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The recently discoveredDs0ð2590Þ state by the LHCb collaboration was regarded as the first excited state
of 1S0 charmed-strange meson. Its mass is, however, lower than the Godfrey-Isgur quark model prediction by
about 80 MeV. In this work, we take into account theD�K contribution to the bare cs̄ state, and show that the
coupled-channel interaction induces an 88 MeV shift with respect to the conventional quark model cs̄ state,
which is much closer to the experimental mass. Our study shows that in addition to S-wave, P-wave coupled-
channel interactions also play a role for hadrons located close to two-hadron thresholds. We further scrutinize
the unquenched quark model results with a model independent approach. It is shown that the two-bodyD�K
decay width is proportional to the weight of the D�K component. To saturate the experimental total decay
width with the D�K partial decay width we need a weight of about 60% while to reproduce the unquenched
quark model result a weight of about 5% is needed. Therefore, we encourage future experimental studies on
the two-body D�K partial decay of Ds0ð2590Þ.
DOI: 10.1103/PhysRevD.104.094051

I. INTRODUCTION

The quark model, which has been rather successful in
describing the properties of ground-state hadrons, was
challenged in 2003 by the discovery of Xð3872Þ [1–4]
and D�

s0ð2317Þ [5–7]. Since then, a large number of states
that cannot be easily explained by the quark model were
observed, most of which lie close to the mass threshold
of a pair of hadrons [8–15]. Thus it is natural to expect that
these states contain large hadronic molecular components.
However, for certain systems, a more refined picture con-
sidering hadronic molecular components, conventional qq̄ or
qqq components, and compact multiquark components is
needed. In the unquenched quark model, coupled-channel
effects are taken into account on top of the conventional qq̄ or
qqq configuration—a so-called bare state. In the unquenched
quark model, the interaction between the bare state and the
coupled channels can be described by the 3P0 mechanism
[16–18]. The 3P0 model, also referred to as the vacuum
quark-pair creation model, was originally proposed by Micu
[19], and then further developed by A. Le Yaouanc et al.

[20,21]. It has been widely used to investigate the Okubo-
Zweig-Iizuka-allowed two-body strong decays of conven-
tional hadrons [22–24]. The quark-pair creation model also
provides an approach to construct the interaction between the
initial state and the subsequent two-body strong decay
channel. With the transition amplitude provided by the 3P0

model and conventional quark model, an unquenched quark
model can be constructed, which takes into account the
coupled-channel effects. In particular, the unquenched quark
model can give a quantitative estimate of the ratio between
the hadronic molecule components and the bare state. For
instance, in the unquenched quark model, Xð3872Þ was well
described as a mixture of about 70% χc1ð2PÞ and 30% D�D̄
[16]. With a similar approach, Luo et al. solved the low mass
puzzle of Λcð2940Þ between the naïve quark model pre-
diction and the experimental mass by considering the
contribution of the D�N channel, which strongly couples
to the Λcð2P; 3=2−Þ bare state [17]. In Ref. [18], the authors
considered the DK contribution to D�

s0ð2317Þ, leading to a
77 MeV mass shift with respect to the conventional quark
model prediction. Very recently, Yang et al. used the
Hamiltonian effective field theory to study the mass spectrum
of positive parity Ds resonant states considering both the
P-wave cs̄ core and the DK=D�K coupled channels and
found that the D�

s0ð2317Þ state contains about 60% DK and
40% cs̄ [25].
A common feature of the above mentioned exotic states is

that the orbital angular momentum between the two quark
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components is P wave. The P-wave excitation is equal to the
creation of a pair of quark and antiquark in vacuum, which
can form two hadrons with its original quark components
through the quark rearrangement mechanism. If the mass
threshold of these two hadrons is close to the mass of the bare
state, it would couple to the bare state and lower its mass,
leading to a smaller mass for the physical state in agreement
with the experimental measurement.
Recently, the LHCb Collaboration observed a new excited

