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We study two- and three-gluon glueballs of C ¼ þ using the method of QCD sum rules. We
systematically construct their interpolating currents, and find that all the spin-1 currents of C ¼ þ vanish.
This suggests that the “ground-state” spin-1 glueballs of C ¼ þ do not exist within the relativistic
framework. We calculate masses of the two-gluon glueballs with JPC ¼ 0�þ=2�þ and the three-gluon
glueballs with JPC ¼ 0�þ=2�þ. We propose searching for the JPC ¼ 0−þ=2−�=3�− three-gluon glueballs
in their three-meson decay channels in the future BESIII, GlueX, LHC, and PANDA experiments.
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I. INTRODUCTION

Glueballs, composed of valence gluons, are important for
the understanding of nonperturbative QCD [1–3]. There
have been tremendous theoretical studies on them in the past
fifty years using various models and methods, such as the
MIT bag model [4], the flux-tube model [5], the Coulomb
Gauge model [6,7], Regge trajectories [8], holographic QCD
[9], lattice QCD [10–14], and QCD sum rules [15–30], etc.
However, experimental efforts in searching for glueballs are
confronted with the difficulty of identifying them unambig-
uously, and there is currently no definite experimental
evidence for their existence.
Recently the D0 and TOTEM Collaborations studied pp

and pp̄ [31] cross sections, which are found to be different
with a significance of 3.4σ [32]. Together with their previous
result [33], this significance can be increased to 5.2σ–5.7σ.
The above difference leads to the evidence of a t-channel
exchanged odderon [34–38], that is predominantly a three-
gluon glueball of C ¼ −. We refer to Refs. [39–47] and a
review of [48] for more discussions. Due to these studies,
interest in glueballs have recently been revived. Since the
above odderon evidence is still indirect, it is crucial and
important to directly study the glueball itself.
The lowest-lying two-, three-, and four-gluon glueballs

have been systematically investigated in Ref. [49], where the

authors constructed their corresponding nonrelativistic low-
dimension operators. These operators have been successfully
used in lattice QCD calculations. In this paper we system-
atically study two- and three-gluon glueballs of C ¼ þ. We
shall construct their corresponding relativistic glueball cur-
rents, and calculate the masses of these glueballs using the
method of QCD sum rules. The same approach has been
applied in Ref. [50] to study three-gluon glueballs of C ¼ −,
so a rather complete QCD sum rule study will be done on the
lowest-lying glueballs composed of two- or three-valence
gluons. These studies can largely improve our understanding
of the gluon degree of freedom as well as the nonperturbative
behaviors of the strong interaction at the low-energy region.
This paper is organized as follows. We systematically

construct relativistic two- and three-gluon glueball currents
of C ¼ þ in Sec. II. We apply them to perform QCD sum
rule analyses in Sec. III, and perform numerical analyses in
Sec. IV. The obtained results are summarized and discussed
in Sec. V, and are compared with lattice QCD results
[11–14].

II. RELATIVISTIC GLUEBALL CURRENTS

In this section we systematically construct relativistic
glueball currents, including the two-gluon glueball currents
and the C ¼ þ three-gluon glueball currents. We shall do
this separately in the following subsections. Note that the
two-gluon glueball currents cannot reach C ¼ − [51], and
the C ¼ − three-gluon glueball currents have been sys-
tematically constructed in Ref. [50].

A. Couplings of tensor currents

In the present study we shall use some special tensor
currents to study glueballs with nonzero spins J ≠ 0. These
currents have 2 × J Lorentz indices with certain symmetries,
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and they couple to both positive- and negative-parity glue-
balls. In this subsection we briefly explain how we deal
with them.
We assume Jαβ to be a tensor current with two anti-

symmetric Lorentz indices μ and ν. Taking the current
Jαβ ¼ c̄σαβc as an example, it can be separated into
(α, β ¼ 0, 1, 2, 3 and i, j ¼ 1, 2, 3)

Jαβ ¼ c̄σαβc →

�
c̄σijc; P ¼ þ
c̄σ0ic; P ¼ −:

ð1Þ

Accordingly, it couples to both positive- and negative-
parity charmonia through

h0jJαβjhcðϵ; pÞi ¼ ifThcϵαβμνϵ
μpν; ð2Þ

h0jJαβjJ=ψðϵ; pÞi ¼ ifTJ=ψðpαϵβ − pβϵαÞ; ð3Þ

where fThc and fTJ=ψ are relevant decay constants. Given the
Lorentz structures of J=ψ and hc are totally different, they
can be clearly separated from each other. For example, we
can isolate hc at the hadron level by investigating the two-
point correlation function containing

h0jJαβjhcihhcjJ†α0β0 j0i
¼ ðfThcÞ2ϵαβμνϵμpνϵα0β0μ0ν0ϵ

�μ0pν0

¼ −ðfThcÞ2p2ðgαα0gββ0 − gαβ0gβα0 Þ þ � � � ; ð4Þ

since the correlation function of J=ψ does not contain the
above coefficient. It is not so easy to isolate J=ψ from Jαβ at
the hadron level. Instead, we can investigate its partner
current

