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In the present work, we calculate M1 transitions, 0-" — 17"y, and E1 transitions involving axial vector
mesons such as 17~ — 0™ty and 0~ — 17~y for which very little data is available as of now. We make use
of the general structure of the transition amplitude My expressed as a linear superposition of terms
involving all possible combinations of ++ and —— components of Salpeter wave functions of final and
initial hadrons. In the present work, we make use of two leading Dirac structures in the hadronic Bethe-
Salpeter wave functions of the involved hadrons, which makes the formulation more rigorous. We evaluate
the decay widths for both the above mentioned M1 and E1 transitions. We have used algebraic forms of
Salpeter wave functions obtained through analytic solutions of mass spectral equations for ground and
excited states of 177, 07", and 17~ heavy-light quarkonia in an approximate harmonic oscillator basis to do
analytic calculations of their decay widths. We have compared our results with experimental data, where

ever available, and other models.
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I. INTRODUCTION

One of the challenging areas in hadronic physics is
probing the inner structure of hadrons. Charmonium
occupies an intermediate regime between the bb system
and the light mesons. Radiative decays of charmonia are
good testing grounds for various models, due to the fact that
an emitted photon can be directly detected, and electro-
magnetic interactions are well understood.

Radiative transitions characterized by AL =0 are the
magnetic dipole, M1 transitions, while those characterized
by |AL| = 1 are the electric dipole, E1 transitions. The M1
transition mode is sensitive to relativistic effects, esspe-
cially between different spatial multiplets (where n > n’),
while the E1 transitions are much stronger than M1
transitions, and involve transitions between excited states.
In this work, besides the M1 transitions, we study the E1
transitions involving 17~ mesons, which are the P-wave
states.

The P-wave cc states were first observed in 1976 by the
SLAC-LBL experiment at SLAC/SPEAR [1,2], where they
observed the decay W(3684) — y + y.. The P-wave bb

*Corresponding author.
shashank_bhatnagar@yahoo.com

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP’.

2470-0010/2021/104(9)/094045(22)

094045-1

states were first observed by the Columbia-Stony Brook
(CUSB) experiment at the Cornell CESR electron-positron
storage ring [3,4] and confirmed by the CLEO experiment
at CESR [5].

An indirect way of producing P-wave states is through
e~e™ annihilation, which produces S, (17~) charmonium
states such as J/¥(1S) and ¥(2S). Then the M1 and E1
decays of these states produce charmonium states, 'S,
(0=F), such as 5, and 3P, (1**) such as y,,, respectively.
Now, amongst the charmonia below DD threshold, the
axial, h,. ('Py) is the least accessible. We wish to mention
that the 17~ meson state was first detected in pp collisions
by the R704 Collaboration [6]. In 1992, E760 reported the
observation of the &, in the J/¥z° decay mode, in the
reaction pp — h, — 7%+ J/¥ at M), = 35262 +0.15 +
0.2 MeV with I, < 1.1 MeV [7].

In 2005, FNAL E760 [8] analyzed two decay modes of /..,
the 7°J /¥ decay mode and the 57,y decay mode, through the
reactions (a) pp = h, = 2’ +J /¥, J/¥ — e~et, 1" > yy,
and (b) pp = h. — n.7, 3. = 7y, using data for both runs.
They found statistically significant enhancement with mass
M), =35258+02+02MeV and I', <1 MeV. The
observation of 4, is important since it provides information
on the spin dependence of quark-antiquark interactions.
However, the best clue for h.(1P) came from the CLEO
Collaboration from isospin violating transition e 4 e —
Y(2S) = h, +x° [9]. And very recently, the BES-III
Collaboration reported /2, production in the process ete™ —
ata~h, [10].
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The 17" mesons are seen in pp collisions. However, not
many decays of these mesons are experimentally observed
as can be checked from Particle Data Group (PDG)
tables [11,12].

The M1 and E1 transitions of charmonia (that includes
axial quarkonia) are quite interesting, and have been
recently studied in various models, such as relativistic
quark models (RQM) [13,14], effective field theory
[15,16], light-front quark models [17-19], lattice QCD
[20,21], Bethe-Salpeter equation [22-26], and potential
models [27].

In a recent work [26], we calculated the radiative M1
decays 17~ — 0~y and radiative E1 decays involving
scalar mesons ('P;) suchas 0** — 17"yand 17~ — 0" *y.
In the present paper, we focus on the E1 decays involving
axial (177) quarkonia and the M1 decays of pseudoscalar
charmonia 0=t — 177y. Thus, in this work, we study E1l
radiative transitions involving these axial mesons through
processes such as 17~ — 0~y (such as h, — 5.y), 0t -
177y [such as 1.(2S) — h.y], along with M1 transitions
0=t — 177y [such as 5.(2S) — J/Wy], which have been
studied by some models for which experimental data
[11,12] are available for only some of the transitions.
The transitions involving leptonic and radiative decays of
axial vector quarkonia would also serve as a test for the
wave functions of these mesons calculated analytically by
solving their mass spectral equations [28] in a recent work.

We wish to mention that decay rates of M1 transitions are
much weaker than the rates for E1 transitions. But M1
decay rates are interesting as they allow access to spin-
singlet states that are very difficult to produce. Thus, as
regards M1 decays, we study decays 7.(2S) — J/¥(1S)y
and B.(2S) — B:(1S)y. The B. meson was discovered in
pp collisions at /s = 1.8 TeV using the collider detector
at Fermilab tevatron. It is the only heavy meson with two
heavy quarks with different flavors that forbid their decays
into two photons.

We calculate the radiative decay widths of these heavy-
light quarkonia for the above mentioned processes in the
framework of a 4 x4 Bethe-Salpeter equation (BSE),
which is a fully relativistic approach that incorporates
the relativistic effect of quark spins and can also describe
internal motion of constituent quarks within the hadron in a
relativistically consistent manner, due to its covariant
structure [29,30]. Our wave functions satisfy the 3D
BSE, which is in turn obtained from 3D reduction of the
4D BSE under covariant instantaneous ansatz (CIA) (which
is a Lorentz-invariant generalization of instantaneous
approximation), and already have relativistic effects.
Further, our transition amplitudes also have a relativisti-
cally covariant form.

The present work, where we make use of two leading
Dirac structures in the structure of BS wave functions of
P(0~1), V(177), and A=(177) quarkonia involved in these

radiative transitions, is more rigorous than our previous
work in [26], where we made use of only the most leading
Dirac structure (y5 for P mesons, iy.e for V meson, and
for § meson) in the BS wave functions of the hadrons
involved in the processes.

Now, as mentioned in our previous works [30-34], we
are not only interested in studying the mass spectrum of
hadrons, which no doubt is an important element to study
the dynamics of hadrons, but also the hadronic wave
functions that play an important role in the calculation
of decay constants, form factors, structure functions, etc.
for Q0 and Qg hadrons. These hadronic Bethe-Salpeter
wave functions were calculated algebraically by us in
[30-32]. The plots of these wave functions [32] show that
they can provide information not only about the long
distance nonperturbative physics but also act as a bridge
between the long distance and short distance physics, and
provide information about the contribution of the short
ranged Coulomb interactions in the mass spectral calcu-
lation of heavy-light quarkonia. These wave functions can
also lead to studies on a number of processes involving QQ
and Qg states, and provide a guide for future experiments.

This paper is organized as follows: In Sec. II, we give the
general formulation of the process H - H' +y in the
framework of a 4 x4 Bethe-Salpeter equation under
the covariant instantaneous ansatz. In Sec. III, we calculate
the single photon decay widths for the process P — Vy. In
Sec. IV, we deal with the process A~ — Py. In Sec. V, we
deal with the process P — A™y, where P, A~, and V are the
pseudoscalar, axial vector, and vector heavy-light quarko-
nium states. In Sec. VI, we give numerical results and
discussions.

II. RADIATIVE DECAY PROCESS H —» H'y
IN 4 x4 BSE UNDER COVARIANT
INSTANTANEOUS ANSATS

A quark-antiquark bound state system can be described
by a Bethe-Salpeter equation

d4 "

7 ()P )SF (=p2) = 1 [ SEcK(a.a)¥(P.o").
m

where p; and p, are the momenta of the two particles, with
the internal momentum of the hadron being ¢ and external
hadron momentum P and mass M. In Eq. (1), K(q, 4") is
the interaction kernel and Sz!' (£p;,) = +ip;, + my, are
the inverse propagators for the quark and antiquark.

We now make use of the covariant instantaneous ansatz
on the BS kernel K(q,q”). Thus we can write
K(q.q") = K(g,3"), where the BS kernel depends entirely
on the component of internal momentum of the hadron

A

4y = qu— ‘;;—fPﬂ, which is a 3D variable and is orthogonal
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to the total hadron momentum, i.e., g.P =0, while
oP, = qp‘—fPﬂ is the component of ¢ that is longitudinal
to P. And the four-dimensional volume element is
d*q = d*qMdo.

