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By solving the Dyson-Schwinger equations and analyzing the obtained mass function, we compute the
quark condensate beyond the chiral limit with a cutoff independent definition. The definition explicitly
separates the quadratic and logarithmic divergence from the condensate, even for very large quark mass.
With this well-defined condensate, we then analyze the evolution of the condensate and its susceptibility
with the current quark mass. The susceptibility shows a critical mass at about ΛQCD, which defines a
transition boundary for internal hadron dynamics.
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I. INTRODUCTION

Chiral symmetry and its breaking plays significant roles in
QCD phase structure as well as hadron dynamics. The current
mass of the quark inside a proton is only about 3–5 MeV, but
the corresponding constituent quark acquires a mass of about
300–500 MeV through interaction. This effect is called
dynamical chiral symmetry breaking (DCSB) and is essential
in the study of QCD properties (for a recent review, see
Ref. [1]. See also Refs. [2–11]). In order to describe the
transition from a dynamical chiral symmetric (DCS) phase to
a DCSB phase, the chiral condensate, i.e., the expectation
value of the composite operator q̄q, is usually applied as the
order parameter (see, e.g., Refs. [12–22]), and the chiral
condensate is also related to many important problems such
as the pion-nucleon sigma term [23], the cosmological
constant [24], and thermodynamic quantities [25].
The chiral condensate and DCSB have been extensively

studied in lattice QCD (see, e.g., Refs. [26–29]), func-
tional renormalization group methods [19,30–35], Dyson-
Schwinger equations (DSEs) [36–49], and effective
field models such as the (Polyakov improved) Nambu–
Jona-Lasinio model [10,50–53] and quark meson model
[32,33,54,55]. Among these theoretical approaches, the

DSE approach is a first-principle, nonperturbative con-
tinuum method. It is able to deal with the DCSB and
confinement simultaneously and has been widely applied
to study the hadron properties and the QCD phase
transitions.
However, despite the great success of the theoretical

studies, there is still ambiguity in the definition of the
condensate, especially when the quark has a nonzero
current mass, i.e., the explicitly chiral symmetry breaking
(ECSB) is considered. The ECSB comes from the Higgs
mechanism, which is significantly different from the
DCSB mechanism in QCD. The effect of ECSB and its
interference on DCSB is important for understanding the
different mass generation mechanisms and their relations
on the properties of quarks and hadrons (see, e.g.,
Refs. [11,41,56–58]). For instance, the pure DCSB effect
with no current quark mass gives a massless pion,
and after introducing the ECSB effect, more than 95%
of the pion mass comes from the interference. Managing
the DCSB effect properly may also be quite significant to
describing properties of heavy flavor systems (see, e.g.,
Ref. [59]). However, on one hand, it is challenging to well
define the chiral condensate due to the quadratic diver-
gence brought by the current quark mass term [15,60–62].
On the other hand, it is, in principle, difficult to separate
the DCSB effect from the explicit mass scale arising from
the ECSB term. To solve these problems, one needs to
determine appropriately the quark condensate in the case
of both light flavor and heavy flavor quarks.
Different ways have been proposed to remove the

quadratic divergence of the condensate beyond the chiral
limit. For example, it has been proposed that, since the DSEs
have multisolutions for light flavor quarks, the divergence
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can be canceled by taking the trace of the sum of different
solutions [4–6]. However, at high temperature, high chemi-
cal potential, or large current quark mass, there might be
only one solution and this method cannot be adapted there.
The most straightforward way is to eliminate the quadratic

divergence by doing subtraction. One of the most commonly
used schemes is to subtract a fraction of strange quark
condensate from light quark condensate, where the fraction
coefficient is carefully designed to remove the quadratic
divergence [18,27,49]. Another scheme is to subtract the
derivative of the condensate [35,47]. Both of these two
schemes are successful in removing the quadratic divergence
induced by the nonzero current quark mass. However, there is
still a logarithmic divergence, which already exists at chiral
limit but is not serious and gets quite significant in the case of
heavy flavor quarks. The logarithmic divergence of the
condensate can be, in principle, absorbed by the renormal-
ization constant of quark propagator near chiral limit, which
is generally represented by the Gell-Mann–Oakes–Renner
(GOR) relation. However, the renormalization of the
composite operator becomes more complicated for heavy
quarks and needs to be carefully treated.
In Ref. [5], it has also been proposed that the con-

densate can be extracted from the ultraviolet behavior of
the mass function. However, in case of a finite current
quark mass, the ultraviolet contribution to the condensate
is much smaller than that from the current quark mass,
and the fitting process needs to be extremely careful.
Inspired by these earlier works, if one takes the first