J̃αβ ¼ ϵαβγδ × Jγδ; ð5Þ

which couples to J=ψ and hc (just in the opposite way)

h0jJ̃αβjJ=ψðϵ; pÞi ¼ if̃TJ=ψϵαβμνϵ
μpν; ð6Þ

h0jJ̃αβjhcðϵ; pÞi ¼ if̃Thcðpαϵβ − pβϵαÞ: ð7Þ

Accordingly, we can use the two currents Jαβ and J̃αβ to
study and separate J=ψ and hc.
We apply the above process to generally investigate the

current Jα1���αN;β1���βN , which has 2N ¼ 2J Lorentz indices
with certain symmetries, e.g., the spin-2 current Jα1α2;β1β2
has four Lorentz indices, satisfying

Jα1α2;β1β2 ¼−Jβ1α2;α1β2 ¼−Jα1β2;β1α2 ¼ Jα2α1;β2β1 : ð8Þ

Its coupling can be written as

h0jJα1���αN;β1���βN jXi ¼ ifXS½ϵαiβiμiνipνi �Nϵμ1���μN ; ð9Þ

where X is the corresponding state having the same parity
as Ji1���iN ;j1���jN (i1 � � � jN ¼ 1, 2, 3); S denotes symmetriza-
tion and subtracting trace terms in the two sets fα1 � � � αNg
and fβ1 � � � βNg simultaneously, with

½� � ��N ¼ ϵα1β1μ1ν1pν1 � � � ϵαNβNμNνNpνN : ð10Þ

Note that the current Jα1���αN;β1���βN can also couple to the
other state X0 having opposite parity to X, but this state X0
cannot be easily isolated at the hadron level, so we do not
consider it in the present study.

B. Two-gluon glueball currents

In this subsection we use the gluon field strength tensor
Ga

μν to construct two-gluon glueball currents, with a the
color index and μ, ν the Lorentz indices. We also need
G̃a

μν ¼ Ga;ρσ × ϵμνρσ=2 to denote the dual gluon-field
strength tensor, and fabc to denote the totally antisym-
metric SUð3ÞC structure constant. In the present study we
only consider local glueball currents without explicit
derivatives, although Ga

μν and G̃a
μν contain covariant

derivatives within them.
In Ref. [49] the authors use the chromoelectric and

chromomagnetic fields (i, j ¼ 1, 2, 3),

Ei ¼ Gi0 and Bi ¼ −
1

2
ϵijkGjk; ð11Þ

to write down all the nonrelativistic low-dimension two-
gluon glueball operators,

0þþ E⃗2
a � B⃗2

a;

0−þ E⃗a · B⃗a;

1−þ E⃗a × B⃗a;

2þþ S0½Ei
aE

j
a � Bi

aB
j
a�;

2−þS0 ½Ei
aB

j
a − Bi

aE
j
a�; ð12Þ

where S0 denotes symmetrization and subtracting trace
terms in the set fijg.
We construct their corresponding relativistic currents in

order to perform QCD sum rule analyses,

J0 ¼ g2sG
μν
a Ga

μν; ð13Þ

J̃0 ¼ g2sG
μν
a G̃a

μν; ð14Þ

Jαβ1 ¼ g2sG
αμ
a G̃a;β

μ − fα ↔ βg; ð15Þ

Jα1α2;β1β22 ¼ S½g2sGα1β1
a Ga;α2β2 �; ð16Þ

J̃α1α2;β1β22 ¼ S½g2sGα1β1
a G̃a;α2β2 �: ð17Þ
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We shall explicitly prove in Appendix that the third current
Jαβ1 vanishes, suggesting that the “ground-state” two-gluon
glueball of JPC ¼ 1−þ does not exist within the relativistic
framework.
The former two currents J0 of JPC ¼ 0þþ and J̃0 of

JPC ¼ 0−þ couple to the JPC ¼ 0þþ and 0−þ two-gluon
glueballs jGG; JPCi, respectively,

h0jJ0jGG; 0þþi ¼ f0þþ ; ð18Þ

h0jJ̃0jGG; 0−þi ¼ f0−þ ; ð19Þ

where f0þþ and f0−þ are decay constants. In addition, the
current J0 has a partner,

J00 ¼ g2sG̃
μν
a G̃a

μν; ð20Þ

whose sum rule result is the same as that of J0.
The latter two currents Jα1α2;β1β22 and J̃α1α2;β1β22 couple to

the JPC ¼ 2þþ and 2−þ glueballs through

h0jJ���2 jGG; 2þþi ¼ if2þþS½ϵαiβiμiνipνi �2ϵμ1μ2 ; ð21Þ

h0jJ̃���2 jGG; 2−þi ¼ if2−þS½ϵαiβiμiνipνi �2ϵμ1μ2 : ð22Þ

The current Jα1α2;β1β22 also has a partner,

J0α1α2;β1β22 ¼ S½g2sG̃α1β1
a G̃a;α2β2 �: ð23Þ

whose sum rule result is the same as that of Jα1α2;β1β22 .