It is to be observed that the longitudinal component M¢”
of ¢” does not appear in K(g,g"). We thus carry out
integration over the longitudinal component Mdcs” of the
four-dimensional volume element d*¢” on the right side of

Eq. (1). Here, we make use of the fact that

va') =5 [ Mda"e(p.q)). )
leading to the equation

3 Al
S7 (p)W(P.q)S7 (—p) = / %K(@@”)u/@"):r@),

3)

where I'(g) is the hadron-quark vertex function and is
directly related to the 4D wave function W(P,q).
Multiplying the previous equation from the left by
Sr(p1), and from the right by Sz(—p,), we can express
the 4D BS wave function (P, g) in terms of I'(§) as

P(P,q) = Si(p1)T(q)S2(=p2), (4)
where the 4D hadron-quark vertex, that enters into the
definition of the 4D BS wave function in the previous
equation, is

3/\//
) - [ Ghkaawa). )

Following a sequence of steps outlined in [30], we get
four Salpeter equations which are effective 3D forms of
BSE (Salpeter equations) given below:

In our framework, the component ¢, is always orthogo-
nal to P, and satisfies the relation g.P = 0, irrespective of
whether ¢.P =0 (i.e., 6 =0) or ¢.P #0 (i.e., 0 #0).
Further, due to the Lorentz-invariant nature of §°, the
applicability of this framework of a covariant instantaneous
ansatz is valid all the way from low-energy spectra to high-
energy transition amplitudes. For details, see [26,33].

We can now introduce projection operators

1

P N
£(A) —
A; (q)—2 @ EIG)m; )]
J(j)=(—1>’“, j=12 (7)
with the relation
2 _ 0 a2
i =m;+ g, (8)
and express the 3D BS wave function y/(§) in terms of the
++,+—,—+ and — components as
w(@) =y (@) +v' (@) +v (@) +w(a). (9)

where the various components ™+
terms of the projection operators

) are expressible in
q) defined above as

“(q
A (

fl//(é)

Tw@)y ARG (10)

v (q) = AF () i

The interaction kernel in BSE is taken as a one-
gluon-exchange type as regards to the color and spin
dependence, and thus has a general structure K(g,§') =
(3 21.32)7, x 7,V (4. '), where the scalar part of the kernel
is written as a sum of the one-gluon- exchange part and the
confinement part as V(q,q') = 4”" 7 + 3wk, [ dr(cr-

£9)ei@-4)

(HO

i+ (’"‘T_zmg)] are the Wightman-Garding definitions [33] of
masses of individual quarks, which act like momentum
partitioning functions for the two quarks in a hadron.
Here, a)g,-] is the flavor dependent spring constant
= Mwja,(M?), where the presence of a running

Tandk = (1 + 4m1m2A0M r?)” 3, where 7 My, =

coupling constant o in a) g provides an explicit QCD
motivation to the BSE kemel Regarding the parameters of
the model, Ay, = 0.01 is a parameter that is taken to be
small, so that the potential gives a smooth transition from
nearly harmonic for light ci states to almost linear (for bb)
systems [32]. The plots of the confining potential alone
versus radial separation r for different mesons is given in
[32]. Regarding the parameters of the model, wy=
0.22 GeV is the spring constant, C, = 0.69 is a dimension-

less constant, while C—? lays the role of ground state energy,
P play g gy

A =0.250 GeV is the QCD length scale, with input
quark masses m, = 0.300 GeV, m; = 0.430 GeV, m, =
1.490 GeV, and m;, = 4.690 GeV. In the present work on
radiative decays, we use these same input parameters to
calculate the single photon decay widths for the above
processes. Our previous studies on mass spectral calcu-
lations of heavy-light quarkonia [31,32] were used to fit the
input parameters of our model.
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(Direct) (Exchange)

FIG. 1. Radiative decays of heavy-light quarkonia that proceed
through direct and exchange diagrams.

In this paper, we study radiative transitions involving
single photon decays, such as H — H' + y. This process
requires the calculation of a triangle quark-loop diagram.
And there are two hadron-quark vertices. The single photon
decay of Qg quarkonia is described by the direct and
exchange Feynman diagrams as shown in Fig. 1.

There are two Lorentz frames involved, the rest frame of
the initial meson H and the rest frame of the final meson H’.
Let total momentum and the internal momentum of initial
hadron H be designated by P and ¢, while P’ and ¢’ are the
corresponding variables of the final hadron H'. And let k
and ¢/ be the momentum and polarization vectors of the
emitted photon, while ¢’ is the polarization vector of the
final meson. Thus if p,,, and p}, are the momenta of
the two quarks in the initial and final hadron respectively,
then the kinematical relations between the momenta of
initial and final hadrons can be expressed as

P =pi+pypir=mP+q,
P'=pi+pypi, =P £4. (11)

From the Feynman diagrams we see that conservation of
momentum demands that P = P’ + k. Now, for the first
diagram, we have the kinematical relations p; = p| +k
and —p, = —p},, where k = P — P’ is the momentum of the
emitted photon. And for the second diagram, we have the
corresponding relations p; = p| and —p), = —p, + k.

Making use of the above equations, the relationship
between the internal momenta ¢ and ¢’ of the initial and
final hadrons in terms of the photon momentum k can be
expressed as

q/ = q_m2k7
q = q+ ik, (12)

where the first equation is for diagram 1 and second
equation is for diagram 2.

For the initial hadron, its internal momentum has already
been decomposed as g = (g, iMo), where § and Mo are
defined relative to its external momentum P. Now, to

simplify calculations, since we prefer to work in the rest
frame of the initial hadron, we decompose the internal
momentum ¢’ of the final hadron into two components
q' = (§',iMo"), with § = ¢’ — 6’ P transverse to the initial
hadron momentum P and ¢’ = q L 5-1s longitudinal to P. Thus,
P.g" = 0. The relationship between the transverse compo-
nents of internal momenta of the two hadrons § and §’ is [26]

7 =+ b
§ =q-inP
P'.P
P=P- b (13)

where the first equation of (13) holds for diagram 1, the
second equation holds for diagram 2, and P’ is the component
of the total momentum P’ of the final hadron transverse to the

initial hadron momentum P. Here §'.P = O due to P'.P = 0.
In the rest frame of the initial meson, we have
= (6, iM), while for final meson P’ = (13', iE'), where

E =+\/P?+ M", and since the photon momentum can

be decomposed as k = (l;, i |/:|), where k = —13/, since the

final meson and photon would be emitted in opposite

MM Thus the

energy of the final meson can be expressed as F' = MZ;VIMU.
The dot products of momenta of the initial and the

emitted meson can be expressed as [26]

directions. Hence we get |P'| = |k| =

2 2
pp=-mp = - (14)
Thus, it can be seen that —E’ acts as the projection of P’
along the direction of the initial hadron momentum P.
Similarly, the relationship between the longitudinal com-
ponents of internal momenta of the two hadrons in the two
diagrams can be worked out as [26]

cd=c+au
M/2 _M2
a= ﬁ’tzw(: diagram 1)
M/2 _ MZ
a=—m, Y (= diagram2), (15)

which is again a consequence of the transversality of §’
with initial hadron momentum P. Thus, up to Eq. (15), the
kinematics are the same for all three processes (P — Vv,
A~ = Py, and P —» A7y) studied in this work.

III. M1 RADIATIVE DECAYS P — Vy

In this section we study the M1 radiative decay process
P — Vy, having studied the process V — Py in our
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previous work[26]. In the present study, we make use of
two leading Dirac structures [as in Eq. (35)] in the BS wave
functions of the two hadrons involved in the process, in
contrast to a single most leading Dirac structure (y5 for P
meson, and iy.e for V meson) used in our previous work
[26]. This makes the calculations more involved than with
use of the single most leading Dirac stricture in the 4D
hadronic BS wave functions. It is to be noted that a 4D BS
wave function of the initial pseudoscalar meson involved in
the process is Wp (P, q¢) = Sg(p1)Tp(§)SE(—p,). Since for
transition amplitude calculation we choose to do the
calculation in the rest frame of the initial pseudoscalar
meson, we write the wave function of the final vector
meson as

Wy (P.q') = Se(p)Tv(@)Sp(=ph).  (16)
where as defined earlier §' = ¢’ — % P is transverse to the

initial hadron momentum P, where the hadron-quark vertex
function I'y(g’) for the final meson is

d3@/“
I'v(q) = / ——3K(@.q4")w(@"). (17)

(27)*

Similarly for the final meson, the expression for the 3D
BS wave function y(§') is expressed in terms of the
projection operators as

w(@)=v @)ty (@) +v (@) +y (@) (18)
where
V) = AT@) v (@) 3 A @),
AF(§) = 21 ;w, L J(j)(im; + )|, (19)

with the relation w2, = m{, + §".

We can express the electromagnetic transition amplitude
of the process as a single integral over d*¢. Thus this four-
dimensional volume integral involves integration over all

four components of g. To perform this integral, we make
use of decomposition of the 4D volume element as d*g =
d*gMdo using covariant instantaneous ansatz. We will first
perform integration over the time part Mdo, using pole
integration methods in the complex o plane, and then
express My as an integration over d°g, which is then
numerically worked out. This procedure of integration over
d*q is followed in the steps below.
We first write My as

d4q - ’ _
My = _/WTr[eq‘Pv(P,q/)@’l ¥p(P,q)SF (=p2)

+ EQTV(P’,CI/)SEI(POTP(P’ q)€e']. (20)

Here, the first term corresponds to the first diagram,
where the photon is emitted from the quark, while the
second term corresponds to the second diagram where the
photon is emitted from the antiquark, and e, and e, are the
electric charge of the quark and antiquark, respectively,
while ¢/ is the polarization vector of the emitted photon.

