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Fluctuations of conserved charges are sensitive to the QCD phase transition and a possible critical end
point in the phase diagram at finite density. In this work, we compute the baryon number fluctuations up to
tenth order at finite temperature and density. This is done in a QCD-assisted effective theory that accurately
captures the quantum- and in-medium effects of QCD at low energies. A direct computation at finite
density allows us to assess the applicability of expansions around vanishing density. By using different
freeze-out scenarios in heavy-ion collisions, we translate these results into baryon number fluctuations as a
function of collision energy. We show that a nonmonotonic energy dependence of baryon number
fluctuations can arise in the noncritical crossover region of the phase diagram. Our results compare well
with recent experimental measurements of the kurtosis and the sixth-order cumulant of the net-proton
distribution from the STAR Collaboration. They indicate that the experimentally observed nonmonotonic
energy dependence of fourth-order net-proton fluctuations is highly nontrivial. It could be an experimental
signature of an increasingly sharp chiral crossover and may indicate a QCD critical point. The physics
implications and necessary upgrades of our analysis are discussed in detail.
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I. INTRODUCTION

Some of the most challenging questions of heavy-ion
physics are related to the transition from the early, non-
equilibrium, state of quarks and gluons to the final hadronic
states after chemical freeze-out, which is observed in
experiments. Unraveling this dynamics necessitates a
thorough grasp on the physics in the QCD phase structure
close to the confinement-deconfinement and chiral tran-
sitions. This regime is strongly correlated with highly
nontrivial dynamics. Understanding this part of the phase
structure, including the location and dynamics of a poten-
tial critical end point (CEP), plays a pivotal role in
understanding phases of strongly interacting nuclear matter
under extreme conditions. For works on the phase structure
of QCD, covering experiment and theory see, e.g., [1–13],
where theory covers first-principles functional approaches
and lattice simulations.

Fluctuations of conserved charges are very sensitive to
the physics of the strongly correlated regime that governs
the transition from the quark-gluon plasma (QGP) to the
hadronic phase. They provide detailed information on the
underlying dynamics. This includes, but is not limited to,
possible experimental signatures of a CEP [4]. It has for
example been proposed in [14–16] that nonmonotonic
variations of conserved charge fluctuations as functions
of the beam energy can arise from critical physics in the
vicinity of a CEP. During the last decade, significant
fluctuation measurements have been performed in the first
phase of the Beam Energy Scan (BES-I) program at the
Relativistic Heavy Ion Collider (RHIC), involving various
cumulants of net-proton, net-charge and net-kaon multi-
plicity distributions [17–21]. Remarkably, very recently the
STAR Collaboration has reported the first evidence of a
nonmonotonic variation in the kurtosis (multiplied by
the variance) of the net-proton number distribution as a
function of the collision energy with 3.1σ significance
for central collisions [22]. The measurements have been
extended to the sixth-order cumulants of net-proton and
net-charge distributions; for preliminary results from STAR
see [23,24].
Recent first-principle QCD calculations at finite temper-

ature and density, within both the functional renormalization
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group (fRG) andDyson-Schwinger equations, show that the
transition from the QGP to the hadronic phase is a crossover
which becomes sharper with increasing baryon chemical
potential, μB, for μB=T ≲ 4 [7,8,25–28]. Beyond this region,
a CEP might occur, but quantitative reliability of the theory
computations cannot be guaranteed within the present
approximations [7,8,25,28]. In addition, critical physics
may only be observable in a very small region around the
CEP, see e.g., [29]. Since the available RHICdata are limited
to μB=T ≲ 3, it is important to understand how conserved
charge fluctuations are affected by the increasingly sharp
crossover away from a regime with critical scaling.
To address these open questions related to the physics of

strong correlations in the QCD phase diagram, we study in
detail the T- and μB dependence of net-baryon number
fluctuations in the range μB=T ≲ 3. We present results for
fluctuations up to tenth order (where we refer to everything
above fourth order as hyper order), including comparisons
to available results from RHIC [22–24] and predictions for
the beam energy dependence of fluctuations where no
experimental results are available yet.
To facilitate the comparison between theory and experi-

ment, T and μB can be mapped onto the beam energy per
nucleon,

ffiffiffiffiffiffiffiffi
sNN

p
, via phenomenological freeze-out curves

[30]. While these curves are expected to be close to the
QCD crossover at large beam energies (corresponding to
small μB) [31], they may move away from the transition
region at low energies (i.e., larger μB) [32]. This can affect
the beam energy dependence of particle number fluctua-
tions, and requires a detailed understanding of the physics
also outside the critical region.
Aside from their phenomenological relevance, net-

baryon number fluctuations at finite μB can also be used
to assess the reliability of extrapolations of thermodynamic
quantities to finite μB based on aTaylor expansion at μB ¼ 0.
Such a strategy is commonly used in lattice QCD simu-
lations, where a sign problem prevents direct simulations at
finite μB, see e.g., [9,33–38]. By comparing the results of
direct computations at finite μB to the ones obtained from
extrapolations at μB ¼ 0, we study the range of validity of a
Taylor expansion at a given order self-consistently.
Understanding the limitations of such an extrapolation is
also relevant for phenomenologically constructed equations
of state, as, e.g., in [39], where the noncritical physics at
finite μB crucially rely on this extrapolation.
All this is addressed within a QCD-assisted low-energy

effective-field theory (LEFT) which is described in detail in
the next section. We use first-principles QCD-results on the
T dependence of the kurtosis and the μB dependence of
the chiral phase boundary to map the in-medium scales of
the LEFT onto QCD. This improves the reliability of our
predictions, in particular at finite μB. Nonperturbative
quantum-, thermal- and density fluctuations are taken into
account with the fRG. This work therefore is a significant
upgrade of previous work in [40–42], where net-baryon

number fluctuations up to fourth order have been studied.
The present QCD-assisted LEFT approach has various
advantages. Most importantly, it is directly embedded in
QCD as the relevant low-energy degrees of freedom emerge
dynamically from systematically integrating out the fast
partonic modes of QCD [8,43–46]. In addition, this
approach allows us to capture both critical and noncritical
effects in the QCD phase diagram. This entails in particular
that our results agree with the results of lattice QCD at
small μB and show the correct universal behavior of QCD in
the vicinity of the CEP, i.e., 3d Ising universality.
Concerning the existence and location of the latter we

add that the first-principles results in [7,8,25–28] include a
CEP in a region of 450 MeV≲ μB ≲ 650 MeV and there-
fore outside the regime of quantitative reliability of these
computations. This suggests that the experimental detection
of a CEP requires explorations of the high μB in the region
with μB=Tc ≳ 4. Moreover, the direct experimental meas-
urement of the CEP may be very challenging as it requires
very high statistics, and predictions that signal critical
dynamics can be further complicated by nonequilibrium
effects. In the present work we shall therefore also outline
how the location of a CEP could be constrained based on
data in the crossover region, without the necessity of
observing critical scaling. On the theoretical side this asks
for first-principles QCD studies for μB=T ≳ 4. In turn, a
first experimental step towards this goal is the solidification
of experimental observation of the nonmonotonic energy
dependence of fourth-order net-proton fluctuations. Both
are safely beyond the scope of the present work.
This paper is organized as follows: InSec. IIwegive a brief

introduction to the fRG approach to QCD and low-energy
effective theories, including their mutual relationship.
Thermodynamics and the hyper-order baryon number fluc-
tuations are discussed inSec. III. In Sec. IV,we first introduce
a systematic scale-matching procedure between QCD and
the low-energy effective theory.We then present our numeri-
cal results and compare them to lattice QCD simulations
and experimental measurements. A summary with conclu-
sions is given in Sec. V. Technical details regarding the flow
equations are presented in the Appendixes.

II. QCD AND EMERGENT LOW-ENERGY
EFFECTIVE THEORIES

At low-momentum scales the quark-gluon dynamics of
QCD successively decouple due to the QCD mass gap and
spontaneous chiral symmetry breaking. This decoupling
also applies to most dynamical (hadronic) low-energy
degrees of freedom at even lower energies, finally leaving
us with dynamical pions and hence with chiral perturbation
theory. Indeed, this successive decoupling is at the root of
the success of chiral effective-field theory.
The functional renormalization group approach to QCD

with its successive integrating out of momentum modes is
ideally suited to follow and study this decoupling.
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Diagrammatically, this is already seen within the flow
equation for the QCD effective action, depicted in Fig. 1.
The different lines stand for the full nonperturbative
propagators of gluons, ghosts, quarks and emergent low-
energy degrees of freedom (hadrons in our case), where the
loop momentum q is restricted by the infrared cutoff scale
k, q2 ≲ k2. In this setup, emergent bound states can be
incorporated systematically by dynamical hadronization
[47–50]. For quantitative QCD applications in the vacuum
see [43–46]; for further conceptual developments and the
application to the QCD phase structure important for the
present work see [8]. The decoupling is apparent in this
framework as the propagators carry the mass gaps mgap of
gluons and quarks and for cutoff scales k ≪ mgap of a given
field the respective loop tends towards zero.
More importantly, in this way the emergent low-energy

effective theory is naturally embedded in QCD, and its
ultraviolet parameters (at Λ≲ 1 GeV) as well as further
input may be directly computed from QCD, leading to
QCD-assisted low-energy effective theories. We emphasize
that this procedure does not lead to a unique LEFT. The
dynamical degrees of freedom of QCD-assisted LEFTs at
Λ≲ 1 GeV depend on the dynamical hadronization pro-
cedure applied within QCD flows. This setup and the QCD-
embedding entail that, provided the relevant quantum,
thermal and density fluctuations of low-energy QCD are
taken into account in the QCD-assisted LEFT at hand, all
QCD-assisted LEFTs encode the same physics, namely that
of low-energy QCD.
This leads to an equivalence relation of QCD-assisted

Polyakov-loop–enhanced NJL-type LEFTs, Polyakov-
loop–enhanced QM LEFTs (PQM) and variations includ-
ing higher meson multiplets and/or diquarks and baryons.
We emphasize again that this equivalence relation only
holds if low-energy quantum, thermal and density fluctua-
tions are taken into account. For more details see in
particular [8], and the recent review [51]. Most prominently
this embedding has been used for determining the temper-
ature dependence of the Polyakov loop potential; see
[52,53]. This setup was then applied to the computation
of fluctuations in [40–42,54,55].
In summary this entails that for sufficiently small

momenta k, temperatures T, and also density or quark
chemical potential μq, the gluon (and ghost) loop in Fig. 1
decouple from the dynamics, and only provide a nontrivial

glue background at finite temperature and chemical poten-
tial. The latter is taken into account with the Polyakov loop
potential discussed in detail below.
In the present work, we build upon previous investiga-

tions of the skewness and kurtosis of baryon number
distributions [40–42], and baryon-strangeness correlations
[56,57] within QCD-assisted LEFTs with the fRG. The
present LEFT is an upgrade of those used in the works
above, and includes the quantum, thermal and density
dynamics of quarks, pions and the sigma mode in a
Polyakov loop background. It is a QCD-assisted PQM.
As argued above, for low enough chemical potential, this
model is sufficiently close to QCD, and leads to results that
are independent of the LEFT at hand.
For further investigations of fluctuation observables

within the fRG approach to low-energy effective theories
see e.g., [58–62]; the Dyson-Schwinger approach has been
used in e.g., [26,63], for mean-field investigations; see e.g.,
[64–68]. These functional works can be further adjusted
and benchmarked with results from lattice QCD simula-
tions [9,33–38], at high temperatures, T ≳ Tc, and vanish-
ing μB. In turn, at finite μB, and in particular for μB=Tc ≳ 3,
lattice simulations are obstructed by the sign problem.