C. Three-gluon glueball currents of C= +

In this subsection we use Ga
μν and G̃a

μν to construct
three-gluon glueball currents of C ¼ þ. Some of their
corresponding nonrelativistic operators have been con-
structed in Ref. [49]

0þþ fabcðE⃗a × E⃗bÞ · B⃗c;

0−þ fabcðE⃗a × E⃗bÞ · E⃗c;

1þþ fabcðB⃗a · E⃗bÞE⃗c;

1−þ fabcðB⃗a · E⃗bÞB⃗c;

2þþ fabcS0½ðB⃗a × B⃗bÞiBj
c� þ � � � ;

2−þ fabcS0½ðE⃗a × E⃗bÞiEj
c� þ � � � : ð24Þ

We further construct their corresponding relativistic
currents as follows:

η0 ¼ fabcg3sG
μν
a Gb;νρG

ρ
c;μ; ð25Þ

η̃0 ¼ fabcg3sG̃
μν
a G̃b;νρG̃

ρ
c;μ; ð26Þ

ηαβ1 ¼ fabcg3sG̃
μν
a Gb;μνG̃

αβ
c ; ð27Þ

η̃αβ1 ¼ fabcg3sG̃
μν
a Gb;μνG

αβ
c ; ð28Þ

ηα1α2;β1β22 ¼ fabcS½g3sGα1β1
a Gα2μ

b Gβ2
c;μ − fα2 ↔ β2g�; ð29Þ

η̃α1α2;β1β22 ¼ fabcS½g3sG̃α1β1
a G̃α2μ

b G̃β2
c;μ − fα2 ↔ β2g�: ð30Þ

We shall explicitly prove in Appendix that the third and
fourth currents ηαβ1 and η̃αβ1 both vanish, suggesting that
the “ground-state” three-gluon glueballs of JPC ¼ 1þþ
and 1−þ do not exist within the relativistic framework.
The former two currents η0 of JPC ¼ 0þþ and η̃0 of

JPC ¼ 0−þ couple to the JPC ¼ 0þþ and 0−þ three-gluon
glueballs jGGG; JPCi, respectively,

h0jη0jGGG; 0þþi ¼ f0
0þþ ; ð31Þ

h0jη̃0jGGG; 0−þi ¼ f0
0−þ : ð32Þ

The latter two currents ηα1α2;β1β22 and η̃α1α2;β1β22 couple to the
JPC ¼ 2þþ and 2−þ glueballs through

h0jη���2 jGGG; 2þþi ¼ if0
2þþS½ϵαiβiμiνipνi �2ϵμ1μ2 ; ð33Þ

h0jη̃���2 jGGG; 2−þi ¼ if0
2−þS½ϵαiβiμiνipνi �2ϵμ1μ2 : ð34Þ

III. QCD SUM RULE ANALYSES

In this section we use the two-gluon glueball currents J0,
J̃0, Jα1α2;β1β22 , and J̃α1α2;β1β22 as well as the three-gluon
glueball currents η0, η̃0, η

α1α2;β1β2
2 , and η̃α1α2;β1β22 to perform

QCD sum rule analyses. This method has been widely
applied in the field of hadron phenomenology [52,53] to
study various exotic hadrons [54–56]; all the above spin-2
currents have four Lorentz indices with certain symmetries,
so that they couple to both positive- and negative-parity
glueballs simultaneously. We refer to Ref. [50] for detailed
discussions.
We take the current J̃0 defined in Eq. (14) as an example,

and calculate its two-point correlation function

Πðq2Þ≡ i
Z

d4xeiqxh0jT½J̃0ðxÞJ̃†0ð0Þ�j0i; ð35Þ

separately at hadron and quark-gluon levels.
At the hadron level we express Eq. (35) using the

dispersion relation as

Πðq2Þ ¼
Z

∞

0

ρðsÞ
s − q2 − iε

ds; ð36Þ
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with ρðsÞ ¼ ImΠðsÞ=π the spectral density. It is para-
metrized using one pole dominance for the ground state
X as well as the continuum contribution,

ρðsÞ≡X
n

δðs −M2
nÞh0jJ̃0jnihnjJ̃†0j0i

¼ f2Xδðs −M2
XÞ þ continuum: ð37Þ

At the quark-gluon level we insert Eq. (14) into Eq. (35),
and calculate it using the method of operator product
expansion (OPE). After performing the Borel transforma-
tion to Eq. (36) at both hadron and quark-gluon levels, we
approximate the continuum using the spectral density
above a threshold value s0, and obtain