"
We then express Eq. (20) as

&£y [iMdo -
My = —eq/w/mﬁ[rv(q )SE(PY)€'SE(P1)

xT'p(q)S ( P2)]
/ /lMdGT [fv(fI/)SF(Pl)
xT'p(q)S ( P2)€'Sp(=p3)). (21)

Now, we reduce the above equation to the effective 3D
form by integrating over the longitudinal component Mdo
over the poles of the propagators Sx(p;), that are expressed
as [26]

Gy - AL@) AL (@)
PV Mo + M — o, +ic ' Mo + M + o, —
S (_p ) _ —A;(f]) _AE(‘AI)
VY™ Mo + oM — w, + ie ' —Mo + M + w, —
600 AH@) AT(aY
PPV Mo + iy (—E') — o, +ie ' Mo + i (—E') + o, — i€’
_A+ Al —AZ(&Y
SF(_pZ) = / (q/) / . / ~ 2(/q) / (22)
—Mc' + iy (—FE') — oy +ie Mo’ + iny(—E') + o, —

094045-5
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We now put the propagators into Eq. (21) and multiplying this equation from the left by the relation % y=-1=
P

£ (A3 (@) + A5(q')) [35], the transition amplitude corresponding to the first term in Eq. (21) can be expressed as

. g
Mfl-1 = —IB/W[Q] +QQ+Q3+Q4],

o [do [ =PA@TH@)A @A @TV)AL (@) } ;
COM Lo — (=at iy 4 5o = (=i + 5)]lo = (2 = )]
o, [do [ PAI@ITR@IAT @A @TV(@)A5 (@) } ;
COM Lo — (=at iy 4 5o = (=it = )]0 = Gy + 5]
. [do [ —PAS@T@)AT@)EAT @Y (@A) ]
Co) M o~ (mat s f =5l = (= + 5[0 = (na = )
do i [ —PN@)Cr(@)AT(@)EAT @Tv(@)A5(2)
. (27) M o o — (—a+ i, & = ][ — (=g —2)][o — (i, +‘;;;)]] 2

The contour integrations over M do are performed over each of the four terms taking into account the pole positions in the
complex o plane:

ai:—a+rh£q:—1iie

3 'MT M

O'f:—n%l:l:&:tte,

=2y 24
oy =1y F o e (24)

For the second term in Eq. (21), we can write the amplitude M2 as

3A
M%:_eg/%[gﬁgﬁgﬁgﬂ;
,_ [do i [ =A@)TV(@)A @)PAT @Te(@)AS (@)e
Q= ——Tr ] ’
! /(%)MS _[a_<—a—m2%—%>na—<—m1+%>Hv—<b—%>1]
do i [ =N @TV(@)AT(@)PAT (@ (@A (@)
Q= [ ——=Tr 2 — ; - :
/ (27) M _[a_<—a—m2%+%>1[o—<—m1+%>1[6—<mz—%>1]
= [ L N@RGENDP @@
QD)Mo — (—a =y & = )l = (=i =)o = (i + )]
do i [ =N @)TV(@)AT(@)PAT(@)TH(@)A; (@)€
QZ‘ _ I, 2 P 1 1 2 ; (25)
/ @R M o = (—a+ iy &+ o = (=i = 49)][o = (i +";;>1]

where the rest of the terms are anticipated to be zero on account of the 3D Salpeter equations. The contour integrations over
Mdo in Eq. (25) are performed over each of the four terms taking into account the pole positions in the complex ¢ plane:

! a)/

63i:—a—ﬁ12M¢M2ii€,
- j:%j:ie,
ox = i, :F%j:ie (26)

by closing the contour either above or below the real axis in the complex ¢ plane.
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We now make use of the Salpeter equations in variable
¢ in Eq. (6), and the Salpeter equations in variable §’ given
below. It is to be noted that the Salpeter equations

in § involve —E' = 7, which is the projection of P’

along the direction of the initial momentum P, and are
given as [35]

(—E' — o — o)yt (q)) = AT (§)T()AS (D),
(—E' 4+ o\ + b))y (§) = —A7(§)T(§)A5(G),
y(q") =0,
y ' (q) =0. (27)
The results of each of these four integrals Q,..., Q4

whether we close the contour above or below the real ¢ axis
comes out to be the same, thereby validating the correctness
of the formalism employed. These results of integrals over
do in Q, ...,€y, are given as aj, ..., a4 in Egs. (29).

This leads to the expression for an effective 3D form of
transition amplitude M| under covariant instantaneous
ansatz for diagram 1, as

Ml . d3q 1 Trla: P Ne A
f — 1€ (2n ) M2 r[ay ll’ (Q) Yp (@)

+ Py (4w (4) + o Py (§)ewp  (q)
+ Py (§)e'wp (@) (28)
where
SR - )
[ — 7y &+ iy — L (0 4+ @,)]
e E-0l-al
[a — ﬁil(%— 1) —ﬁ(a)l + )]
o [—E' + | + @]
[a — ml(ﬁ_l)"' (0) + )]
o = —[-E' + o} + o] ’ (29)

[ — 7y £+ 1y + L () + @)

and the projected wave functions yw** are taken from the
3D Salpeter equations [32] derived earlier, which for the
initial meson in the internal variable g are given in Eq. (6).

[Here, the factors (M + @; + @,) that were also present
in the numerators of a’s in Eq. (29), as a result of the first
two Salpeter equations in the variable ¢ in Eqgs. (6), get
cancelled from the corresponding factors (in the denom-
inator) resulting from contour integrals over do, while the

numerators of ay, ..., @, come from the Salpeter equations
in the variable §’ in Eq. (27).]

Similarly, the expression for an effective 3D form of
transition amplitude M2 under a covariant instantaneous
ansatz can be expressed as

M2 — —e ﬁlT[/—++( NPyt (g)e
fi 0 (27:)3M2 Yy v
(q)Py
+ oy (4 Pyp

»7(9)€ + by (9 Pyt (q)€
~(q)€']. (30)

+ oy

Here, the results of contour integrals over do in expres-
sions for Q, ..., in Egs. (25) following similar pro-
cedure as in Q, ..., Q, are given as a, ..., aj:

[-E' — o) — )]

al == 7 b

: [a—ﬁﬁ‘i‘mz%‘*‘ﬁ(a’l‘f‘a’é)]
B —[-E' - 0| — o))

[a+ﬁ12(1+%)—ﬁ(w2+w’2)]’
v —E + o + @)

T fa (1 45) 4 4 (02 + o))
_[—FE ’ /

o, = [—E' + o) + o)) (1)

[a—ﬁﬁ—i—ﬁzz%—ﬁ(a)l—ka)g)]'

Thus, we make use of the generalized method for
handling quark-triangle diagrams with two hadron-quark
vertices in the framework of a 4 x 4 BSE under covariant
instantaneous ansatz described in [26], by expressing the
transition amplitude My; as a linear superposition of terms
involving all possible combinations of ++ and ——
components of Salpeter wave functions of final and initial
hadrons through + + ++, - — ——, + + ——, and — — ++,
with each of the four terms being associated with a
coefficient a;(i = 1,...,4), which is the result of pole
integration in the complex o plane, which should be a
feature of relativistic frameworks.

Now, to calculate the amplitude My, for the process, we

need the ++ and —— components w%,ﬁi((}’ ) for vector and
w3 (q) for pseudoscalar mesons, given as

W) = AT (@) ve(@) 1 A5 (@),
V@) = M@ T @) AR (32)

to calculate which we need the 3D wave functions yp(§)
and y(§'). To derive these, we start with the general 4D
decomposition of the BS wave functions [36,37]. Using 3D
decomposition under covariant instantaneous ansatz, the
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wave function of vector mesons of dimensionality M can be
written as [26,30,31]

v"(@) = iMéx1(q) +ePra(@) + ed — G-€lr()
~ ilPe+ .eP)3ra(@) + (@.00xs()
i@~ (2.0 B @)+ 2.0 T ps(a),

(33)

where €* is the vector meson polarization vector, while for a
pseudoscalar meson, the 3D wave function with dimension
M can be written as [26,30,31]

WP (@) = No My (0) = iPO(0)+ (@) + S ()
(34)

However, during calculation of hadronic observables,
such as meson masses and leptonic decay constants, it was
noticed that some Dirac covariants [37] in the structure of a
hadronic BS wave function contribute much more than
others. And in accordance with a naive power counting rule
in [33,38,39], for pseudoscalar mesons, one could classify
Dirac structures Mys and Pys associated with amplitudes
¢, and ¢,, respectively, as leading, while those with ¢; and
¢4 as subleading. A similar behavior was observed in the
case of vector mesons [33,38], where Dirac structures M¢
and €P associated with y, and y,, respectively, are leading
[33,38], while those associated with ys, ..., yg are sublead-
ing. A similar observation about the most leading Dirac
structures from all the Dirac structures was made by
[40,41]. Thus to simplify the algebra, we take 3D wave
functions with these two leading Dirac structures (the
present work with two leading Dirac structures is more
involved than our previous work [26], where we took only
the most leading Dirac structure in hadronic BS wave
functions of P, V, and S mesons [26]), on the basis of
their maximum contribution to the calculation of masses
and leptonic decay constants of individual mesons in
[33,37-39,41],

wp(q) = Np[Mys — iPys|gp(q).
wy(q) = NyliMe + €Plpy(q), (35)

with the 3D radial wave functions ¢p(§) and ¢y (§)
obtained as solutions of mass spectral equations [30-32]
of pseudoscalar and vector quarkonia, respectively, that
were obtained from 3D Salpeter equations being

1 1 %

N Y

¢P,V(1S7‘]) =3¢ Yy,
r PV

31 1 287\ 5
¢p,v(25,@)—\ﬂ——<l ) Pey
200 BN 3Py
X [4 1 1 2, ;'fz
¢V(1qu): 5 3/4/}7/261 !
2

R N5 1 1 4q 4g* \ 5
drv(38.4) =\ =737 (1_—+ >e by,
' 8 x4 ﬁf{ : 3y 150by

(36)

where fp [32] are the inverse range parameters.