Dþ
s state in the DþKþπ− mass distribution of the B0 →

D−DþKþπ− decay using a data sample corresponding to an
integrated luminosity of 5.4 fb−1 at a center-of-mass energy
of 13 TeV [26]. Its mass, width, and spin-parity are
determined to be mR ¼ 2591� 6� 7 MeV, ΓR ¼ 89�
16� 12 MeV, and JP ¼ 0−, respectively. This state was
considered to be a candidate for theDsð21S0Þ state, the radial
excitation of the ground state Ds meson. Nonetheless, the
relativized quark model predicted that such a state should
have a mass of 2673 MeV [24], which is larger than the
experimental mass by 82 MeV. One should note that there
exists only one channel, D�K, that could couple to the
Dsð21S0Þ state in terms of the quark-pair creation mecha-
nism. In this work, we employ the unquenched quark model
to investigate whether by considering the D�K contribution
one can reconcile the experimental mass of Ds0ð2590Þ with
that of the theoretical Dsð21S0Þ state. It should be noted that
different from the cases of Xð3872Þ, D�

s0ð2317Þ, and
Λcð2940Þ, the D�K channel couples to the cs̄ bare state
via P wave.
In Ref. [27], it was shown that the Δð1232Þ state

contains a substantial πN component, about 60%, using
an extension of the Weinberg compositeness condition on
partial waves of l ¼ 1. We will adopt the same approach
to estimate the weight of the D�K component in the
Ds0ð2590Þ state and compare it with the results of the
unquenched quark model.
The paper is structured as follows. In Sec. II we present

the details of the unquenched quark model as well as a brief
description of the model-independent approach. In Sec. III
we study the mass shift of the bare Dsð21S0Þ state induced
by the coupling toD�K in the unquenched quark model and
calculate its partial decay width intoD�K. Furthermore, we
adopt the model independent approach to evaluate the
weight of D�K in the physical state Ds0ð2590Þ. Finally we
present the conclusions in Sec. IV.

II. THEORETICAL FORMALISM

In this work, we adopt two different theoretical models to
evaluate the relevance of the D�K coupled channel in the
physical Ds0ð2590Þ state. The first is an unquenched quark
model in the line of Ref. [28] and the second is a model-
independent approach in the line of Ref. [27]. In the
following, we briefly describe these two methods. More
details can be found in Refs. [27,28].

A. Unquenched quark model

We first introduce the Hamiltonian in the framework of
the unquenched quark model, which contains three terms

HDs0ð2590Þ ¼ Hcs̄ þHD�K þHI; ð1Þ

where Hcs̄ comes from the conventional quark model [29],
HD�K denotes the interaction between D� and K, and HI
stands for the interaction between the bare cs̄ state and the
D�K channel. With the above Hamiltonian the wave
function of the physical Ds0ð2590Þ state can be written as

ΨðDs0ð2590ÞÞ¼ccs̄Ψðcs̄Þþ
Z

d3pcD�KðpÞΨpðD�KÞ; ð2Þ

which indicates that there are two Fock components, a cs̄
core at quark level and a D�K component at hadron level.
In the following, we specify each of the two terms. The
Hamiltonian Hcs̄ is taken from the Godfrey-Isgur relati-
vized potential quark model,

Hcs̄Ψðcs̄Þ ¼ M0Ψðcs̄Þ; ð3Þ

where M0 is the bare mass. The term HD�K denotes the
Hamiltonian of the D�K system. As we only consider the
kinetic energy but neglect the interaction between D� and
K,1 it can be written as

HD�KΨpðD�KÞ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
D� þjpj2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Kþjpj2
q �

ΨpðD�KÞ;

ð4Þ

where the momentum p is the center of mass momentum of
the D�K pair running from 0 to infinity.
In the quark-pair creation model (the details of which are

relegated to the Appendix), the transition operator of
cs̄ð21S0Þ → D�K is written as