Πðs0;M2
BÞ≡ f2Xe

−M2
X=M

2
B ¼

Z
s0

0

e−s=M
2
BρðsÞds: ð38Þ

This equation can be used to further calculate the mass of X
through

M2
Xðs0;MBÞ ¼

R s0
0 e−s=M

2
BsρðsÞdsR s0

0 e−s=M
2
BρðsÞds : ð39Þ

Since the gluon field strength tensor Ga
μν is defined as

Ga
μν ¼ ∂μAa

ν − ∂νAa
μ þ gsfabcAb;μAc;ν; ð40Þ

it can be naturally separated into two parts. As shown in
Fig. 1, we depict the former two terms using the single-
gluon line, and the latter one term using the double-gluon
line with a red vertex [see also diagram Fig. 2(c − 3)]. Here
Aa
μ is the gluon field, whose propagator is [57]

h0jT½Aa
μðxÞAb

νðyÞ�j0i ¼
δabgμν

4π2ðx − yÞ2

þ gs lnð−ðx − yÞ2Þ
8π2

fabcGc;μνð0Þ

−
gsgμνxαyβ

8π2ðx − yÞ2 f
abcGc;αβð0Þ: ð41Þ

We work in the fixed-point gauge so that

Aa
μðxÞ ≈ −

1

2
xνGa

μνð0Þ: ð42Þ

In the present study we consider the Feynman diagrams
depicted in Fig. 2 (for three-gluon glueballs), and calculate
OPEs up to dimension eight (D ¼ 8) condensates. We take
into account the perturbative term, the two-gluon conden-
sate hg2sGGi, the three-gluon condensate hg3sG3i, and the
D ¼ 8 condensate hg2sGGi2,

ΠjGG;0þþiðs0;M2
BÞ ¼

Z
s0

0

ð32α2ss2 þ 60α2shg2sGGiÞe−s=M2
Bds

þ 24παshg3sG3i; ð43Þ

ΠjGG;2þþiðs0;M2
BÞ ¼

Z
s0

0

�
2α2s
15

s2 −
5α2shg2sGGi

24

�
e−s=M

2
Bds

þ παshg3sG3i
3

; ð44Þ

ΠjGG;0−þiðs0;M2
BÞ ¼

Z
s0

0

32α2ss2e−s=M
2
Bds − 40παshg3sG3i;

ð45Þ

ΠjGG;2−þiðs0;M2
BÞ ¼

Z
s0

0

�
2α2s
5

s2 þ α2shg2sGGi
12

�
e−s=M

2
Bds

−
παshg3sG3i

2
; ð46Þ

ΠjGGG;0þþiðs0;M2
BÞ ¼

Z
s0

0

�
3α3s
10π

s4 þ 135α3shg2sGGi
32π

s2

−
81α2shg3sG3i

2
s

�
e−s=M

2
Bds; ð47Þ

ΠjGGG;2þþiðs0;M2
BÞ

¼
Z

s0

0

�
2α3s
315π

s4 þ α2shg2sGGi
15

s2

þ 53α3shg2sGGi
320π

s2 þ α2shg3sG3i
3

s

�
e−s=M

2
Bds; ð48Þ

ΠjGGG;0−þiðs0;M2
BÞ ¼

Z
s0

0

�
3α3s
10π

s4 þ 135α3shg2sGGi
32π

s2

þ 27α2shg3sG3i
2

s

�
e−s=M

2
Bds; ð49Þ

(a) (b)

FIG. 1. The gluon field strength tensor Ga
μν ¼ ∂μAa

ν−
∂νAa

μ þ gsfabcAb;μAc;ν, naturally separated into two parts
(a) and (b).
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ΠjGGG;2−þiðs0;M2
BÞ

¼
Z

s0

0

�
2α3s
315π

s4 −
α2shg2sGGi

15
s2

þ 57α3shg2sGGi
320π

s2 þ 5α2shg3sG3i
4

s

�
e−s=M

2
Bds: ð50Þ

In the calculations we have considered all the diagrams
proportional to αns × g0s and αns × g1s (n ¼ 2 for two-gluon
glueballs and n ¼ 3 for three-gluon glueballs); however,
there are so many diagrams proportional to αns × g2s , so we
have only taken into account one of them. Specifically, we
find that all the D ¼ 8 terms proportional to hg2sGGi2
vanish, so the convergence of the above OPE series are
quite good.
In Ref. [22] the authors studied JPC ¼ 0þþ three-gluon

glueballs using the current η0 defined in Eq. (25), where
they calculated the Feynman diagrams depicted in Figs. 2
(a; b − i; c − 1; c − 2). In Ref. [24] the authors studied
JPC ¼ 0−þ three-gluon glueballs using the current η̃0
defined in Eq. (26), where they calculated the diagrams
depicted in Figs. 2 (a; b − i; c − i). Their calculations are
done (mainly) by hand. In the present study we use the
software Mathematica with the package FeynCalc, and we
can obtain exactly the same results for these diagrams. In