A. 2-flavor setup

For the physics of fluctuations we are interested in scales
below approximately 1 GeV. We restrict ourselves to k≲
700 MeV and temperatures and quark chemical potentials
T; μq ≲ 200 MeV. In this regime the only relevant quarks
are the light quarks q ¼ ðu; dÞ and the strange quark s. The
latter, while changing the momentum-scale running of the
correlation functions, has subleading effects on the form of
the fluctuations. Hence, the effect of the momentum-scale
running induced by strange fluctuations will be mimicked
here by an appropriate scale matching detailed in Sec. II B.
We also include the lowest-lying hadronic resonances,

the pion π ¼ ðπ�; π0Þ, and, for symmetry reasons, the
scalar resonance σ as effective low-energy degrees of
freedom. Within QCD flows these fields are emergent
low-energy degrees of freedom at cutoff scales k ≃ 1 GeV,
that are taken care of with dynamical hadronization in e.g.,
[8]. At the present low-energy scales k ≤ 700 MeV, they
are fully dynamical, and hence are part of the effective
action at the initial cutoff scale. The other members of the
lowest-lying multiplet as well as further hadronic reso-
nances produce rather subleading contributions to the off-
shell dynamics and hence are dropped. The mesonic fields
are stored in an O(4) scalar field ϕ ¼ ðσ; πÞ with the
corresponding chiral invariant ρ ¼ ϕ2=2.
Quantum, thermal and density fluctuations with scales

k≲ Λ ¼ 700 MeV are taken into account within the fRG,
whose dynamics are now reduced to the last two loops in
Fig. 1. The respective effective action of QCD in the low-
energy regime is approximated by

FIG. 1. Diagrammatic representation of the QCD flow equa-
tion. The lines stand for the full propagators of gluon, ghost,
quark, and mesons, respectively. The arrows in quark and meson
lines indicate the quark number (baryon number) flow. The
crossed circles represent the infrared regulators.
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Γk ¼
Z
x

�
Zq;kq̄

�
γμ∂μ − γ0ðμþ igA0Þ

�
qþ 1

2
Zϕ;kð∂μϕÞ2

þ hkq̄ðτ0σ þ τ · πÞqþ Vkðρ; A0Þ − cσ

�
; ð1Þ

with
R
x ¼

R 1=T
0 dx0

R
d3x and τ ¼ 1=2ð1; iγ5σÞ. We assume

isospin symmetry and the corresponding chemical potential
flavor matrix is given by μ¼diagðμq;μqÞ¼ 1

3
diagðμB;μBÞ.

Zq;k and Zϕ;k are the wave-function renormalizations for
the light quarks and the meson respectively. Further
running couplings considered are the Yukawa coupling
hk, the scattering between quarks and mesons, as well as
the effective potential Vkðρ; A0Þ, that describes the multi-
scattering of mesons in the nontrivial glue background
present at finite temperature and chemical potential.
The flow equation for the effective action Eq. (1), and

that for Vk; hk; Zϕ;q is described in Appendixes A and B.
The initial condition for Γk at the initial cutoff scale
k ¼ 700 MeV is described in Appendix C.
The potential Vkðρ; A0Þ has contributions Vglue;kðA0Þ

from off-shell glue fluctuations (first two diagrams in
Fig. 1), and contributions Vmat;kðρ; A0Þ from the quark
loop (third diagram in Fig. 1). This leads us to

Vkðρ; A0Þ ¼ Vglue;kðA0Þ þ Vmat;kðρ; A0Þ: ð2Þ

The first contribution is typically reformulated in terms of
the Polyakov loop LðA0Þ, while the latter is directly
computed from the present low-energy flow. This allows
us to trade theA0 dependence for that of the traced Polyakov
loop, LðA0Þ; L̄ðA0Þ [see Appendix D, Eq. (D2)], leading us
to the final form of our potential,

Vkðρ; L; L̄Þ ¼ Vkðρ; A0Þ: ð3Þ

More details can be found in Appendix D.
In conclusion, the QCD-assisted LEFT described above

and used in the present work, is a PQM-type model, e.g.,
[40–42,52–59,66,67,69–78]. Quantum, thermal and den-
sity fluctuations below Λ ¼ 700 MeV are taken into
account with the functional renormalization group, and
the setup is well embedded in functional QCD. As argued
above, within the present, and analogous, elaborate
approximation, the respective results (for fluctuation
observables) for all QCD-assisted LEFTs match those of
QCD for sufficiently low density. Therefore, we will refer
to this model from now on as generic QCD-assisted LEFT.

B. 2 + 1-favor scale matching in 2-flavor QCD

The current QCD-assisted LEFT setup enables us to
compute thermodynamic observables and in particular
hyper-order baryon number fluctuations. However, as
already briefly discussed in Sec. II A, we have dropped
the dynamics of the strange quark. While we expect

subdominant effects on hyper-fluctuations, the s quark
influences the momentum running of the correlations in the
ultraviolet.
Importantly, in [8] it has been observed on the basis of

genuine Nf ¼ 2 and Nf ¼ 2þ 1 flavor computations in
QCD, that the latter effect is well approximated by a
respective universal scale matching of the 2-flavor results
even in QCD. Such a scale matching has already led to a
quantitative agreement of thermodynamics and kurtosis
within the current LEFT setup with lattice results; see
[40–42]. Thus, the present scale matching entails that we
use information on the T- and μB dependence of well-
determined quantities in QCD. This leads to an improved
reliability of our results of finite T and μB, as in-medium
effects in the QCD-assisted LEFT are directly connected to
in-medium effects in QCD.

1. 2- to 2+ 1-flavor scale matching in QCD

Given its relevance for the predictive power of the
present LEFT within a QCD scale-matching procedure
we briefly recall the respective results in [8]: There, the
phase boundaries of 2- and 2þ 1-flavor QCD have been
computed within the fRG approach. These results allow us
to evaluate the reliability of even linear scale matchings of
temperatures and chemical potentials in 2- and 2þ 1-flavor
QCD introduced by

TðNf¼2Þ ¼ cTTðNf¼2þ1Þ;

μ
ðNf¼2Þ
B ¼ cμBμ

ðNf¼2þ1Þ
B : ð4Þ

With such a linear scale matching the scaling factors cT; cμB
can be determined by evaluating the relations at a specific
temperature and chemical potential.
For the thermal scale matching we naturally take

ðT; μBÞ ¼ ðTc; 0Þ, the crossover temperature at vanishing
chemical potential. In [8] the crossover temperatures have
been determined with thermal susceptibilities of the renor-
malized light chiral condensate. Then, the linear rescaling
of the 2-flavor chiral crossover temperature to the 2þ 1-
flavor crossover temperature is done with

T
ðNf¼2Þ
c ¼ cQCDT T

ðNf¼2þ1Þ
c ; cQCDT ¼ 1.1: ð5Þ

For the matching of the chemical potentials we use the
curvature κ of the phase boundary at vanishing μB ¼ 0,

TcðμBÞ
Tc

¼ 1 − κ

�
μB
Tc

�
2

þ λ

�
μB
Tc

�
4

þ � � � : ð6Þ

Adjusting the 2-flavor curvature −κμ2B=T2
c to the 2þ 1-

flavor one leads us to the relation

FU, LUO, PAWLOWSKI, RENNECKE, WEN, and YIN PHYS. REV. D 104, 094047 (2021)

094047-4



cQCDμB ¼ cQCDT

�
κðNf¼2þ1Þ

κðNf¼2Þ

�
1=2

; cQCDμB ¼ 0.99: ð7Þ

The value cQCDμB ≈ 1 entails that the change in the curvature
coefficient κ is balanced by that of the temperature.
The fourth-order expansion coefficient λ is found to be

very small in both functional, [8,27,28] as well as lattice
computations, [10,79]. Moreover, the results for the phase
boundary at finite chemical potential in [7,8,27,28] reveal
that the phase boundary is still described well by the
leading-order expansion with μ2B-terms. We estimate that
this prediction is quantitatively reliable within μB=T ≲ 4,
using results from [7,8,25,27,28]. This covers the regime
studied in the present work.
Applying the two scale-matching relations in Eq. (4)

with the coefficients Eqs. (5) and (7) to the 2- and 2þ 1-
flavor data of the QCD phase boundary in [8] leads us to
Fig. 2. In conclusion, this impressive agreement provides
nontrivial support for the scale-matching procedure
in QCD.

2. 2- to 2+ 1-flavor scale matching in LEFTs

The convincing quantitative accuracy of the linear scale-
matching analysis presented for QCD in the last section
also sustains its use in the LEFT within the present work.
Note, however, that we cannot simply take over the above
QCD relations for the present LEFT, which lacks the
backcoupling of the glue dynamics on both large temper-
ature and chemical potential physics. Still, the dominance

of the leading-order term −κμ2B=T2
c in the model reflects the

same property in QCD. This allows us to employ a
respective linear scale matching for μB=T ≲ 4 as studied
in the present work.
Analogously to QCD we choose the chiral crossover

temperature at vanishing chemical potential, ðT; μBÞ ¼
ðTc; 0Þ for fixing the scale factor cT. Moreover, in the
present work we are interested in fluctuations of conserved
charges. Hence, instead of the renormalized condensate we
use the kurtosis of baryon number fluctuations, or rather
RB
42 ¼ χB4 =χ

B
2 ; for the definition see Eqs. (13) and (14)

with Eqs. (16) and (18). This leads us to the following
determination of cT : While the temperature dependence of
RB
42 is a prediction of the LEFT, its absolute temperature has

to be adjusted. This is done by minimizing the χ2 of the
difference between the lattice result and the LEFT pre-
diction as a function of the rescaled absolute temperature
cTTc, leading us to

cT ¼ 1.247ð12Þ: ð8Þ

The respective result for RB
42 is shown in Fig. 3 in

comparison to the lattice result from [38]. The two curves
match, quantitatively supporting the predictive power of
the LEFT.
For the scale matching of μB with the curvature −κμ2B=T2

c
we have a plethora of results from state of the art functional
approaches: κ ¼ 0.0142ð2Þ in [8], κ ¼ 0.0150ð7Þ in [27]
and κ ¼ 0.0147ð5Þ in [28], the very recent update of [27].
Lattice results are provided with κ ¼ 0.015ð4Þ in [79],
κ ¼ 0.0149ð21Þ in [80], κ ¼ 0.0153ð18Þ in [10]. Both
functional and lattice results agree within the respective
(statistical and systematic) errors with κ ≈ 0.015.
Having adjusted the temperature with results from the

WB Collaboration [80], we use κ ¼ 0.0153ð18Þ from [10]

FIG. 2. Phase boundaries of 2- and 2þ 1-flavor QCD from [8]
with a 2þ 1-flavor scale matching of the 2-flavor data at the
crossover temperature and μB ¼ 0. The bands denote the width of
the chiral crossover. The scale-matched 2-flavor phase boundary
agrees quantitatively with the genuine 2þ 1-flavor one including
the location of the critical end point. The dashed line at μB=T ¼ 4
constitutes the reliability bound of the computations in [8] based
on the potential emergence of new degrees of freedom discussed
in [7,8,25]. The dashed lines at μB=T ¼ 2, 3 are reliability
estimates of lattice results as well as old ones from functional
approaches.