T ¼ −3γω0ϕ0

X
m¼−1;0;1

C11ð00;m −mÞχ1;−m
Z

d3pq

×
Z

d3pq̄δ
ð3Þðpq þ pq̄ÞYm

1

�
pq − pq̄

2

�
b†qðpqÞd†q̄ðpq̄Þ;

ð5Þ

where ω0, ϕ0, and χ1;−m are the SU(3)-color singlet, SU(3)-
flavor singlet and spin triplet wave function, and Ym

l ðpÞ ¼
jpjlYm

l ðpÞ is the solid harmonics. The single dimensionless
free parameter γ describes the strength of the creation of the
qq̄ pair. The Clebsch-Gordan coefficients C11ð00;m −mÞ
denote the coupling of the spin and the orbital angular

1According to chiral perturbation theory, the S-wave D�K
interaction is strong, but the P-wave interaction is weak [30].
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momenta of the qq̄ pair into total spin 0. The delta function
δð3Þðpq þ pq̄Þ constrains the momentum of the qq̄ pair, in
agreement with the quark-pair creation in vacuum.
Accordingly b†q and d†q̄ are quark and antiquark creation
operators, respectively. Thus the Hamiltonian HI between
D�K and the cs̄ core can be expressed as

HI ¼ T þ T†: ð6Þ

The resulting energy eigenvalue equation

HDs0ð2590ÞΨðDs0ð2590ÞÞ ¼ MΨðDs0ð2590ÞÞ ð7Þ

now has the following form in the “basis” of two Fock
states Ψðcs̄Þ and ΨpðD�KÞ (p is a free external variable)

 
M0 ðΨðcs̄Þ; T†Ψp0 ðD�KÞÞ

ðΨpðD�KÞ; TΨðcs̄ÞÞ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D� þ jpj2
p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K þ jpj2
p

Þδð3ÞD�Kðp − p0Þ

!�
ccs̄

cD�Kðp0Þ

�
¼ M

�
ccs̄

cD�KðpÞ

�
; ð8Þ

where the products of coefficients cD�Kðp0Þ with the
Hamiltonian matrix elements (1,2) and (2,2) should be
understood as two integrals

R
d3p0 over the internal

momentum p0. Note that we have assumed that the two
Fock states, Ψðcs̄Þ and ΨpðD�KÞ, are orthogonal to each
other and properly normalized, respectively. The nondiag-
onal term is the transition amplitude

Mcs̄ð21S0Þ→D�KðpÞðpÞ≡ ðΨpðD�KÞ; TΨðcs̄ÞÞ: ð9Þ

The above matrix equation can be simplified to two
algebraic equations

M0ccs̄ þ
Z

d3p0M�
cs̄ð21S0Þ→D�Kðp0Þðp0ÞcD�Kðp0Þ ¼ Mccs̄;

Mcs̄ð21S0Þ→D�KðpÞðpÞccs̄ þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
D� þ jpj2

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K þ jpj2
q �

cD�KðpÞ ¼ McD�KðpÞ: ð10Þ

From Eq. (10) we can derive the following relation

M −M0 − ΔMðMÞ ¼ 0; ð11Þ

where the mass shift ΔMðMÞ is defined as

ΔMðMÞ≡Re
Z

d3p
jMcs̄ð21S0Þ→D�KðpÞðpÞj2

M−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D� þjpj2
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Kþjpj2
p

þ iϵ
:

ð12Þ

From Eqs. (11) and (12) the physical mass M and the
mass shift ΔM can be determined simultaneously. The

coupled-channel correction to the bare state is the mass
shift ΔM. As the D�K interaction is neglected, the mass
shift of the cs̄ core completely comes from the cs̄-D�K
interaction, whose strength affects the size of the mass shift
and the D�K contribution to the physical mass.
In order to estimate the cs̄ core contribution to the

physical stateDs0ð2590Þ, we need to calculate the Z factor,
i.e., the field renormalization constant [31], defined as