These radial wave functions were recently used for
calculations of some M1 and E1 transitions in [26]. We
have made use of the 3D Salpeter equations in Eq. (6) that
depend on the variable §? that is Lorentz-invariant and is a
four-scalar, whose validity extends over the entire 4D space,
while also keeping contact with the surface P.q = 0 (hadron
rest frame). Now, our mass spectrum and the 3D wave
functions ¢(g) in Eq. (36) and (49) (please see [30]) were
calculated from Salpeter equations in Eq. (6) in the rest frame
of the hadron.

Here, §'? is expressed as [26]
) ) ) (M2 _MIZ) ) R (M2 _MIZ)Z
9% =g+ 2y —— 14l + m%T (37)

where |g| is the length of the 3D vector ¢, defined as
3] = /4> = \/q* — (¢.P)?/P?, and is a Lorentz-invariant
variable Ref. [26].

The Bethe-Salpeter normalizers Np and Ny are obtained
through the current conservation condition,

2iP, = /%Tr {u‘/(P, q) {%S? (pl)]

<y (P.q)S7 (—p2>] (o). (38)

To evaluate My;, we need the ++ and —— components of
3D BS wave functions of pseudoscalar and vector mesons
and the corresponding adjoint wave functions of the
pseudoscalar meson, which are given in Eqs. (A2)-(A6)
of the Appendix. For E1 transitions, we can similarly
construct the ++ and —— components of the axial meson
wave functions.

The transition amplitude My; is expressed as

My = FPVeﬂuaﬁPueﬁ/eéP})” (39)
where the antisymmetric tensor €,,,; €nsures its gauge
invariance. Here, Fpy is the transition form factor for
P — Vy, with the expression
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TABLE I. Masss spectra of ground and excited states of axial (177), pseudoscalar (0~1), and vector (177)
quarkonia (in GeV) in BSE-CIA used in the transitions studied in this work, along with data and results of other
models.
BSE-CIA[28,32] Experiment[12] BSE Ref. [42-45] RQM

My, 1p) 3.535 3.525 £ 0.00001 3.5244 [35] 3.5059 [42] 3.525 [46]
My, 2p)) 3.743 3.888 + 0.0025 3.9358 [35] 3.927 [46]
M, s, 3.0004 2.9839 + 0.0005 3.292 [43] 2.981 [47]
M, 2s,) 3.5934 3.6376 +0.0012 4.240 [43] 3.635 [47]
Mpas,) 2.5288 2.5235 [44] 2.581 [47]
Mp1s,) 2.0221 2.010 +£ 0.00005 2.0104 [44] 2.010 [47]
Mp (25, 2.6358 2.6333 [44] 2.6888 [47]
Mp:(1s,) 2.1153 2.1122 + 0.0004 2.1123 [44] 2.111 [47]
M 15 3.0970 3.0969 + 0.0000025 3.099 [42] 3.096 [48]
Mp:1s)) 6.3514 6.321 4 0.020 [45] 6.332 [48]
Mp_(2s,) 6.7241 6.960 £+ 0.080 [45] 6.835 [48]

FPV:F})V—’_F%’V:NPNV

L/ g p(2)¢v (@)
M?* | (27)? 160,00 @)
X [eq[TR1] + eo[TRy]], (40)
where the expressions for Fh, and F%, are given in
Egs. (A6)-(A7) in the Appendix, and correspond to
contributions from the two diagrams, which is a more
accurate treatment. Here [TR;|, and [TR,] involve trace
over gamma matrices. The above expression corresponds to
Fpy(k* = 0), which corresponds to emission of a real
photon.

The kinematical relation connecting §> with §° is given
in Eq. (37). To calculate the decay widths, we need to
calculate the spin averaged amplitude square |Mg|*, where
|Mg|> =, [Mg|*, where we sum over the final polari-
zation states A of the V meson and A’ of the photon. We

Cati d 1 PP,
make use of the normalizations X,ee; = 5 (6, +—7") for

the vector meson and Xy¢’ €/ = §,,, for the emitted photon,

with My; taken from Eq. (39). Thus, we write
(M| = =22 [M>M"™ = (P.P')?||Fpy*.  (41)

In the above equation, we evaluate P.P' = —MFE’ in the

rest frame of the initial vector meson, where E' =

V' P? + M” is the energy of the final pseudoscalar meson,
giving P.P' = —(M£M%) Thus, |M|* can be expressed as

(M? — M)

|Mﬁ|2 =e? )

[Fpyl?. (42)

The decay width of the process (P — Vy) in the rest
frame of the initial meson is expressed as

S
P—=Vy — 87TM2

P

: (43)

where we make use of the fact that the modulus of the
momentum of the emitted vector meson can be expressed
in terms of masses of particles as |P'| = k| = w; =
7 (M? — M), where w; is the kinematically allowed
energy of the emitted photon. Thus I" in turn can be
expressed as

= ae.m.|FPV|2wz' (44)
The M1 decay widths for the processes studied are given

in Table II, for the meson masses given in Table I, that were
evaluated in our previous works [28,32].

TABLE II. Radiative decay widths of heavy-light mesons (in keV.) for M1 transitions in BSE, along with
experimental data and results of other models.

s BSE-CIA Experiment RQM PM RQM
T, 05)—w(s,)y  0-200 0.476 <1588 1121 0.700 [48] 2.29 [49] 5.6 [50]
Upasy)—p(18,)y 0.180 12.157 8.594 [51]
Up,(250)-D:(18))r 0.185 7.602
Ug_ (25,)—B:(18))y 0.460 0.1028 0.096 [52] 0.093 [53] 0.488 [48]

094045-9



GULERIA, GEBREHANA, and BHATNAGAR

PHYS. REV. D 104, 094045 (2021)

We now calculate the radiative decay widths for the
process A~ — P + v in the next section.

IV. RADIATIVE DECAYS OF HEAVY-LIGHT
QUARKONIA THROUGH A~ — Py

The E1 transitions are characterized by |AL| = 1. Thus
in these transitions, there is change in parity between the
initial and final hadronic states. The scattering amplitude of
the decay process A~ — Py corresponding to diagram 1
can be written as

3
Mi=—ie [ S TPy @)ew; @)

TPy (§)ew(4)
+asPyp(§)ewy (4) +asPip (§)ew;(§)]. (45)
Here, the results of contour integrals over do are given as

ay, ...,a4 in Eq. (29). Similarly the amplitude for diagram 2
can be written as

3M2
+ oy () Py (q)€
+aos iy (4 )Py T (§)€ +ayiy (4 Py~ (§)€'] (46)

Mi=—e /(d o) L r[@ (G Py (q)€

And, the results of contour integrals over do are given as
a, ....ay in Eq. (31). After the 3D reduction of the 4D BS
wave function of A~ axial meson under CIA, we express
the 3D BS wave function with dimensionality M as

Making use of the fact that the leading order Dirac
structures in an axial meson BS wave function in accor-
dance with the power counting rule proposed in [33,38,39]
are yse.q, and iyse.q % and making use of [31], we express
the 3D axial meson BS wave function of dimension M as

wae@ =) |1+ il be @, 6

where ¢4-(§) is the spatial part of this wave function,
whose analytic forms obtained by power series solutions of
3D mass spectral equations [derived from 3D Salpeter
equations in Eq. (6)], in the variable § (which is in fact |g])
for a P-wave meson in its own rest frame, calculated in [31]
are

51 1 257\ &
2P.4)= gl 1-=25 e 4,
$a(2P.q)= \/;”3/4,55/ Q< 5/}3‘)6 A

351 1 47 A3t &

3P.9) =\ o | 1~ ooy e i,

¢A( Q) 1 ”3/4ﬁi/2q< ﬂ +35ﬂA A
X 351 1 (0 6% 125 83° \ -
PA(4P,q)= q(l e 7a.

A 8 /4 g 562 3564 31565

(49)

It is to be noted that the wave functions in Eq. (49)
involve even powers of g, along with odd power ¢, where
g = |g| is the length of the 3D vector g, is expressed as

13| = \/¢*> — (¢.P)?/P?, and is a Lorentz-invariant quan-

tity [26], along with even powers of g, such as §°, §*, ...

etc. which are again Lorentz invariant. And for S-wave
mesons, the wave functions are only functions of even
powers of g. Thus when P-wave or S-wave mesons are in
the final state, their wave functions after Lorentz trans-
formation, would involve the variables |21/ |, and/or even
powers of §’. We express §'% in terms of §° directly through
Eq. (37), that connects §'> with g2, while odd power |q | is

expressed as |§'| = \/q7 , where we again make use of
Eq. (37). The BS normalizer of axial meson N,- can be
obtained by solving the current conservation condition
in Eq. (38).