FIG. 3. Matching of the temperature scale in the QCD-assisted
2-flavor LEFTwith RB

42 in Eq. (14), using the 2þ 1-flavor lattice
results of [38]. This leads to cT ¼ 1.247ð12Þ in Eq. (5). The T=Tc

dependence of RB
42 is a prediction of the QCD-assisted LEFT, and

agrees quantitatively with the lattice results.
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for internal consistency. Note that the results presented here
do only change marginally if using one κ in the range
κ ¼ ð0.0142 − 0.0153Þ. Within the current LEFTwe obtain
κLEFT ¼ 0.0193. In comparison, κLEFT is larger than the
2-flavor QCD result in [8] with κ ¼ 0.0179ð8Þ. This
reflects the lack of glue dynamics in the LEFT. We use
this in the relation Eq. (7) instead of κðNf¼2Þ, and arrive at

cμB ¼ cT

�
κNf¼ð2þ1Þ

κLEFT

�
1=2

¼ 1.110ð66Þ; ð9Þ

with the LEFT-cT from Eq. (8).
In summary, as our first step towards a quantitative

prediction for hyper-order baryon number fluctuations, in
this work we do not deal with the strange quark as a
dynamical degree of freedom for the moment, but rather
take into account its effect on the modification of the
momentum-scale running via an appropriate scale match-
ing as shown in Eq. (4). The validity of the scale-matching
relations between 2- and 2þ 1-flavor QCD has been well
verified in this section by means of results from the first-
principle functional QCD in [8]. These relations were
applied to the present QCD-assisted LEFT. The scale
matching was done with two observables relevant for the
fluctuation physics studied here: RB

42 as a function of T and
the curvature of the phase boundary κ, both at vanishing
chemical potential. This led us to the coefficients Eqs. (8)
and (9) in Eq. (4). The errors in these coefficients determine
the errors of our results in Sec. IV.

III. THERMODYNAMICS AND HYPER-ORDER
BARYON NUMBER FLUCTUATIONS

The thermodynamic potential in the LEFT at finite
temperature and baryon chemical potential is readily
obtained from the effective action in Eq. (1), or rather
from its integrated flow: we evaluate the effective action on
the solution of the quantum equations of motion (EoMs). In
the present work we consider only homogeneous (constant)
solutions, ðσEoM; A0;EoMÞ with

∂Vðρ; L; L̄Þ
∂σ ¼ ∂Vðρ; L; L̄Þ

∂L ¼ ∂Vðρ; L; L̄Þ
∂L̄ ¼ 0; ð10Þ

while the quark fields vanish on the EoMs, q; q̄ ¼ 0. We
also note that the assumption of homogeneous solutions has
to be taken with a grain of salt for larger chemical potentials
with μB=T ≳ 4; see [8]. Such a scenario has been inves-
tigated in LEFTs, see e.g., the review [81] and references
therein.
With these preparations we are led to the grand potential

Ω½T; μB� ¼ Vk¼0ðρ; L; L̄Þ, the effective potential, evaluated
at vanishing cutoff scale k ¼ 0. It reads

Ω½T; μB� ¼ VglueðL; L̄Þ þ Vmatðρ; L; L̄Þ − cσ; ð11Þ

where the gluonic background field A0 in Eq. (2) has been
reformulated in terms of the Polyakov loop L and its
complex conjugate L̄. As mentioned before, the matter
sector of the effective potential is integrated out towards the
IR limit k ¼ 0; for details see Appendix B. In turn, the glue
sector is independent of k; see Appendix D. The pressure of
the system follows directly from the thermodynamic
potential,

p ¼ −Ω½T; μB�: ð12Þ

The generalized susceptibilities of the baryon number χBn
are defined through the nth order derivatives of the pressure
with respect to the baryon chemical potential, to wit,

χBn ¼ ∂n

∂ðμB=TÞn
p
T4

: ð13Þ

To remove the explicit volume dependence, it is advanta-
geous to consider the ratio between the n- and mth-order
susceptibilities, defined by

RB
nm ¼ χBn

χBm
: ð14Þ

The generalized susceptibilities are related to various
cumulants of the baryon number distribution, which can
be measured in heavy-ion collision experiments through
the cumulants of its proxy, i.e., the net proton distribution;
see, e.g., [4] for details. For the lowest four orders we get

χB1 ¼ 1

VT3
hNBi; ð15Þ

χB2 ¼ 1

VT3
hðδNBÞ2i; ð16Þ

χB3 ¼ 1

VT3
hðδNBÞ3i; ð17Þ

χB4 ¼ 1

VT3
ðhðδNBÞ4i − 3hðδNBÞ2i2Þ; ð18Þ

with h� � �i denoting the ensemble average and δNB ¼
NB − hNBi. Thus the mean value of the net baryon number
of the system is given by M ¼ VT3χB1 , the variance
σ2 ¼ VT3χB2 , skewness S ¼ χB3 =ðχB2 σÞ, and the kurtosis
κ ¼ χB4 =ðχB2 σ2Þ, respectively.
In this work the emphasis is, however, put on the baryon

number fluctuations of orders higher than the fourth, i.e.,
χBn>4, which are named hyper-order baryon number fluc-
tuations. As the low-order ones, the hyper-order suscep-
tibilities are also connected to their respective cumulants,
and their relations, taking the fifth through eighth ones for
instance, are given as follows:
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χB5 ¼ 1

VT3
ðhðδNBÞ5i − 10hðδNBÞ2ihðδNBÞ3iÞ; ð19Þ

χB6 ¼ 1

VT3
ðhðδNBÞ6i − 15hðδNBÞ4ihðδNBÞ2i

− 10hðδNBÞ3i2 þ 30hðδNBÞ2i3Þ; ð20Þ

χB7 ¼ 1

VT3
ðhðδNBÞ7i − 21hðδNBÞ5ihðδNBÞ2i

− 35hðδNBÞ4ihðδNBÞ3i
þ 210hðδNBÞ3ihðδNBÞ2i2Þ; ð21Þ

χB8 ¼ 1

VT3
ðhðδNBÞ8i − 28hðδNBÞ6ihðδNBÞ2i

− 56hðδNBÞ5ihðδNBÞi3 − 35hðδNBÞ4i2
þ 420hðδNBÞ4ihðδNBÞ2i2
þ 560hðδNBÞ3i2hðδNBÞ2i − 630hðδNBÞ2i4Þ: ð22Þ

Different aspects of hyper-order fluctuations have been
studied in mean-field approximations in the past; see e.g.,
[66,67,82]. However, due to the decisive role of non-
perturbative quantum fluctuations for these quantities, a
treatment beyond mean field, as in the present work, is
necessary for their accurate description. A first study in this
direction, discussing hyper-order fluctuations up to χ8
within a PQM model with the fRG at small μB=T can
be found in [60].

IV. NUMERICAL RESULTS AND DISCUSSION

In this section we present and discuss our numerical
results for hyper-order fluctuations on the freeze-out curve.
At vanishing chemical potential the lower orders are
compared to results from lattice calculations. We then
discuss the implications of our predictions for the hyper-
order baryon number fluctuations for decreasing collision

energies (increasing chemical potential) for heavy-ion
collision experiments.

A. Hyper-order baryon number fluctuations at
vanishing density: Benchmarks and predictions

We start our discussion of the numerical results in our
QCD-assisted low-energy effective theory with benchmark
results at vanishing chemical potential, μB ¼ 0. We have
already seen in Sec. II B that the fourth-order fluctuations
RB
42, Eq. (14), agrees quantitatively with the respective

lattice result; see Figs. 3 and 4, left panel. We emphasize
again that the thermal dependence of RB

42 is a prediction of
the present LEFT. Now we also compare the temperature
dependence of the hyper-fluctuations RB

62 and RB
82 with the

corresponding lattice results in the middle and right
panels of Fig. 4, respectively. We depict both our numerical
results and lattice results from the HotQCD collaboration,
[9,36,37], and the Wuppertal-Budapest collaboration, [38].
Note that lattice results in Fig. 4 by the Wuppertal-
Budapest Collaboration in [38], and RB

62 and RB
82 by the

HotQCD Collaboration in [36] are not continuum
extrapolated.
With the increase of the order of fluctuations, the

uncertainties of lattice results increase significantly.
Moreover, the eighth-order fluctuations RB

82 obtained by
the two collaborations show a significant quantitative
difference, although their form is qualitatively consistent
with each other.
The hyper-order baryon number fluctuations computed

in the current setup are in qualitative agreement with both
lattice results. However, our results single out the lattice
results of the Wuppertal-Budapest Collaboration, with
which we observe quantitative agreement. This situation
is very reminiscent of the pressure prediction in [53]:
similarly to the current situation with lattice predictions
of hyper-fluctuations, the pressure predictions of the lattice
collaborations had not converged yet. A less advanced

FIG. 4. RB
42 ¼ χB4 =χ

B
2 (left panel), RB

62 ¼ χB6 =χ
B
2 (middle panel), and RB

82 ¼ χB8 =χ
B
2 (right panel) as functions of the temperature at

vanishing baryon chemical potential (μB ¼ 0). Results from the QCD-assisted LEFTare compared with lattice results from the HotQCD
Collaboration [9,36,37] and the Wuppertal-Budapest collaboration (WB) [38]. The inset in the plot of RB

82 shows its zoomed-out view.
Our results agree quantitatively with the WB results, and are qualitatively compatible with the HotQCD results. We also compare to the
predictions of a hadron resonance gas [30], which predicts only a very mild increase of RB

n2 from unity with increasing T.
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version of the current QCD-assisted LEFT framework then
predicted the correct pressure result. We have also com-
puted the hyper-order fluctuations within a simple hadron
resonance gas model [30]. Essentially, they are all constant
with only a very minor monotonic increase with T for
T ≲ 140 MeV, starting from unity at T ¼ 0. This is in
quantitative agreement with our findings at low temper-
atures. In summary, the current setup passes all benchmark
tests quantitatively and provides the full temperature
dependence of hyper-fluctuations. We have also computed
even higher-order baryon number fluctuations. In Fig. 5 we
show our result for the temperature dependence of the
tenth-order ratio RB

102 ¼ χB10=χ
B
2 at vanishing chemical

potential, μB ¼ 0. So far no lattice results for the tenth-
order fluctuation are available, and the dependence of RB

102

on the temperature in Fig. 5 is a prediction by the current
QCD-assisted LEFT and awaits confirmation by other
calculations, e.g., lattice QCD, in the future.