Refs. [16,21,23] the authors studied JPC ¼ 0þþ and 0−þ

two-gluon glueballs using the currents J0 and J̃0 defined in
Eqs. (13) and (14), where they calculated more diagrams
than those calculated in the present study. However, such
calculations are too complicated to be applied to three-
gluon glueballs, and we still calculate similar diagrams as
those depicted in Fig. 2 for two-gluon glueballs to make the
present study unified as a whole.
For completeness, we also investigate the following

three-gluon glueball currents of C ¼ −,

ξαβ1 ¼ dabcg3sG
μν
a Gb;μνG

αβ
c ; ð51Þ

ξ̃αβ1 ¼ dabcg3sG
μν
a Gb;μνG̃

αβ
c ; ð52Þ

ξα1α2;β1β22 ¼ dabcS½g3sG̃α1β1
a Gα2μ

b G̃β2
c;μ − fα2 ↔ β2g�; ð53Þ

ξ̃α1α2;β1β22 ¼ dabcS½g3sGα1β1
a G̃α2μ

b Gβ2
c;μ − fα2 ↔ β2g�; ð54Þ

ξ���3 ¼ dabcS½g3sGα1β1
a Gα2β2

b Gα3β3
c �; ð55Þ

ξ̃���3 ¼ dabcS½g3sG̃α1β1
a G̃α2β2

b G̃α3β3
c �; ð56Þ

FIG. 2. Feynman diagrams for three-gluon glueball currents, including the perturbative term, the two-gluon condensate hg2sGGi, the
three-gluon condensate hg3sG3i, and the D ¼ 8 condensate hg2sGGi2. Diagrams (a) and (b − i) are proportional to α3s × g0s , diagrams
(c − i) are proportional to α3s × g1s , and diagram (d) is proportional to α3s × g2s .
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where dabc is the totally symmetric SUð3ÞC structure
constant. Their sum rule equations are

ΠjGGG;1þ−iðs0;M2
BÞ

¼
Z

s0

0

�
4α3s
81π

s4 þ 10α2shg2sGGi
9

s2

þ 35α3shg2sGGi
36π

s2 þ 5α2shg3sG3i
27

s

�
e−s=M

2
Bds; ð57Þ

ΠjGGG;2þ−iðs0;M2
BÞ

¼
Z

s0

0

�
α3s

324π
s4−

5α2shg2sGGi
108

s2

þ15α3shg2sGGi
128π

s2þ65α2shg3sG3i
216

s

�
e−s=M

2
Bds; ð58Þ

ΠjGGG;3þ−iðs0;M2
BÞ

¼
Z

s0

0

�
5α3s

2016π
s4 þ α2shg2sGGi

16
s2

−
59α3shg2sGGi

512π
s2 −

α2shg3sG3i
2

s

�
e−s=M

2
Bds; ð59Þ

ΠjGGG;1−−iðs0;M2
BÞ

¼
Z

s0

0

�
4α3s
81π

s4 −
10α2shg2sGGi

9
s2

þ 25α3shg2sGGi
36π

s2 þ 35α2shg3sG3i
27

s

�
e−s=M

2
Bds; ð60Þ

ΠjGGG;2−−iðs0;M2
BÞ

¼
Z

s0

0

�
α3s

324π
s4 þ 5α2shg2sGGi

108
s2

þ 15α3shg2sGGi
128π

s2 þ 5α2shg3sG3i
24

s

�
e−s=M

2
Bds; ð61Þ

ΠjGGG;3−−iðs0;M2
BÞ

¼
Z

s0

0

�
5α3s

2016π
s4 −

α2shg2sGGi
16

s2

−
49α3shg2sGGi

1536π
s2 −

11α2shg3sG3i
432

s

�
e−s=M

2
Bds: ð62Þ

The above three-gluon glueball currents of C ¼ − have
been systematically studied in Ref. [50], but there we did
not calculate the Feynman diagrams depicted in Figs. 2
(c − 3; c − 4; c − 5). Similar to Eqs. (43)–(50), we find all
the D ¼ 8 terms proportional to hg2sGGi2 vanish, so the
convergence of the above OPE series are also quite good.
We shall use the above sum rule equations to perform

numerical analyses in the next section.

IV. NUMERICAL ANALYSES

In this section we perform numerical analyses using the
sum rules given in Eqs. (43)–(50) and (57)–(62). The
glueball mass MX depends significantly on the gluon
condensates hg2sGGi and hg3sG3i, both of which are still
not precisely known. In the present study we use the
following values for these parameters [58,59]

hαsGGi ¼ ð6.35� 0.35Þ × 10−2 GeV4;

hg3sG3i ¼ hαsGGi × ð8.2� 1.0Þ GeV2: ð63Þ

Additionally, we use the following value for the strong
coupling constant at the QCD scale ΛQCD ¼ 300 MeV
[60],

αsðQ2Þ ¼ 4π

11 lnðQ2=Λ2
QCDÞ

: ð64Þ

We still take the current J̃0 as an example, and use
Eq. (39) to calculate the mass of jGG; 0−þi. It depends on
two free parameters, the Borel mass MB and the threshold
value s0. We use two criteria to determine the Borel
window. The first criterion is to ensure the convergence
of OPE by requiring: a) the α2s × g2s term α2shg2sGGi to be
less than 5%, and b) the D ¼ 6 term αshg3sG3i to be less
than 10%

CVGA≡
����Π

gn¼6
s ðs0;M2

BÞ
Πðs0;M2

BÞ
���� ≤ 5%; ð65Þ

CVGB≡
����Π

D¼6ðs0;M2
BÞ

Πðs0;M2
BÞ

���� ≤ 10%: ð66Þ

As shown in Fig. 3 using the dashed curves, we determine
the lower limit of MB to be M2

