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In the present work, we calculateM1 transitions, 0−þ → 1−−γ, and E1 transitions involving axial vector
mesons such as 1þ− → 0−þγ and 0−þ → 1þ−γ for which very little data is available as of now.We make use
of the general structure of the transition amplitude Mfi expressed as a linear superposition of terms
involving all possible combinations of þþ and −− components of Salpeter wave functions of final and
initial hadrons. In the present work, we make use of two leading Dirac structures in the hadronic Bethe-
Salpeter wave functions of the involved hadrons, which makes the formulation more rigorous. We evaluate
the decay widths for both the above mentioned M1 and E1 transitions. We have used algebraic forms of
Salpeter wave functions obtained through analytic solutions of mass spectral equations for ground and
excited states of 1−−, 0−þ, and 1þ− heavy-light quarkonia in an approximate harmonic oscillator basis to do
analytic calculations of their decay widths. We have compared our results with experimental data, where
ever available, and other models.
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I. INTRODUCTION

One of the challenging areas in hadronic physics is
probing the inner structure of hadrons. Charmonium
occupies an intermediate regime between the bb̄ system
and the light mesons. Radiative decays of charmonia are
good testing grounds for various models, due to the fact that
an emitted photon can be directly detected, and electro-
magnetic interactions are well understood.
Radiative transitions characterized by ΔL ¼ 0 are the

magnetic dipole, M1 transitions, while those characterized
by jΔLj ¼ 1 are the electric dipole, E1 transitions. TheM1
transition mode is sensitive to relativistic effects, esspe-
cially between different spatial multiplets (where n > n0),
while the E1 transitions are much stronger than M1
transitions, and involve transitions between excited states.
In this work, besides the M1 transitions, we study the E1
transitions involving 1þ− mesons, which are the P-wave
states.
The P-wave cc̄ states were first observed in 1976 by the

SLAC-LBL experiment at SLAC/SPEAR [1,2], where they
observed the decay Ψð3684Þ → γ þ χc. The P-wave bb̄

states were first observed by the Columbia-Stony Brook
(CUSB) experiment at the Cornell CESR electron-positron
storage ring [3,4] and confirmed by the CLEO experiment
at CESR [5].
An indirect way of producing P-wave states is through

e−eþ annihilation, which produces 3S1 ð1−−Þ charmonium
states such as J=Ψð1SÞ and Ψð2SÞ. Then the M1 and E1
decays of these states produce charmonium states, 1S0
ð0−þÞ, such as ηc and 3P1 ð1þþÞ such as χc1, respectively.
Now, amongst the charmonia below DD̄ threshold, the
axial, hc ð1P0Þ is the least accessible. We wish to mention
that the 1þ− meson state was first detected in pp̄ collisions
by the R704 Collaboration [6]. In 1992, E760 reported the
observation of the hc in the J=Ψπ0 decay mode, in the
reaction pp̄ → hc → π0 þ J=Ψ at Mhc ¼ 3526.2� 0.15�
0.2 MeV with Γhc ≤ 1.1 MeV [7].
In 2005, FNALE760 [8] analyzed two decaymodes of hc,

the π0J=Ψ decay mode and the ηcγ decay mode, through the
reactions (a) pp̄→ hc → π0þJ=Ψ, J=Ψ → e−eþ, π0 → γγ,
and (b) pp̄ → hc → ηcγ, ηc → γγ, using data for both runs.
They found statistically significant enhancement with mass
Mhc ¼ 3525.8� 0.2� 0.2 MeV and Γhc < 1 MeV. The
observation of hc is important since it provides information
on the spin dependence of quark-antiquark interactions.
However, the best clue for hcð1PÞ came from the CLEO
Collaboration from isospin violating transition eþ ē →
ϒð2SÞ → hc þ π0 [9]. And very recently, the BES-III
Collaboration reported hc production in the process eþe− →
πþπ−hc [10].
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The 1þþ mesons are seen in pp collisions. However, not
many decays of these mesons are experimentally observed
as can be checked from Particle Data Group (PDG)
tables [11,12].
The M1 and E1 transitions of charmonia (that includes

axial quarkonia) are quite interesting, and have been
recently studied in various models, such as relativistic
quark models (RQM) [13,14], effective field theory
[15,16], light-front quark models [17–19], lattice QCD
[20,21], Bethe-Salpeter equation [22–26], and potential
models [27].
In a recent work [26], we calculated the radiative M1

decays 1−− → 0−þγ and radiative E1 decays involving
scalar mesons (1P1) such as 0þþ → 1−−γ and 1−− → 0þþγ.
In the present paper, we focus on the E1 decays involving
axial (1þ−) quarkonia and the M1 decays of pseudoscalar
charmonia 0−þ → 1−−γ. Thus, in this work, we study E1
radiative transitions involving these axial mesons through
processes such as 1þ− → 0−þγ (such as hc → ηcγ), 0−þ →
1þ−γ [such as ηcð2SÞ → hcγ], along with M1 transitions
0−þ → 1−−γ [such as ηcð2SÞ → J=Ψγ], which have been
studied by some models for which experimental data
[11,12] are available for only some of the transitions.
The transitions involving leptonic and radiative decays of
axial vector quarkonia would also serve as a test for the
wave functions of these mesons calculated analytically by
solving their mass spectral equations [28] in a recent work.
Wewish to mention that decay rates ofM1 transitions are

much weaker than the rates for E1 transitions. But M1
decay rates are interesting as they allow access to spin-
singlet states that are very difficult to produce. Thus, as
regards M1 decays, we study decays ηcð2SÞ → J=Ψð1SÞγ
and Bcð2SÞ → B�

cð1SÞγ. The Bc meson was discovered in
pp̄ collisions at

ffiffiffi
s

p ¼ 1.8 TeV using the collider detector
at Fermilab tevatron. It is the only heavy meson with two
heavy quarks with different flavors that forbid their decays
into two photons.
We calculate the radiative decay widths of these heavy-

light quarkonia for the above mentioned processes in the
framework of a 4 × 4 Bethe-Salpeter equation (BSE),
which is a fully relativistic approach that incorporates
the relativistic effect of quark spins and can also describe
internal motion of constituent quarks within the hadron in a
relativistically consistent manner, due to its covariant
structure [29,30]. Our wave functions satisfy the 3D
BSE, which is in turn obtained from 3D reduction of the
4D BSE under covariant instantaneous ansatz (CIA) (which
is a Lorentz-invariant generalization of instantaneous
approximation), and already have relativistic effects.
Further, our transition amplitudes also have a relativisti-
cally covariant form.
The present work, where we make use of two leading

Dirac structures in the structure of BS wave functions of
Pð0−þÞ, Vð1−−Þ, and A−ð1þ−Þ quarkonia involved in these

radiative transitions, is more rigorous than our previous
work in [26], where we made use of only the most leading
Dirac structure (γ5 for P mesons, iγ:ϵ for V meson, and I
for S meson) in the BS wave functions of the hadrons
involved in the processes.
Now, as mentioned in our previous works [30–34], we

are not only interested in studying the mass spectrum of
hadrons, which no doubt is an important element to study
the dynamics of hadrons, but also the hadronic wave
functions that play an important role in the calculation
of decay constants, form factors, structure functions, etc.
for QQ̄ and Qq̄ hadrons. These hadronic Bethe-Salpeter
wave functions were calculated algebraically by us in
[30–32]. The plots of these wave functions [32] show that
they can provide information not only about the long
distance nonperturbative physics but also act as a bridge
between the long distance and short distance physics, and
provide information about the contribution of the short
ranged Coulomb interactions in the mass spectral calcu-
lation of heavy-light quarkonia. These wave functions can
also lead to studies on a number of processes involvingQQ̄
and Qq̄ states, and provide a guide for future experiments.
This paper is organized as follows: In Sec. II, we give the

general formulation of the process H → H0 þ γ in the
framework of a 4 × 4 Bethe-Salpeter equation under
the covariant instantaneous ansatz. In Sec. III, we calculate
the single photon decay widths for the process P → Vγ. In
Sec. IV, we deal with the process A− → Pγ. In Sec. V, we
deal with the process P → A−γ, where P, A−, and V are the
pseudoscalar, axial vector, and vector heavy-light quarko-
nium states. In Sec. VI, we give numerical results and
discussions.

II. RADIATIVE DECAY PROCESS H → H0γ
IN 4 × 4 BSE UNDER COVARIANT

INSTANTANEOUS ANSATS

A quark-antiquark bound state system can be described
by a Bethe-Salpeter equation

S−1F ðp1ÞΨðP; qÞS−1F ð−p2Þ ¼ i
Z

d4q00

ð2πÞ4Kðq; q00ÞΨðP; q00Þ;

ð1Þ

where p1 and p2 are the momenta of the two particles, with
the internal momentum of the hadron being q and external
hadron momentum P and mass M. In Eq. (1), Kðq; q00Þ is
the interaction kernel and S−1F ð�p1;2Þ ¼ �ip1;2 þm1;2 are
the inverse propagators for the quark and antiquark.
We now make use of the covariant instantaneous ansatz

on the BS kernel Kðq; q00Þ. Thus we can write
Kðq; q00Þ ¼ Kðq̂; q̂00Þ, where the BS kernel depends entirely
on the component of internal momentum of the hadron
q̂μ ¼ qμ −

q:P
P2 Pμ, which is a 3D variable and is orthogonal
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to the total hadron momentum, i.e., q̂:P ¼ 0, while
σPμ ¼ q:P

P2 Pμ is the component of q that is longitudinal
to P. And the four-dimensional volume element is
d4q ¼ d3q̂Mdσ.
It is to be observed that the longitudinal componentMσ00

of q00 does not appear in Kðq̂; q̂00Þ. We thus carry out
integration over the longitudinal component Mdσ00 of the
four-dimensional volume element d4q00 on the right side of
Eq. (1). Here, we make use of the fact that

ψðq̂00Þ ¼ i
2π

Z
Mdσ00ΨðP; q00Þ; ð2Þ

leading to the equation

S−1F ðp1ÞΨðP;qÞS−1F ð−p2Þ¼
Z

d3q̂00

ð2πÞ3Kðq̂;q̂00Þψðq̂00Þ¼Γðq̂Þ;

ð3Þ

where Γðq̂Þ is the hadron-quark vertex function and is
directly related to the 4D wave function ΨðP; qÞ.
Multiplying the previous equation from the left by
SFðp1Þ, and from the right by SFð−p2Þ, we can express
the 4D BS wave function ΨðP; qÞ in terms of Γðq̂Þ as

ΨðP; qÞ ¼ S1ðp1ÞΓðq̂ÞS2ð−p2Þ; ð4Þ

where the 4D hadron-quark vertex, that enters into the
definition of the 4D BS wave function in the previous
equation, is

Γðq̂Þ ¼
Z

d3q̂00

ð2πÞ3Kðq̂; q̂00Þψðq̂00Þ: ð5Þ

Following a sequence of steps outlined in [30], we get
four Salpeter equations which are effective 3D forms of
BSE (Salpeter equations) given below:

ðM − ω1 − ω2Þψþþðq̂Þ ¼ Λþ
1 ðq̂ÞΓðq̂ÞΛþ

2 ðq̂Þ;
ðM þ ω1 þ ω2Þψ−−ðq̂Þ ¼ −Λ−

1 ðq̂ÞΓðq̂ÞΛ−
2 ðq̂Þ;

ψþ−ðq̂Þ ¼ 0;

ψ−þðq̂Þ ¼ 0: ð6Þ

In our framework, the component q̂μ is always orthogo-
nal to Pμ and satisfies the relation q̂:P ¼ 0, irrespective of
whether q:P ¼ 0 (i.e., σ ¼ 0) or q:P ≠ 0 (i.e., σ ≠ 0).
Further, due to the Lorentz-invariant nature of q̂2, the
applicability of this framework of a covariant instantaneous
ansatz is valid all the way from low-energy spectra to high-
energy transition amplitudes. For details, see [26,33].