B. Hyper-order baryon number fluctuations
at finite density

With successfully passing the benchmark tests, we
proceed with the results for baryon number fluctuations

at finite chemical potential. This will allow us to finally
compare the theoretical predictions on the freeze-out curve
with the experimental measurements in Sec. IV D.
Equally relevant is the self-consistent evaluation of the

reliability of a Taylor expansion in baryon-chemical poten-
tial that underlies the extension of lattice results at vanish-
ing chemical potential to μB ≠ 0. This is particularly
important for predictions of the location of the critical
end point based on such an expansion. Here we can
investigate the reliability range of the Taylor expansion
around μB ¼ 0 by comparison to our direct computation at
finite μB.
First we investigate the temperature dependence of the

baryon number fluctuations for different chemical poten-
tials. This also allows us to discuss the reliability bounds of
the current LEFT setup for increasing chemical potential.
In Fig. 6 we show the temperature dependence of the ratios
RB
42, R

B
62, and R

B
82 for chemical potentials μB ¼ 0, 100, 160,

200, 300, 400 MeV. First, we note that at small temper-
atures the thermodynamic properties of the QCD medium
are well described by a dilute gas of hadrons, where the net-
baryon number follows a Skellam distribution. Thus, all
ratios approach unity at vanishing temperature. At very
large temperature the system is governed by asymptotically
free quarks, where fluctuations approach the trivial Stefan-
Boltzmann limit, and RB

n2 goes to zero for all n > 4 at large
T. Consequently, the nontrivial behavior of the fluctuations
between these two limiting cases shown in Fig. 6 is directly
related to the crossover from the hadronic- to the quark-
gluon regime of QCD. The magnitude, but also the error of
the fluctuations, grows with increasing chemical potential.
Both effects are more pronounced for higher-order fluctu-
ations. The increase in magnitude is directly linked to the
sharpening of the chiral crossover with increasing chemical
potential; cf. Fig. 2. We expect that the current LEFT setup
is gradually losing its predictive power for fluctuations on
the freeze-out curve due to the rapid increase of the
computational error for higher-order fluctuations at large
baryon chemical potential, e.g., RB

82 with μB ≳ 200 MeV.
All results of the subsequent investigations have to be
evaluated with this estimate on our systematic error.

FIG. 5. RB
102 ¼ χB10=χ

B
2 as a function of the temperature with

μB ¼ 0 from the QCD-assisted LEFT.

FIG. 6. RB
42 (left panel), R

B
62 (middle panel), and RB

82 (right panel) as functions of the temperature at several values of μB. Insets in each
plot show their respective zoomed-out view.
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For the evaluation of the reliability regime of the Taylor
expansion about vanishing chemical potential we consider
the Taylor expansion of the pressure in Eq. (12) in powers
of μ̂B ≡ μB=T around μ̂B ¼ 0. This leads us to

pðμBÞ
T4

¼ pð0Þ
T4

þ
X∞
i¼1

χB2ið0Þ
ð2iÞ! μ̂

2i
B ; ð23Þ

with the expansion coefficients χB2ið0Þ ¼ χB2iðμB ¼ 0Þ, the
hyper-order fluctuations of the baryon charge. In Eq. (23)
we have suppressed the temperature dependence of all
functions for the sake of readability. Truncating the Taylor
expansion in Eq. (23) at the eighth order, μ̂8B, and employ-
ing Eq. (13), we obtain the expanded baryon number
fluctuations,

χB2 ðμBÞ ≃ χB2 ð0Þ þ
χB4 ð0Þ
2!

μ̂2B þ χB6 ð0Þ
4!

μ̂4B þ χB8 ð0Þ
6!

μ̂6B;

χB4 ðμBÞ ≃ χB4 ð0Þ þ
χB6 ð0Þ
2!

μ̂2B þ χB8 ð0Þ
4!

μ̂4B;

χB6 ðμBÞ ≃ χB6 ð0Þ þ
χB8 ð0Þ
2!

μ̂2B: ð24Þ

In Fig. 7 we show the ratios RB
42 ¼ χB4 =χ

B
2 and RB

62 ¼ χB6 =χ
B
2

based on the Taylor expansion for two fixed temperatures:
T ¼ 155 MeV (close to the crossover temperature Tc at
μB ¼ 0) and T ¼ 160 MeV (slightly above Tc). As an
input we use χB2ið0Þ (i ¼ 1, 2, 3, 4) from the current setup as
well as from the lattice (HotQCD Collaboration [9] and
Wuppertal-Budapest Collaboration [38]), depicted already
in Fig. 4. As expected, the LEFT results for the μB
dependence of RB

42 and RB
62 agree qualitatively with both

lattice results. Moreover, they agree quantitatively with the
Wuppertal-Budapest result. Note that constraints, e.g.,

strangeness neutrality or a fixed ratio of the electric charge
to the baryon number density, are not implemented in all
the results in Fig. 7. For more details about effects of these
constraints on the fluctuations and correlations of con-
served charges, see the relevant discussions in, e.g., [9,36]
in lattice QCD and [56,57] in fRG.
Since we are not restricted by a sign problem within the

fRG approach, the χBn ðμBÞ’s in Eq. (13) can also be
computed directly for the current QCD-assisted LEFT
without resorting to a Taylor expansion. By comparing
this to the results of the Taylor expansion, we can study its
range of validity. The results are presented in the left panel
of Fig. 8, again for T ¼ 155 MeV and T ¼ 160 MeV and
with the Taylor expansion up to eighth order in μ̂B.
We observe that the result for RB

42 from the Taylor
expansion in Eq. (24) agrees quantitatively with that from
the full calculation for μB=T ≲ 1.2 for T ¼ 155 MeV and
μB=T ≲ 1.5 for T ¼ 160 MeV. Not surprisingly, this reli-
ability regime is reduced significantly for the hyper-order
fluctuation RB

62 to μB=T ≲ 1.2 for T ¼ 160 MeV and
μB=T ≲ 0.8 for T ¼ 155 MeV. For larger μB=T, the fluc-
tuations show a nontrivial oscillatory behavior that cannot
be captured by a (low-order) Taylor expansion. We empha-
size that this is not an artifact of our model, but rather a
generic, physical feature of these fluctuation observables.
It reflects the increasingly pronounced nonmonotonic
temperature dependence of RB

n2 due to long-range correla-
tions in the crossover region, as seen in Fig. 6. In particular,
RB
n2 develops distinctive areas around the crossover at

larger μB where its value varies significantly, even includ-
ing sign changes. By following a line of fixed T close to Tc
and increasing μB in the phase diagram, these areas are
crossed eventually, leading to the oscillatory behavior seen
in Fig. 8. This is also evident in the right plot of Fig. 11,
where we show the magnitude of RB

42 in the phase

FIG. 7. RB
42 (left panel) and R

B
62 (right panel) as functions of μB=T with T ¼ 155 MeV and T ¼ 160 MeV from the eighth-order Taylor

expansion in ðμB=TÞ2 around vanishing μB shown in Eq. (24). Our results from the QCD-assisted LEFT are compared to those from
lattice QCD by the HotQCD Collaboration [9] and the Wuppertal-Budapest Collaboration [38]. We show the comparison to HotQCD in
the inlays, as these results deviate considerably from both ours and the WB results.
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diagram. Since these strong fluctuations only occur at
larger μB, the resulting characteristic qualitative features
cannot be captured by a (low-order) Taylor expansion at
μB ¼ 0; it is bound to fail at the onset of the oscillatory
behavior, i.e., around μB=T ≳ 1.
It is also interesting to evaluate to what extent a higher-

order Taylor expansion can improve its reliability. We
therefore include our prediction for RB

102 from Fig. 5, hence
extending the Taylor expansion in Eq. (24) to the tenth order.
The resulting comparison is shown in the right panel of
Fig. 8. Interestingly, this does not change the compatibility
regime for T ¼ 160 MeV significantly. In turn, there are
significant changes for T ¼ 155 MeV.While the deviations
for RB

42 start to grow at roughly the same μB=T as for the
eighth-order expansion, that is μB=T ≲ 1.2, the result forRB

42

stays compatiblewith the full result for larger values. ForRB
62

the reliability regime is essentially doubled: it rises from
μB=T ≲ 0.8 to μB=T ≲ 1.5.
The analysis above suggests the following picture:

We have a temperature-dependent reliability range of the
Taylor expansion,

T ¼ 155 MeV∶ ½μB=T�Max ≈ 1.5;

T ¼ 160 MeV∶ ½μB=T�Max ≈ 1.2: ð25Þ

Moreover, the results have already converged for RB
42; R

B
62

for T ¼ 160 MeV as well as for RB
42 for T ¼ 155 MeV

within the eighth order and for μB=T ≲ ½μB=T�MaxðTÞ.
In turn, convergence for RB

62 for μB=T ≲ ½μB=T�Max requires
the tenth-order Taylor expansion for T ¼ 155 MeV. Note
that the values of ½μB=T�Max in Eq. (25) might be increased
a bit when terms of orders higher than the tenth one are
included in the Taylor expansion. However, as we have
discussed above, the full results of the baryon number
fluctuations show a nontrivial oscillatory behavior, which is
generic, and stems from the fact that the system crosses
over different phases with the increase of μB; cf. the right
panel of Fig. 11. For a discussion of the radius of
convergence based on mean-field theory we refer to
[66]. In general, it is given by the distance to the nearest
singularity of the equation of state in the complex μB=T
plane. Hence, possible candidates for this singularity are

FIG. 8. Comparison between the direct calculation of baryon number fluctuations RB
42 (upper panels) and RB

62 (lower panels) via
Eq. (13) at finite μB and the Taylor expansion up to χB8 ð0Þ in Eq. (24) (left panels) and to χB10ð0Þ (right panels). Both calculations are
performed within the QCD-assisted LEFT used in the present work. RB