Z≡ jðΨðcs̄Þ;ΨðDs0ð2590ÞÞÞj2; ð13Þ

where Ψðcs̄Þ represents the genuine cs̄ component of the
state. If we ignore the narrow decay width Γ compared with
its mass mR ¼ 2591� 6� 7 MeV of the Ds0ð2590Þ state,
we can write down the normalization condition

1 ¼ ðΨðDs0ð2590ÞÞ;ΨðDs0ð2590ÞÞÞ: ð14Þ

With two Fock components in Ds0ð2590Þ [see Eq. (2)] the
normalization condition becomes

1 ¼ jccs̄j2 þ
Z

d3pjcD�KðpÞj2: ð15Þ

From Eq. (10), we can obtain the relation between the wave
function of the cs̄ core and that of D�KðpÞ

cD�KðpÞ¼
Mcs̄ð21S0Þ→D�KðpÞðpÞ

M−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D� þjpj2p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Kþjpj2
p

þ iϵ
ccs̄: ð16Þ

With this, Eq. (15) becomes

1 ¼ jccs̄j2
�
1þ Re

Z
d3p

jMcs̄ð21S0Þ→D�KðpÞðpÞj2
ðM −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D� þ jpj2
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K þ jpj2
p

Þ2 þ iϵ

�
: ð17Þ

Finally we obtain the Z factor
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Z ¼ jccs̄j2 ¼
�
1þ Re

Z
d3p

jMcs̄ð21S0Þ→D�KðpÞðpÞj2�
M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D� þ jpj2p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K þ jpj2
p �

2 þ iϵ

�−1
: ð18Þ

A few remarks are in order. First, the integral in the above equation is only well defined forM < mD� þmK. However, in the
original 3P0 model, the physical state is supposed to decay strongly into the two-body final state. Therefore, there seems to
be an internal inconsistency in the unquenched quark model specified above. The solution is quite straightforward. One
should replace the real M with its complex counterpart M þ iΓ=2. Then Eq. (18) becomes

Z ¼
�
1þ Re

Z
d3p

jMcs̄ð21S0Þ→D�KðpÞðpÞj2�
M þ iΓ=2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D� þ jpj2p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K þ jpj2
p �

2

�−1
: ð19Þ

For self-consistency, one can also replaceM withM þ iΓ=2
in the definition of the mass shift in Eq. (12), which would
just cause tiny changes to ΔM since the principal value
integral of Eq. (12) is not very dependent on small Γ and then
seems unnecessary. Note that Γ here only represents the two-
body strong decay width into D�K rather than the total
experimental decay width ΓR ¼ 89� 16� 12 MeV.

B. Model independent approach

One can also study the contributions of different Fock
components to a physical state in a model independent way.
In Refs. [27,32], it was shown that the πN component in the
Δð1232Þ state is substantial while the ππ component in the
ρ wave function is small. In the following, we adopt such a
method to estimate the relative weights of the cs̄ core and
D�K coupled channel in the physical Ds0ð2590Þ. We first
briefly introduce the essential ingredients of this approach.
The starting point is to parametrize the D�K potential.

Close to threshold, it has the following form

vðsÞ ¼ −α
�
1þ β

s
M2

0 − s

�
; ð20Þ

where s is the square of the center-of-mass energy, andM0 is
the mass of the bare cs̄ core. α and β are two unknown
parameters that should be determined by fitting to exper-
imental data. In Refs. [27,32], for the cases of the Δð1232Þ
and ρ, such unknown parameters are fixed by fitting to the
πN and ππ scattering data. In principle, the P-wave D�K
interaction contains a term of the kaon momentum.
Following Refs. [27,32], we modified the form of the
potential and moved the square of momentum to the loop
function. As a result, the parameter α has a dimension of
MeV−2 and the parameter β is dimensionless..
The above potential can then be inserted into the