We can now introduce projection operators

Λ�
j ðq̂Þ ¼

1

2ωj

�
P
M

ωj � JðjÞðimj þ =̂qÞ
�
;

JðjÞ ¼ ð−1Þjþ1; j ¼ 1; 2 ð7Þ

with the relation

ω2
j ¼ m2

j þ q̂2; ð8Þ

and express the 3D BS wave function ψðq̂Þ in terms of the
þþ;þ−;−þ and −− components as

ψðq̂Þ ¼ ψþþðq̂Þ þ ψþ−ðq̂Þ þ ψ−þðq̂Þ þ ψ−−ðq̂Þ; ð9Þ

where the various components ψ��ðq̂Þ are expressible in
terms of the projection operators Λ�

j ðq̂Þ defined above as

ψ��ðq̂Þ ¼ Λ�
1 ðq̂Þ

P
M

ψðq̂Þ P
M

Λ�
2 ðq̂Þ: ð10Þ

The interaction kernel in BSE is taken as a one-
gluon-exchange type as regards to the color and spin
dependence, and thus has a general structure Kðq̂; q̂0Þ ¼
ð1
2
λ1: 12 λ2Þγμ × γμVðq̂; q̂0Þ, where the scalar part of the kernel

is written as a sum of the one-gluon-exchange part and the
confinement part as Vðq̂; q̂0Þ ¼ 4παs

ðq̂−q̂0Þ2 þ 3
4
ω2
qq̄

R
d3rðκr2−

C0

ω2
0

Þeiðq̂−q̂0Þ:⃗r and κ ¼ ð1 þ 4m̂1m̂2A0M2r2Þ−1
2, where m̂1;2 ¼

1
2
½1� ðm2

1
−m2

2
Þ

M2 � are theWightman-Garding definitions [33] of
masses of individual quarks, which act like momentum
partitioning functions for the two quarks in a hadron.
Here, ω2

qq̄ is the flavor dependent spring constant
ω2
qq̄ ¼ Mω2

0αsðM2Þ, where the presence of a running
coupling constant αs in ω2

qq̄ provides an explicit QCD
motivation to the BSE kernel. Regarding the parameters of
the model, A0 ¼ 0.01 is a parameter that is taken to be
small, so that the potential gives a smooth transition from
nearly harmonic for light cū states to almost linear (for bb̄)
systems [32]. The plots of the confining potential alone
versus radial separation r for different mesons is given in
[32]. Regarding the parameters of the model, ω0 ¼
0.22 GeV is the spring constant, C0 ¼ 0.69 is a dimension-
less constant, while C0

ω2
0

plays the role of ground state energy,

Λ ¼ 0.250 GeV is the QCD length scale, with input
quark masses mu ¼ 0.300 GeV, ms ¼ 0.430 GeV, mc ¼
1.490 GeV, and mb ¼ 4.690 GeV. In the present work on
radiative decays, we use these same input parameters to
calculate the single photon decay widths for the above
processes. Our previous studies on mass spectral calcu-
lations of heavy-light quarkonia [31,32] were used to fit the
input parameters of our model.
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In this paper, we study radiative transitions involving
single photon decays, such as H → H0 þ γ. This process
requires the calculation of a triangle quark-loop diagram.
And there are two hadron-quark vertices. The single photon
decay of Qq̄ quarkonia is described by the direct and
exchange Feynman diagrams as shown in Fig. 1.
There are two Lorentz frames involved, the rest frame of

the initial mesonH and the rest frame of the final mesonH0.
Let total momentum and the internal momentum of initial
hadronH be designated by P and q, while P0 and q0 are the
corresponding variables of the final hadron H0. And let k
and ϵλ

0
be the momentum and polarization vectors of the

emitted photon, while ϵλ is the polarization vector of the
final meson. Thus if p1;2, and p0

1;2 are the momenta of
the two quarks in the initial and final hadron respectively,
then the kinematical relations between the momenta of
initial and final hadrons can be expressed as

P ¼ p1 þ p2;p1;2 ¼ m̂1;2P� q;

P0 ¼ p0
1 þ p0

2;p
0
1;2 ¼ m̂1;2P0 � q0: ð11Þ

From the Feynman diagrams we see that conservation of
momentum demands that P ¼ P0 þ k. Now, for the first
diagram, we have the kinematical relations p1 ¼ p0

1 þ k
and −p2 ¼ −p0

2, where k ¼ P − P0 is the momentum of the
emitted photon. And for the second diagram, we have the
corresponding relations p1 ¼ p0

1 and −p0
2 ¼ −p2 þ k.

Making use of the above equations, the relationship
between the internal momenta q and q0 of the initial and
final hadrons in terms of the photon momentum k can be
expressed as

q0 ¼ q − m̂2k;

q0 ¼ qþ m̂1k; ð12Þ

where the first equation is for diagram 1 and second
equation is for diagram 2.
For the initial hadron, its internal momentum has already

been decomposed as q ¼ ðq̂; iMσÞ, where q̂ and Mσ are
defined relative to its external momentum P. Now, to

simplify calculations, since we prefer to work in the rest
frame of the initial hadron, we decompose the internal
momentum q0 of the final hadron into two components
q0 ¼ ðq̂0; iMσ0Þ, with q̂0 ¼ q0 − σ0P transverse to the initial
hadronmomentumP and σ0 ¼ q0:P

P2 is longitudinal toP. Thus,
P:q̂0 ¼ 0. The relationship between the transverse compo-
nents of internal momenta of the two hadrons q̂ and q̂0 is [26]

q̂0 ¼ q̂þ m̂2P̂
0;

q̂0 ¼ q̂ − m̂1P̂
0;

P̂0 ¼ P0 −
P0:P
P2

P; ð13Þ

where the first equation of (13) holds for diagram 1, the
second equation holds for diagram2, and P̂0 is the component
of the total momentumP0 of the final hadron transverse to the
initial hadronmomentumP. Here q̂0:P ¼ 0 due to P̂0:P ¼ 0.
In the rest frame of the initial meson, we have

P ¼ ð0⃗; iMÞ, while for final meson P0 ¼ ðP⃗0; iE0Þ, where
E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P⃗02 þM02

p
, and since the photon momentum can

be decomposed as k ¼ ðk⃗; ijk⃗jÞ, where k⃗ ¼ −P⃗0, since the
final meson and photon would be emitted in opposite
directions. Hence we get jP⃗0j ¼ jk⃗j ¼ M2−M02

2M . Thus the

energy of the final meson can be expressed as E0 ¼ M2þM02
2M .

The dot products of momenta of the initial and the
emitted meson can be expressed as [26]

P0:P ¼ −ME0 ¼ −
M2 þM02

2
: ð14Þ

Thus, it can be seen that −E0 acts as the projection of P0
along the direction of the initial hadron momentum P.
Similarly, the relationship between the longitudinal com-
ponents of internal momenta of the two hadrons in the two
diagrams can be worked out as [26]

σ0 ¼ σ þ α;

α ¼ m̂2

M02 −M2

2M2
ð⇒ diagram 1Þ

α ¼ −m̂1

M02 −M2

2M2
ð⇒ diagram 2Þ; ð15Þ

which is again a consequence of the transversality of q̂0
with initial hadron momentum P. Thus, up to Eq. (15), the
kinematics are the same for all three processes (P → Vγ,
A− → Pγ, and P → A−γ) studied in this work.

III. M1 RADIATIVE DECAYS P → Vγ

In this section we study the M1 radiative decay process
P → Vγ, having studied the process V → Pγ in our

FIG. 1. Radiative decays of heavy-light quarkonia that proceed
through direct and exchange diagrams.
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previous work[26]. In the present study, we make use of
two leading Dirac structures [as in Eq. (35)] in the BS wave
functions of the two hadrons involved in the process, in
contrast to a single most leading Dirac structure (γ5 for P
meson, and iγ:ϵ for V meson) used in our previous work
[26]. This makes the calculations more involved than with
use of the single most leading Dirac stricture in the 4D
hadronic BS wave functions. It is to be noted that a 4D BS
wave function of the initial pseudoscalar meson involved in
the process is ΨPðP; qÞ ¼ SFðp1ÞΓPðq̂ÞSFð−p2Þ. Since for
transition amplitude calculation we choose to do the
calculation in the rest frame of the initial pseudoscalar
meson, we write the wave function of the final vector
meson as

ΨVðP0; q0Þ ¼ SFðp0
1ÞΓVðq̂0ÞSFð−p0

2Þ; ð16Þ

where as defined earlier q̂0 ¼ q0 − q0:P
P2 P is transverse to the

initial hadron momentum P, where the hadron-quark vertex
function ΓVðq̂0Þ for the final meson is

ΓVðq̂0Þ ¼
Z

d3q̂000

ð2πÞ3Kðq̂0; q̂000Þψðq̂000Þ: ð17Þ

Similarly for the final meson, the expression for the 3D
BS wave function ψðq̂0Þ is expressed in terms of the
projection operators as

ψðq̂0Þ ¼ ψþþðq̂0Þ þ ψþ−ðq̂0Þ þ ψ−þðq̂0Þ þ ψ−−ðq̂0Þ ð18Þ

where

ψ��ðq̂0Þ ¼ Λ�
1 ðq̂0Þ

P
M

ψðq̂0Þ P
M

Λ�
2 ðq̂0Þ;

Λ�
j ðq̂0Þ ¼

1

2ω0
j

�
P
M

ω0
j � JðjÞðimj þ =̂q0Þ

�
; ð19Þ

with the relation ω02
1;2 ¼ m2

1;2 þ q̂02.
We can express the electromagnetic transition amplitude

of the process as a single integral over d4q. Thus this four-
dimensional volume integral involves integration over all

four components of q. To perform this integral, we make
use of decomposition of the 4D volume element as d4q ¼
d3q̂Mdσ using covariant instantaneous ansatz. We will first
perform integration over the time part Mdσ, using pole
integration methods in the complex σ plane, and then
express Mfi as an integration over d3q̂, which is then
numerically worked out. This procedure of integration over
d4q is followed in the steps below.
We first write Mfi as

Mfi ¼ −
Z

d4q
ð2πÞ4 Tr½eqΨ̄VðP0; q0Þϵλ0ΨPðP; qÞS−1F ð−p2Þ

þ eQ̄Ψ̄VðP0; q0ÞS−1F ðp1ÞΨPðP; qÞϵλ0 �: ð20Þ

Here, the first term corresponds to the first diagram,
where the photon is emitted from the quark, while the
second term corresponds to the second diagram where the
photon is emitted from the antiquark, and eq and eQ are the
electric charge of the quark and antiquark, respectively,
while ϵλ

0
μ is the polarization vector of the emitted photon.

We then express Eq. (20) as

Mfi ¼ −eq
Z

d3q̂
ð2πÞ3

Z
iMdσ
ð2πÞ Tr½Γ̄Vðq̂0ÞSFðp0

1Þϵ0SFðp1Þ

× ΓPðq̂ÞSFð−p2Þ�

− eQ

Z
d3q̂
ð2πÞ3

Z
iMdσ
ð2πÞ Tr½Γ̄Vðq̂0ÞSFðp1Þ

× ΓPðq̂ÞSFð−p2Þϵ0SFð−p0
2Þ�: ð21Þ

Now, we reduce the above equation to the effective 3D
form by integrating over the longitudinal component Mdσ
over the poles of the propagators SFðpiÞ, that are expressed
as [26]

SFðp1Þ ¼
Λþ
1 ðq̂Þ

Mσ þ m̂1M − ω1 þ iϵ
þ Λ−

1 ðq̂Þ
Mσ þ m̂1M þ ω1 − iϵ

;

SFð−p2Þ ¼
−Λþ

2 ðq̂Þ
−Mσ þ m̂2M − ω2 þ iϵ

þ −Λ−
2 ðq̂Þ

−Mσ þ m̂2M þ ω2 − iϵ
;

SFðp0
1Þ ¼

Λþ
1 ðq̂0Þ

Mσ0 þ m̂1ð−E0Þ − ω0
1 þ iϵ

þ Λ−
1 ðq̂Þ0

Mσ0 þ m̂1ð−E0Þ þ ω0
1 − iϵ

;

SFð−p0
2Þ ¼

−Λþ
2 ðq̂0Þ

−Mσ0 þ m̂2ð−E0Þ − ω0
2 þ iϵ

þ −Λ−
2 ðq̂Þ0

Mσ0 þ m̂2ð−E0Þ þ ω0
2 − iϵ

: ð22Þ

E1 AND M1 RADIATIVE TRANSITIONS INVOLVING … PHYS. REV. D 104, 094045 (2021)

094045-5



We now put the propagators into Eq. (21) and multiplying this equation from the left by the relation P
M

P
M ¼ −1 ¼

P
M ðΛþ

2 ðq̂0Þ þ Λ−
2 ðq̂0ÞÞ [35], the transition amplitude corresponding to the first term in Eq. (21) can be expressed as

M1
fi ¼ −ie

Z
d3q̂
ð2πÞ3 ½Ω1 þΩ2 þΩ3 þ Ω4�;

Ω1 ¼
Z

dσ
ð2πÞ

i
M3

Tr

�
−PΛþ

2 ðq̂0ÞΓ̄Pðq̂0ÞΛþ
1 ðq̂0Þϵ0Λþ

1 ðq̂ÞΓVðq̂ÞΛþ
2 ðq̂Þ

½σ − ð−αþ m̂1
E0
M þ ω0

1

MÞ�½σ − ð−m̂1 þ ω1

MÞ�½σ − ðm̂2 −
ω2

MÞ�

�
;

Ω2 ¼
Z

dσ
ð2πÞ

i
M3

Tr

�
−PΛþ

2 ðq̂0ÞΓ̄Pðq̂0ÞΛþ
1 ðq̂0Þϵ0Λ−

1 ðq̂ÞΓVðq̂ÞΛ−
2 ðq̂Þ

½σ − ð−αþ m̂1
E0
M þ ω0

1

MÞ�½σ − ð−m̂1 −
ω1

MÞ�½σ − ðm̂2 þ ω2

MÞ�

�
;