42, R
B
62 are shown as functions of μB=T with T ¼ 155 MeV

and T ¼ 160 MeV.
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the CEP, the Roberge-Weiss end point at imaginary μB [83],
or the Yang-Lee edge singularity in the complex plane [84].
Evidently, the distance to the CEP is far larger than the
radius estimated here. In turn, the closest end point at
imaginary chemical potential is at jμB=Tj ≤ π. For physical
quark masses it is most probably close to jμB=Tj ¼ π. For a
discussion within QCD flows see [85]; for lattice results see
e.g., [86]. Hence, a particularly intriguing option is the
Yang-Lee edge singularity; for a discussion see e.g.,
[87,88]. However, while the location of the edge singularity
has been determined for critical OðNÞ theories [89], it is
still unknown for QCD.
This interpretation also implies that the results from the

Taylor expansion fail to agree even qualitatively with the
correct μB=T dependence for μB=Tc ≳ ½μB=T�MaxðTÞ; see
Fig. 8. Interestingly, ½μB=T�MaxðTÞ seems to grow for
smaller temperatures. Whether or not this holds true
requires a more systematic study, which will be considered
elsewhere. In conclusion, the extrapolation of fluctuations
of conserved charges in the vicinity of the chiral crossover
within a Taylor expansion loses its predictive power for
μB ≳ 200 MeV, at least at tenth order.
In Fig. 9 we show our full results for the temperature

dependence of RB
31, R

B
51, and RB

71 with different values of
baryon chemical potential. A further relevant odd fluc-
tuation observable is RB

32, depicted in Fig. 10. Its exper-
imental analog, the proton number fluctuation Rp

32 has been
already measured in Auþ Au central (0–5%) collisions at
STAR; a comparison will be presented and discussed in
Sec. IV E.

C. Determination of the freeze-out curve

The quantitatively successful benchmark tests analyzed
in Sec. IVA, and the evaluation of baryon number
fluctuations at finite chemical potential in Sec. IV B allow
us to discuss our main goal: the comparison of theoretical
predictions on the baryon number fluctuations with exper-
imental measurements.
A direct comparison between theory and experiment is a

very challenging task. This is due to the fact that experimental

data are affected by many factors. First, this concerns the
acceptance of the detector such as the transverse momentum
pT range, rapidity window and the centrality dependence,
e.g., [17,19,22,90–92]; see [4,93] for more details. Second,
the physics setup used in theory and experiment may differ
by the presence of volume fluctuations, e.g., [94–96], finite-
volume effects on the location of the chiral phase boundary,
e.g., [97–104], the question of global baryon number
conservation, e.g., [105–107], the inclusion of resonance
decays, e.g., [108,109], and others.
All these different effects and experimental restrictions

give rise to noncritical contributions to fluctuation observ-
ables in experiments, and pinning down their contributions
plays a pivotal role in identifying the critical signals in the
BES experiment. Additionally, due to critical slowing
down, nonequilibrium effects become important in the
vicinity of the CEP [110], which necessitates a theoretical
description of the dynamics of critical fluctuations. For
more details about recent progress on the dynamics of
critical fluctuations in QCD, see [111] and references
therein. We emphasize, however, that the present results
of QCD-assisted LEFT model are well outside the critical

FIG. 9. RB
31 (left panel), R

B
51 (middle panel), and RB

71 (right panel) as functions of the temperature at several values of μB. Insets in each
plot show their respective zoomed-out view.

FIG. 10. Baryon number fluctuation RB
32 as a function of the

temperature at several values of μB.
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region. Therefore they are not subject to critical scaling in
the vicinity of the CEP.
In this work we will not take into account the noncritical

and dynamical effects discussed above. Instead, we assume
that the measured cumulants of the net-proton multiplicity
distribution at a given collision energy are in one-to-one
correspondence to the calculated fluctuations in Eq. (13)
with single values for T and μB (with other collision
parameters e.g., the centrality and rapidity range fixed).
Then, it is suggestive to identify the values of T and μB with
the ones when the chemical freeze-out occurs, viz., TCF and
μBCF. Such an approach for the comparison is usually
employed in fluctuation studies of equilibrium QCD matter
within functional methods or lattice simulations; see e.g.,
[9,26,41,42,62].
We adopt the freeze-out temperatures and baryon chemi-

cal potentials from [112] and from the STAR experiment
[93], which are shown in the left panel of Fig. 11 by the
blue pentagons and red circles, respectively. They are both
obtained from the analysis of hadron yields in the statistical
hadron resonance gas model; see the aforementioned
references for more details. The freeze-out data in [112]
have also been parametrized as functions of the collision
energy as follows:

μBCF ¼
a

1þ 0.288
ffiffiffiffiffiffiffiffi
sNN

p ; ð26aÞ

with a ¼ 1307.5 MeV, and

TCF ¼
Tð0Þ
CF

1þ expð2.60 − lnð ffiffiffiffiffiffiffiffi
sNN

p Þ=0.45Þ ; ð26bÞ

with Tð0Þ
CF ¼ 158.4 MeV. This parametrization is depicted

with the blue dashed line in the left panel of Fig. 11. We use
the same parametrization functions in Eq. (26) to fit the
freeze-out data in STAR experiment, i.e., the red circle
points. For this fit we invoke two procedures, called STAR
Fit I and II in the following:
For the first one, STAR Fit I, we simply take all seven

data points. The corresponding freeze-out curve is depicted
by the red solid line in the left panel of Fig. 11.
For the construction of the second one, STAR Fit II,

we shall argue that some of the data points are potentially
flawed, or rather await a physics explanation, and should
be dropped accordingly in a fit based on Eq. (26).
Accordingly, we drop the first two data points at small
chemical potential as well as the last one at the largest
available chemical potential μB ∼ 400. From general con-
siderations we do not expect the freeze-out curve to rise
with increasing chemical potential. Moreover, the physi-
cally motivated fit formula does not describe sign changes
of the curvature of the freeze-out curve. For a respective
discussion and possible explanation for the only apparent
rise see [113]. The last data point is also not well described
by the fitting procedure described here. This may indicate
the onset of a regime with different physics/phases. In this
case, Eq. (26) would not be an appropriate fit function.
It may also indicate the onset of a regime of rapidly
worsening systematics. In this case more points are needed
in this regime.
The freeze-out line of STAR Fit II is depicted by the green

dotted line in the left panel of Fig. 11. In comparison to
STAR Fit I, STAR Fit II is located at slightly lower temper-
atures, which is more pronounced when μB ≳ 200 MeV.
In the right panel of Fig. 11, we show the baryon number

FIG. 11. Left panel: chemical freeze-out temperature and baryon chemical potential in the T − μB plane. The blue pentagons and red
circles show the freeze-out data from Andronic et al. [112] and STAR experiment [93], respectively. The blue dashed line represents the
parametrization of blue pentagons through Eqs. (26a) and (26b). The red solid and green dotted lines show the parametrization of the
STAR data based on all the seven data points, and only the four data points in the middle region (100 MeV ≲ μB ≲ 300 MeV),
respectively. The gray squares are obtained by interpolating the blue pentagons. The inlay zooms in the low-μB region. Right panel:
Baryon number fluctuations RB

42 in the T − μB plane. The freeze-out curve is the STAR Fit II. The dashed line at μB=T ¼ 4 constitutes
the reliability bound of the computations in [8] based on the potential emergence of new degrees of freedom discussed in [7,8,25]. The
dashed lines at μB=T ¼ 2, 3 are reliability estimates of lattice results as well as old ones from functional approaches; see also Fig. 2.
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fluctuation RB
42 in the T − μB plane. It can be observed that a

narrow blue band, indicating the regime of negative RB
42,

develops around the crossover starting at μB ∼ 250 MeV.
The freeze-out curve STAR Fit II is approaching towards the
boundary of the blue region firstly at small μB, and then
deviates a bit from it at large μB. We emphasize that the large
chemical potential region, and in particular asymptotically
large μB ≳ 500 MeV, is beyond the reliability bound of the
current computation, μB=T ¼ 4; see Fig. 2. For a detailed
discussion see Sec. II B.

D. Hyper-order baryon number fluctuations
on the freeze-out curve

The determination of the freeze-out curve completes our
setup, which enables us to compute hyper-order baryon
number fluctuations RB

nm along the freeze-out line within
the QCD-assisted LEFT. These results are then used to
compare with the experimental measurements of cumulants
Rp
nm of the net-proton distribution from STAR experiment.
Before we discuss the numerical results, we also empha-

size once more that it follows from the analysis of Sec. IV
B, that the simple extrapolation with the Taylor expansion
about μB ¼ 0 lacks predictive power for μB ≳ 250 MeV,
that is

ffiffiffiffiffiffiffiffi
sNN

p ≲ 15 GeV; see Eq. (25). Moreover, it even
lacks predictive power for the qualitative behavior.
In the left panel of Fig. 12 we show the

ffiffiffiffiffiffiffiffi
sNN

p
- or

chemical potential dependence of the baryon number
fluctuations RB

42, R
B
62, and RB

82 for the freeze-out lines from
Andronic et al. [112] and STAR Fit I. The freeze-out line
from Andronic et al. is obtained from an interpolation of
the freeze-out data, the gray squares in Fig. 11.
In the right panel of Fig. 12 we show the same

observables for the freeze-out line of STAR Fit II. As
discussed in Sec. IV C, we have singled out the results for
this freeze-out curve as the best-informed computation.
In both panels of Fig. 12 we also show the experimental

measurement of cumulants of the net-proton distributions in
the beam energy scan experiments from the STAR collabo-
ration. The fourth-order fluctuations, Rp

42, of the net-proton
multiplicity distributions are measured in Auþ Au colli-
sions with centrality 0–5%, transverse momentum range
0.4 < pTðGeV=cÞ < 2.0, and rapidity jyj < 0.5; cf. [22] for
more details. Moreover, results for the sixth-order cumulant
of the net-proton distribution, Rp

62, are also presented in the
middle plot of Fig. 12, which are obtained at three values of
the collision energy, i.e.,

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, 54.4 GeV and
27 GeV with centrality 0–10% [92].
The theoretical results for the fourth-order fluctuations

RB
42 from the present QCD-assisted LEFT for all freeze-out

curves considered are compatible with the respective
experimental measurement of the κσ2 of net-proton dis-
tributions in 0–5% central Auþ Au collisions. In particu-
lar, the theoretical results feature a nonmonotonic

ffiffiffiffiffiffiffiffi
sNN

p
dependence: RB

42 first decreases with decreasing beam

energy and then increases. The details of this behavior,
in particular how pronounced it is, are highly sensitive to
the precise location of the freeze-out. For example, the
increase at small

ffiffiffiffiffiffiffiffi
sNN

p
is larger for smaller freeze-out

temperatures. Thus, the weak increase for STAR Fit 1
originates in the slightly larger freeze-out temperature of
this freeze-out fit. This shows that even small variations in
the freeze-out temperature have a substantial effect on the
fluctuations in this regime. The underlying reason is that
the freeze-out happens in or close to the crossover region,
where the fluctuations vary significantly; see Fig. 6.
Importantly, this regime cannot be accessed within the
extrapolation of the Taylor expansion at least within the
current order.
This entails that extrapolations based on a Taylor

expansion are bound to fail to describe the data in this
regime reliably. Consequently this calls for qualitatively
improved direct theoretical computations at small beam
energies. This is work in progress and we hope to report on
the respective results soon.
Our results for the hyper-order fluctuations RB