B ≥ 3.28 GeV2 when
setting s0 ¼ 9.0 GeV2.
The above condition is the cornerstone of a reliable sum

rule analysis, where we have taken into account two terms

FIG. 3. CVGA [short-dashed curve, defined in Eq. (65)], CVGB
[long-dashed curve, defined in Eq. (66)], and PC [solid curve,
defined in Eq. (69)] as functions of the Borel mass MB. The
current J̃0 is used here when setting s0 ¼ 9.0 GeV2.
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because the OPE is expanded in two directions; the
dimension of condensates and the coupling constant gs.
Equations (65) and (66) are for two-gluon glueball currents,
and the conditions for three-gluon glueball currents are

CVG0
A≡

����Π
gn¼8
s ðs0;M2

BÞ
Πðs0;M2

BÞ
���� ≤ 5%; ð67Þ

CVG0
B≡

����Π
D¼6ðs0;M2

BÞ
Πðs0;M2

BÞ
���� ≤ 10%: ð68Þ

The second criterion is to insure the one-pole-dominance
assumption by requiring the pole contribution (PC) to be
larger than 40%,

PC≡
����Πðs0;M

2
BÞ

Πð∞;M2
BÞ
���� ≥ 40%: ð69Þ

As shown in Fig. 3 (using the solid curve), we determine
the upper limit of MB to be M2

B ≤ 3.70 GeV2 when
setting s0 ¼ 9.0 GeV2.
Altogether we determine the Borel window to be

3.28 GeV2 ≤ M2
B ≤ 3.70 GeV2 for the fixed threshold

value s0 ¼ 9.0 GeV2. Then we redo the same procedures
by changing s0, and find that there exists nonvanishing
Borel windows as long as s0 ≥ smin

0 ¼ 8.2 GeV2.
Accordingly, we choose s0 to be slightly larger, and
determine our working regions to be 8.0 GeV2 ≤ s0 ≤
10.0 GeV2 and 3.28 GeV2 ≤ M2

B ≤ 3.70 GeV2, where we
calculate the mass of jGG; 0−þi to be

MjGG;0−þi ¼ 2.17� 0.11 GeV: ð70Þ

Its central value corresponds to M2
B ¼ 3.49 GeV2 and

s0 ¼ 9.0 GeV2, its uncertainty comes from the threshold
value s0, the Borel mass is MB, and the gluon condensates
are listed in Eqs. (63).

We showMjGG;0−þi in the left panel of Fig. 4 as a function
of the Borel massMB, and find it quite stable inside the Borel
window 3.28 GeV2 ≤ M2

B ≤ 3.70 GeV2. We also show it in
the right panel of Fig. 4 as a function of the threshold value
s0. We find there exists a mass minimum around
s0 ∼ 5 GeV2, and the s0 dependence is weak and acceptable
inside the working region 8.0 GeV2 ≤ s0 ≤ 10.0 GeV2.
Similarly, we use the sum rules given in Eqs. (43)–(50)

and (57)–(62) to perform numerical analyses, and calculate
masses of two- and three-gluon glueballs systematically.
The obtained results are summarized in Table I, where we
choose threshold values s0 for two-gluon glueballs to be
around 9–10 GeV2, and those for three-gluon glueballs to
be around 33–38 GeV2.

V. SUMMARY AND DISCUSSIONS

In this paper we study two- and three-gluon glueballs of
C ¼ þ using the method of QCD sum rules, including
(a) the two-gluon glueballs with the quantum numbers

JPC ¼ 0�þ, 1−þ, and 2�þ;
(b) the three-gluon glueballs with the quantum numbers

JPC ¼ 0�þ, 1�þ, and 2�þ.
We systematically construct their interpolating currents, and
find that all the spin-1 currents of C ¼ þ vanish, suggesting
that the “ground-state” spin-1 glueballs of C ¼ þ do not
exist within the relativistic framework. This behavior is
consistent with lattice QCD calculations [11–14].
We use spin-0 and spin-2 glueball currents to perform

QCD sum rule analyses, and calculate the masses of their
corresponding spin-0 and spin-2 glueballs. All these
spin-2 currents have four Lorentz indices with certain
symmetries, so that they couple to both positive- and
negative-parity glueballs, which need to be further
separated at the hadron level. We refer to Ref. [50] for
detailed discussions.
We summarize the obtained results in Table II, which are

compared with the lattice QCD results obtained using

FIG. 4. Mass of the two-gluon glueball jGG; 0−þi as a function of the Borel mass MB (left) and the threshold value s0 (right),
calculated using the current J̃0. In the left panel the short-dashed/solid/long-dashed curves are obtained by setting
s0 ¼ 8.0=9.0=10.0 GeV2, respectively. In the right panel the short-dashed/solid/long-dashed curves are obtained by setting
M2

B ¼ 3.28=3.49=3.70 GeV2, respectively.
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nonrelativistic-glueball operators [11–14]. For completeness,
we also reanalyze the results of C ¼ − three-gluon glueballs
(also called odderons), which have been previously studied in
Ref. [50]. Thus, a rather complete QCD sum rule study has
been done on the lowest-lying glueballs composed of two or
three valence gluons. We find that our QCD sum rule results
are generally consistent with unquenched lattice QCD
results [14].