We now obtain the ++ and —— components of the axial
meson wave function with the corresponding adjoint wave
functions as in the case of P and V mesons done earlier, and
calculate expressions for + + ++, + + ——, — — ++, and
—— —— terms that appear in the scattering amplitude
in Eq. (46).

We then evaluate trace over the gamma matrices in
Eq. (46). We make use of the fact that §' = § + i, P,
where P/ = p - £ I;f P. We combine various terms and
further make use of the fact that for the initial axial
meson P.e¢* = 0. We can express P'.¢ = P'.e. We can then
express the invariant matrix element M corresponding to
diagram 1 as

g ¢a(@)¢r(d)
M! N
n= e ANPM/ 27)3 16w, 0,0 @)

x [0, (" .€*) + O, (" .P)(e*.P') + O5(e* .P)(e*.P')],
(50)

Similarly for diagram 2, we write the invariant matrix
element M? as
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d*q $4(@)#p(q)
M
leNANPM/ 27)3 16w, 0,0 @)

x [0 (e*.€*) + 0, (" .P)(e*.P') + 64 (" .P') (" P)].
(51)

Total amplitude My; for the process can be expressed as
the sum of amplitudes from the two diagrams
Mg = ML + MZ, where

My = R, (€".€") + Ry(e".P)(¢".P') + Ry(e".P')(¢".P"),

L [ &G ¢p(3)9a(q)
R, =—-ieNy,Np—
! retia PMZ/(2H)3 16w, 0,0 )
R — —ieN.N 1 / @4 ¢p(d)Pa(q)
: AP M2 (27)3 160 0,0 )y

g ¢p(@)pa(@)

27)3 160 0,0 )y

(0, +0)),

- (0, +05),

1
R3 = —ieNANP / ( (@3 + ®/3>7

(52)

where integrals over d*§ are performed over ®; and @'.

Thus R;, R,, and R; are the three form factors in the
above equation. Now, with a change of variables, and
making use of the electromagnetic gauge invariance, it can
be shown that these three form factors appearing in My;, are
not independent, and we can express the invariant ampli-
tude My in terms of a single form factor.

To show this, we introduce two new external variables P
and k, which are defined as

P=P+P;k=P-P, (53)
where P is the sum of momenta of the initial and emitted

mesons and k is the emitted photon momentum. Thus, we
can express the initial and final meson momenta P and P’ in

terms of new variables as P = £ Ptkand P/ = P k In terms of
these new variables, we can express the amphtude My, as

®1(@2) =

—aldsz - azd6d2 - a3e6b2 - (X4€6d2 (—4M2)(P/

a a9b2 + a2a9d2 + (X3€9b2 + a4€9d2) 4M2)(

[24] a2b4 + 02a2d4 + (l3€2b4 + a4€2d4 4M2>
aM?*(q'.
(24} d9b4 + a2a9d4 + a3€9b4 + a4€9d4 {4M2 2(

)
(=
—aya4bs — ayaudy — azesby — azeqds)
)
(
(

+

+

+ (4M

+ (~ayagbs — ayagds — azegbs — ayesds) (4M?)[(P'
+(

+(

+(

)
(24} Cl6b4 + a2a6d4 + a3€6b4 + a4€6d4)
)

[(—ayasby — ayasd, — azesby — agesd,)(—4M?)§%) +

aM>?)(P'.

Mg = S,(€.€) + S,(P.€)(P.€') + S3(k.€)(P.€),

1
—(Ry + R3); 83 =

Sy =R1252=4(

1
— (R Ry, (54)
Now, the transversality property of the polarization vector
of the axial meson P.e = 0 leads to

e,(P+k),=0. (55)

We now introduce a new form factor §” = —S, + Sj, in
terms of which we can write My; as

Mg = €,6,[816,, + S2P, (P + k), + S"P,k,).  (56)

Now due to Eq. (55), the term with S, vanishes. Thus,
amplitude My can be expressed as

Mfi = € € M;wv
M, =S5, + S"P,k,.

uv

(57)

Now, electromagnetic gauge invariance demands
k,M,, = 0. This leads to the relation
S
S’ = 58
-y (58)

between the form factors, which is like an equation of
constraint. Thus, due to the electromagnetic gauge invari-
ance S, and S” are no longer independent, and we can
express the amplitude My in terms of a single form factor
S1, whose expression is given in the next equations:

My =S, [(6’-6) - ﬁ (I_’.e’)(k.e)} :

L [ & $p(3)ha(@)
S1= ~leNaNp /(271')3 16w, 0,0 )
< (©1(7%) +01(4%)).

The expressions for ®,(§?) and ©/(§?) in the expression
for My, above are

(59)

(—araghy — ayagd, — azegh; — a4€8d1)4<Pl~P)A2
P)§* + (=aya7by — ayaqdy — azerby — azerdy) (AM?)
P)§* + (—aya,b3 — aya,d; — aze by — aye ds) (4M?)
P)g

43 + (P.4)§°]

+ (ayazby + ayaszdy + azesby + azesd,)(—4P .P)§?
P

q' +P.q)]l; (60)
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and
©,(9%) =[(aasb
+ () aghy +ahyagd, +aseshy +ayesdy ) (—4M?) (P,
+ () agb, +ayagd, +aseobs +djegdy ) (—~12M%) (P'.
+ () agbs +ahyayds +asesbs +ayeyds) (—4M?) (P,
+ (A ayby+ dyard, + dyesby + dyerd,) (—4M?) G +
+ (a)agby+dsaed, + dyegby+ dyecdy) (— —aM?)[(q.
+ (& aghy + dyagd, + dyegby + dyegd,) (4M?)(P'.q)

which is expressible in terms of dot products of various
momenta, (P'.P) with expression in Eqgs. (14), while P'.g,
and P’.§’ can be expressed as

M2 _M/2
Pg=—"""l4l
q sy 4
M2 _ M/Z (MZ + M/Z)Z
Py =g+ M+ (62
g ="M g e T )
Further, a,....,a4, and o), ...,a} are the results of

contour integrals over the poles of the propagators in
Egs. (29) and (31) respectively, and the expressions for
coefficients a;, b;, d;, and e; are given in Eq. (A9) of the
Appendix.

Now, to calculate the decay widths, we need to calculate
the spin averaged amplitude modulus square |M|?, where
|Mg|> = Ty 1>, M |*, where we average over the initial

polarization states 4 of the A meson, and sum over the final
polarization A" of the photon. We make use of the

normalizations Zlie’1 L =36+ %) for the vector
meson, and Z/Ve 5/41/’ for the emitted photon, with
M;; taken from the previous equation, and we
get S, 5 |ef P = 1.
Making use of the kinematical relations,
Pk=-M*>+M"?,
_M2 M/2
pr="1
2
P? = 2(M* + M"),
_ _3M2 _ M/Z
P.P= — (63)

the spin-averaged amplitude modulus square of the process
can be written as

+a/2615d1+(1/3€5b +agesd )(—4M2) 2+(a’1a8b1 +a/2a8d1+a/368b +a2€8d1)4(P/

P)g?
P)§* + (a)arby + dhardy + dyes by + dyerdy ) (AM?) 3

P)§* + (o aybs +ara,ds +ase by +dje ds) (—4M?)
P)§* + () agbs + ayagds + dsyeghs +djegds ) (—4M?) (P'.4) 4
(a a;b4+a2a3d4+a363b4+a4e3d4)4(P P) 2
Pq*+(q.P)q’]
7], (61)
|
_ 1 M/2
Mg|? == |81 - . 64
L R (64)
We can write the decay width as
|Mf1|
Tacry =gz P (65)

where we make use of the fact that the modulus of the
momentum of the final pseudoscalar meson can be expressed
in terms of masses of particles as |P'| = 5 (M? — M"?).

V. RADIATIVE DECAYS OF HEAVY-LIGHT
QUARKONIA THROUGH P - A~y

We proceed to evaluate the process P — A~y using
Fig. 1. Here, the initial pseudoscalar (0~") meson decays
into an axial vector (177) meson and a photon. We can then
express the effective 3D form of an invariant matrix
element M| corresponding to diagram 1 as

3
My = —ie [ ST n e P @) @)

+ Py (4w (q)
+asPpy(§)ey i (q) + awPiry (§)ewrs (9))-
(66)

Similarly the amplitude for diagram 2 can be written as

M%Z—eg/ﬁ 1 Trlo i (4 Py (§)e
i (27)} M? 1A
+ oy, (4 Py (9)€
+ sy () Py (Q)€ + iy (@) Py~ (§)€'],
(67)
aj,...,agand o}, ..., a} in Eq. (29), and Egs. (31) are the

results of pole integrations over Mdo.
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Taking trace over the gamma matrices in the previous
equations, we get the invariant matrix element M. for
diagram 1 as

P pa(@)¢r()

27)* 160, 0,0 0}

. 1
M%i = —leNANp—z/(

[A) (¥ .€*) + Ay (¥ .P)(X.P) + As (¥ .P")(X.P)].
(68)
Similarly for diagram 2, we write the invariant matrix

element M2 as

PHYS. REV. D 104, 094045 (2021)
L [ &G $a(d)$r(d)

W/ (27)3 16w, 0,0 )
x [A](€".€*) + AL (" .P)(¢".P) + AL(e* .P')(¢*.P)),
(69)

