, 1), these modes may be
normalizable because of a cutoff introduced by the pres-
ence of the other. The CP2 modes are normalizable on
the chiral domain wall [82,83] that connects the (1, 0) and
(0, 1). This fact together with the fact that the CP2 modes
are normalizable on a single non-Abelian semisuperfluid
vortex [5,30] may suggest that these modes are still
normalizable around the vortex molecule (1, 1).
In this paper, we have turned off the electro-magnetic

interaction and the strange quark mass. Turning them on
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can be incorporated in the CP2 effective world-sheet
Lagrangian of a single non-Abelian semisuperfluid vortex
in Refs. [88,30], respectively. This method may be applied
to the case of a chiral non-Abelian vortex as well.
Finally, there are some interesting directions for studying

chiral domain walls. One is a decay of chiral domain walls
by quantum or thermal tunneling. In this case, a hole
created on the domain wall world volume is surrounded by
an axial vortex (see Sec. 10.5 of the review paper [5]). For
the minimum element of a chiral domain wall, a hole
should be surrounded by a chiral non-Abelian vortex
studied in this paper. The other direction is given by is
the chiral non-Abelian semisuperfluid vortices under mag-
netic field background which would be also interesting in
connection with the chiral anomaly. The domain wall
connecting (1, 0) and (0, 1) is made of the η0 meson
related to Uð1ÞA, and η0 nontrivially changes along the
direction perpendicular to the η0 domain wall. Therefore,
under the presence of magnetic field, the domain wall
should be magnetized as found in Refs. [89,90], see also
Sec. 10.6 of Ref. [5]. Physical consequences of these
domain walls are interesting to explore.
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APPENDIX A: TERMINOLOGIES

In this Appendix, we summarize terminologies in this
paper, which may be sometimes confusing.

1. Abelian and Non-Abelian

The terminology “Abelian vortices” is used for vortices
having winding in a Uð1Þ group. In this paper, such a Uð1Þ
group is either the baryonic symmetry Uð1ÞB or axial
symmetry Uð1ÞA. A vortex winding around Uð1ÞB is called
an Abelian superfluid vortex (Sec. III A), while one wind-
ing around Uð1ÞA is called an axial vortex (Sec. IVA).
In this paper, the terminology “non-Abelian” is used for

vortices with non-Abelian magnetic fluxes and those
accompanied with non-Abelian Nambu-Goldstone modes,
as is common in dense QCD [5,11], supersymmetric QCD
[14–19] (see Refs. [20–23] as a review), and two-Higgs
doublet models [24–28].
Global analogues are also called non-Abelian. In this

paper, vortices winding in chiral symmetry breaking
UðNÞL × UðNÞR → SUðNÞLþR are called non-Abelian
axial vortices, see Sec. IV B.

However note that the same terminology “non-Abelian”
is sometimes used for a different meaning in the literature.
It is used for vortices with non-Abelian holonomies in
Refs. [56–58], which differs from our terminology. Note
that the above mentioned non-Abelian vortices in dense
QCD, SUSY QCD and two-Higgs doublet models are
Abelian in this language since holonomies are ZN (N ¼ 3
for dense QCD and N ¼ 2 for two-Higgs doublet models).
Chiral non-Abelian vortices found in this paper are accom-
panied by non-Abelian holonomies, and thus they are non-
Abelian in this language as well.

2. Superfluid/semisuperfluid

Abelian superfluid vortices have integer windings
around Uð1ÞB. They do not carry any color magnetic
fluxes.
Semisuperfluid vortices have fractional windings around

Uð1ÞB. For single-valuedness, they must be accompanied
with color gauge transformation for single-valuedness of
fields, and thus they are inevitably non-Abelian.

3. Chiral

We call vortices “chiral” when only ΦL or ΦR has
windings. We label it by (1, 0) or (0, 1).