To end this paper, we briefly discuss possible decay
patterns of two- and three-gluon glueballs. The two-gluon
glueballs can decay after exciting two quark-antiquark
pairs, and recombine into two mesons; however, it is rather
difficult to differentiate them from standard qq̄ states. The
three-gluon glueballs can decay after exciting three quark-
antiquark pairs, and recombine into three mesons. Their
possible decay patterns are

TABLE I. QCD sum rule results of two- and three-gluon glueballs.

Working Regions

Glueball Current smin
0 [GeV2] s0 [GeV2] M2

B [GeV2] Pole [%] Mass [GeV]

jGG; 0þþi J0 7.8 9.0� 1.0 3.70–4.19 40–48 1.78þ0.14
−0.17

jGG; 2þþi Jα1α2;β1β22
8.5 10.0� 1.0 3.99–4.60 40–50 1.86þ0.14

−0.17
jGG; 0−þi J̃0 8.2 9.0� 1.0 3.28–3.70 40–47 2.17þ0.11

−0.11
jGG; 2−þi J̃α1α2;β1β22

8.1 10.0� 1.0 3.27–4.20 40–55 2.24þ0.11
−0.11

jGGG; 0þþi η0 31.6 33.0� 3.0 7.25–7.61 40–44 4.46þ0.17
−0.19

jGGG; 2þþi ηα1α2;β1β22
16.0 35.0� 3.0 4.77–9.04 40–90 4.18þ0.19

−0.42
jGGG; 0−þi η̃0 17.0 33.0� 3.0 4.48–8.13 40–88 4.13þ0.18

−0.36
jGGG; 2−þi η̃α1α2;β1β22

33.1 35.0� 3.0 8.10–8.53 40–44 4.29þ0.20
−0.22

jGGG; 1þ−i ξαβ1 9.0 34.0� 4.0 3.16–9.09 40–99 4.01þ0.26
−0.95

jGGG; 2þ−i ξα1α2;β1β22
32.7 35.0� 4.0 7.53–8.09 40–46 4.42þ0.24

−0.29
jGGG; 3þ−i ξα1α2α3;β1β2β33

30.2 33.0� 4.0 7.69–8.40 40–47 4.30þ0.23
−0.26

jGGG; 1−−i ξ̃αβ1 31.2 34.0� 4.0 5.81–6.77 40–51 4.91þ0.20
−0.18

jGGG; 2−−i ξ̃α1α2;β1β22
19.7 36.0� 4.0 5.80–9.47 40–81 4.25þ0.22

−0.33
jGGG; 3−−i ξ̃α1α2α3;β1β2β33

35.8 38.0� 4.0 6.15–7.22 40–49 5.59þ0.33
−0.22

TABLE II. Masses of two- and three-gluon glueballs, in units of GeV. Our QCD sum rule results are listed in the
second column. Lattice QCD results are listed in the third–sixth columns, taken from Refs. [11–13] (quenched) and
Ref. [14] (unquenched).

Glueball QCD sum rules Ref. [11] Ref. [12] Ref. [13] Ref. [14]

jGG; 0þþi 1.78þ0.14
−0.17 1.71� 0.05� 0.08 1.73� 0.05� 0.08 1.48� 0.03� 0.07 1.80� 0.06

jGG; 2þþi 1.86þ0.14
−0.17 2.39� 0.03� 0.12 2.40� 0.03� 0.12 2.15� 0.03� 0.10 2.62� 0.05

jGG; 0−þi 2.17þ0.11
−0.11 2.56� 0.04� 0.12 2.59� 0.04� 0.13 2.25� 0.06� 0.10 � � �

jGG; 2−þi 2.24þ0.11
−0.11 3.04� 0.04� 0.15 3.10� 0.03� 0.15 2.78� 0.05� 0.13 3.46� 0.32

jGGG; 0þþi 4.46þ0.17
−0.19 � � � 2.67� 0.18� 0.13 2.76� 0.03� 0.12 3.76� 0.24

jGGG; 2þþi 4.18þ0.19
−0.42 � � � � � � 2.88� 0.10� 0.13 � � �

jGGG; 0−þi 4.13þ0.18
−0.36 � � � 3.64� 0.06� 0.18 3.37� 0.15� 0.15 4.49� 0.59

jGGG; 2−þi 4.29þ0.20
−0.22 � � � � � � 3.48� 0.14� 0.16 � � �

jGGG; 1þ−i 4.01þ0.26
−0.95 2.98� 0.03� 0.14 2.94� 0.03� 0.14 2.67� 0.07� 0.12 3.27� 0.34