Lippmann-Schwinger equation to obtain the transition
amplitudes

tðsÞ ¼ 1

v−1ðsÞ −GðsÞ ; ð21Þ

where GðsÞ is the loop function of D� and K mesons,

GðsÞ ¼
Z
jpj<Λ

d3p
ð2πÞ3

jpj2
s − ðωD� þ ωKÞ2 þ iϵ

�
ωD� þ ωK

2ωD�ωK

�
;

ð22Þ

where ωD� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D� þ jpj2
p

, ωK ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K þ jpj2
p

, and Λ is
the cutoff needed to regularize the integral. As explained
above, the jpj2 factor is introduced to account for the
P-wave nature of the D�K interaction.
Due to the fact that the physicalDs0ð2590Þ state is above

the mass threshold ofD�K, we need the loop function in the
second Riemann sheet, which is defined as

GIIðsÞ ¼ GIðsÞ þ i
jpj3
4π

ffiffiffi
s

p ; ð23Þ

where GIðsÞ is given in Eq. (22).

III. RESULTS AND DISCUSSION

For the massM0 of the bare cs̄ state, we adopt the result
of the Godfrey-Isgur relativized potential quark model [29]

M0ðcs̄ð21S0ÞÞ ¼ 2673 MeV; ð24Þ

as well as the same set of parameters for the constituent
quark masses:

mc ¼ 1628 MeV; ms ¼ 419 MeV;

mu=d ¼ 220 MeV: ð25Þ

The masses of D� and K are taken from the Particle Data
Group [33]:

mD� ¼ 2008 MeV; mK ¼ 495 MeV: ð26Þ

For the effective simple harmonic oscillator parameter βeff
of the cs̄ core and D�, we choose [24]

βeffðcs̄ð21S0ÞÞ ¼ 0.475 GeV;

βeffðD�Þ ¼ 0.516 GeV: ð27Þ
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Instead of taking βeff to be 0.4 GeV for all light mesons as
in Ref. [24], we choose the value determined in Ref. [34]
for K,

βeffðKÞ ¼ 0.710 GeV; ð28Þ

which obeys the uniform standards2 for all involved
mesons. Finally, for the dimensionless vacuum uū=dd̄
quark-pair creation strength constant γ, we choose [35]

γ ¼ 8.7: ð29Þ

With the parameters specified above we can straightfor-
wardly obtain the relation between the mass shift ΔM and
the physical mass M, which is shown in Fig. 1. One can
easily read that the physical mass ofDs0ð2590Þ calculated in
the unquenched quark model is 2585, which is 88 MeV
lower than the original mass 2673 MeVof the bare cs̄ state.
Compared with Fig. 2 of Ref. [18], we find no similar
cusplike structure as the physical mass M is close to the
threshold of D�K, which is only characteristic of S-wave
couplings and thus called “S-wave threshold effect” [36,37].
The main difference in the ΔMðMÞ between S-wave and
P-wave two-body coupled channels is owing to the different
explicit analytical form of the numerator of the integrand,
i.e., the transition amplitude MðpÞ (see Appendix A
of Ref. [28]).
With the same set of parameters and the mechanism of

the 3P0 model, we obtain the decay width into D�K,

Γ ¼ 23 MeV.3 With M þ iΓ=2 ¼ 2585þ i11.5 MeV, we
obtain Z ¼ 0.92, which tells that the physical Ds0ð2590Þ
state is dominantly a cs̄ state. To show the impact of the
cs̄-D�K interaction on the mass shift, we increase γ of
Eq. (12), then obtain the results shown in Table I. Clearly,
the mass shift increases with γ and the 1 − Z factor also
increases, which demonstrates that the mass shift of the cs̄
core depends on the size of the off-diagonal Hamiltonian. If
we fix the mass of the cs̄ core at 2585 MeV, with increasing
γ, then the partial decay width also increases. On the other
hand, if we use the physical mass obtained with increasing
γ, the decay width decreases. This is because the phase
space decreases as well.
Now we turn to the model independent approach. The