M2 = —ieNNp

The total amplitude My; for the process can be expressed
as the sum of amplitudes from the two diagrams
Mg = M} + M2, where

Mg = S (e*.€*) + Sh(e".P) (" .P) + S (¢".P) (" .P"),

g Pp(@)pa@)
S| = —ieNpN AV(@) + AL(@),
1 eiNp A/ (2]_[)3 16(1)1(1)2(1)/1(1)/2M4M/( l(q )+ l(q ))
g $p(@)$a(@)
Sy = —ieNpN A (3) + AS(g7)),
2 1eiNp A/(Zﬂ')3 160)160260/160/2M4M/( 2(q )+ Z(q ))
g $p(@)$a(@)
S, = —ieNpN A3(G%) + AL(g2)). 70
3 eiNp A/(2”)3 16a)la)2a)/lw/2M4M/( 3(q )+ 3(q )) ( )

The structure of My; above is similar to [25]. To calculate
the decay widths, we again need to calculate the spin
averaged amplitude modulus square |Mg[?, where
|Mg|* = >, IMg|*, where we sum over the final polari-
zation states A’ of the photon and A of the V meson.
Following a similar procedure as in A~ — Py, itis seen that
the contributions to a spin averaged amplitude modulus
square arises only from S, while the contributions from S,
and S} vanish after doing the averaging over the polariza-
tion states.

|

2) = [AM*§* (a,byd, + ay b d + azelyd + aued)) +4(P.
+4M?(P'.P)*(a by + aybyd, + azelal, + ayeldh)
+4M? @2 (a bya + apbhdy + asehdy + agehdy) +
+4M? Q2 (P.P") (a1 byds 4+ arbyd, + azelyal + ayelydh)
+AM2 (b

A(q

+4M2(P'.q' )4 (o byds + aybiyd + az eyl + aeids)

—4(P'.P)g*(a\byal, + aybldy + azelaly + agedy) —4M*(P'.q') g (ay bial + apbidy + azegal, + agedy)],

while the expression for A} arising from for diagram 2 reads

094045-

The spin averaged amplitude modulus square gives

M| = |82, (71)

for evaluating that which we need to evaluate the form
factor S, for which we need to perform f 3 1ntegrat10n
over (A;(4%)) + A}(§%)). The expression for A 1(g?)) that
arises from diagram 1 is

P)q

2(aybyd, + apbiyd) + azeyd + ayeid))

+—4M*(P'.q)§* (a,bial, + aybyd, + azegal, + aseld))

L+ apbdy + azeldy + agedy) + 4M*(P'.P) g% (a bsal + ap bl dy + azeldy + ayeldy)

+AM? 3 (o) bya), + abydy, + azehal +agehd))

(72)
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A(§) =
a\bya) + abbid| + dyegd) + ajeid) )4
\bhd + dybldl, + ol al, + el d)4
| byds + dybyd, + dyehal + ey ds)4M>* (P!
Lay + aybid) +a’esa3—|—aﬁtesd/)4M (
)AM
)

[
+
+ (o
+ (o
+ () bsa

+ () byay + aybydy + ayeyal + e d) ) AM
+ ()b,

()
(
(
(
(
(

cay + ahbid, + dyepal + djerd, 4M2(

which is again expressible in terms of dot products of
various momenta, (P'.P), P'.g, and P'.§' with expressions
in Egs. (14) and (62) respectively, and «,...,as and
a’l, ag are the results of the contour integrations over
the poles of the propagators in Eqgs. (29) and (31). The
coefficients a';, b';, d';, €'; entering into A, and A/ above
are given in Eq. (A10) of the Appendix.

The decay widths I" for the process P — A~y are given
by Eq. (65) with P’ now the momentum of the emitted
axial meson.

VI. RESULTS AND DISCUSSION

The present work is an extension of our work in [26] to
study of radiative M1 decays P — Vy and E1 decays A~ —
Py and P — A~y of heavy-light quarkonia in the frame-
work of a 4 x 4 BSE under covariant instantaneous ansatz,
which is a Lorentz-invariant generalization of instantaneous
approximation. In our recent work [26], we had studied the
processes V — Py, V. — Sy, and S — Vy. Such processes
involve quark-triangle diagrams, involve two hardon-quark
vertices, and are difficult to evaluate in BSE under CIA. We
have made use of the generalized method of handling
quark-triangle diagrams with two hadron-quark vertices in
the framework of a 4 x 4 BSE by expressing the transition
amplitude Mj; as a linear superposition of terms (shown in
[26]) involving all possible combinations of ++ and ——
components of Salpeter wave functions of final and initial

—(d\bgay + adhbydy + asegal, + ajegd,)(P'.q)(4M
(P.P)§* +
4M>q* +

)@ + (@) bya) + aybid + dyeyay + ajeldy) (—4M2) g
(a) b + dybidh + dyeal + dyeld,)8M*(P'.P)g?
fay + dhbidy + dyegal + djeydy)AM*(P.9)G*

(e
P)§* + (a| bl + abb df + dyel dy + e dfy)AM? ¢
P)g

(a1b8a3 + &y bld} + dyeldy + ayelydy)AMA (P .q) P

(a L+ aybidl + dyeid) + deyd)y)4(P'.P)g*

2+ (dbyal, + abbydl, + oyehal, + oeyd,)8M?(P.4)4%),
(73)

and — — ++, with each of the four terms being associated
with a coefficient a;(i = 1, ...,4), which is the result of
pole integration in the complex ¢ plane. This superposition
of all possible terms is a feature of relativistic frameworks.

Using this generalized expression for My, in Eqgs. (28)—
(31), we have evaluated the decay widths for M1 transitions
ISy = 38, + 7 involving the decays of the ground and
excited states of the heavy-light mesons such as
1.(2S), B.(2S). We mention that as seen from Tables II
and III, the decay rates of M1 transitions are much weaker
than the rates for E1 transitions. But M1 decay rates are
interesting as they allow access to spin-singlet states, which
are very difficult to produce. It can be seen that Table II for
M1 transitions shows only the upper limit of the exper-
imental value of T' < 15875% KeV [12], which is the
decay width for the transition 7.(2S) — J/¥(1S) +y.
And the theoretical results are much below this upper
limit. The experimental data for other transitions is not
available yet.

In our previous work[26], we simplified the calculation
by considering only the most leading Dirac structures in the
wave functions of P, V, and S mesons, that contribute the
maximum to the calculation of all meson observables in
accordance with our power counting rule as seen in our
previous studies on leptonic decay constants and two
photon decays of a meson [33,38]. However, in the present
calculation, we consider the two leading order Dirac
structures in the BS wave functions of P, V, and A mesons

hadrons, through the terms + 4+ +4, — — ——, + + ——, given in Egs. (35) and (48) in accordance with the power
TABLE III. Radiative decay widths of heavy-light mesons (in keV) for E1 transitions in BSE, along with
experimental data and results of other models.
p BSE-CIA Experiment [48] PM RQM

L (1P)=n. (180)y 0.253 363.047 357 +£204 [12] 560 [48] 398 £99 [19] 482 [13]

L 2P)=n.(250)r 0.471 187.145 160 [27] 218 [50]

L 2Py (184)7 0.510 20.195 135 [27] 85 [50]

L. 250)=h. (1P)y 0.650 6.909 6.2 [48] 49 [50]
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counting scheme we proposed in [33,38], which makes this
calculation more rigorous.

Now, for processes where a single hadron is involved,
such as leptonic and two-photon decays of a hadron, it is
possible to study partial contributions and relevance of
different Dirac structures in hadronic BS wave functions of
the hadron by employing a power counting rule [33,38,39]
we had proposed. In other works [37,41] also, the con-
tribution of separate Dirac structures were studied only for
mass spectral studies and leptonic decays of hadrons where
a single hadron is involved in the process.

However, for single photon radiative decay process such
as P — Vy, where two hadrons are involved, it is not possible
to find partial contributions from individual Dirac structures
appearing in hadronic BS wave functions, since, we notice
that there is a complete mixing up of the Dirac structures
appearing in the BS wave functions of the two different
hadrons, and one can not cleanly disentangle their contri-
butions. This is due to the fact that the amplitude, M;
given in Egs. (28) and (30) involves terms like,
Trla Py, " (9wl (@) + .....], where, @), (§') involves
the vector meson wave function, yy (g), which is expressible
as a superposition of two leading order Dirac structures,
yv, = iMé and yy, = €P, as in Eq. (35), of which yy is the
more dominant structure, while w7 (g) involves pseudo-
scalar meson wave function, yp(§), which is expressible in
terms of two leading order Dirac structures, yp; = Mys, and
Yp, = iPys, of which yp was the more dominant structure.

Now, we write the total amplitude My = M} + M3
using Egs. (28) and (30), each of which involves trace
over the superposition of the mixtures of terms of the type
(rv,)(rp,), and (yy,)(rp,), besides two additional “inter-
ference” terms like (yy,)(yp,) and (yy,)(rp,), where

brackets (...) represent the fact that factors like IM{ A

and AT+ I—A; sandwich the hadronic Dirac structure yp, , or
Yv,, from left and right, besides the appearance of # and ¢
as in Eqgs. (28) and (30).