4. Topological obstruction

Here, we explain the topological obstruction [55–62].
When a symmetry G is spontaneously broken down to its
subgroup H, the OPM is a coset space G=H. Note that the
unbroken symmetry H is not unique. When the VEV v ¼
hϕi of a field ϕ is transformed to v0 ¼ gv with some group
element g ∈ G, the unbroken symmetry H is also trans-
formed to H0 ¼ gHg−1.
A problem may happen in the presence of a vortex. When

we put a vortex, the asymptotic value of the field ϕ depends
on the azimuthal angle φ around the vortex: ϕðφÞ ∼ gðφÞv.
Around the vortex, the unbroken symmetryH depends on the
azimuthal angle φ asHφ ¼ gðφÞH0gðφÞ−1 withH0 beingH
at φ ¼ 0. From the single-valuedness of ϕ, we have
ϕðφ ¼ 2πÞ ¼ ϕðφ ¼ 0Þ. However, this does not necessarily
imply gðφ ¼ 2πÞ ¼ gðφ ¼ 0Þ. In general, gðφ ¼ 2πÞ ≠
gðφ ¼ 0Þ, and thus the unbroken symmetry is not single-
valued: Hφ¼2π ≠ Hφ¼0 ¼ H0. This is the topological
obstruction. An example can be found in an Alice string [55].

APPENDIX B: ORDER PARAMETER
MANIFOLDS

Let us describe the full OPM in this Appendix. To this
end, we neglect explicit breaking terms, γ1;2;3 ¼ 0, thus
axial and chiral symmetries becoming exact.
The symmetryG acts on the condensatesΦL;R, which are

N by N matrices of complex scalar fields, as
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ΦL → gCΦLÛ
†
L; ΦR → gCΦRÛ

†
R

gC ∈ SUðNÞC; ÛL;R ∈ UðNÞL;R: ðB1Þ

With taking into account discrete groups, G can be
faithfully written as

G¼SUðNÞC×UðNÞL×UðNÞR
ðZNÞCþlþr

¼SUðNÞC×Uð1Þl ×Uð1Þr ×SUðNÞL×SUðNÞR
ðZNÞCþlþr ×ðZNÞLþl ×ðZNÞRþr

ðB2Þ

with

UðNÞL ¼ Uð1Þl × SUðNÞL
ðZNÞLþl

;

UðNÞR ¼ Uð1Þr × SUðNÞR
ðZNÞRþr

: ðB3Þ

Here, the discrete groupsZN are defined in Table II, and the
two Uð1Þ groups can be explicitly written as

Uð1Þl∶ ðΦL;ΦRÞ → ðe−iθlΦL;ΦRÞ;
Uð1Þr∶ ðΦL;ΦRÞ → ðΦL; e−iθrΦRÞ: ðB4Þ

Let us rewrite the two Uð1Þ groups in Eq. (B4) by the
baryon and axial Uð1Þ groups as

Uð1ÞB∶ ðΦL;ΦRÞ → eiθBðΦL;ΦRÞ;
Uð1ÞA∶ ðΦL;ΦRÞ → ðeiθAΦL; e−iθAΦRÞ; ðB5Þ

where the relation is given by

θB ¼ −
θl þ θr

2
; θA ¼ −

θl − θr
2

: ðB6Þ

Note that

Uð1Þl ×Uð1Þr ¼
Uð1ÞB × Uð1ÞA

ðZ2ÞAþB
; ðB7Þ

where ðZ2ÞAþB generated by ð−1;−1Þ ∈ Uð1ÞB ×Uð1ÞA
is redundant and must be removed. Then, the symmetry G
acting on the condensates as

ΦL → eiθBþiθAgCΦLU
†
L; ΦR → eiθB−iθAgCΦRU

†
R

gC ∈ SUðNÞC; UL;R ∈ SUðNÞL;R; eiθB ∈ Uð1ÞB;
eiθA ∈ Uð1ÞA ðB8Þ

can be rewritten as

TABLE II. Summary table of the discrete symmetries. ω is the N-th root of the unity: ω ¼ expð2πi=NÞ. Note
ðZNÞCþlþr ¼ ðZNÞCþB.