Ω3 ¼
Z

dσ
ð2πÞ

i
M3

Tr

�
−PΛ−

2 ðq̂0ÞΓ̄Pðq̂0ÞΛ−
1 ðq̂0Þϵ0Λþ

1 ðq̂ÞΓVðq̂ÞΛþ
2 ðq̂Þ

½σ − ð−αþ m̂1
E0
M − ω0

1

MÞ�½σ − ð−m̂1 þ ω1

MÞ�½σ − ðm̂2 −
ω2

MÞ�

�
;

Ω4 ¼
Z

dσ
ð2πÞ

i
M3

Tr

�
−PΛþ

2 ðq̂0ÞΓ̄Pðq̂0ÞΛ−
1 ðq̂0Þϵ0Λ−

1 ðq̂ÞΓVðq̂ÞΛ−
2 ðq̂Þ

½σ − ð−αþ m̂1
E0
M − ω0

1

MÞ�½σ − ð−m̂1 −
ω1

MÞ�½σ − ðm̂2 þ ω2

MÞ�

�
: ð23Þ

The contour integrations overMdσ are performed over each of the four terms taking into account the pole positions in the
complex σ plane:

σ�3 ¼ −αþ m̂1

E0

M
∓ ω0

1

M
� iϵ;

σ�1 ¼ −m̂1 ∓ ω1

M
� iϵ;

σ�2 ¼ m̂2 ∓ ω2

M
� iϵ: ð24Þ

For the second term in Eq. (21), we can write the amplitude M2
fi as

M2
fi ¼ −eQ

Z
d3q̂
ð2πÞ3 ½Ω

0
1 þ Ω0

2 þ Ω0
3 þ Ω0

4�;

Ω0
1 ¼

Z
dσ
ð2πÞ

i
M3

Tr

�
−Λþ

2 ðq̂0ÞΓ̄Vðq̂0ÞΛþ
1 ðq̂0ÞPΛþ

1 ðq̂ÞΓPðq̂ÞΛþ
2 ðq̂Þϵ0

½σ − ð−α − m̂2
E0
M − ω0

2

MÞ�½σ − ð−m̂1 þ ω1

MÞ�½σ − ðm̂2 −
ω2

MÞ�

�
;

Ω0
2 ¼

Z
dσ
ð2πÞ

i
M3

Tr

�
−Λ−

2 ðq̂0ÞΓ̄Vðq̂0ÞΛ−
1 ðq̂0ÞPΛþ

1 ðq̂ÞΓPðq̂ÞΛþ
2 ðq̂Þϵ0

½σ − ð−α − m̂2
E0
M þ ω0

2

MÞ�½σ − ð−m̂1 þ ω1

MÞ�½σ − ðm̂2 −
ω2

MÞ�

�
;

Ω0
3 ¼

Z
dσ
ð2πÞ

i
M3

Tr
�

−Λþ
2 ðq̂0ÞΓ̄Vðq̂0ÞΛþ

1 ðq̂0ÞPΛþ
1 ðq̂ÞΓPðq̂ÞΛ−

2 ðq̂Þϵ0
½σ − ð−α − m̂2

E0
M − ω0

2

MÞ�½σ − ð−m̂1 −
ω1

MÞ�½σ − ðm̂2 þ ω2

MÞ�

�
;

Ω0
4 ¼

Z
dσ
ð2πÞ

i
M3

Tr

�
−Λ−

2 ðq̂0ÞΓ̄Vðq̂0ÞΛ−
1 ðq̂0ÞPΛ−

1 ðq̂0ÞΓPðq̂ÞΛ−
2 ðq̂Þϵ0

½σ − ð−αþ m̂2
E0
M þ ω0

2

MÞ�½σ − ð−m̂1 −
ω1

MÞ�½σ − ðm̂2 þ ω2

MÞ�

�
; ð25Þ

where the rest of the terms are anticipated to be zero on account of the 3D Salpeter equations. The contour integrations over
Mdσ in Eq. (25) are performed over each of the four terms taking into account the pole positions in the complex σ plane:

σ�3 ¼ −α − m̂2

E0

M
∓ ω0

2

M
� iϵ;

σ�1 ¼ −m̂1 �
ω1

M
� iϵ;

σ�2 ¼ m̂2 ∓ ω2

M
� iϵ ð26Þ

by closing the contour either above or below the real axis in the complex σ plane.
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We now make use of the Salpeter equations in variable
q̂ in Eq. (6), and the Salpeter equations in variable q̂0 given
below. It is to be noted that the Salpeter equations
in q̂0 involve −E0 ¼ P:P0

M , which is the projection of P0

along the direction of the initial momentum P, and are
given as [35]

ð−E0 − ω0
1 − ω0

2Þψþþðq̂0Þ ¼ Λþ
1 ðq̂0ÞΓðq̂0ÞΛþ

2 ðq̂0Þ;
ð−E0 þ ω0

1 þ ω0
2Þψ−−ðq̂0Þ ¼ −Λ−

1 ðq̂0ÞΓðq̂0ÞΛ−
2 ðq̂0Þ;

ψþ−ðq̂0Þ ¼ 0;

ψ−þðq̂0Þ ¼ 0: ð27Þ

The results of each of these four integrals Ω1;…;Ω4

whether we close the contour above or below the real σ axis
comes out to be the same, thereby validating the correctness
of the formalism employed. These results of integrals over
dσ in Ω1;…;Ω4, are given as α1;…; α4 in Eqs. (29).
This leads to the expression for an effective 3D form of

transition amplitude M1
fi under covariant instantaneous

ansatz for diagram 1, as

M1
fi ¼ −ie

Z
d3q̂
ð2πÞ3

1

M2
Tr½α1Pψ̄þþ

V ðq̂0Þϵ0ψþþ
P ðq̂Þ

þ α2Pψ̄
þþ
V ðq̂0Þϵ0ψ−−

P ðq̂Þ þ α3Pψ̄−−
V ðq̂0Þϵ0ψþþ

P ðq̂Þ
þ α4Pψ̄−−

V ðq̂0Þϵ0ψ−−
P ðq̂Þ� ð28Þ

where

α1 ¼
½−E0 − ω0

1 − ω0
2�

½α − m̂1
E0
M þ m̂2 − 1

M ðω0
1 þ ω2Þ�

;

α2 ¼
−½−E0 − ω0

1 − ω0
2�

½α − m̂1ðE0
M − 1Þ − 1

M ðω1 þ ω0
1Þ�

;

α3 ¼
½−E0 þ ω0

1 þ ω0
2�

½α − m̂1ðE0
M − 1Þ þ 1

M ðω1 þ ω0
1Þ�

;

α4 ¼
−½−E0 þ ω0

1 þ ω0
2�

½α − m̂1
E0
M þ m̂2 þ 1

M ðω0
1 þ ω2Þ�

; ð29Þ

and the projected wave functions ψ�� are taken from the
3D Salpeter equations [32] derived earlier, which for the
initial meson in the internal variable q̂ are given in Eq. (6).
[Here, the factors ðM � ω1 � ω2Þ that were also present

in the numerators of α’s in Eq. (29), as a result of the first
two Salpeter equations in the variable q̂ in Eqs. (6), get
cancelled from the corresponding factors (in the denom-
inator) resulting from contour integrals over dσ, while the

numerators of α1;…; α4 come from the Salpeter equations
in the variable q̂0 in Eq. (27).]
Similarly, the expression for an effective 3D form of

transition amplitude M2
fi under a covariant instantaneous

ansatz can be expressed as

M2
fi ¼ −eQ

Z
d3q̂
ð2πÞ3

1

M2
Tr½α01ψ̄þþ

V ðq̂0ÞPψþþ
P ðq̂Þϵ0

þ α02ψ̄
þþ
V ðq̂0ÞPψ−−

P ðq̂Þϵ0 þ α03ψ̄
−−
V ðq̂0ÞPψþþ

P ðq̂Þϵ0
þ α04ψ̄

−−
V ðq̂0ÞPψ−−

P ðq̂Þϵ0�: ð30Þ

Here, the results of contour integrals over dσ in expres-
sions for Ω0

1;…;Ω0
4 in Eqs. (25) following similar pro-

cedure as in Ω1;…;Ω4 are given as α01;…; α04:

α01 ¼
½−E0 − ω0

1 − ω0
2�

½α − m̂1 þ m̂2
E0
M þ 1

M ðω1 þ ω0
2Þ�

;

α02 ¼
−½−E0 − ω0

1 − ω0
2�

½αþ m̂2ð1þ E0
MÞ − 1

M ðω2 þ ω0
2Þ�

;

α03 ¼
½−E0 þ ω0

1 þ ω0
2�

½αþ m̂2ð1þ E0
MÞ þ 1

M ðω2 þ ω0
2Þ�

;

α04 ¼
−½−E0 þ ω0

1 þ ω0
2�

½α − m̂1 þ m̂2
E0
M − 1

M ðω1 þ ω0
2Þ�

: ð31Þ

Thus, we make use of the generalized method for
handling quark-triangle diagrams with two hadron-quark
vertices in the framework of a 4 × 4 BSE under covariant
instantaneous ansatz described in [26], by expressing the
transition amplitude Mfi as a linear superposition of terms
involving all possible combinations of þþ and −−
components of Salpeter wave functions of final and initial
hadrons throughþþþþ, − − −−,þþ −−, and − −þþ,
with each of the four terms being associated with a
coefficient αiði ¼ 1;…; 4Þ, which is the result of pole
integration in the complex σ plane, which should be a
feature of relativistic frameworks.
Now, to calculate the amplitude Mfi for the process, we

need the þþ and −− components ψ��
V ðq̂0Þ for vector and

ψ��
P ðq̂Þ for pseudoscalar mesons, given as

ψ��
P ðq̂Þ ¼ Λ�

1 ðq̂Þ
P
M

ψPðq̂Þ
P
M

Λ�
2 ðq̂Þ;

ψ��
V ðq̂0Þ ¼ Λ�

1 ðq̂0Þ
P
M

ψVðq̂0Þ
P
M

Λ�
2 ðq̂0Þ; ð32Þ

to calculate which we need the 3D wave functions ψPðq̂Þ
and ψVðq̂0Þ. To derive these, we start with the general 4D
decomposition of the BS wave functions [36,37]. Using 3D
decomposition under covariant instantaneous ansatz, the
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wave function of vector mesons of dimensionalityM can be
written as [26,30,31]

ψVðq̂Þ ¼ iMϵχ1ðq̂Þþ ϵPχ2ðq̂Þþ ½ϵ=̂q− q̂:ϵ�χ3ðq̂Þ

− i½Pϵ=̂qþ q̂:ϵP� 1
M

χ4ðq̂Þþ ðq̂:ϵÞχ5ðq̂Þ

− iq̂:ϵ
P
M

χ6ðq̂Þ− iðq̂:ϵÞ =̂q
M

χ7ðq̂Þþ 2ðq̂:ϵÞP=̂q
M2

χ8ðq̂Þ;
ð33Þ

where ϵλ is the vector meson polarization vector, while for a
pseudoscalar meson, the 3D wave function with dimension
M can be written as [26,30,31]

ψPðq̂Þ¼NP½Mϕ1ðq̂Þ− iPϕ2ðq̂Þþ i=̂qϕ3ðq̂Þþ
P=̂q
M

ϕ4ðq̂Þ�γ5:
ð34Þ

However, during calculation of hadronic observables,
such as meson masses and leptonic decay constants, it was
noticed that some Dirac covariants [37] in the structure of a
hadronic BS wave function contribute much more than
others. And in accordance with a naive power counting rule
in [33,38,39], for pseudoscalar mesons, one could classify
Dirac structures Mγ5 and Pγ5 associated with amplitudes
ϕ1 and ϕ2, respectively, as leading, while those with ϕ3 and
ϕ4 as subleading. A similar behavior was observed in the
case of vector mesons [33,38], where Dirac structures Mϵ
and ϵP associated with χ1 and χ2, respectively, are leading
[33,38], while those associated with χ3;…; χ8 are sublead-
ing. A similar observation about the most leading Dirac
structures from all the Dirac structures was made by
[40,41]. Thus to simplify the algebra, we take 3D wave
functions with these two leading Dirac structures (the
present work with two leading Dirac structures is more
involved than our previous work [26], where we took only
the most leading Dirac structure in hadronic BS wave
functions of P, V, and S mesons [26]), on the basis of
their maximum contribution to the calculation of masses
and leptonic decay constants of individual mesons in
[33,37–39,41],

ψPðq̂Þ ¼ NP½Mγ5 − iPγ5�ϕPðq̂Þ;
ψVðq̂Þ ¼ NV ½iMϵþ ϵP�ϕVðq̂Þ; ð35Þ

with the 3D radial wave functions ϕPðq̂Þ and ϕVðq̂Þ
obtained as solutions of mass spectral equations [30–32]
of pseudoscalar and vector quarkonia, respectively, that
were obtained from 3D Salpeter equations being

ϕP;Vð1S; q̂Þ¼
1

π3=4
1

β3=2P;V

e
− q̂2

2β2
P;V ;

ϕP;Vð2S; q̂Þ¼
ffiffiffi
3

2

r
1

π3=4
1

β3=2P;V

�
1−

2q̂2

3β2P;V

�
e
− q̂2

2β2
P;V ;