With the use of two Dirac structures, the total amplitude
M, for the process P — Vy can be expressed in terms of the
transition form factor Fpy through Egs. (39), with detailed

expressions given in Egs. (A6) and (A7) in the Appendix.
We can then express the form factor Fpy as a superposition
of the four amplitudes as Fpy = F{ + Fy + F3 + Fy,
where F| = FVVH’Pl’ F, = FVVZVPZ’ F; = FYVJPz’ and
F,=F R where the notation F e, implies the partial
amplitude calculated using the mixture of Dirac structures
(rv,)(rp,) of vector and pseudoscalar mesons. Thus we
can at best find the partial amplitudes F;, where
[ =7Yvy,YpP,»Yv,YP,>Yv,VP,» and yy yp, thatinvolve mixtures
of these Dirac structures of two different hadrons, and some
of the partial amplitudes appear with opposite signs, and
their partial contribution to I" is of little relevance. These
transition form factors F's are calculated only at the photon
point (k> = 0) where they are real.

Further, the partial contribution of any of these four
amplitudes to decay width I" cannot be found, since I
calculated with the use of two Dirac structures will be
expressed as U~ |Fpy|*=(F,, ,, | +|F,, ,, [*+|F >+

|Fyvzypl |2+Zi;éjFiFj7 where i, j = vy, Yp, s Vv,Y P, YV, Y Py
and yy,yp, and will receive contributions not only from the
main diagonal terms but also from the cross terms as well
such as ) ;.; F;F;, each representing mixtures of four
different Dirac structures of the two hadrons such as
e Ervre, Ervrn, FYV1 7py etc. Thus, what is of relevance
is the sum of these four partial amplitudes to obtain Fpy,
which is directly related to the total width I' as men-
tioned above.

We list numerical values of the partial amplitude F;
along with various subsets of partial amplitudes F; + F,,
F1 + F> + F5 and total transition form factor Fpy = Fy +
Fy+ F3+ F, in Table IV when we include two Dirac
structures in BS wave functions of the two hadrons. It is
seen that amplitudes F'; and F, appear with opposite sign in
1.(25) — J/¥(18)y. Ds(28) — Di(18)y. and B.(2S) —
B:(1S), and their magnitudes are of little relevance to their
partial contribution to total decay width as explained above.
Also the interfering amplitudes that involve mixtures of
most leading and lesser leading Dirac structures such as
Yv,¥p, and yy,yp, play an important role when two Dirac
structures are taken in both hadronic wave functions.

Tv,¥py Yvirp,

TABLE IV. Contribution (in GeV~') of partial amplitude F; along with various subsets of partial amplitudes
Fi+ F,, F| + F, + F3, and total transition form factor Fpy = F; + F, + F5 + F, for the processes P — Vy. The

total decay width I" for an individual process is in keV.

n:(28) - J/¥(S)y

D(25S) - D*(1S)y

Ds(25) » D(1S)y  B.(25) - B:(1S)y

r 0.476 keV. 12.157 keV. 7.602 keV. 0.1028 keV.
Fpy (in GeV™) —0.006911 —0.0389 —0.03018 0.00521
Fy 0.005227 —0.0264 —0.02135 —0.00421
Fi+F, 0.00191 —0.0268 —0.01977 0.0154
Fy+F,+ F;4 —0.00411 —0.03316 —0.025012 0.00520
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A similar behavior of partial amplitudes is anticipated for
E1 decays.

However, if we make use of the most leading Dirac
structures in 4D BS wave functions, as well as the BS
normalizers of V and P mesons on the basis of their
contributions to leptonic decays [33,37-39,41], we obtain
the total transition form factor Fpy = F ORI whose
magnitude is found to be much higher than |F,| in
Table IV (where all F;’s are evaluated with the use of
all Dirac structures in Np and Ny) for all transitions listed,
implying thereby that the Dirac structures in BS normal-
izers also play a crucial role in the calculation of F;. The
various contributions of partial amplitudes F; to I" seem to
be like more of an interference between Dirac structures of
two different hadrons. But more detailed investigations on
partial contributions of F; for a number of processes
involving more than one hadron needs to be done, which
to our knowledge has not been studied so far.

In regard to the E1 transitions, we have studied the
processes P, — 'S + y that involve the decays &.(1P) —
ne(18)y, he(2P) = nc(2S)y, and h.(2P) — n.(1S)y, and
the processes 'Sy — 'P; +y that involve the decays
n:(28) = h.(1P)y. We used algebraic forms of 3D
Salpeter wave functions obtained through analytic solutions
of mass spectral equations in an approximate harmonic
oscillator basis for ground and excited states of 0=, 177,
and 17~ heavy-light quarkonia for calculation of their decay
widths. We have compared our results with experimental
data, wherever available, and other models, and found
reasonable agreements.

Similarly we again see a wide range of variations in
different models for both M 1, and E1 transitions, particularly
for decays of 7. and &, mesons. Further, our decay widths for
nS — n'S transitions in M1 decays and nP — n’S transitions

in E'1 decays show a marked decrease as we go from ground
to higher excited states, which is in conformity with data and
other models. We have also given our predictions for
radiative decays h.(2P) — .(2S)y, h.(2P) = n.(1S)y,
and #.(2S) — h.(1P) for which data are not yet available.
Inregards to M1 transitions, we have given our prediction for
the decay width of 5.(2S) — J/W¥(1S)y for which the PDG
tables [12] give only the upper limit on the decay width. Also
we calculated the decay width B.(2S) — B} (1S)y for which
data are not available.

The aim of doing this work was not only to study the
processes P — Vy, A~ — Py, and P — A~y for which very
little data are available but also to test the algebraic forms of
wave functions of P,V,S, A~ mesons[28,30-32] that we
have recently derived from the mass spectral equations of
these mesons by following an analytic approach using
4 x4 BSE, whose main features can be found in
Refs. [30-32].

A more detailed investigation involving various transi-
tions of 17" and 17~ quarkonia, and their transition form
factors will be relegated to a separate paper.
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APPENDIX: RADIATIVE TRANSITIONS

1. Radiative decays, P — Vy
Substituting the 3D BS wave function of a pseudoscalar meson in Eq. (35), we obtain the ++ and —— components as

;Jr (q) _ NP¢P(EI)

40)1602 [M((wlw2+mlm2+@2)+(m1a)2+a)1m2))—

i((mywy + wymy) + (w0 + mymy — §%))P

+iM((0; = @5) + (my = m))f = (@) + @) + (my + my))dPlys.
l//——(/\) :NP¢P(&)

P 4 Py (M (w05 + mymy + %) = (my@; + @ymy)) + i((my@; + wymy) — (@10, + mymy — %)) P
+iM((my = my) = (@1 = 02))f + (0 + @) = (m; + my))4Plys. (A1)
The adjoint Bethe-Salpeter wave function of a pseudoscalar meson can be obtained by evaluating y3%(q') =
ra(wp () ra as
— bt A _NP¢P(Q) A2 ; 52
wp'(q) = “dww, M((@107 + mymy + §°) + (myo; + wymy)) — i(myw; + ©ymy) + (0103 + mymy — 7)) P
+iM((@; — 03) + (my = my))f = (@ + @) + (my + my)) PYlys.
___ i Npp(q . , .
wp (@) = :wiiﬁ) M((01@; + mymy + §%) = (mya, + @ymy)) + i((mya, + @ymy) = (010, + mymy — §°))P
102
+iM((my —my) — (0, — @) + (0 + @) = (m) + my))Pdlys (A2)

Following the same steps as in the case of pseudoscalar mesons, we obtain the ++ and —— components of a vector meson
wave function in Eq. (35) as

o Nvoy(@) . M M’ p @
wi (@) = 74(0,10),2 [iM' & whe — ﬁw’l my€P + W(z)’ltél"d' + 0| wheP + i i B yprp 41 EP’P;j + ﬁa)zmll"e
LM Pep +o7 M ey — Y2 pepr M b PeP’Pg M pe
mym 5 m - —1 - w
M 112 1 M M M 2
M’ /2 o / imy »~, / L., /By
+M mMPeP— zngqu MﬁPeP —WquPP—WquPPg, (A3)
N ~ ! iM’ N M
i @) =D g e 4 2 mpep - lﬁwﬁm{ +ofwer =T epp—Shep Py ~ L uim e
1 2
'M/ M/ /
+ ZM mymyPeP + — M m PeP + ’mﬂ‘d“’z PeP' + =3 ™2 pep'p — —PeP’Pq + gl Pe
M N @ o A ~
Sy PeP — S Y PePY + 22 Pep' - ”"2 'PeP'P — —- ) PeP P, A4
M? M2 M M?

where as the adjoint wave functions are
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} Nvov (@) M iM im,o W A M
(@) = dala, iM'o, wze—ﬁw mzPe—i-ﬁ P+ o, sz’@+ 1PP’£+MI¢'PP’5+Ma)’2mleP
iM M’ im, @) im iM'
+Vm1m2PeP+M m,f PeP — 1\14 2PleP + ]:4 2ppPep — lngP’eP—V whyePd
M/ 1 iM ! 1 2 / / 1 1 1 / !
+Wm2P€Pﬂ —Wﬁpﬁpﬂ PKP% —PPePﬂ —depgpﬁ,

N M/ 'M/ N ; / / R M/
7y (§) = %Vafz) { M/ whe + -y Pe — ’M o\ f Pe + o )P'é — %PP’@ - % d'PP'e ——wymeP
.M/ A 'M/ n
+ ’M m,myPeP + m1;4 PeP + A} 2 prep P — 21 4 PPeP + lﬁa)gem’