D�K potential of Eq. (20) and loop function of Eq. (22)
contain three unknown parameters α, β, and Λ. As theD�K
interaction is in P wave, we cannot determine these
parameters via heavy quark spin symmetries by relating
them to those of the S-wave DK and D�K interactions,
which couple to D�

s0ð2317Þ and Ds1ð2460Þ, respectively.
On the other hand, if experimental scattering data existed,
as in the cases of πN [27] and ππ [32], we could have fixed
these parameters by fitting to the data. As this is impossible,
we could fit to the experimental mass and width,M ¼ 2591
and Γ ¼ 89 MeV. As we only have two datasets, we cannot
determine all the three parameters. Therefore, we choose
five different cutoffs Λ ¼ 400, 500, 600, 700, 800 MeV,
and try to reproduce the mass and width of Ds0ð2590Þ by
varying α and β, and yielding five sets of α and β as shown
in Table II. In the same table, we also show the obtained
pole positions

ffiffiffiffiffi
s0

p ¼ ðM;Γ=2Þ.
The Z factor in the model independent approach can be

obtained in the following way

−Re
�
g2
�
dGIIðsÞ

ds

�
s¼s0

�
¼ 1 − Z; ð30Þ

where the couplings is calculated as the residue at the pole
position

FIG. 1. Relation between the mass shift ΔM and the physical
mass M of Ds0ð2590Þ. The thin straight line depicts the linear
function M −M0, where M0 is the mass of the cs̄ core, and the
thick curve describes the mass shift ΔM calculated by Eq. (12).
Finally the physical mass MphyðDs0ð2590ÞÞ is located at the
intersection point of two solid lines, representing the solution of
the coupled-channel equation Eq. (11).

TABLE I. Mass shift, physical mass, and 1−Z obtained with
different γs. The symbol � indicates the default value adopted in
this work.

γ
Γð2585Þ
(MeV)

ΓðMphyÞ
(MeV)

ΔM
(MeV)

Mphy
(MeV) 1 − Z

8.7* 23 23 88 2585 0.08
10 28 17 113 2560 0.14
11 33 11 132 2540 0.19
12 40 5 151 2522 0.25

2Stated below Eq. (A6).

3There are two factors that may account for the small decay
width. First, Ds0ð2590Þ is mainly a 21S0 cs̄ state, where the
principle quantum number is 2. Second, probably more impor-
tantly, the P-wave nature of the D�K interaction suppresses the
decay width compared with the S-wave case.
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g2 ¼ lim
s→s0

ðs − s0ÞtIIðsÞ: ð31Þ

The results are given in Table II, One can see that as the
cutoffΛ increases from 400 to 800MeV, the two-body decay
width decreases from 80 to 20 MeV and the weight of the
D�K component decreases from 0.58 to 0.05. As we have
three unknown parameters but only two datasets, we cannot
tell which cutoff is the optimal one. If we assume that the
two-body D�K decay width almost saturates the Ds0ð2590Þ
total width, then we need a cutoff of 400 MeV. The
corresponding weight of the D�K component is about
60%. On the other hand, if we believe that the unquenched
quark model is correct; i.e., the two-body D�K decay width
is about 20 MeV, we need a cutoff of 800 MeV. The so
obtained weight of the D�K channel in the physical
Ds0ð2590Þ state is about 5%, consistent with 8% of the
unquenched quark model. Unfortunately, the current exper-
imental data cannot determine the ratio of the two-body
decay width with respect to the total decay width [26]. We
hope that future experimental studies can provide such
information.