ϕVð1D;q̂Þ¼
ffiffiffiffiffi
4

15

r
1

π3=4
1

β7=2V

q̂2e
− q̂2

2β2
V ;

ϕP;Vð3S; q̂Þ¼
ffiffiffiffiffi
15

8

r
1

π3=4
1

β3=2P;V

�
1−

4q̂2

3β2P;V
þ 4q̂4

15β4P;V

�
e
− q̂2

2β2
P;V ;

ð36Þ

where βP;V [32] are the inverse range parameters.
These radial wave functions were recently used for

calculations of some M1 and E1 transitions in [26]. We
have made use of the 3D Salpeter equations in Eq. (6) that
depend on the variable q̂2 that is Lorentz-invariant and is a
four-scalar, whose validity extends over the entire 4D space,
while also keeping contact with the surfaceP:q ¼ 0 (hadron
rest frame). Now, our mass spectrum and the 3D wave
functions ϕðq̂Þ in Eq. (36) and (49) (please see [30]) were
calculated fromSalpeter equations in Eq. (6) in the rest frame
of the hadron.
Here, q̂02 is expressed as [26]

q̂02 ¼ q̂2 þ 2m̂2

ðM2 −M02Þ
2M

jq̂j þ m̂2
2

ðM2 −M02Þ2
4M2

ð37Þ

where jq̂j is the length of the 3D vector q̂, defined as
jq̂j ¼

ffiffiffiffiffi
q̂2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − ðq:PÞ2=P2

p
, and is a Lorentz-invariant

variable Ref. [26].
The Bethe-Salpeter normalizers NP and NV are obtained

through the current conservation condition,

2iPμ ¼
Z

d4q
ð2πÞ4 Tr

�
ψ̄ðP; qÞ

� ∂
∂Pμ

S−1F ðp1Þ
�

× ψðP; qÞS−1F ð−p2Þ
�
þ ð1 ↔ 2Þ: ð38Þ

To evaluateMfi, we need theþþ and −− components of
3D BS wave functions of pseudoscalar and vector mesons
and the corresponding adjoint wave functions of the
pseudoscalar meson, which are given in Eqs. (A2)–(A6)
of the Appendix. For E1 transitions, we can similarly
construct the þþ and −− components of the axial meson
wave functions.
The transition amplitude Mfi is expressed as

Mfi ¼ FPVϵμναβPμϵ
λ0
ν ϵ

λ
αP0

β; ð39Þ

where the antisymmetric tensor ϵμναβ ensures its gauge
invariance. Here, FPV is the transition form factor for
P → Vγ, with the expression
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FPV ¼ F1
PV þ F2

PV ¼ NPNV
1

M2

Z
d3q̂
ð2πÞ3

ϕPðq̂ÞϕVðq̂0Þ
16ω1ω2ω

0
1ω

0
2

× ½eq½TR1� þ eQ½TR2��; ð40Þ

where the expressions for F1
PV and F2

PV are given in
Eqs. (A6)–(A7) in the Appendix, and correspond to
contributions from the two diagrams, which is a more
accurate treatment. Here ½TR1�, and ½TR2� involve trace
over gamma matrices. The above expression corresponds to
FPVðk2 ¼ 0Þ, which corresponds to emission of a real
photon.
The kinematical relation connecting q̂02 with q̂2 is given

in Eq. (37). To calculate the decay widths, we need to
calculate the spin averaged amplitude square jM̄fij2, where
jM̄fij2 ¼

P
λ;λ0 jMfij2, where we sum over the final polari-

zation states λ of the V meson and λ0 of the photon. We
make use of the normalizations Σλϵ

λ
μϵ

λ
ν ¼ 1

3
ðδμν þ PμPν

M2 Þ for
the vector meson and Σλ0ϵ

λ0
μ ϵ

λ0
ν ¼ δμν for the emitted photon,

with Mfi taken from Eq. (39). Thus, we write

jMfij2 ¼ −2e2½M2M02 − ðP:P0Þ2�jFPV j2: ð41Þ

In the above equation, we evaluate P:P0 ¼ −ME0 in the

rest frame of the initial vector meson, where E0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P⃗02 þM02

p
is the energy of the final pseudoscalar meson,

giving P:P0 ¼ −ðM2þM02
2

Þ. Thus, jM̄fij2 can be expressed as

jM̄fij2 ¼ e2
ðM2 −M02Þ2

2
jFPV j2: ð42Þ

The decay width of the process (P → Vγ) in the rest
frame of the initial meson is expressed as

ΓP→Vγ ¼
jM̄fij2
8πM2

jP⃗0j; ð43Þ

where we make use of the fact that the modulus of the
momentum of the emitted vector meson can be expressed

in terms of masses of particles as jP⃗0j ¼ jk⃗j ¼ ωk ¼
1
2M ðM2 −M02Þ, where ωk is the kinematically allowed
energy of the emitted photon. Thus Γ in turn can be
expressed as

Γ ¼ αe:m:jFPV j2ω3
k: ð44Þ

TheM1 decay widths for the processes studied are given
in Table II, for the meson masses given in Table I, that were
evaluated in our previous works [28,32].

TABLE I. Masss spectra of ground and excited states of axial (1þ−), pseudoscalar (0−þ), and vector (1−−)
quarkonia (in GeV) in BSE-CIA used in the transitions studied in this work, along with data and results of other
models.

BSE-CIA[28,32] Experiment[12] BSE Ref. [42–45] RQM

Mhcð1P1Þ 3.535 3.525� 0.00001 3.5244 [35] 3.5059 [42] 3.525 [46]
Mhcð2P1Þ 3.743 3.888� 0.0025 3.9358 [35] 3.927 [46]
Mηcð1S0Þ 3.0004 2.9839� 0.0005 3.292 [43] 2.981 [47]
Mηcð2S0Þ 3.5934 3.6376� 0.0012 4.240 [43] 3.635 [47]
MDð2S0Þ 2.5288 2.5235 [44] 2.581 [47]
MD�ð1S0Þ 2.0221 2.010� 0.00005 2.0104 [44] 2.010 [47]
MDsð2S0Þ 2.6358 2.6333 [44] 2.6888 [47]
MD�

sð1S0Þ 2.1153 2.1122� 0.0004 2.1123 [44] 2.111 [47]
MJ=Ψð1SÞ 3.0970 3.0969� 0.0000025 3.099 [42] 3.096 [48]
MB�

cð1S1Þ 6.3514 6.321� 0.020 [45] 6.332 [48]
MBcð2S0Þ 6.7241 6.960� 0.080 [45] 6.835 [48]

TABLE II. Radiative decay widths of heavy-light mesons (in keV.) for M1 transitions in BSE, along with
experimental data and results of other models.

β BSE-CIA Experiment RQM PM RQM

Γηcð2S0Þ→J=Ψð1S1Þγ 0.200 0.476 < 158þ44.8−40.6 [12] 0.700 [48] 2.29 [49] 5.6 [50]
ΓDð2S0Þ→D�ð1S1Þγ 0.180 12.157 8.594 [51]
ΓDsð2S0Þ→D�

s ð1S1Þγ 0.185 7.602
ΓBcð2S0Þ→B�

cð1S1Þγ 0.460 0.1028 0.096 [52] 0.093 [53] 0.488 [48]
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We now calculate the radiative decay widths for the
process A− → Pþ γ in the next section.

IV. RADIATIVE DECAYS OF HEAVY-LIGHT
QUARKONIA THROUGH A− → Pγ

The E1 transitions are characterized by jΔLj ¼ 1. Thus
in these transitions, there is change in parity between the
initial and final hadronic states. The scattering amplitude of
the decay process A− → Pγ corresponding to diagram 1
can be written as

M1
fi¼−ie

Z
d3q̂
ð2πÞ3

1

M2
Tr½α1Pψ̄þþ

P ðq̂0Þϵ0ψþþ
A ðq̂Þ

þα2Pψ̄
þþ
P ðq̂0Þϵ0ψ−−

A ðq̂Þ
þα3Pψ̄−−

P ðq̂0Þϵ0ψþþ
A ðq̂Þþα4Pψ̄−−

P ðq̂0Þϵψ−−
A ðq̂Þ�: ð45Þ

Here, the results of contour integrals over dσ are given as
α1;…; α4 in Eq. (29). Similarly the amplitude for diagram 2
can be written as

M2
fi¼−eQ

Z
d3q̂
ð2πÞ3

1

M2
Tr½α01ψ̄þþ

P ðq̂0ÞPψþþ
A ðq̂Þϵ0

þα02ψ̄
þþ
P ðq̂0ÞPψ−−

A ðq̂Þϵ0
þα03ψ̄

−−
P ðq̂0ÞPψþþ

A ðq̂Þϵ0þα04ψ̄
−−
P ðq̂0ÞPψ−−

A ðq̂Þϵ0� ð46Þ

And, the results of contour integrals over dσ are given as
α01;…; α04 in Eq. (31). After the 3D reduction of the 4D BS
wave function of A− axial meson under CIA, we express
the 3D BS wave function with dimensionality M as

ψA−ðq̂Þ ¼ γ5ðϵ:q̂Þ
�
g1ðq̂Þ þ i

P
M

g2ðq̂Þ − i
=̂q
M

g3ðq̂Þ

þ 2
P=̂q
M2

g4ðq̂Þ
�
: ð47Þ

Making use of the fact that the leading order Dirac
structures in an axial meson BS wave function in accor-
dance with the power counting rule proposed in [33,38,39]
are γ5ϵ:q̂, and iγ5ϵ:q̂

P
M, and making use of [31], we express

the 3D axial meson BS wave function of dimension M as

ψA−ðq̂Þ ¼ γ5ðϵ:q̂Þ
�
1þ i

P
M

�
ϕA−ðq̂Þ; ð48Þ

where ϕA−ðq̂Þ is the spatial part of this wave function,
whose analytic forms obtained by power series solutions of
3D mass spectral equations [derived from 3D Salpeter
equations in Eq. (6)], in the variable q̂ (which is in fact jq̂j)
for a P-wave meson in its own rest frame, calculated in [31]
are

ϕAð1P;q̂Þ¼
ffiffiffi
2

3

r
1

π3=4
1

β5=2A

q̂e
− q̂2

2β2
A ;

ϕAð2P;q̂Þ¼
ffiffiffi
5

3

r
1

π3=4
1

β5=2A

q̂

�
1−

2q̂2

5β2A

�
e
− q̂2

2β2
A ;

ϕAð3P;q̂Þ¼
ffiffiffiffiffi
35

12

r
1

π3=4
1

β5=2A

q̂

�
1−

4q̂2

5β2A
þ 4q̂4

35β4A

�
e
− q̂2

2β2
A ;

ϕAð4P;q̂Þ¼
ffiffiffiffiffi
35

8

r
1

π3=4
1

β5=2A

q̂

�
1−

6q̂2

5β2A
þ12q̂4

35β4A
−

8q̂6

315β6A

�
e
− q̂2

2β2
A :

ð49Þ

It is to be noted that the wave functions in Eq. (49)
involve even powers of q̂, along with odd power q̂, where
q̂ ¼ jq̂j is the length of the 3D vector q̂, is expressed as
jq̂j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − ðq:PÞ2=P2

p
, and is a Lorentz-invariant quan-

tity [26], along with even powers of q̂, such as q̂2; q̂4;…
etc. which are again Lorentz invariant. And for S-wave
mesons, the wave functions are only functions of even
powers of q̂. Thus when P-wave or S-wave mesons are in
the final state, their wave functions after Lorentz trans-
formation, would involve the variables jq̂0j, and/or even
powers of q̂0. We express q̂02 in terms of q̂2 directly through
Eq. (37), that connects q̂02 with q̂2, while odd power jq̂0j is
expressed as jq̂0j ¼

ffiffiffiffiffiffi
q̂02

p
, where we again make use of

Eq. (37). The BS normalizer of axial meson NA− can be
obtained by solving the current conservation condition
in Eq. (38).
We now obtain the þþ and −− components of the axial

meson wave function with the corresponding adjoint wave
functions as in the case of P and V mesons done earlier, and
calculate expressions for þþþþ, þþ −−, − −þþ, and
− − −− terms that appear in the scattering amplitude
in Eq. (46).
We then evaluate trace over the gamma matrices in

Eq. (46). We make use of the fact that q̂0 ¼ q̂þ m̂2P̂
0,

where P̂0 ¼ P0 − P0:P
P2 P. We combine various terms and

further make use of the fact that for the initial axial
meson P:ϵλ ¼ 0. We can express P̂0:ϵ ¼ P0:ϵ. We can then
express the invariant matrix element M1

fi corresponding to
diagram 1 as

M1
fi ¼−ieNANP

1

M

Z
d3q̂
ð2πÞ3

ϕAðq̂ÞϕPðq̂0Þ
16ω1ω2ω

0
1ω

0
2

× ½Θ1ðϵλ0 :ϵλÞþΘ2ðϵλ0 :PÞðϵλ:P0ÞþΘ3ðϵλ0 :P0Þðϵλ:P0Þ�;
ð50Þ

Similarly for diagram 2, we write the invariant matrix
element M2

fi as

GULERIA, GEBREHANA, and BHATNAGAR PHYS. REV. D 104, 094045 (2021)

094045-10



M2
fi ¼−ieNANP

1

M

Z
d3q̂
ð2πÞ3

ϕAðq̂ÞϕPðq̂0Þ
16ω1ω2ω

0
1ω

0
2

× ½Θ0
1ðϵλ

0
:ϵλÞþΘ0

2ðϵλ
0
:PÞðϵλ:P0ÞþΘ0

3ðϵλ
0
:P0Þðϵλ:P0Þ�:

ð51Þ

Total amplitude Mfi for the process can be expressed as
the sum of amplitudes from the two diagrams
Mfi ¼ M1

fi þM2
fi, where

Mfi ¼ R1ðϵλ0 :ϵλÞ þ R2ðϵλ0 :PÞðϵλ:P0Þ þ R3ðϵλ:P0Þðϵλ0 :P0Þ;

R1 ¼ −ieNANP
1

M2

Z
d3q̂
ð2πÞ3

ϕPðq̂0ÞϕAðq̂Þ
16ω1ω2ω

0
1ω

0
2

ðΘ1 þ Θ0
1Þ;

R2 ¼ −ieNANP
1

M2

Z
d3q̂
ð2πÞ3

ϕPðq̂0ÞϕAðq̂Þ
16ω1ω2ω

0
1ω

0
2

ðΘ2 þ Θ0
2Þ;

R3 ¼ −ieNANP
1

M2

Z
d3q̂
ð2πÞ3

ϕPðq̂0ÞϕAðq̂Þ
16ω1ω2ω

0
1ω

0
2

ðΘ3 þ Θ0
3Þ;

ð52Þ

where integrals over d3q̂ are performed over Θi and Θ0
i.