62 and RB
82

are shown in the middle and bottom panel of Fig. 12. For
small chemical potentials or large collision energies both
fluctuation observables are negative. Moreover, RB

62

decreases with decreasing
ffiffiffiffiffiffiffiffi
sNN

p
, while RB

82 increases.
The occurrence of nonmonotonicities of RB

62 and RB
82 at

lower beam energies cannot be shown within the accuracy
limits of the current study.
For

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, 54.4 GeV and 27 GeV we can
compare our results for RB

62 to STAR data within 0–10%
centrality [92]. One observes that our results are in agree-
ment with the experimental data within errors at

ffiffiffiffiffiffiffiffi
sNN

p ¼
200 GeV and 54.4 GeV, though the central value of STAR
data at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 54.4 GeV is positive. Both the theory and
experiment show negative values for the sixth-order fluc-
tuations at the collision energy

ffiffiffiffiffiffiffiffi
sNN

p ¼ 27 GeV.
Another interesting property of the current LEFT setting

is that the nonmonotonic behavior of our results for RB
n2 at

large μB in Fig. 12 does not arise from critical physics: in
the LEFT used here, the CEP is at significantly larger
μB ≳ 700 MeV. Moreover, it is well established that the
critical region is only very small. It is already small within
mean-field approximations of low-energy effective theo-
ries, and additionally shrinks considerably if quantum,
thermal and density equilibrium fluctuations are taken into
account; see [29]. Moreover, this does not change if
transport processes are taken into account; see [114].
In the present LEFT the increasing trend at large μB

region originates from two effects: First, fluctuations are
enhanced since the chiral crossover becomes sharper with
increasing μB. This leads to a stronger nonmonotonic
behavior of RB

42 as a function of T; see Fig. 6. This
sharpening is also present in the vicinity of a CEP.
Second, the freeze-out temperature is shifted away from
the pseudocritical temperature towards small beam
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energies, thereby probing different regimes of the cumu-
lants. However, it should be noted that the uncertainty of
our results increases significantly in the low-energy region.
These uncertainties include an estimate for the systematic
error of the QCD-assisted LEFT approach. This systematic
error stems from the uncertainty in the matching of the in-
medium scales of the LEFT and QCD, encoded in the
coefficients cT and cμ in Eq. (4). Moreover, for larger
chemical potential the current LEFT lacks the backreaction
of the μB dependence of the glue dynamics. While
inherently small, it might still play a rôle. Furthermore,

it is found that RB
42 can also be suppressed in the regime of

low collision energies due to the effect of global baryon
number conservation; cf. [106,107,115], which will be
included in our future work.

E. Search for the CEP

The analysis in the previous sections entails that in the
present QCD-assisted LEFT the nonmonotonic behavior of
baryon number fluctuations is triggered by the sharpening
of the chiral crossover. This is highly nontrivial, since it is

FIG. 12. QCD-assisted LEFT (fRG-LEFT): Baryon number fluctuations RB
42 (top), R

B
62 (middle), and RB

82 (bottom) as functions of the
collision energy. Left panels: the freeze-out points are those from Andronic et al. [112] (gray) and the STAR experiment [93] (red). Right
panels: The freeze-out curve, STAR Fit II, is obtained from the freeze-out parameters of the STAR experiment [93]. The theoretical error
bands show a highly correlated error, and should be interpreted as a family of curves with the same qualitative behavior as the central
curve. For more explanations see Sec. IV C with Fig. 11. STAR data: Rp

42 (top) is the kurtosis of the net-proton distributions measured in
Auþ Au central (0–5%) collisions [22]. Rp

62 (middle) is the result on the six-order cumulant of the net-proton distribution atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV, 54.4 GeV and 27 GeV with centrality 0–10% [92].
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evident, e.g., from Fig. 6 that neither a system only in the
hadronic- nor only in the QGP phase could produce the
beam energy dependencies shown in Fig. 12.
In conclusion, the agreement of RB

42, computed in the
QCD-assisted LEFT and the measured beam energy
dependence of Rp

42 shows that the latter could be a signature
for the presence of a sharpening crossover between these
two phases. Whether or not it also signals the onset of the
critical region will be the subject of a future improved
study. In the context of this latter study we also emphasize
that the nonuniversal properties of the LEFT such as the
existence and location of the CEP may not quantitatively
agree with QCD as the latter regime lies outside the LEFT
regime with quantitative reliability. Still, the present LEFT
probably has the same qualitative nonuniversal properties at
large chemical potential, and it certainly has the same
universal ones.
A nonmonotonic energy dependence for the fluctuations

is a highly relevant experimental observation, since this
behavior has been proposed as an experimental signature of
a CEP [14,16]. The present analysis based on QCD-assisted
LEFT model demonstrates that the nonmonotonic behavior
of fluctuations can serve as an indication of a CEP, but is
not necessarily a smoking gun signature for it. The latter
requires the extraction of critical scaling, or similar definite
signatures such as the detection of a first-order regime for
large μB, etc.
Still, the nonmonotonic behavior observed in both theory

and experiments is a clear signature for interesting strongly
correlated physics, whose uncovering requires joint and
intensified effort of both theory and experiment. Of course,
whether or not these properties carry over completely to
QCD remains to be seen.

Note also that the nonmonotonic regime is far away from
that covered by a simple extrapolation of the Taylor
expansion at μB ¼ 0. It might be covered by a resummation
of the latter, which can already be investigated within the
present QCD-assisted LEFT. Constraints on such a resum-
mation should also make use of odd hyper-order fluctua-
tions at finite chemical potential, that are readily computed
in the present setup:
A prominent and relevant example is R32, already

measured in the STAR experiment. In Fig. 13 we show
our predictions for RB

32 computed in the current QCD-
assisted LEFT on the different freeze-out curves defined in
Sec. IV C; see in particular Fig. 11. In this section it also
has been argued that our best-informed freeze-out curve is
given by STAR Fit II. The respective results are shown in
the right panel of Fig. 13 in comparison with the STAR data
for Rp

32 (0–5% centrality). Indeed, these results show the
best compatibility with the experimental data. Moreover,
within the respective systematic and statistical errors the
theoretical results with the freeze-out curve STAR Fit II and
the experimental data agree down to collision energies offfiffiffiffiffiffiffiffi
sNN

p ≈ 14.5 GeV or μB ≈ 250 MeV.
Interestingly, below

ffiffiffiffiffiffiffiffi
sNN

p ≈ 14.5 GeV the experimental
data show a plateau, which is not present in the theoretical
prediction. While this is in the large chemical potential
regime, in which the LEFT gradually loses its predictive
power, also the respective functional first-principles QCD
computation in [7,8,27,28], based on a grand potential,
does not show any sign of new physics in this regime. This
suggests that for

ffiffiffiffiffiffiffiffi
sNN

p ≲ 14.5 GeV at least one of the
implicit assumptions underlying the identification of RB

nm

with Rp
nm within a grand canonical ensemble with variable

FIG. 13. Baryon number fluctuation RB
32 as a function of the collision energy in comparison to STAR data for Rp

32 (0–5%) centrality
[22]. Left panel: the freeze-out points are those from Andronic et al. [112] (gray) and the STAR experiment [93] (red). Right panel: The
freeze-out curve, STAR Fit II, is obtained from the freeze-out parameters of the STAR experiment [93]. The theoretical error bands show
a highly correlated error, and should be interpreted as a family of curves with the same qualitative behavior as the central curve. For more
explanations see Sec. IV C with Fig. 11.
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baryon charge (density) for given beam energies breaks
down. As discussed before, this asks for a reassessment of
the identification of baryon and proton number fluctua-
tions, finite-volume effects and finite-volume fluctuations,
the determination of the freeze-out curve for smaller
collision energies, the evaluation of nonequilibrium effects
such as transport, and finally the use of the grand potential
in the theory computations. While highly relevant and
interesting, this goes far beyond the scope of the present
work and we defer any further investigation to future work.

The above example of R32 demonstrates very impres-
sively that the odd (hyper-order) fluctuation observables
encode highly relevant physics information which may be
difficult or even impossible to extract from the even orders.
As a first step in this direction, finally aiming at a
resummation of the μB expansion that allows us to go
beyond the validity regime of the Taylor expansion, we also
have computed the fluctuation observables R31, R51, R71 on
the freeze-out curve STAR Fit II in Fig. 14. An exper-
imental confirmation of the respective predictions at least
for the lower orders would be highly desirable.
The discussion in this section leaves us with the highly

exciting possibility of unraveling the location and proper-
ties of a potential CEP within a combined experiment-
theory analysis: First-principle QCD at finite density
should provide us with a prediction for the location of
the CEP in terms of hyper-order fluctuations, LocCEPðRnmÞ.
This would allow us to use the experimental data on hyper-
order fluctuation observables Rp

nm as input. We emphasize
that this prediction does not necessitate the observation of
critical behavior in the Rnm, but utilizes the details of the
nonmonotonicity of the Rnm.
In summary, such an analysis does explicitly not rely on

the universal property of critical scaling measured in the
Rnm. Indeed, it uses the nonuniversal properties of the Rnm
to predict the nonuniversal location of the CEP, and hence
is far more robust. We hope to report on this matter in the
near future.