IV. SUMMARY

Recently, the LHCb Collaboration reported the discovery
of the first radial excited state of Ds. However, its mass is
lower than the quenched quark model prediction by about
80 MeV, which shows a behavior similar to those of exotic
states such as Xð3872Þ, D�

s0ð2317Þ, and Λcð2940Þ. All of
these states have been shown to couple strongly to the nearby
hadronic channels, leading to smaller masses compared with
those of the quenched quark model. In this work, we took
into account the D�K contribution to the 21S0 cs̄ core to
obtain the physical mass of the first excited state of Ds in
the unquenched quark model, where the orbital angular

momentum of D� and K is P wave. The coupling of the cs̄
core to D�K is estimated by the quark-pair creation model.
Our results showed that with only about 10% of D�K in the
Ds0ð2590Þwave function, theD�K contribution could lower
the mass obtained in the quenched quark model by 88 MeV,
leading to a mass much closer to the experimental value. The
two-body decay width predicted in the same model is about
20 MeV, which only accounts for about one quarter of the
total decay width.
We further constructed a model independent approach to

test the unquenched quark model and we found that indeed
with a cutoff of about 800 MeV, one can obtain a two-body
decay width and a weight of theD�K component consistent
with those of the unquenched quark model. On the other
hand, with a cutoff of 400 MeV, one found that the D�K
partial decay width almost saturates the Ds0ð2590Þ decay
width and the corresponding weight of theD�K component
is about 60%. Future experimental studies will allow us to
fix the unknown parameters of our model and determine the
weight of the D�K component unambiguously. In particu-
lar, a measurement of the ratio of the two- to three-body
decay width of Ds0ð2590Þ seems to be the key, because,
according to our study, the direct three-body DKπ mode
could contribute substantially to the total decay width
of Ds0ð2590Þ.
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APPENDIX: THE VACUUM QUARK-PAIR
CREATION MODEL

In the following, we provide some details about the
transition amplitude Mcs̄ð21S0Þ→D�KðpÞðpÞ in the 3P0 model.
The cs̄ð21S0Þ meson decaying into D� and K mesons is
allowed in the 3P0 model, while the orbital angular
momentum between D� and K is l ¼ 1. The transition
amplitude is the inner product between the initial and final
state vectors. The state of the initial meson made up of
quark 1 and antiquark 2 has the following form [38]

Ψnlsjmj
ptot

ðq1q̄2Þ ¼ ωð12Þϕð12ÞX
mlms

Clsðjmj;mlmsÞχð12Þsms

Z
d3p1

Z
d3p2ψnlml

ðp1;p2Þδð3Þðptot − p1 − p2ÞΨp1
ðq1ÞΨp2

ðq̄2Þ;

¼ ωð12Þϕð12ÞX
mlms

Clsðjmj;mlmsÞχð12Þsms

Z
d3prelψnlml

ðprelÞΨ m1
m1þm2

ptotþprel
ðq1ÞΨ m2

m1þm2
ptot−prel

ðq̄2Þ; ðA1Þ

TABLE II. Pole positions, Z factors, couplings, α, and β
obtained with different cutoffs.

Λ (MeV) Pole (MeV) g 1 − Z α (MeV−2) β

400 (2591,40) (0.26,0.11) 0.58 1.2 × 10−6 88
500 (2590,27) (0.26,0.07) 0.25 0.85 × 10−6 100
600 (2590,19) (0.23,0.04) 0.05 0.7 × 10−6 88
700 (2590,14) (0.21,0.03) 0.02 0.78 × 10−6 58
800 (2590,10) (0.18,0.02) 0.05 0.59 × 10−6 58
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where ω, ϕ, and χ represent color, flavor, and spin wave functions, respectively. ψ is the wave function in momentum space.
The total and relative 3-momentum of quark 1 and antiquark 2 are defined as the following

ptot ¼ p1 þ p2;prel ¼
m2p1 −m1p2

m1 þm2

: ðA2Þ

The final states can be given in the same approach. With these state vectors and the operator T in Eq. (5) the helicity
amplitude MmjA