Thus R1, R2, and R3 are the three form factors in the
above equation. Now, with a change of variables, and
making use of the electromagnetic gauge invariance, it can
be shown that these three form factors appearing inMfi, are
not independent, and we can express the invariant ampli-
tude Mfi in terms of a single form factor.
To show this, we introduce two new external variables P̄

and k, which are defined as

P̄ ¼ Pþ P0; k ¼ P − P0; ð53Þ

where P̄ is the sum of momenta of the initial and emitted
mesons and k is the emitted photon momentum. Thus, we
can express the initial and final meson momenta P and P0 in
terms of new variables as P ¼ P̄þk

2
and P0 ¼ P̄−k

2
. In terms of

these new variables, we can express the amplitude Mfi as

Mfi ¼ S1ðϵ0:ϵÞ þ S2ðP̄:ϵÞðP̄:ϵ0Þ þ S3ðk:ϵÞðP̄:ϵ0Þ;

S1 ¼ R1; S2 ¼
1

4
ðR2 þ R3Þ; S3 ¼ −

1

4
ðR2 þ R3Þ: ð54Þ

Now, the transversality property of the polarization vector
of the axial meson P:ϵ ¼ 0 leads to

ϵνðP̄þ kÞν ¼ 0: ð55Þ
We now introduce a new form factor S00 ¼ −S2 þ S3, in

terms of which we can write Mfi as

Mfi ¼ ϵ0μϵν½S1δμ;ν þ S2P̄μðP̄þ kÞν þ S00P̄μkν�: ð56Þ

Now due to Eq. (55), the term with S2 vanishes. Thus,
amplitude Mfi can be expressed as

Mfi ¼ ϵ0μϵνMμν;

Mμν ¼ S1δμν þ S00P̄μkν: ð57Þ
Now, electromagnetic gauge invariance demands

kμMμν ¼ 0. This leads to the relation

S00 ¼ −
S1
P̄:k

ð58Þ

between the form factors, which is like an equation of
constraint. Thus, due to the electromagnetic gauge invari-
ance S1 and S00 are no longer independent, and we can
express the amplitude Mfi in terms of a single form factor
S1, whose expression is given in the next equations:

Mfi ¼ S1

�
ðϵ0:ϵÞ − 1

P̄:k
ðP̄:ϵ0Þðk:ϵÞ

�
;

S1 ¼ −ieNANP
1

M2

Z
d3q̂
ð2πÞ3

ϕPðq̂0ÞϕAðq̂Þ
16ω1ω2ω

0
1ω

0
2

× ðΘ1ðq̂2Þ þ Θ0
1ðq̂2ÞÞ: ð59Þ

The expressions for Θ1ðq̂2Þ and Θ0
1ðq̂2Þ in the expression

for Mfi above are

Θ1ðq̂2Þ ¼ ½ð−α1a5b1 − α2a5d1 − α3e5b1 − α4e5d1Þð−4M2Þq̂2Þ þ ð−α1a8b1 − α2a8d1 − α3e8b1 − α4e8d1Þ4ðP0:PÞq̂2
þ ð−α1a6b2 − α2a6d2 − α3e6b2 − α4e6d2Þð−4M2ÞðP0:PÞq̂2 þ ð−α1a7b2 − α2a7d2 − α3e7b2 − α4e7d2Þð4M2Þq̂2
þ ðα1a9b2 þ α2a9d2 þ α3e9b2 þ α4e9d2Þð−4M2ÞðP0:PÞq̂2 þ ð−α1a1b3 − α2a1d3 − α3e1b3 − α4e1d3Þð4M2Þq̂2
þ ð−α1a4b3 − α2a4d3 − α3e4b3 − α4e4d3Þð4M2ÞðP0:PÞq̂2
þ ð−α1a8b3 − α2a8d3 − α3e8b3 − α4e8d3Þð4M2Þ½ðP0:q̂0Þq̂2 þ ðP0:q̂Þq̂2�
þ ðα1a2b4 þ α2a2d4 þ α3e2b4 þ α4e2d4Þð4M2Þq̂2 þ ðα1a3b4 þ α2a3d4 þ α3e3b4 þ α4e3d4Þð−4P0:PÞq̂2
þ ðα1a6b4 þ α2a6d4 þ α3e6b4 þ α4e6d4Þð4M2ðq̂0:P0Þq̂2
þ ðα1a9b4 þ α2a9d4 þ α3e9b4 þ α4e9d4Þ½4M2q̂2ðP0:q̂0 þ P0:q̂Þ��; ð60Þ
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and

Θ0
1ðq̂2Þ¼ ½ðα01a5b1þα02a5d1þα03e5b1þα04e5d1Þð−4M2Þq̂2þðα01a8b1þα02a8d1þα03e8b1þα04e8d1Þ4ðP0:PÞq̂2

þðα01a6b2þα02a6d2þα03e6b2þα04e6d2Þð−4M2ÞðP0:PÞq̂2þðα01a7b2þα02a7d2þα03e7b2þα04e7d2Þð4M2Þq̂2
þðα01a9b2þα02a9d2þα03e9b2þα04e9d2Þð−12M2ÞðP0:PÞq̂2þðα01a1b3þα02a1d3þα03e1b3þα04e1d3Þð−4M2Þq̂2
þðα01a4b3þα02a4d3þα03e4b3þα04e4d3Þð−4M2ÞðP0:PÞq̂2þðα01a8b3þα02a8d3þα03e8b3þα04e8d3Þð−4M2ÞðP0:q̂Þq̂2
þðα01a2b4þα02a2d4þα03e2b4þα04e2d4Þð−4M2Þq̂2þðα01a3b4þα02a3d4þα03e3b4þα04e3d4Þ4ðP0:PÞq̂2
þðα01a6b4þα02a6d4þα03e6b4þα04e6d4Þð−4M2Þ½ðq̂0:P0Þq̂2þðq̂:P0Þq̂2�
þðα01a9b4þα02a9d4þα03e9b4þα04e9d4Þð4M2ÞðP0:q̂Þq̂2�; ð61Þ

which is expressible in terms of dot products of various
momenta, ðP0:PÞ with expression in Eqs. (14), while P0:q̂,
and P0:q̂0 can be expressed as

P0:q̂ ¼ M2 −M02

2M
jq̂j;

P0:q̂0 ¼ M2 −M02

2M
jq̂j þ m̂1M02 þ ðM2 þM02Þ2

4M2
: ð62Þ

Further, α1;…; α4, and α01;…; α04 are the results of
contour integrals over the poles of the propagators in
Eqs. (29) and (31) respectively, and the expressions for
coefficients ai; bi; di, and ei are given in Eq. (A9) of the
Appendix.
Now, to calculate the decay widths, we need to calculate

the spin averaged amplitude modulus square jM̄fij2, where
jM̄fij2 ¼ 1

2jþ1

P
λ;λ0 jMfij2, where we average over the initial

polarization states λ of the A meson, and sum over the final
polarization λ0 of the photon. We make use of the
normalizations Σλϵ

λ
μϵ

λ
ν ¼ 1

3
ðδμν þ PμPν

M2 Þ for the vector

meson, and Σλ0ϵ
λ0
μ ϵ

λ0
ν ¼ δμν, for the emitted photon, with

Mfi taken from the previous equation, and we
get

P
λ0
P

λ jϵλ0 :ϵλj2 ¼ 1.
Making use of the kinematical relations,

P̄:k ¼ −M2 þM02;

P:k ¼ −M2 þM02

2
;

P̄2 ¼ −2ðM2 þM02Þ;

P̄:P ¼ −3M2 −M02

2
; ð63Þ

the spin-averaged amplitude modulus square of the process
can be written as

jM̄fij2 ¼
1

3
jS1j2

�
1 −

M02

3M2

�
: ð64Þ

We can write the decay width as

ΓA→Pγ ¼
jM̄fij2
8πM2

jP⃗0j; ð65Þ

where we make use of the fact that the modulus of the
momentumof the final pseudoscalar meson can be expressed
in terms of masses of particles as jP⃗0j ¼ 1

2M ðM2 −M02Þ.

V. RADIATIVE DECAYS OF HEAVY-LIGHT
QUARKONIA THROUGH P → A− γ

We proceed to evaluate the process P → A−γ using
Fig. 1. Here, the initial pseudoscalar (0−þ) meson decays
into an axial vector (1þ−) meson and a photon. We can then
express the effective 3D form of an invariant matrix
element M1

fi corresponding to diagram 1 as

M1
fi ¼ −ie

Z
d3q̂
ð2πÞ3

1

M2
Tr½α1Pψ̄þþ

A ðq̂0Þϵ0ψþþ
P ðq̂Þ

þ α2Pψ̄
þþ
A ðq̂0Þϵ0ψ−−

P ðq̂Þ
þ α3Pψ̄−−

A ðq̂0Þϵ0ψþþ
P ðq̂Þ þ α4Pψ̄−−

A ðq̂0Þϵ0ψ−−
P ðq̂Þ�:

ð66Þ

Similarly the amplitude for diagram 2 can be written as

M2
fi ¼ −eQ

Z
d3q̂
ð2πÞ3

1

M2
Tr½α01ψ̄þþ

A ðq̂0ÞPψþþ
P ðq̂Þϵ0

þ α02ψ̄
þþ
A ðq̂0ÞPψ−−

P ðq̂Þϵ0
þ α03ψ̄

−−
A ðq̂0ÞPψþþ

P ðq̂Þϵ0 þ α04ψ̄
−−
A ðq̂0ÞPψ−−

P ðq̂Þϵ0�;
ð67Þ

α1;…; α4 and α01;…;α04 in Eq. (29), and Eqs. (31) are the
results of pole integrations over Mdσ.
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Taking trace over the gamma matrices in the previous
equations, we get the invariant matrix element M1

fi for
diagram 1 as

M1
fi ¼ −ieNANP

1

M2

Z
d3q̂
ð2πÞ3

ϕAðq̂0ÞϕPðq̂Þ
16ω1ω2ω

0
1ω

0
2

½Δ1ðϵλ0 :ϵλÞ þ Δ2ðϵλ0 :PÞðϵλ:PÞ þ Δ3ðϵλ0 :P0Þðϵλ:PÞ�:
ð68Þ

Similarly for diagram 2, we write the invariant matrix
element M2

fi as

M2
fi ¼ −ieNANP

1

M2

Z
d3q̂
ð2πÞ3

ϕAðq̂0ÞϕPðq̂Þ
16ω1ω2ω

0
1ω

0
2

× ½Δ0
1ðϵλ

0
:ϵλÞ þ Δ0

2ðϵλ
0
:PÞðϵλ:PÞ þ Δ0

3ðϵλ
0
:P0Þðϵλ:PÞ�;

ð69Þ

The total amplitudeMfi for the process can be expressed
as the sum of amplitudes from the two diagrams
Mfi ¼ M1

fi þM2
fi, where

Mfi ¼ S01ðϵλ
0
:ϵλÞ þ S02ðϵλ:PÞðϵλ

0
:PÞ þ S03ðϵλ:PÞðϵλ

0
:P0Þ;

S01 ¼ −ieNPNA

Z
d3q̂
ð2πÞ3

ϕPðq̂ÞϕAðq̂0Þ
16ω1ω2ω

0
1ω

0
2M

4M0 ðΔ1ðq̂2Þ þ Δ0
1ðq̂2ÞÞ;

S02 ¼ −ieNPNA

Z
d3q̂
ð2πÞ3

ϕPðq̂ÞϕAðq̂0Þ
16ω1ω2ω

0
1ω

0
2M

4M0 ðΔ2ðq̂2Þ þ Δ0
2ðq̂2ÞÞ;

S03 ¼ −ieNPNA

Z
d3q̂
ð2πÞ3

ϕPðq̂ÞϕAðq̂0Þ
16ω1ω2ω

0
1ω

0
2M

4M0 ðΔ3ðq̂2Þ þ Δ0
3ðq̂2ÞÞ: ð70Þ

The structure ofMfi above is similar to [25]. To calculate
the decay widths, we again need to calculate the spin
averaged amplitude modulus square jM̄fij2, where
jM̄fij2 ¼

P
λ;λ0 jMfij2, where we sum over the final polari-

zation states λ0 of the photon and λ of the V meson.
Following a similar procedure as in A− → Pγ, it is seen that
the contributions to a spin averaged amplitude modulus
square arises only from S01, while the contributions from S02
and S03 vanish after doing the averaging over the polariza-
tion states.