SUðNÞC SUðNÞL SUðNÞR Uð1Þl Uð1Þr Uð1ÞB Uð1ÞA
ðZNÞC ωk 1 1 1 1 1 1
ðZNÞL 1 ωk 1 1 1 1 1
ðZNÞR 1 1 ωk 1 1 1 1
ðZNÞl 1 1 1 ωk 1 ω−k

2 ω−k
2

ðZNÞr 1 1 1 1 ωk ω−k
2 ω

k
2

ðZNÞB 1 1 1 ω−k ω−k ωk 1
ðZNÞA 1 1 1 ω−k ωk 1 ωk

ðZNÞCþlþr ωk 1 1 ωk ωk ω−k 1
ðZNÞLþl 1 ωk 1 ω−k 1 ω

k
2 ω

k
2

ðZNÞRþr 1 1 ωk 1 ω−k ω
k
2 ω−k

2

ðZNÞCþB ωk 1 1 ωk ωk ω−k 1
ðZNÞLþRþB 1 ωk ωk ω−k ω−k ωk 1
ðZNÞL−RþA 1 ωk ω−k ω−k ωk 1 ωk

ðZNÞCþLþR ωk ωk ωk 1 1 1 1
ðZNÞC−ðLþRÞþB ωk ω−k ω−k ω2k ω2k ω−2k 1
ðZ2ÞAþB 1 1 1 1 1 −1 −1
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G ¼ SUðNÞC ×Uð1ÞB ×Uð1ÞA × SUðNÞL × SUðNÞR
ðZ2ÞAþB × ðZNÞCþB × ðZNÞLþRþB × ðZNÞL−RþA

¼ SUðNÞC ×Uð1ÞB ×Uð1ÞA × SUðNÞL × SUðNÞR
ðZ2ÞAþB × ðZNÞCþLþR × ðZNÞC−ðLþRÞþB × ðZNÞL−RþA

; ðB9Þ

with the discrete groups in the denominator, defined in Table II. In Eq. (B9), the direct product of the two groups have been
rewritten by taking the product of the former groups as ðZNÞCþB × ðZNÞLþRþB ¼ ðZNÞCþLþR × ðZNÞC−ðLþRÞþB for later
convenience.
The unbroken subgroup H on the ground state ΦL ∼ΦR ∼ v1N is

H ¼ SUðNÞCþLþR × ðZNÞC−ðLþRÞþB × ðZNÞL−RþA

ðZNÞCþLþR × ðZNÞC−ðLþRÞþB × ðZNÞL−RþA
¼ SUðNÞCþLþR

ðZNÞCþLþR
; ðB10Þ

where the same rearrangements of the discrete groups with Eq. (B2) have been taken in the denominator.
Thus, the full OPM can be obtained as

M ¼ G
H

¼ SUðNÞC ×Uð1ÞB ×Uð1ÞA × SUðNÞL × SUðNÞR
SUðNÞCþLþR × ðZNÞC−ðLþRÞþB × ðZNÞL−RþA × ðZ2ÞAþB

: ðB11Þ

Note the relation

SUðNÞL × SUðNÞR ¼ SUðNÞLþR ⋉
SUðNÞL × SUðNÞR

SUðNÞLþR

≃ SUðNÞLþR ⋉ SUðNÞL−R; ðB12Þ

where F ⋉ B denotes a fiber bundle with a fiber F over a base manifold B.6 We can further rewrite it as

M ¼
�
Uð1ÞB × SUðNÞC−ðLþRÞ

ðZNÞC−ðLþRÞþB
⋉

Uð1ÞA × SUðNÞL−R
ðZNÞL−RþA

�
=ðZ2ÞAþB

¼ UðNÞC−ðLþRÞþB ⋉ UðNÞL−RþA

ðZ2ÞAþB
¼ MV ⋉ MA

ðZ2ÞAþB
: ðB13Þ

Here, we have defined the OPMs for the vector symmetry breaking and for the axial and chiral symmetry breakings by

MV ≃
Uð1ÞB × SUðNÞC × SUðNÞLþR

ðZNÞC−ðLþRÞþB × SUðNÞCþLþR
≃
Uð1ÞB × SUðNÞC−ðLþRÞ

ðZNÞC−ðLþRÞþB
≃UðNÞC−ðLþRÞþB;