V. CONCLUSIONS

In this work we have computed baryon number fluctua-
tions up to tenth order with a QCD-assisted low-energy
effective theory. This LEFT incorporates quantum, thermal
and density fluctuations from momentum scales less than
700 MeV within the functional renormalization group
approach, and is embedded in QCD; for details see
Sec. II. The quantitative predictability has been bench-
marked with a comparison of baryon number fluctuations
at μB ¼ 0 up to the eighth order from the lattice; see
Sec. IVA. Our results are in quantitative agreement with
that from the Wuppertal-Budapest Collaboration, and are
compatible with that of the HotQCD Collaboration, as
shown in Fig. 4.
Our direct computation at finite μB, presented in

Sec. IV B, has allowed us to assess the range of validity
of the Taylor expansion of the free energy of QCD around
μB ¼ 0. Such an expansion is commonly used to extrapo-
late lattice results to finite density. We have shown that the
expansion up to tenth order in μB=T is only valid for
μB=T ≲ 1.5 in the chiral crossover regime; see Fig. 8.
Beyond this range, the Taylor expansion, at least to this
order, fails to even capture the qualitative behavior of the
fourth- and sixth-order baryon number fluctuations. Thus,
results for fluctuations at the freeze-out curve based on a
Taylor expansion around μB ¼ 0 should be interpreted with

FIG. 14. Baryon number fluctuations RB
31 (top), RB

51 (middle),
and RB

71 (bottom) as functions of the collision energy. The freeze-
out curve, STAR Fit II, is obtained from the freeze-out parameters
of the STAR experiment [93]. The theoretical error bands show a
highly correlated error, and should be interpreted as a family of
curves with the same qualitative behavior as the central curve. For
more explanations see Sec. IV C with Fig. 11.
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great caution for μB=T ≳ 1.5, as relevant physical effects
might not be captured by this extrapolation.
The main goal of the current work was the computation

of baryon number fluctuations and in particular hyper-order
fluctuations along the freeze-out curve at collision energiesffiffiffi
s

p ≳ 7.7 GeV. The respective results are discussed in
Sec. IV D. They have been compared to experimental data
of net-proton number cumulants from STAR for different
estimates for the freeze-out curve; see Fig. 12. Our result
for the kurtosis, RB

42, is in good agreement with the
experimental data for collision energies

ffiffiffi
s

p ≳ 7.7 GeV.
In particular the increasing trend at lower beam energiesffiffiffi
s

p ≲ 19.6 GeV is captured well. This nonmonotonicity is
also present in the hyper-order fluctuations RB

62; R
B
82. We

also note that a comprehensive comparison for the higher-
order cumulants is not possible due to the lack of
experimental data. Accordingly, our results in Fig. 12
are predictions that await experimental verification.
We have also investigated the twofold origin of the

nonmonotonicity for
ffiffiffi
s

p ≲ 19.6 GeV in the present LEFT:
First, for increasing chemical potential the chiral crossover
gets sharper. Secondly, for smaller beam energies the
freeze-out temperature may move away from the pseudoc-
ritical temperatures. In the current setup both phenomena
happen far away from a potential critical end point in the
LEFT located at

ffiffiffi
s

p
CEP ≲ 3 GeV. The latter regime is also

safely outside the reliability regime of the current setup,
which gradually loses reliability for

ffiffiffi
s

p ≲ 27 GeV.
However, its qualitative features may well be present in
QCD. The current LEFT results and its upgrades towards
first-principle QCD can be compared with the future
experimental results of the high statistic data taken
from the second phase of RHIC beam energy scan
(BES-II, 2019–2021). From the years of 2018–2020, the
STAR experiment has collected high statistics data of
Auþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 9.2, 11.5, 14.6, 19.6, and
27 GeV in the collider mode, and

ffiffiffiffiffiffiffiffi
sNN

p ¼ 3.0–7.7 GeV in
the fixed target mode. These data give us access to the
QCD phase structure for baryon chemical potential up
to μB ≈ 720 MeV.
Related further steps in a comprehensive understanding

of the physics of fluctuations in a heavy-ion collision has
been undertaken in Sec. IV E, where we have presented
results for odd fluctuations observables RB

31; R
B
51; R

B
71 as

well as RB
32. While the former observables have not been

measured yet, RB
32 agrees quantitatively within the system-

atic and statistical error with the STAR measurement for
Rp
32 for collision energies

ffiffiffiffiffiffiffiffi
sNN

p ≳ 14.5 GeV. For smaller
energies, the experimental data show a plateau, that may
indicate the loss of one or several of the underlying
assumptions in the identification of theoretical equilibrium
computations of baryon number fluctuations RB

nm in a grand
canonical ensemble with the experimental results for proton
number fluctuations on the freeze-out curve.

In summary, the nonmonotonicities of hyper-order fluc-
tuations, observed both in experiment and theory, are
important signatures for interesting physics in the border
regime between quark-gluon plasma and the hadron phase.
This of course can include a potential CEP, and in any case
deserves further investigation from both experiment and
theory. In particular, we envisage that experimental data of
fluctuation observables and their dependence on collision
energy allow us to constrain the onset regime of this
strongly correlated physics/CEP. Importantly, such a pre-
diction does not rely on the observation of critical scaling in
the hyper-order fluctuations, but is far more robust; for
more details see Sec. IV E. We hope to report on this in the
near future.
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APPENDIX A: THE fRG APPROACH
TO QCD AND LEFTs

The functional renormalization group or flow equation
for QCD provides the evolution of its effective action Γk
with an infrared cutoff scale k. Here we use the setup with
dynamical hadronization, [8,47–50,116]. The formulation
used here has been developed in [8,43–46]. Its current form
has been described and further developed in [8], and for
further details we refer to this work. The flow equation of
the QCD effective action reads

∂tΓk½Φ�¼1

2
TrðGAA;k∂tRA;kÞ−TrðGcc̄;k∂tRc;kÞ

−TrðGqq̄;k∂tRq;kÞþ
1

2
TrðGϕϕ;k∂tRϕ;kÞ: ðA1Þ

In Eq. (A1), the Φ ¼ ðA; c; c̄; q; q̄;ϕÞ is a superfield that
comprises all fields. This also includes hadronic
(composite) low-energy degrees of freedom introduced
by dynamical hadronization. The G’s and R’s are the
propagators and regulators of the different fields, respec-
tively. Diagrammatically it is depicted in Fig. 1. For more
works on QCD flows at finite temperature and density see
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[8,43–46,85,116–121]; for reviews on QCD and LEFTs for
QCD see [49,51,122–128].
For scales k≲ 1 GeV, the gluon decouples from the

system due to its confinement-related mass gap. For these
momentum scales, the (off-shell) dynamics of QCD are
dominated by quarks and the emergent composite hadronic
degrees of freedom. In particular, the lowest-lying meson
multiplet, and specifically the π meson is driving the
dynamics. The pion is the pseudo-Goldstone boson of
strong chiral symmetry breaking, and hence is the lightest
hadron with a mass ∼140 MeV in the vacuum.
Consequently, in this regime with k≲ 1 GeV, the

flow equation of the QCD effective action in Eq. (A1) is
reduced to

∂tΓk½Φ�¼−Tr
�
Gqq̄;k∂tRq;k

�
þ1

2
Tr

�
Gϕϕ;k∂tRϕ;k

�
; ðA2Þ

where Rq;k and Rϕ;k are the regulators for the quark and
meson fields, respectively. The full propagators in Eq. (A2)
read

Gqq̄=ϕϕ;k ¼
�

1

Γð2Þ
k ½Φ� þ Rk

�
qq̄=ϕϕ

; ðA3Þ

with Γð2Þ
k ½Φ� ¼ δ2Γk½Φ�=δΦ2. In this work we employ

3d-flat or Litim regulators [129–131],

Rϕ;kðq0; qÞ ¼ Zϕ;kq2rBðq2=k2Þ;
Rq;kðq0; qÞ ¼ Zq;kiγ · qrFðq2=k2Þ; ðA4Þ

with

rBðxÞ ¼
�
1

x
− 1

�
Θð1 − xÞ;

rFðxÞ ¼
�

1ffiffiffi
x

p − 1

�
Θð1 − xÞ; ðA5Þ

where ΘðxÞ denotes the Heaviside step function. Inserting
the effective action Eq. (1) into the flow equation Eq. (A2),
we arrive at

∂tVmat;kðρÞ ¼
k4

4π2

�
ðN2

f − 1ÞlðB;4Þ0 ðm̃2
π;k; ηϕ;k;TÞ

þ lðB;4Þ0 ðm̃2
σ;k; ηϕ;k;TÞ

− 4NcNfl
ðF;4Þ
0 ðm̃2

q;k; ηq;k;T; μÞ
�
; ðA6Þ

where the threshold functions lðB=F;4Þ0 as well as other
threshold functions used in the following can be found in
e.g., [8,55]. The dimensionless renormalized quark and
meson masses read

m̃2
q;k ¼

h2kρ
2k2Z2

q;k

; m̃2
π;k ¼

V 0
mat;kðρÞ
k2Zϕ;k

; ðA7Þ

m̃2
σ;k ¼

V 0
mat;kðρÞ þ 2ρV 00

mat;kðρÞ
k2Zϕ;k

: ðA8Þ

The anomalous dimensions for the quark and meson fields
in Eq. (A6) are defined as

ηq;k ¼ −
∂tZq;k

Zq;k
; ηϕ;k ¼ −

∂tZϕ;k

Zϕ;k
; ðA9Þ

respectively. Accordingly, the flow equation for the
mesonic anomalous dimension is obtained from the
(spatial) momentum derivativewith respect to p2 of the pion
two-point function, to wit,

ηϕ;k ¼ −
1

3Zϕ;k
δij

∂
∂p2

δ2∂tΓk

δπið−pÞδπjðpÞ
				p0¼0

p¼0

: ðA10Þ

The approximation Eq. (1) to the effective action together
with Eq. (A10) are based on two approximations: Firstly, in
Eq. (1) we have dropped the field dependence of Zϕ, which
would lead to different Zπ and Zσ . In Eq. (A10) we have
identified Zϕ ¼ Zπ, and hence also Zσ ¼ Zπ . This is
motivated by the fact that the meson dynamics are only
dominant in the broken regime where the three pions are far
lighter than the single sigma mode, which quickly decou-
ples. Hence, the three pions drive the dynamics.
Furthermore, in Eq. (1) we do not distinguish between

spatial and temporal components of Zϕ. For finite temper-
ature and density, the Euclidean O(4) rotation symmetry is
broken, as the heat bath of density singles out a rest frame.

This entails that ηϕ;k splits into η⊥ϕ;k and ηkϕ;k, the compo-
nents transverse and longitudinal to the heat bath/density.
We have used the approximation ηϕ;k ¼ η⊥ϕ;k as we have
three spatial directions. The influence of the splitting of ηϕ;k
on the thermodynamics and baryon number fluctuations
has been investigated in detail e.g., in [55]. There it has
been found that the impact is small, supporting the
reliability of the present approximation.
Similarly, the quark anomalous dimension is obtained by

projecting the relevant flow onto the vector channel of the
1PI quark-antiquark correlation function,

ηq ¼
1

4Zq;k
Re

� ∂
∂p2 tr

�
iγ · p

�
−

δ2

δq̄ðpÞδqðpÞ ∂tΓk

���				p0;ex
p¼0

:

ðA11Þ

In Eq. (A11), the spatial momentum is set to zero, p ¼ 0 as
in the mesonic case: vanishing momentum is most relevant
to the flow of effective potential in Eq. (A6). Note that
the lowest fermionic Matsubara frequency is nonvanishing.
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We use p0;ex ≠ 0; its value is further described in
Appendix B, based on [40,42].
As is implicit in Eq. (A11), the flow of the quark two-

point function is complex valued at nonvanishing chemical
potential. This originates in the Silver-Blaze property of
QCD at T ¼ 0. For quark correlation functions this entails
that they are functions of p0 − iμq already before the onset
of the baryon density; for a discussion in the present fRG
approach see [40,42,132]. In turn, the couplings are still
real (i.e., real functions of the complex variable p0 − iμq),
in particular below the density onset. Hence, couplings
(i.e., expansion coefficients in a Taylor expansion in
momenta) are real. This is readily seen in a resummation
of the external frequency of the quark propagator [42].
Without resummation they are obtained from a projection
on the real part of the flow; see Eq. (A11).
This projection is also used for the Yukawa coupling.