The spin averaged amplitude modulus square gives

jM̄fij2 ¼ jS01j2; ð71Þ

for evaluating that which we need to evaluate the form
factor S1, for which we need to perform

R d3q̂
ð2πÞ3 integration

over ðΔ1ðq̂2ÞÞ þ Δ0
1ðq̂2ÞÞ. The expression for Δ1ðq̂2ÞÞ that

arises from diagram 1 is

Δ1ðq̂2Þ¼ ½4M2q̂2ðα1b04a01þα2b04d
0
1þα3e04a

0
1þα4e04d

0
1Þþ4ðP0:PÞq̂2ðα1b08a01þα2b08d

0
1þα3e08a

0
1þα4e08d

0
1Þ

þ4M2ðP0:PÞq̂2ðα1b06a02þα2b06d
0
2þα3e06a

0
2þα4e06d

0
2Þ

þ4M2q̂2ðα1b07a02þα2b07d
0
2þα3e07a

0
2þα4e07d

0
2Þþ−4M2ðP0:q̂Þq̂2ðα1b06a04þα2b06d

0
4þα3e06a

0
4þα4e06d

0
4Þ

þ4M2q̂2ðP:P0Þðα1b09a02þα2b09d
0
2þα3e09a

0
2þα4e09d

0
2Þ

þ4M2q̂2ðα1b01a03þα2b01d
0
3þα3e01a

0
3þα4e01d

0
3Þþ4M2ðP0:PÞq̂2ðα1b05a03þα2b05d

0
3þα3e05a

0
3þα4e05d

0
3Þ

þ4M2ðP0:q̂0Þq̂2ðα1b08a03þα2b08d
0
3þα3e08a

0
3þα4e08d

0
3Þþ4M2q̂2ðα1b02a04þα2b02d

0
4þα3e02a

0
4þα4e02d

0
4Þ

−4ðP0:PÞq̂2ðα1b03a04þα2b03d
0
4þα3e03a

0
4þα4e04d

0
4Þ−4M2ðP0:q̂0Þq̂2ðα1b06a04þα2b06d

0
4þα3e06a

0
4þα4e06d

0
4Þ�; ð72Þ

while the expression for Δ0
1 arising from for diagram 2 reads
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Δ0
1ðq̂2Þ ¼ ½−ðα01b6a4 þ α02b

0
6d

0
4 þ α03e

0
6a

0
4 þ α04e

0
6d

0
4ÞðP0:q̂Þð4M2Þq̂2 þ ðα01b04a01 þ α02b

0
4d

0
1 þ α03e

0
4a

0
1 þ α04e

0
4d

0
1Þð−4M2Þq̂2

þ ðα01b08a01 þ α02b
0
8d

0
1 þ α03e

0
8a

0
1 þ α04e

0
8d

0
1Þ4ðP0:PÞq̂2 þ ðα01b06a02 þ α02b

0
6d

0
2 þ α03e

0
6a

0
2 þ α04e

0
6d

0
2Þ8M2ðP0:PÞq̂2

þ ðα01b07a02 þ α02b
0
7d

0
2 þ α03e

0
7a

0
2 þ α04e

0
7d

0
2Þ4M2q̂2 þ ðα01b08a03 þ α02b

0
8d

0
3 þ α03e

0
8a

0
3 þ α04e

0
8d

0
3Þ4M2ðP0:q̂Þq̂2

þ ðα01b09a02 þ α02b
0
9d

0
2 þ α03e

0
9a

0
2 þ α04e

0
9d

0
2Þ4M2ðP0:PÞq̂2 þ ðα01b01a03 þ α02b

0
1d

0
3 þ α03e

0
1a

0
3 þ α04e

0
1d

0
3Þ4M2q̂2

þ ðα01b05a03 þ α02b
0
5d

0
3 þ α03e

0
5a

0
3 þ α04e

0
5d

0
3Þ4M2ðP0:PÞq̂2 þ ðα01b08a03 þ α02b

0
8d

0
3 þ α03e

0
8a

0
3 þ α04e

0
8d

0
3Þ4M2ðP0:q̂0Þq̂2

þ ðα01b02a04 þ α02b
0
2d

0
4 þ α03e

0
2a

0
4 þ α04e

0
2d

0
4Þ4M2q̂2 þ ðα01b03a04 þ α02b

0
3d

0
4 þ α03e

0
3a

0
4 þ α04e

0
3d

0
4Þ4ðP0:PÞq̂2

þ ðα01b06a04 þ α02b
0
6d

0
4 þ α03e

0
6a

0
4 þ α04e

0
6d

0
4Þ4M2ðP0:q̂0Þq̂2 þ ðα01b09a04 þ α02b

0
9d

0
4 þ α03e

0
9a

0
4 þ α04e

0
9d

0
4Þ8M2ðP0:q̂Þq̂2�;

ð73Þ

which is again expressible in terms of dot products of
various momenta, ðP0:PÞ, P0:q̂, and P0:q̂0 with expressions
in Eqs. (14) and (62) respectively, and α1;…; α4 and
α01;…; α04 are the results of the contour integrations over
the poles of the propagators in Eqs. (29) and (31). The
coefficients a0i, b0i, d0i, e0i entering into Δ1, and Δ0

1 above
are given in Eq. (A10) of the Appendix.
The decay widths Γ for the process P → A−γ are given

by Eq. (65) with P0 now the momentum of the emitted
axial meson.

VI. RESULTS AND DISCUSSION

The present work is an extension of our work in [26] to
study of radiativeM1 decays P → Vγ and E1 decays A− →
Pγ and P → A−γ of heavy-light quarkonia in the frame-
work of a 4 × 4 BSE under covariant instantaneous ansatz,
which is a Lorentz-invariant generalization of instantaneous
approximation. In our recent work [26], we had studied the
processes V → Pγ, V → Sγ, and S → Vγ. Such processes
involve quark-triangle diagrams, involve two hardon-quark
vertices, and are difficult to evaluate in BSE under CIA. We
have made use of the generalized method of handling
quark-triangle diagrams with two hadron-quark vertices in
the framework of a 4 × 4 BSE by expressing the transition
amplitude Mfi as a linear superposition of terms (shown in
[26]) involving all possible combinations of þþ and −−
components of Salpeter wave functions of final and initial
hadrons, through the terms þþþþ, − − −−, þþ −−,

and − −þþ, with each of the four terms being associated
with a coefficient αiði ¼ 1;…; 4Þ, which is the result of
pole integration in the complex σ plane. This superposition
of all possible terms is a feature of relativistic frameworks.
Using this generalized expression for Mfi, in Eqs. (28)–

(31), we have evaluated the decay widths forM1 transitions
1S0 → 3S1 þ γ involving the decays of the ground and
excited states of the heavy-light mesons such as
ηcð2SÞ; Bcð2SÞ. We mention that as seen from Tables II
and III, the decay rates of M1 transitions are much weaker
than the rates for E1 transitions. But M1 decay rates are
interesting as they allow access to spin-singlet states, which
are very difficult to produce. It can be seen that Table II for
M1 transitions shows only the upper limit of the exper-
imental value of Γ < 158þ44.8−40.6 KeV [12], which is the
decay width for the transition ηcð2SÞ → J=Ψð1SÞ þ γ.
And the theoretical results are much below this upper
limit. The experimental data for other transitions is not
available yet.
In our previous work[26], we simplified the calculation

by considering only the most leading Dirac structures in the
wave functions of P, V, and S mesons, that contribute the
maximum to the calculation of all meson observables in
accordance with our power counting rule as seen in our
previous studies on leptonic decay constants and two
photon decays of a meson [33,38]. However, in the present
calculation, we consider the two leading order Dirac
structures in the BS wave functions of P, V, and A mesons
given in Eqs. (35) and (48) in accordance with the power

TABLE III. Radiative decay widths of heavy-light mesons (in keV) for E1 transitions in BSE, along with
experimental data and results of other models.

β BSE-CIA Experiment [48] PM RQM

Γhcð1PÞ→ηcð1S0Þγ 0.253 363.047 357� 204 [12] 560 [48] 398� 99 [19] 482 [13]
Γhcð2PÞ→ηcð2S0Þγ 0.471 187.145 160 [27] 218 [50]
Γhcð2PÞ→ηcð1S0Þγ 0.510 20.195 135 [27] 85 [50]
Γηcð2S0Þ→hcð1PÞγ 0.650 6.909 6.2 [48] 49 [50]
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counting scheme we proposed in [33,38], which makes this
calculation more rigorous.
Now, for processes where a single hadron is involved,

such as leptonic and two-photon decays of a hadron, it is
possible to study partial contributions and relevance of
different Dirac structures in hadronic BS wave functions of
the hadron by employing a power counting rule [33,38,39]
we had proposed. In other works [37,41] also, the con-
tribution of separate Dirac structures were studied only for
mass spectral studies and leptonic decays of hadrons where
a single hadron is involved in the process.
However, for single photon radiative decay process such

asP → Vγ, where two hadrons are involved, it is not possible
to find partial contributions from individual Dirac structures
appearing in hadronic BS wave functions, since, we notice
that there is a complete mixing up of the Dirac structures
appearing in the BS wave functions of the two different
hadrons, and one can not cleanly disentangle their contri-
butions. This is due to the fact that the amplitude, Mfi

given in Eqs. (28) and (30) involves terms like,
Tr½α1Pψ̄þþ

V ðq̂0Þϵ0ψþþ
P ðq̂Þ þ…::�, where, ψ̄þþ

V ðq̂0Þ involves
the vectormesonwave function, ψVðq̂Þ, which is expressible
as a superposition of two leading order Dirac structures,
γV1

¼ iMϵ and γV2
¼ ϵP, as in Eq. (35), of which γV1

is the
more dominant structure, while ψþþ

P ðq̂Þ involves pseudo-
scalar meson wave function, ψPðq̂Þ, which is expressible in
terms of two leading order Dirac structures, γP1 ≡Mγ5, and
γP2

≡ iPγ5, of which γP1
was the more dominant structure.

Now, we write the total amplitude Mfi ¼ M1
fi þM2

fi
using Eqs. (28) and (30), each of which involves trace
over the superposition of the mixtures of terms of the type
ðγV1

ÞðγP1
Þ, and ðγV2

ÞðγP2
Þ, besides two additional “inter-

ference” terms like ðγV1
ÞðγP2

Þ and ðγV2
ÞðγP1

Þ, where

brackets (...) represent the fact that factors like P
MΛ��

and Λ�� P
M sandwich the hadronic Dirac structure γP1;2

or
γV1;2

from left and right, besides the appearance of P and ϵ0

as in Eqs. (28) and (30).
With the use of two Dirac structures, the total amplitude

Mfi for the process P → Vγ can be expressed in terms of the
transition form factor FPV through Eqs. (39), with detailed

expressions given in Eqs. (A6) and (A7) in the Appendix.
We can then express the form factor FPV as a superposition
of the four amplitudes as FPV ¼ F1 þ F2 þ F3 þ F4,
where F1 ¼ FγV1 γP1

, F2 ¼ FγV2 γP2
, F3 ¼ FγV1 γP2

, and
F4 ¼ FγV2 γP1

, where the notation FγV1 γP1
implies the partial

amplitude calculated using the mixture of Dirac structures
ðγV1

ÞðγP1
Þ of vector and pseudoscalar mesons. Thus we

can at best find the partial amplitudes Fi, where
i ¼ γV1

γP1
; γV2

γP2
; γV1

γP2
, and γV2

γP1
that involve mixtures

of these Dirac structures of two different hadrons, and some
of the partial amplitudes appear with opposite signs, and
their partial contribution to Γ is of little relevance. These
transition form factors F0

is are calculated only at the photon
point ðk2 ¼ 0Þ where they are real.
Further, the partial contribution of any of these four

amplitudes to decay width Γ cannot be found, since Γ
calculated with the use of two Dirac structures will be
expressed as Γ∼jFPV j2¼jFγV1 γP1

j2þjFγV2 γP2
j2þjFγV1 γP2

j2þ
jFγV2 γP1

j2þP
i≠jFiFj, where i; j ¼ γV1

γP1
; γV2

γP2
; γV1

γP2
,

and γV2
γP1

and will receive contributions not only from the
main diagonal terms but also from the cross terms as well
such as

P
i≠j FiFj, each representing mixtures of four

different Dirac structures of the two hadrons such as
FγV1 γP1

FγV2 γP2
,FγV1 γP1

FγV1 γP2
, etc. Thus, what is of relevance

is the sum of these four partial amplitudes to obtain FPV ,
which is directly related to the total width Γ as men-
tioned above.
We list numerical values of the partial amplitude F1

along with various subsets of partial amplitudes F1 þ F2,
F1 þ F2 þ F3 and total transition form factor FPV ¼ F1 þ
F2 þ F3 þ F4 in Table IV when we include two Dirac
structures in BS wave functions of the two hadrons. It is
seen that amplitudes F1 and F2 appear with opposite sign in
ηcð2SÞ → J=Ψð1SÞγ, DSð2SÞ → D�

Sð1SÞγ, and Bcð2SÞ →
B�
cð1SÞ, and their magnitudes are of little relevance to their

partial contribution to total decay width as explained above.
Also the interfering amplitudes that involve mixtures of
most leading and lesser leading Dirac structures such as
γV1

γP2
and γV2

γP1
play an important role when two Dirac

structures are taken in both hadronic wave functions.