mjB
mjC ðpÞ for the process A → Bþ C can be written as

MmjA
mjB

mjC ðpÞ ¼ γ
X

mlA
msA

mlB
msB

mlC
msC

m

ClAsAðjAmjA ;mlAmsAÞClBsBðjBmjB ;mlBmsBÞ

× ClCsCðjCmjC ;mlCmsCÞC11ð00;m −mÞðχð14ÞsBmsB
χð32ÞsCmsC

; χð12ÞsAmsA
χð34Þ1;−mÞ

× ½ðϕð14Þ
B ϕð32Þ

C :ϕð12Þ
A ϕð34Þ

0 ÞIðp; m1; m2; m3Þ þ ð−1Þ1þsAþsBþsCðϕð32Þ
B ϕð14Þ

C :ϕð12Þ
A ϕð34Þ

0 ÞIð−p; m2; m1; m3Þ�;
ðA3Þ

where the indices 3 and 4 refer to a pair of quark and antiquark created from vacuum, which will form the final states B and
C by combining with the quark 1 and antiquark 2 of meson A. The momentum-space integral Iðp; m1; m2; m3Þ is the
overlap of initial and final wave functions

Iðp; m1; m2; m3Þ ¼
Z

d3kψ�
nBlBmlB

�
kþ m3

m1 þm3

p

�
ψ�
nClCmlC

�
kþ m3

m2 þm3

p

�
ψnAlAmlA

ðkþ pÞYm
1 ðkÞ: ðA4Þ

In the present work, we choose simple harmonic oscillator (SHO) wave functions to expand wave functions in
momentum space

ψSHO
nlml

ðpÞ ¼ RSHO
nl ðjpjÞYml

l ðp̂Þ; ðA5Þ

where the radial wave function is given by

RSHO
nl ðjpjÞ ¼ ð−1Þnð−iÞl

β
3
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n

Γðnþ lþ 3
2
Þ

s �jpj
β

�
l
L
lþ1

2
n

�jpj2
β2

�
e
−jpj2

2β2 : ðA6Þ

L
lþ1

2
n is the associated Laguerre polynomial and the parameter βeff is unknown, which can be determined by the requirement

that the root-mean-square momentum calculated through SHO wave functions should be equal to that of the wave functions
calculated using the Godfrey-Isgur relativized potential quark model [29].
The color and flavor overlap factors can be readily obtained by the inner product of the corresponding wave functions, of

which the details can be found in the Appendix of Ref. [23]. Spin matrix elements involving the spin of four quarks can be
calculated by the angular momentum algebra of Wigner 9j symbols

ðχð14ÞsBmsB
χð32ÞsCmsC

; χð12ÞsAmsA
χð34Þ1;−mÞ ¼ ð−1Þ1þsC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2sA þ 1Þð2sB þ 1Þð2sC þ 1Þ

p

×
X
sms

CsBsCðsms;msBmsCÞCsA1ðsms;msA −mÞ

8>><
>>:

1
2

1
2

sA
1
2

1
2

1

sB sC s

9>>=
>>;: ðA7Þ

Finally, for convenience we use the Jacob-Wick formula [39] to convert the helicity amplitude MmjA
mjB

mjC ðpÞ into the
partial wave amplitude MlsðjpjÞ
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MlsðjpjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πð2lþ 1Þp
2jA þ 1

X
mjB

mjC

ClsðjAmjA ; 0mjAÞCjBjCðsmjA ;mjBmjCÞMmjA
mjB

mjC ðjpjẑÞjmjA
¼mjB

þmjC
: ðA8Þ

Note that we have implicitly assumed that the z axis lies along the direction of the outgoing 3-momentum p of meson B in
the final state. For our concrete process cs̄ð21S0Þ → D�KðpÞ, we can relate Mcs̄ð21S0Þ→D�KðpÞðjpjÞ with the partial wave
amplitude MlsðjpjÞ based on the conservation of angular momentum and selection rules for the strong interaction

Mcs̄ð21S0Þ→D�KðpÞðjpjÞ ¼ M11ðjpjÞ: ðA9Þ
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