MA ≃
Uð1ÞA × SUðNÞL × SUðNÞR
ðZNÞL−RþA × SUðNÞLþR

≃
Uð1ÞA × SUðNÞL−R

ðZNÞL−RþA
≃UðNÞL−RþA; ðB14Þ

with coset spaces

SUðNÞC−ðLþRÞ ≃
SUðNÞC × SUðNÞLþR

SUðNÞCþLþR
; SUðNÞL−R ≃

SUðNÞL × SUðNÞR
SUðNÞLþR

: ðB15Þ

6In general, when a Lie group G is spontaneously broken down to H, the OPS parametrized by Nambu-Goldstone modes is a coset
spaceG=H. In this situation, the original groupG can be regarded as a (principal) fiber bundleH ⋉ B over the base space B ≃ G=H with
a fiber H. In our case, H ¼ SUðNÞLþR and G=H ¼ SUðNÞL×SUðNÞR

SUðNÞLþR
≃ SUðNÞL−R. Here, note that G=H is not endowed with a product but

isomorphic to a Lie group that we denote by SUðNÞL−R.
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APPENDIX C: SIMILARITIES AND
DIFFERENCES WITH VORTICES IN

TWO-FLAVOR DENSE QCD

Let us make comments on possible similarities with
recently found non-Abelian Alice strings in two-flavor
dense QCD.
Recently, two-flavor dense QCD relevant for quark-

hadron continuity was proposed [71,72], consisting of the
2SC condensation of up and down quarks in addition to a
P-wave condensation of down quarks. This phase is referred
as the 2SCþ hddi phase and is further classified into
deconfined and confined phases of vortices. In the decon-
fined phase, the most stable vortices are non-Abelian Alice
strings which are superfluid vortices carrying color magnetic
fluxes [68–70]. The amount of these color magnetic fluxes
are half of those of non-Abelian semisuperfluid vortices in
the CFL phase.
These are non-Abelian analogue of Alice strings [55–61],

and in particular are an SUð3Þ × Uð1Þ extension of Alice
strings in SUð2Þ ×Uð1Þ gauge theory [91–94].
One of the characteristic features of non-Abelian Alice

stings is that unbroken symmetry generators are not
globally defined around the strings, and in general they
are multivalued (topological obstruction). Another char-
acteristic feature, which is more important, is that particles
encircling these strings can detect the colors of the strings
from infinite distances by color nonsinglet AB phases.
In the confined phase, non-Abelian Alice strings are

confined by the so-called AB defects [93–95] appearing to
compensate a discontinuity originated from nontrivial AB
phases of the 2SC condensation [70]. As a result of vortex
confinement, there can exist only baryonic and mesonic

bound states of the Alice strings, which exhibit color singlet
AB phases of particles encircling them; The baryonic
bound state consists of three Alice strings with different
(red, blue, green) color magnetic fluxes with total color
canceled out, which are connected by a domain wall
junction resulting in a single Abelian superfluid vortex,
while the mesonic bound state consists of two Alice strings
with the same color magnetic fluxes, which are connected
by a single domain wall resulting in a doubly-wound non-
Abelian string. Although the latter carries a color magnetic
flux, it can exist because of color-singlet AB phases, that is,
the color cannot be detected from infinite distance by AB
phases of particles encircling it. The amount of the color
magnetic flux that the mesonic bound state of the Alice
string (or doubly-wound non-Abelian vortex) in two-flavor
quark matter is the samewith that of a non-Abelian string in
the CFL phase.
Moreover, both of a mesonic bound state of the Alice

string (or doubly-wound non-Abelian vortex) in two-flavor
quark matter and a non-Abelian string in the CFL phase
exhibit Z3 color-singlet AB phases of heavy quarks, and Z2

color-singlet generalized AB phases of light quarks.
However, a crucial difference between them is that non-
Abelian Alice strings are confined by the AB defects
spontaneously appearing in the formation of the 2SC
condensate while chiral non-Abelian vortices are confined
by chiral domain walls existing due to the explicit breaking
(mass and anomaly terms) of the axial and chiral sym-
metries. Thus, we can summarize that a salient distinction is
whether the appearance of the domain walls confining the
vortices is due to spontaneous (the 2SCþ hddi phase) or
explicit (the CFL phase) breaking.
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