TABLE IV. Contribution (in GeV−1) of partial amplitude F1 along with various subsets of partial amplitudes
F1 þ F2, F1 þ F2 þ F3, and total transition form factor FPV ¼ F1 þ F2 þ F3 þ F4 for the processes P → Vγ. The
total decay width Γ for an individual process is in keV.

ηcð2SÞ → J=Ψð1SÞγ Dð2SÞ → D�ð1SÞγ DSð2SÞ → D�
Sð1SÞγ Bcð2SÞ → B�

cð1SÞγ
Γ 0.476 keV. 12.157 keV. 7.602 keV. 0.1028 keV.
FPV (in GeV−1) −0.006911 −0.0389 −0.03018 0.00521
F1 0.005227 −0.0264 −0.02135 −0.00421
F1 þ F2 0.00191 −0.0268 −0.01977 0.0154
F1 þ F2 þ F3 −0.00411 −0.03316 −0.025012 0.00520
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A similar behavior of partial amplitudes is anticipated for
E1 decays.
However, if we make use of the most leading Dirac

structures in 4D BS wave functions, as well as the BS
normalizers of V and P mesons on the basis of their
contributions to leptonic decays [33,37–39,41], we obtain
the total transition form factor FPV ¼ FγV1 γP1

, whose

magnitude is found to be much higher than jF1j in
Table IV (where all Fi’s are evaluated with the use of
all Dirac structures in NP and NV) for all transitions listed,
implying thereby that the Dirac structures in BS normal-
izers also play a crucial role in the calculation of Fi. The
various contributions of partial amplitudes Fi to Γ seem to
be like more of an interference between Dirac structures of
two different hadrons. But more detailed investigations on
partial contributions of Fi for a number of processes
involving more than one hadron needs to be done, which
to our knowledge has not been studied so far.
In regard to the E1 transitions, we have studied the

processes 1P1 → 1S0 þ γ that involve the decays hcð1PÞ →
ηcð1SÞγ, hcð2PÞ → ηcð2SÞγ, and hcð2PÞ → ηcð1SÞγ, and
the processes 1S0 → 1P1 þ γ that involve the decays
ηcð2SÞ → hcð1PÞγ. We used algebraic forms of 3D
Salpeter wave functions obtained through analytic solutions
of mass spectral equations in an approximate harmonic
oscillator basis for ground and excited states of 0−þ, 1−−,
and 1þ− heavy-light quarkonia for calculation of their decay
widths. We have compared our results with experimental
data, wherever available, and other models, and found
reasonable agreements.
Similarly we again see a wide range of variations in

differentmodels for bothM1, andE1 transitions, particularly
for decays of ηc and hc mesons. Further, our decaywidths for
nS → n0S transitions inM1 decays andnP → n0S transitions

in E1 decays show a marked decrease as we go from ground
to higher excited states, which is in conformity with data and
other models. We have also given our predictions for
radiative decays hcð2PÞ → ηcð2SÞγ, hcð2PÞ → ηcð1SÞγ,
and ηcð2SÞ → hcð1PÞ for which data are not yet available.
In regards toM1 transitions, we have given our prediction for
the decay width of ηcð2SÞ → J=Ψð1SÞγ for which the PDG
tables [12] give only the upper limit on the decaywidth. Also
we calculated the decay widthBcð2SÞ → B�

cð1SÞγ for which
data are not available.
The aim of doing this work was not only to study the

processes P → Vγ, A− → Pγ, and P → A−γ for which very
little data are available but also to test the algebraic forms of
wave functions of P; V; S; A− mesons[28,30–32] that we
have recently derived from the mass spectral equations of
these mesons by following an analytic approach using
4 × 4 BSE, whose main features can be found in
Refs. [30–32].
A more detailed investigation involving various transi-

tions of 1þþ and 1þ− quarkonia, and their transition form
factors will be relegated to a separate paper.
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APPENDIX: RADIATIVE TRANSITIONS

1. Radiative decays, P → Vγ

Substituting the 3D BS wave function of a pseudoscalar meson in Eq. (35), we obtain the þþ and −− components as

ψþþ
P ðq̂Þ ¼ NPϕPðq̂Þ

4ω1ω2

½Mððω1ω2 þm1m2 þ q̂2Þ þ ðm1ω2 þ ω1m2ÞÞ − iððm1ω2 þ ω1m2Þ þ ðω1ω2 þm1m2 − q̂2ÞÞP

þ iMððω1 − ω2Þ þ ðm1 −m2ÞÞ=̂q − ððω1 þ ω2Þ þ ðm1 þm2ÞÞ=̂qP�γ5;

ψ−−
P ðq̂Þ ¼ NPϕPðq̂Þ

4ω1ω2

½Mððω1ω2 þm1m2 þ q̂2Þ − ðm1ω2 þ ω1m2ÞÞ þ iððm1ω2 þ ω1m2Þ − ðω1ω2 þm1m2 − q̂2ÞÞP

þ iMððm1 −m2Þ − ðω1 − ω2ÞÞ=̂qþ ððω1 þ ω2Þ − ðm1 þm2ÞÞ=̂qP�γ5: ðA1Þ

The adjoint Bethe-Salpeter wave function of a pseudoscalar meson can be obtained by evaluating ψ̄��
P ðq̂0Þ ¼

γ4ðψ��
P ðq̂0ÞÞþγ4 as

ψ̄þþ
P ðq̂Þ ¼ NPϕPðq̂Þ

4ω1ω2

½Mððω1ω2 þm1m2 þ q̂2Þ þ ðm1ω2 þ ω1m2ÞÞ − iððm1ω2 þ ω1m2Þ þ ðω1ω2 þm1m2 − q̂2ÞÞP

þ iMððω1 − ω2Þ þ ðm1 −m2ÞÞ=̂q − ððω1 þ ω2Þ þ ðm1 þm2ÞÞP=̂q�γ5;

ψ̄−−
P ðq̂Þ ¼ NPϕPðq̂Þ

4ω1ω2

½Mððω1ω2 þm1m2 þ q̂2Þ − ðm1ω2 þ ω1m2ÞÞ þ iððm1ω2 þ ω1m2Þ − ðω1ω2 þm1m2 − q̂2ÞÞP

þ iMððm1 −m2Þ − ðω1 − ω2ÞÞ=̂qþ ððω1 þ ω2Þ − ðm1 þm2ÞÞP=̂q�γ5: ðA2Þ

Following the same steps as in the case of pseudoscalar mesons, we obtain theþþ and−− components of a vector meson
wave function in Eq. (35) as

ψþþ
V ðq̂0Þ ¼ NVϕVðq̂Þ

4ω0
1ω

0
2

½iM0ω0
1ω

0
2ϵ −

M0

M
ω0
1m2ϵPþ iM0

M
ω0
1ϵP=̂q

0 þ ω0
1ω

0
2ϵP

0 þ im2ω
0
1

M
ϵP0Pþ ω0

1

M
ϵP0P=̂q0 þM0

M
ω0
2m1Pϵ

þ iM0

M2
m1m2PϵPþ M0

M2
m1PϵP=̂q

0 −
im1ω

0
2

M
PϵP0 þm1m2

M2
PϵP0P −

im1

M2
PϵP0P=̂q0 −

iM0

M
ω0
2=̂q

0Pϵ

þ M0

M2
m2=̂q

0PϵP −
iM0

M2
=̂q0PϵP=̂q0 −

ω0
2

M
=̂q0PϵP0 −

im2

M2
=̂q0PϵP0P −

1

M2
=̂q0PϵP0P=̂q0; ðA3Þ

ψ−−
V ðq̂0Þ ¼ NVϕVðq̂Þ

4ω0
1ω

0
2

½iM0ω0
1ω

0
2ϵþ

M0

M
ω0
1m2ϵP −

iM0

M
ω0
1ϵP=̂q

0 þ ω0
1ω

0
2ϵP

0 −
im2ω

0
1

M
ϵP0P −

ω0
1

M
ϵP0P=̂q0 −

M0

M
ω0
2m1Pϵ

þ iM0

M2
m1m2PϵPþ M0

M2
m1PϵP=̂q

0 þ im1ω
0
2

M
PϵP0 þm1m2

M2
PϵP0P −

im1

M2
PϵP0P=̂q0 þ iM0

M
ω0
2=̂q

0Pϵ

þ M0

M2
m2=̂q

0PϵP −
iM0

M2
=̂q0PϵP=̂q0 þ ω0

2

M
=̂q0PϵP0 −

im2

M2
=̂q0PϵP0P −

1

M2
=̂q0PϵP0P=̂q0; ðA4Þ

where as the adjoint wave functions are
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ψ̄þþ
V ðq̂0Þ ¼ NVϕVðq̂Þ

4ω0
1ω

0
2

�
iM0ω0

1ω
0
2ϵ −

M0

M
ω0
1m2Pϵþ

iM0

M
ω0
1=̂q

0Pϵþ ω0
1ω

0
2P

0ϵþ im2ω
0
1

M
PP0ϵþ ω0

1

M
=̂q0PP0ϵþM0

M
ω0
2m1ϵP

þ iM0

M2
m1m2PϵPþ M0

M2
m1=̂q

0PϵP −
im1ω

0
2

M
P0ϵPþm1m2

M2
PP0ϵP −

im1

M2
=̂q0PP0ϵP −

iM0

M
ω0
2ϵP=̂q

0

þ M0

M2
m2PϵP=̂q

0 −
iM0

M2
=̂q0PϵP=̂q0 −

ω0
2

M
P0ϵP=̂q0 −

im2

M2
PP0ϵP=̂q0 −

1

M2
=̂q0PP0ϵP=̂q0;

ψ̄−−
V ðq̂0Þ ¼ NVϕVðq̂Þ

4ω0
1ω

0
2

�
iM0ω0

1ω
0
2ϵþ

M0

M
ω0
1m2Pϵ −

iM0

M
ω0
1=̂q

0Pϵþ ω0
1ω

0
2P

0ϵ −
im2ω

0
1

M
PP0ϵ −

ω0
1

M
=̂q0PP0ϵ −

M0

M
ω0
2m1ϵP

þ iM0

M2
m1m2PϵPþ M0

M2
m1=̂q

0PϵPþ im1ω
0
2

M
P0ϵPþm1m2

M2
PP0ϵP −

im1

M2
=̂q0PP0ϵPþ iM0

M
ω0
2ϵP=̂q

0

þ M0

M2
m2PϵP=̂q

0 −
iM0

M2
=̂q0PϵP=̂q0 þ ω0

2

M
P0ϵP=̂q0 −

im2

M2
PP0ϵP=̂q0 −

1

M2
=̂q0PP0ϵP=̂q0: ðA5Þ

Using the above expressions, we calculate Pψ̄þþ
P ðq̂0Þϵ0Ψþþ

V ðq̂Þ, Pψ̄þþ
P ðq̂0Þϵ0Ψ−−

V ðq̂Þ, Pψ̄−−
P ðq̂0Þϵ0Ψþþ

V ðq̂Þ, and
Pψ̄−−

P ðq̂0Þϵ0Ψ−−
V ðq̂Þ, which are employed in the calculation of transition form factor FPV for P → Vγ. The contribution

of FPV from diagram 1 is given by

F1
PV ¼ eqNVNP

1

M2

Z
d3q̂
ð2πÞ3

ϕVðq̂0ÞϕPðq̂Þ
16ω1ω2ω

0
1ω

0
2

½TR1�;