/

M . " . S I .
+pmaPePq — W q’PeM + MZP’EP;/ - WZPP'eM — A PPePy. (A5)

Using the above expressions, we calculate Py (§)e'Yy(9), Pub™ (@)Y, (q), Pwup (§)e'Py"(g), and
Py (q')e'Yy,(g), which are employed in the calculation of transition form factor Fpy, for P — Vy. The contribution
of Fpy from diagram 1 is given by

L [ &g $v(@)$r(d)
/

Fhy = e,NyNp—s
PV = v p 27) 160, 0,0, 0}

[TR1];

M2 M/2
[TR]} = (a1a1 +0’2b1 —|—0£3a1 —|-Ol4b1)<a)’la)’2 +M/m]ﬁ’l2 —mpmy —M/mzﬁ’lz - |:— <ﬁ’l] - ﬁ12¥> M2

2Mm?
M? + M2
- <ﬁ11 — iy <2+MZ)> gy (M? + M) — mgM’Z] )

L (MM .
+ (a,az + azbz + azdy + (14172) <—m2 [(m] — Ny %)Mz + mz(M2 + Mlz):|
M2 M/2
-M |:<ﬁ11 _ ﬁ12¥)ﬁ12MZ
2M
M2 M/2
+ m3(M? + M’Z)] —m <ﬁ11 — iy %) (—MZ))

+ (a1a3 -+ a2b3 + aszas + a4b3)(a)'1w'2ﬁ12M2 + M/mlﬁ’l%(—MZ) - mlmz(—rthz) - M'M2m2ﬁ12
M2 M/2 2 M2 M/2
- {— (rh] — iy M+ M7) )> Ay M* — (ﬁql — i1y M+ M7) )> M3 (M?* + M")M? + m3M2M’2} >

2M? 2M?
M2 M/Z

- (MM L
+(ala4+a2b4+a3a4+a4b4) <m1<m1 —ng m2M2+M’ 2 my — niy 2M2

2M?>
(M? +M?)

+rh%(M2+M’2)}—m2[(rhl—ﬁ12 IV >M2+m2(M2+M'2)D

R N M2+M/2
+ (_alal - a2b1 + aza, +a4b1)<_Ma)/l (ml _ m2(2A42)>

MZ M/Z
L2 [(ml iy, M) )>M2 + 27y (M? + M/Z)D

M 2M?
+ (—ayay — ayby + azay + aghy) (MM @iy + M |my — Mm wy — MM' ) in,)
b [ (. . (M*+M?) i
+ (—a1a3 — aybs + azaz + asb3) (ﬁz [(ml ERC Iy v L Y M (MP + M)
L (MR MP)
- M(U’l <m1 - mzw m2<—M2>
+ (—aya4 — ayby + azay + agby)(MM' o) (—in3) — MM'0yin3 — m @b Min, — M) my(—i,)). (A6)

094045-18



E1 AND M1 RADIATIVE TRANSITIONS INVOLVING ... PHYS. REV. D 104, 094045 (2021)

Similarly, the contribution of Fpy from diagram 2 is given by

1 g q q
F3, = eoNyNp /( q ¢v(d)Pr(q)

M? 27)3 160 0,0 )y

[TRz] = ((1/1611 +a/2b1 +aga1 +agb1)(M’ml(—ﬁ11) +M’m2rh] +0)/10)/2 — nmpm,

[TR2];

1 . . M2+M/2 2 R R
_W[(_mZ"i_ml( 2M2 )) M4+m%(M2+M/2)2+m%M/2M2:|>

<M2 + M/Z)

+ ((1/1(12 + a/2b2 + a’3a2 + aéle) (—ml |:— <—ﬁ’l2 —+ ﬁ’ll 2M2

>M2 + iy (M?* + M’Q)]

(MZ + MIZ)

—m, [— (—mz +i s >M2 + 7y (M? + M/Z)} >

+ (dyaz + dybs + dyas + a,bs) (M’mle n — M'myM?im? + o wbM*(—#y) + mymyii, M?

M2 M/Z 2 M2 M/2
- K—mz v 2;:42 )> ” +2<—m2 ! 241;2 )>m%M2(M2 +M7)

+ i (M? + M™)? + ﬁﬁM’zMz} )

. R M2 +M/2 R R
ey + ooy + chay + ) (M| (= iy P ) oy e
. R M2 _,’_MIZ A
o s e L]y

a)/

+ (—a’lal - (leb] + agal + aﬁlbl) (—Ml
C0/2 R R (M2 +M'2)
# 5 [ (e 55
+ (—dyay — dhby + dyay + ajby) (MM @) (—iny) — Mmyw, + Mm@, — MM' o7ty
A (M2 +M/2)
mg Y R
2M

H oy 2+ 17

SN—
S
+
§>
S
+
<
SN—

(
+ (_a/1a3 - a’2b3 + aga3 + aﬁlb3) —Ma)’l |:<—ﬁ12 + >ﬁ11M2 — I’h%(Mz + Mlz):|

—I—Ma)’zK—rhz%—ﬁzl Ale—rh%(MLI—M’Z)D

2M?

+ (—djay — dhby + dyay + dyby) | MM '@\ — MM'@y(—in?) + Mm,o iy

(
o )
(

(M? + M?)
2M?

===+

where
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a; = M((wyw, + mymy + §2) + (myw, + myw,)),
a, = —(myw, + myw;) — (w0, + mym, — §%),
az = —(w; +wy +my +my),

ay = (01 — wy) + (my —my),

by = M(w,w, + mimy + §* — myw, — myo,),

by = —(mywy + @ymy) + (@10 + mymy = §°),
by = (01 + ;) = (my + my),

by = —(w; — wy) + (my —my).

2. Radiative decays A~ — Py

(A8)

The expressions for the coefficients a;, b;, d;, and e, entering into ®; and @] in Egs. (60) and (61) are given as

M mm,M  PM mM  mM' 1 mm, q>
NIy 4ol 4wl “@= dosM ~ 40\ M’ “7y 4oy do)\@ly’
m, m M M -1 Mm; M'm,
4= 4ahy M 4w’1M; 45 = 4wt M +W; @6 = 4a)’2M; %= 4o\,  4o|@ly’
m m, -1 M mmM mM mM  §GM
ag = ; Qg =——; by = — + - )
4o |0y 4| 4a| )y 4 dww, 4o, 4w, doo,
poo o omy L mmy @ 1L m om
2T 4w, dw, 4 dowr dow,” 0 4w, 4w, dwiw,  doiw
o omM M M omM M ommM M
YT 4o dw,  de, dow, 4 4o\,  4o|wly’
mM'  m M 1 mm, q"> ) my m
= CAohbM A M’ “ :Z_W_4a)’la)’2’e4 T T 40bM " d0M’
MM I M'm | M'm,
= 4abM 4o M’ = _4a)’2M’e7 - 4o\,  4o|0ly’
omy my 1 M mmM mM mM §M
= _4a)’la)’2 _4a)’1a)’2’ €= W’ "4ty dw, Ao,  bdoyw,
dzz—ﬂ— m,  mym; 7 L_L_ m nmy
4oy by +1 4o, oo’ 4oy 4w, 4o, A4o0,’
gy =M MM mM (A9)
4wy, 4w, 4w bdww,
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3. Radiative decays P - A"y

The coefficients a;, b;, d;, e; entering into A; and A} entering into Eqs. (71) and (72) are given as

ay = Y /760110)20),10),2 (MPwy0, + myoyM? + mymyM? + @ mM? — MP3?),

a, = PTYE ——wlla)za)’la)’z (M*w 0, + myw,M?* + mymyM? + w,myM? — M?G?),

dy = TV ﬁllwzw’, = (~M?w, — M*my + M*w, + M?m,); da), = PTYE %wzwq = (MPw, — MPmy — Mm; — MPw,),
by = Ve iwllwzw’lw’z (—-M>M' &\ &y — m;m,M'M? — MZM’é’Z); b, = TYE iwllwzw’la)’z (mM'Ma, + myM' Ma)),
b3 = aM? /a)ll 0,0 &y (2ol + M2mum, + M2G%); b, = 4M? /wll W, (MM} + M),

b= m(mm@; oMo )s by = m(—MwQ),

b, — 4M2lelTw’1w’z(M2M/(m2 +my); by = 4MZ\/_(0110)2_0)/1@/2Mz(ml +ma); b = 4M2lelTw’1w’z(_Mw/2)’

e = 4M2\/wllTwllwle2(—M'w’lw’2 —mm,M' + M'§?); € = 4M2\/a)1lTa)'lw’2MlM<_mlwlz — myw)),

= aM? /a)lla)za)’la)/z M2ohe, = mim; =) 4, = 4M2w/a)11w2w'1w/2 Vil = b tm)

= o MM 0 = 08 €4 = e M= M) = e (M),

e = 4M2mM’MZ(mI +my); ey = 4M2\/w11Tw/1w’2M2(_m1 —my); ey = 4M2\/wllTw’la)’2(Mw/2)’

d) = 4M2\/wllTa)’1a)’2M3(wlw2 —myw, + mymy — wymy — §*); dy = 4M2\/a)llTw’1w’2M2(w2 — @) +my —my),

dy = 1 M?(=my@; + @0, — 0ymy — mymy = §°). (A10)
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