Within the present approximation, the flow equation of the
(real) Yukawa coupling is given by

∂thk ¼
1

2σ
Re

�
tr

�
−

δ2

δq̄ðpÞδqðpÞ ∂tΓk

��				p0;ex
p¼0

: ðA12Þ

The explicit expressions for the meson and quark anoma-
lous dimensions, as well as the flow of the Yukawa
coupling, can be found in Appendix B.

APPENDIX B: FLOW EQUATIONS
FOR VkðρÞ, hk, AND ηϕ;q

The flow equation for the effective potential is given in
Eq. (A6). To resolve its field dependence, we use a Taylor
expansion about a k-dependent ρ-value κk,

Vmat;kðρÞ ¼
XNv

n¼0

λn;k
n!

ðρ − κkÞn; ðB1Þ

with the running expansion coefficients λn;k. Here,Nv is the
maximal order of Taylor expansion included in the
numerics. Nv ¼ 5 is adopted in this work, which is large
enough to guarantee the convergence of expansion;
for more details, see e.g., [55,133]. It is more convenient
to rewrite Eq. (B1) by means of the renormalized
variables, i.e.,

V̄mat;kðρ̄Þ ¼
XNv

n¼0

λ̄n;k
n!

ðρ̄ − κ̄kÞn; ðB2Þ

with V̄mat;kðρ̄Þ ¼ Vmat;kðρÞ, ρ̄ ¼ Zϕ;kρ, κ̄k ¼ Zϕ;kκk, and
λ̄n;k ¼ λn;k=ðZϕ;kÞn. Inserting Eq. (B2) into the lhs of
Eq. (A6) leads us to

∂n
ρ̄ð∂tjρV̄mat;kðρ̄ÞÞjρ̄¼κ̄k

¼ ð∂t − nηϕ;kÞλ̄n;k − ð∂tκ̄k þ ηϕ;kκ̄kÞλ̄nþ1;k: ðB3Þ

In the present work, we use the EoM of ρ as our expansion
point. With Eq. (1) this yields

∂
∂ρ̄ ðV̄mat;kðρ̄Þ − c̄kσ̄Þjρ̄¼κ̄k

¼ 0; ðB4Þ

with σ̄ ¼ Z1=2
ϕ;kσ and c̄k ¼ Z−1=2

ϕ;k c, with a cutoff-independent
c. Another commonly used expansion point is a fixed ex-
pansion point, ∂tκk ¼ 0. For further details on these two
different expansion approaches, and their respective con-
vergence properties, see [40,44,55,133–135].
From Eqs. (B3) and (B4) we get the flow equation for the

expansion point,

∂tκ̄k ¼ −
c̄2k

λ̄31;k þ c̄2kλ̄2;k

�
∂ ρ̄ð∂tjρV̄mat;kðρ̄ÞÞjρ̄¼κ̄k

þ ηϕ;k

�
λ̄1;k
2

þ κ̄kλ̄2;k

��
: ðB5Þ

The meson anomalous dimension in Eq. (A10) reads

ηϕ;k ¼
1

6π2

�
4

k2
κ̄kðV̄ 00

kðκ̄kÞÞ2BBð2;2Þðm̃2
π;k; m̃

2
σ;k;TÞ

þ Nch̄2k½F ð2Þðm̃2
q;k;T; μÞð2ηq;k − 3Þ

− 4ðηq;k − 2ÞF ð3Þðm̃2
q;k;T; μÞ�

�
: ðB6Þ

The quark anomalous dimension in Eq. (A11) reads

ηq;k ¼
1

24π2Nf
ð4 − ηϕ;kÞh̄2k

× fðN2
f − 1ÞFBð1;2Þðm̃2

q;k; m̃
2
π;k;T; μ; p0;exÞ

þ FBð1;2Þðm̃2
q;k; m̃

2
σ;k;T; μ; p0;exÞg: ðB7Þ

In the threshold function FB’s we have employed
p0;ex ¼ πT for the finite-temperature sector and p0;ex ¼
πT expf−k=ðπTÞg for the vacuum sector. This choice
guarantees a consistent temperature dependence for all k,
which is particularly relevant for the thermodynamics in the
low-temperature region [40]. This can be resolved by
means of a full frequency summation of the quark external
leg [42], and the present procedure mimics this physical
behavior.
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The flow of the Yukawa coupling in Eq. (A12) reads

∂th̄k ¼
�
1

2
ηϕ;k þ ηq;k

�
h̄kðρ̄Þ

þ h̄3k
4π2Nf

½Lð4Þ
ð1;1Þðm̃2

q;k; m̃
2
σ;k; ηq;k; ηϕ;k;T; μ; p0;exÞ

− ðN2
f − 1ÞLð4Þ

ð1;1Þðm̃2
q;k; m̃

2
π;k; ηq;k; ηϕ;k;T; μ; p0;exÞ�:

ðB8Þ

Explicit expressions of all the threshold functions men-
tioned above, such as BB, F’s, FB’s, and L, can be found
in e.g., [8,55].
In summary, the flow equations Eqs. (A6), (B3), (B5),

and (B8), supplemented with Eqs. (B6) and (B7), constitute
a closed set of ordinary differential equations, which is
evolved from the UV cutoff k ¼ Λ to the IR limit
k ¼ 0.

APPENDIX C: INITIAL CONDITIONS

To solve the flow equation, we need to specify initial
conditions. To this end, we choose initial values at a scale
k ¼ Λ such that known observables of QCD in the vacuum
at k ¼ 0, such as the pion mass and decay constant,
are reproduced. The effective potential at the UV cutoff
reads

Vmat;ΛðρÞ ¼
λΛ
2
ρ2 þ νΛρ: ðC1Þ

We initialize the flows at Λ ¼ 700 MeV. The input
parameters of the QCD-assisted LEFT are given in
Table I.

APPENDIX D: GLUE POTENTIAL

The dynamics of the glue sector in QCD are partly
imprinted in the glue potential Vglue;kðA0Þ; see Eq. (2). This
has been discussed in Sec. II. This potential is only needed
for the determination of the expectation value of the
Polyakov loop. Its inherent glue correlation functions are
gapped and their backcoupling is suppressed for k≲1GeV.
Accordingly, we can simply drop the scale dependence of
the glue potential for the present purposes. This leads us to

VglueðL; L̄Þ ¼ Vglue;k¼0ðA0Þ ¼ T4V̄glueðL; L̄Þ: ðD1Þ

In Eq. (D1) we have introduced a dimensionless glue
potential V̄glue. Its dependence on the temporal gluon
background field, A0, is encoded in the traced Polyakov
loop L½A0� and its conjugate L̄½A0�,

LðxÞ ¼ 1

Nc
hTrPðxÞi; L̄ðxÞ ¼ 1

Nc
hTrP†ðxÞi; ðD2Þ

with

PðxÞ ¼ P exp

�
ig
Z

β

0

dτÂ0ðx; τÞ
�
; ðD3Þ

where P on the rhs stands for path ordering.
In this work we adopt the parametrization of the glue

potential in [136], which reads

VglueðL; L̄Þ ¼ −
aðTÞ
2

L̄Lþ bðTÞ lnMHðL; L̄Þ

þ cðTÞ
2

ðL3 þ L̄3Þ þ dðTÞðL̄LÞ2; ðD4Þ

with the SUðNcÞ Haar measure

MHðL; L̄Þ ¼ 1 − 6L̄Lþ 4ðL3 þ L̄3Þ − 3ðL̄LÞ2: ðD5Þ

Both the parametrization of glue potential in Eq. (D4), as
well as the determination of relevant parameters in Table II,
is based on lattice results of SU(3) Yang-Mills theory at
finite temperature. This potential does not only reproduce
the lattice expectation value of the Polyakov loop and the
pressure, but also the correct quadratic fluctuations of the
Polyakov loop, [136]. These fluctuations, and higher ones,
are important for the fluctuation observables discussed here
[40,42]. The coefficients in Eq. (D4) are temperature
dependent,

xðTÞ ¼ x1 þ x2=ðtr þ 1Þ þ x3=ðtr þ 1Þ2
1þ x4=ðtr þ 1Þ þ x5=ðtr þ 1Þ2 ; ðD6Þ

with x ¼ a, c, d, and

TABLE I. Observables and related initial values for the LEFT
couplings at the initial cutoff scale Λ ¼ 700 MeV. The param-
eters are fixed with the pion pole mass mπ;pol, the mass of the
sigma resonance,mσ , and the pion decay constant, fπ ≈ σ̄EoM, the
expectation value of the sigma field. The input parameters are
those of the initial effective potential VΛ: the meson self-coupling
λΛ and the meson mass parameter νΛ. The pion mass is tuned by
cσ , the parameter of explicit chiral symmetry breaking. Finally,
the constituent quark mass is fixed via the initial value for the
Yukawa coupling, hΛ.

Observables Value Parameter in ΓΛ, Λ ¼ 700 MeV

mπ;pol (MeV) 136 λΛ ¼ 11

mσ (MeV) 479 νk¼Λ ¼ ð0.830 GeVÞ2
fπ (MeV) 92 cσ ¼ 2.82 × 10−3 GeV3

m̄l (MeV) 300 hΛ ¼ 10.18

FU, LUO, PAWLOWSKI, RENNECKE, WEN, and YIN PHYS. REV. D 104, 094047 (2021)

094047-20



bðTÞ ¼ b1ðtr þ 1Þ−b4ð1 − eb2=ðtrþ1Þb3 Þ: ðD7Þ

In Eqs. (D6) and (D7) we have used the reduced temper-
ature tr ¼ ðT − TcÞ=Tc. The parameter values are taken
from [136], and are collected in Table II for convenience.
The parameters in Table II are those of the glue potential

in Yang-Mills theory. It has been argued and shown in
[52,53,137] that unquenching effects in QCD are well
captured by a linear rescaling of the reduced temperature in
the regime about Tc, very similar to the rescaling discussed
in Sec. II B 2. This leads us to

ðtrÞYM → αðtrÞglue; ðD8Þ

with

ðtrÞglue ¼ ðT − Tglue
c Þ=Tglue

c : ðD9Þ

In the present work we have used α ¼ 0.75 and
Tglue
c ¼ 213 MeV.
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