½TR1� ¼ ðα1a1 þ α2b1 þ α3a1 þ α4b1Þ
�
ω0
1ω

0
2 þM0m1m̂2 −m1m2 −M0m2m̂2 −

�
−
�
m̂1 − m̂2

ðM2 þM02Þ
2M2

�
2

M2

−
�
m̂1 − m̂2

ðM2 þM02Þ
2M2

�
m̂2ðM2 þM02Þ − m̂2

2M
02
��

þ ðα1a2 þ α2b2 þ α3a2 þ α4b2Þ
�
−m2

��
m̂1 − m̂2

ðM2 þM02Þ
2M2

�
M2 þ m̂2ðM2 þM02Þ

�

−M0
��

m̂1 − m̂2

ðM2 þM02Þ
2M2

�
m̂2M2

þ m̂2
2ðM2 þM02Þ

�
−m1

�
m̂1 − m̂2

ðM2 þM02Þ
2M2

�
ð−M2Þ

�

þ ðα1a3 þ α2b3 þ α3a3 þ α4b3Þðω0
1ω

0
2m̂2M2 þM0m1m̂2

2ð−M2Þ −m1m2ð−m̂2M2Þ −M0M2m2m̂2

−
�
−
�
m̂1 − m̂2

ðM2 þM02Þ
2M2

�
2

m̂2M4 −
�
m̂1 − m̂2

ðM2 þM02Þ
2M2

�
m̂2

2ðM2 þM02ÞM2 þ m̂3
2M

2M02
��

þ ðα1a4 þ α2b4 þ α3a4 þ α4b4Þ
�
m1

�
m̂1 − m̂2

ðM2 þM02Þ
2M2

�
m̂2M2 þM0

�
2

�
m̂1 − m̂2

ðM2 þM02Þ
2M2

�
m̂2

2M
2

þ m̂3
2ðM2 þM02Þ

�
−m2

��
m̂1 − m̂2

ðM2 þM02Þ
2M2

�
M2 þ m̂2ðM2 þM02Þ

��

þ ð−α1a1 − α2b1 þ α3a1 þ α4b1Þ
�
−Mω0

1

�
m̂1 − m̂2

ðM2 þM02Þ
2M2

�

þ ω0
2

M

��
m̂1 − m̂2

ðM2 þM02Þ
2M2

�
M2 þ 2m̂2ðM2 þM02Þ

��

þ ð−α1a2 − α2b2 þ α3a2 þ α4b2Þð−MM0ω0
1m̂2 þMω0

1m2 −Mm1ω
0
2 −MM0ω0

2m̂2Þ

þ ð−α1a3 − α2b3 þ α3a3 þ α4b3Þ
�
ω0
2

M

��
m̂1 − m̂2

ðM2 þM02Þ
2M2

�
m̂2M4 þ m̂2

2M
2ðM2 þM02Þ

�

−Mω0
1

�
m̂1 − m̂2

ðM2 þM02Þ
2M2

�
m̂2ð−M2Þ

�

þ ð−α1a4 − α2b4 þ α3a4 þ α4b4ÞðMM0ω0
1ð−m̂2

2Þ −MM0ω0
2m̂

2
2 −m1ω

0
2Mm̂2 −Mω0

1m2ð−m̂2ÞÞ: ðA6Þ
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Similarly, the contribution of FPV from diagram 2 is given by

F2
PV ¼ eQNVNP

1

M2

Z
d3q̂
ð2πÞ3

ϕVðq̂0ÞϕPðq̂Þ
16ω1ω2ω

0
1ω

0
2

½TR2�;

½TR2� ¼ ðα01a1 þ α02b1 þ α03a1 þ α04b1ÞðM0m1ð−m̂1Þ þM0m2m̂1 þ ω0
1ω

0
2 −m1m2

−
1

M2

��
−m̂2 þ m̂1

ðM2 þM02Þ
2M2

�
2

M4 þ m̂2
1ðM2 þM02Þ2 þ m̂2

1M
02M2

��

þ ðα01a2 þ α02b2 þ α03a2 þ α04b2Þ
�
−m1

�
−
�
−m̂2 þ m̂1

ðM2 þM02Þ
2M2

�
M2 þ m̂1ðM2 þM02Þ

�

−m2

�
−
�
−m̂2 þ m̂1

ðM2 þM02Þ
2M2

�
M2 þ m̂1ðM2 þM02Þ

��

þ ðα01a3 þ α02b3 þ α03a3 þ α04b3Þ
�
M0m1M2m̂2

1 −M0m2M2m̂2
1 þ ω0

1ω
0
2M

2ð−m̂1Þ þm1m2m̂1M2

−
��

−m̂2 þ m̂1

ðM2 þM02Þ
2M2

�
2

M4 þ 2

�
−m̂2 þ m̂1

ðM2 þM02Þ
2M2

�
m̂2

1M
2ðM2 þM02Þ

þ m̂3
1ðM2 þM02Þ2 þ m̂3

1M
02M2

��

þ ðα01a4 þ α02b4 þ α03a4 þ α04b4Þ
�
M0

��
−m̂2 þ m̂1

ðM2 þM02Þ
2M2

�
ð−m̂1 þ m̂2

1ÞM2

�

þm2

�
−
�
−m̂2 þ m̂1

ðM2 þM02Þ
2M2

�
M2 þ m̂2

1ðM2 þM02Þ
��

þ ð−α01a1 − α02b1 þ α03a1 þ α04b1Þ
�
−
ω0
1

M

�
−
�
−m̂2 þ m̂1

ðM2 þM02Þ
2M2

�
M2 þ m̂1ðM2 þM02Þ

�

þ ω0
2

M

�
−
�
−m̂2 þ m̂1

ðM2 þM02Þ
2M2

�
M2 þ m̂1ðM2 þM02Þ

��

þ ð−α01a2 − α02b2 þ α03a2 þ α04b2ÞðMM0ω0
2ð−m̂1Þ −Mm2ω

0
1 þMm1ω

0
2 −MM0ω0

1m̂1Þ

þ ð−α01a3 − α02b3 þ α03a3 þ α04b3Þ
�
−Mω0

1

��
−m̂2 þ m̂1

ðM2 þM02Þ
2M2

�
m̂1M2 − m̂2

1ðM2 þM02Þ
�

þMω0
2

��
−m̂2 þ m̂1

ðM2 þM02Þ
2M2

�
m̂1M2 − m̂2

1ðM2 þM02Þ
��

þ ð−α01a4 − α02b4 þ α03a4 þ α04b4Þ
�
MM0ω0

1m̂
2
1 −MM0ω0

2ð−m̂2
1Þ þMm2ω

0
1m̂1

−m1

�
−
�
−m̂2 þ m̂1

ðM2 þM02Þ
2M2

�
m̂1M2 þ m̂2

1ðM2 þM02Þ
�
−Mm1ω

0
2m̂1

�
ðA7Þ

where
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a1 ¼ Mððω1ω2 þm1m2 þ q̂2Þ þ ðm1ω2 þm2ω1ÞÞ;
a2 ¼ −ðm1ω2 þm2ω1Þ − ðω1ω2 þm1m2 − q̂2Þ;
a3 ¼ −ðω1 þ ω2 þm1 þm2Þ;
a4 ¼ ðω1 − ω2Þ þ ðm1 −m2Þ;
b1 ¼ Mðω1ω2 þm1m2 þ q̂2 −m1ω2 −m2ω1Þ;
b2 ¼ −ðm1ω2 þ ω1m2Þ þ ðω1ω2 þm1m2 − q̂2Þ;
b3 ¼ ðω1 þ ω2Þ − ðm1 þm2Þ;
b4 ¼ −ðω1 − ω2Þ þ ðm1 −m2Þ: ðA8Þ

2. Radiative decays A− → Pγ

The expressions for the coefficients ai, bi, di, and ei entering into Θ1 and Θ0
1 in Eqs. (60) and (61) are given as

a1 ¼ −
M0

4
−
m1m2M0

4ω0
1ω

0
2

−
q̂2M0

4ω0
1ω

0
2

; a2 ¼
m2M0

4ω0
2M

þ m1M0

4ω0
1M

; a3 ¼
1

4
þ m1m2

4ω0
1ω

0
2

þ q̂02

4ω0
1ω

0
2

;

a4 ¼
m2

4ω0
2;M

þ m1

4ω0
1M

; a5 ¼
M0

4ω0
2M

þ M0

4ω0
1M

; a6 ¼
−1

4ω0
2M

; a7 ¼
M0m1

4ω0
1ω

0
2

þ M0m2

4ω0
1ω

0
2

;

a8 ¼
m1

4ω0
1ω

0
2

þ m2

4ω0
1ω

0
2

; a9 ¼
−1

4ω0
1ω

0
2

; b1 ¼
M
4
þm1m2M

4ω1ω2

þm1M
4ω1

þm2M
4ω2

−
q̂2M
4ω1ω2

;

b2 ¼
m1

4ω1

þ m2

4ω2

þ 1

4
þ m1m2

4ω1ω2

−
q̂2

4ω1ω2

; b3 ¼ −
1

4ω1

þ 1

4ω2

−
m1

4ω1ω2

þ m2

4ω1ω2

;

b4 ¼ −
m1M
4ω1ω2

−
M
4ω2

þ M
4ω1

−
m2M
4ω1ω2

; e1 ¼ −
M0

4
−
m1m2M0

4ω0
1ω

0
2

þ q̂02M0

4ω0
1ω

0
2

;

e2 ¼ −
m2M0

4ω0
2M

−
m1M0

4ω0
1M

; e3 ¼
1

4
−

m1m2

4ω0
1ω

0
2

−
q̂02

4ω0
1ω

0
2

; e4 ¼ −
m2

4ω0
2M

þ m1

4ω0
1M

;

e5 ¼
M0

4ω0
2M

−
M0

4ω0
1M

; e6 ¼ −
1

4ω0
2M

; e7 ¼
M0m1

4ω0
1ω

0
2

þ M0m2

4ω0
1ω

0
2

;

e8 ¼ −
m1

4ω0
1ω

0
2

−
m2

4ω0
1ω

0
2

; e9 ¼
1

4ω0
1M

; d1 ¼
M
4
þm1m2M

4ω1ω2

−
m1M
4ω1

−
m2M
4ω2

−
q̂2M
4ω1ω2

;

d2 ¼ −
m1

4ω1

−
m2

4ω2 þ 1
4

−
m1m2

4ω1ω2

−
q̂2

4ω1ω2

; d3 ¼
1

4ω1

−
1

4ω2

−
m2

4ω1ω2

þ m1

4ω1ω2

;

d4 ¼
m1M
4ω1ω2

þ M
4ω2

−
M
4ω1

þ m2M
4ω1ω2

: ðA9Þ
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3. Radiative decays P → A− γ
The coefficients ai, bi, di, ei entering into Δ1 and Δ0

1 entering into Eqs. (71) and (72) are given as

a01 ¼
1

4M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p ðM3ω1ω2 þm1ω2M3 þm1m2M3 þ ω1m2M3 −M3q̂2Þ;

a02 ¼
1

4M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p ðM2ω1ω2 þm1ω2M2 þm1m2M2 þ ω1m2M2 −M2q̂2Þ;

a03 ¼
1

4M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p ð−M2ω2 −M2m2 þM2ω1 þM2m1Þ; a04 ¼
1

4M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p ðM3ω2 −M3m2 −M3m1 −M3ω1Þ;

b01 ¼
1

4M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p ð−M2M0ω0
1ω

0
2 −m1m2M0M2 −M2M0q̂02Þ; b02 ¼

1

4M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p ðm1M0Mω0
2 þm2M0Mω0

1Þ;

b03 ¼
1

4M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p ðM2ω0
1ω

0
2 þM2m1m2 þM2q̂02Þ; b04 ¼

1

4M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p ðMM0ω0
1 þMM0ω0

2Þ;

b05 ¼
1

4M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p ðm1Mω0
2 þm2Mω0

1Þ; b06 ¼
1

4M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p ð−Mω0
1Þ;

b07 ¼
1

4M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p ðM2M0ðm2 þm1Þ; b08 ¼
1

4M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p M2ðm1 þm2Þ; b09 ¼
1

4M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p ð−Mω0
2Þ;

e01 ¼
1

4M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p M2ð−M0ω0
1ω

0
2 −m1m2M0 þM0q̂2Þ; e02 ¼

1

4M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p M0Mð−m1ω
0
2 −m2ω

0
1Þ;

e03 ¼
1

4M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p M2ðω0
1ω

0
2 −m1m2 − q̂02Þ; d04 ¼

1

4M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p M3ðω1 − ω2 þm2 þm1Þ;

e04 ¼
1

4M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p MM0ðω0
1 − ω0

2Þ; e05 ¼
1

4M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p Mðm1ω
0
2 −m2ω

0
1Þ; e06 ¼

1

4M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p ð−Mω0
1Þ;

e07 ¼
1

4M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p M0M2ðm1 þm2Þ; e08 ¼
1

4M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p M2ð−m1 −m2Þ; e09 ¼
1

4M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p ðMω0
2Þ;

d01 ¼
1

4M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p M3ðω1ω2 −m1ω2 þm1m2 − ω1m2 − q̂2Þ; d03 ¼
1

4M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p M2ðω2 − ω1 þm1 −m2Þ;

d02 ¼
1

4M2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω1ω2ω

0
1ω

0
2

p M2ð−m1ω2 þ ω1ω2 − ω1m2 −m1m2 − q̂2Þ: ðA10Þ
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