jGGG; 2þ−i 4.42þ0.24
−0.29 4.23� 0.05� 0.20 4.14� 0.05� 0.20 � � � � � �

jGGG; 3þ−i 4.30þ0.23
−0.26 3.60� 0.04� 0.17 3.55� 0.04� 0.17 3.27� 0.09� 0.15 3.85� 0.35

jGGG; 1−−i 4.91þ0.20
−0.18 3.83� 0.04� 0.19 3.85� 0.05� 0.19 3.24� 0.33� 0.15 � � �

jGGG; 2−−i 4.25þ0.22
−0.33 4.01� 0.05� 0.20 3.93� 0.04� 0.19 3.66� 0.13� 0.17 4.59� 0.74

jGGG; 3−−i 5.59þ0.33
−0.22 4.20� 0.05� 0.20 4.13� 0.09� 0.20 4.33� 0.26� 0.20 � � �–
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0−þ → VVP; VVV ðS-waveÞ;
0þþ → VPP;VVP; VVV ðP-waveÞ;
1−− → VPP;VVP; VVV ðS-waveÞ;
1þ− → PPP; VPP; VVP; VVV ðP-waveÞ;
2−� → VVP; VVV ðS-waveÞ;
2þ� → VPP;VVP; VVV ðP-waveÞ;
3−− → VVV ðS-waveÞ;
3þ− → VVP; VVV ðP-waveÞ;

whereP and V denote light vector and pseudoscalar mesons,
respectively. Considering their limited decay patterns, the
JPC ¼ 0−þ=2−�=3�− three-gluon glueballs may have rela-
tively smaller widths, and we propose to search for them in
their VVV and VVP decay channels in future BESIII,
GlueX, LHC, and PANDA experiments.
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APPENDIX: SPIN-1 CURRENTS OF C= +

In this Appendix we prove that the three spin-1 currents
Jαβ1 , ηαβ1 , and η̃αβ1 all vanish. Their definitions are given in
Eqs. (15), (27), and (28), respectively. For simplicity, we
shall not differentiate the superscript and subscript in the
following calculations.
Firstly, we investigate the current Jαβ1 . Due to the Lorentz

invariant, we simply assume α ¼ 0 and β ¼ 1…3.
Additionally, we need the Lorentz indices μ ¼ 0=i,
ρ ¼ 0=k, and σ ¼ 0=l, with i=k=l ¼ 1…3. We obtain

2J0β1 ¼ 2G0μ
a G̃βμ

a − f0 ↔ βg;
¼ G0μ

a Gρσ
a ϵβμρσ −Gβμ

a Gρσ
a ϵ0μρσ

¼ G0i
a Gk0

a ϵβik0 þG0i
a G0l

a ϵ
βi0l − Gβi

a Gkl
a ϵ

0ikl: ðA1Þ

After interchanging i ↔ k, the first term turns out to be zero,

G0i
a Gk0

a ϵβik0 ¼ G0k
a Gi0

a ϵ
βki0 ¼ G0i

a Gk0
a ϵβki0 → 0; ðA2Þ

as does the second term. The third term is nonzero when
β ¼ k or β ¼ l; however, for the case β ¼ k, we can
interchange i ↔ l and obtain (not sum over β here),

Gβi
a G

βl
a ϵ0iβl ¼ Gβl

a G
βi
a ϵ0lβi ¼ Gβi

a G
βl
a ϵ0lβi → 0; ðA3Þ

similar to the case β ¼ l. Therefore, the third term is also
zero, and the current Jαβ1 vanishes.
Secondly, we investigate the current ηαβ1 ,

2ηαβ1 ¼ 2fabcG̃
μν
a Gμν

b Gαβ
c

¼ fabcϵμνρσG
ρσ
a Gμν

b Gαβ
c

¼ fabcϵμνρσG
μν
a Gρσ

b Gαβ
c

¼ −fabcϵμνρσG
μν
b Gρσ

a Gαβ
c

→ 0: ðA4Þ

In the above expressions, we have interchanged μν ↔ ρσ

and a ↔ b. Similarly, we can prove the current η̃αβ1 to
be zero.
One can construct more spin-1 three-gluon glueball

currents of C ¼ þ, such as

η0αβ1 ¼ fabcG
αμ
a Gμν

b Gνβ
c − fα ↔ βg; ðA5Þ

η̃0αβ1 ¼ fabcG
αμ
a Gμν

b G̃νβ
c − fα ↔ βg: ðA6Þ

It is straightforward to prove the former current η0αβ1 to be
zero,

η0αβ1 ¼ fabcG
αμ
a Gμν

b Gνβ
c − fα ↔ βg

¼ fabcGαν
a Gνμ

b Gμβ
c − fα ↔ βg

¼ −fabcG
βν
a Gνμ

b Gμα
c þ fα ↔ βg

¼ fabcG
βν
c Gνμ

b Gμα
a − fα ↔ βg

¼ −fabcG
νβ
c Gμν

b Gαμ
a − fα ↔ βg

→ 0: ðA7Þ

It is a bit tricky but one can still prove the latter current η̃0αβ1

to be zero, after explicitly writing out all its Lorentz indices.
We have done this using the software Mathematica.
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