subtraction scheme mentioned above to eliminate the con-
tribution of the current quark mass, and then fits the ultra-
violet behavior of the condensate, we can extract the quark
condensate from the quark propagator while avoiding both
the logarithm and the quadratic divergences [35]. This
process can be extended to large current quark mass since
it does not require the existence of multisolutions of the
DSEs; i.e., we verify a well-defined and divergence-free
quark condensate beyond the chiral limit directly in terms of
the dressed quark propagator.
In our calculation, the current quark mass dependence

of the condensate reveals a critical mass in the neighbor-
hood of ΛQCD (roughly the s-quark current mass). The
critical mass confirms the previous studies of parton
distribution amplitude (PDA) of mesons, where a critical
mass has also been found near the s-quark mass so
that the respective PDA becomes asymptotic [63,64].
These studies indicate a transition boundary for internal
hadron dynamics between the different mass generation
mechanisms.
The remainder of this paper is organized as follows. In

Sec. II, we describe the DSE approach and the setups. In
Sec. III A, we describe the theoretical framework of
extracting the condensate introduced herein. In Sec. III B,
we present our numerical results and discussions.
Section IV provides a summary and perspective.

II. THE GAP EQUATION

The quark condensate is the trace of the fully dressed
quark propagator. The starting point is the renormalized
quark propagator S, as schematically depicted in Fig. 1. It
reads in the Dyson-Schwinger equation approach as

S−1ðpÞ ¼ Z2ði=pþ ZmmζÞ þ ΣðpÞ; ð1Þ
with the self-energy

ΣðpÞ ¼ g2Z1

Z
Λ

q
Dμνðp − qÞ λ

a

2
γμSðqÞ

λa

2
Γνðq; pÞ; ð2Þ

where Z1, Z2, and Zm are the vertex, quark wave function,
and mass renormalization constants, respectively. mζ is the
renormalized current quark mass, λa are the color matrices,RΛ
q represents a Poincaré invariant regularization of the four-
dimensional integral, with Λ as the ultraviolet regularization
mass scale. Γν and Dμν are the dressed quark-gluon vertex
and the dressed gluon propagator, respectively.
From the above equations, we can see that the propagator

S depends on the dressed gluon propagator Dμν and the
dressed quark-gluon vertex Γν explicitly, which must be
specified. Instead of solving the coupled quark and ghost
and gluon system, one may rather choose to employ some
suitable ansatz for the coupling and interaction in Eq. (2),
which has sufficient integrated strength in the infrared to
achieve the dynamical mass generation mechanism.
For the quark-gluon vertex, we apply the rainbow vertex

truncation Γμðq; pÞ ¼ γμ. Under this truncation, however,
the DSE solutions are not multiplicatively renormalizable
and depend on the chosen renormalization point, unless the
model for the gluon propagator is carefully designed.
A commonly used ansatz in practical calculation is to

model the g2DμνðkÞ. In order to obtain a multiplicative
renormalizability (MR), we take the renormalization pro-
cedure described explicitly in Appendix A of Ref. [49].
First, we replace the dressed quark-gluon vertex Γμ with

the renormalized bare one, i.e.,

Γμðq; pÞ ¼ Z1γμ:

This leaves the MR intact, because Z1 renormalizes similar
to the dressed vertex Γμ. Now we have a factor Z2

1 in front

FIG. 1. The Feynman diagram for the Dyson-Schwinger
equation of the quark propagator in Eq. (1). The solid line
with gray circle denotes the dressed quark propagator, the solid
line with black circle denotes the bare quark propagator, the
curly line with gray circle denotes the dressed gluon propaga-
tor, and the black and gray circles stand for the bare vertex and
the dressed vertex, respectively.
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of the self-energy integral (2). Second, we make use of the
Slavnov-Taylor identity and replace

Z2
1 ¼ ðZ2Z̃1=Z̃3Þ2;

where Z̃1 is the renormalization factor of the ghost-gluon
vertex and Z̃3 is the renormalization of the ghost. Again,
this leaves the MR intact. To take a model for the
interaction, we do the replacement

Z2
2

�
Z̃1

Z̃3

�
2

g2DμνðkÞ ¼ Z2
2k

2Gðk2ÞDfree
μν ðkÞ; ð3Þ

where Dfree
μν ðkÞ ¼ ðδμν − kμkν

k2 Þ 1
k2 is the Landau-gauge-free

gluon propagator, and Gðk2Þ is the effective interaction,
which can be represented with models.
The interaction model Gðk2Þ is usually written as

k2Gðk2Þ ¼ k2GIRðk2Þ þ 4πα̃pQCDðk2Þ; ð4Þ

where α̃pQCDðk2Þ is a bounded and monotonically decreasing
regular continuation of the perturbative QCD running cou-
pling to all values of spacelike k2, and GIRðk2Þ is the
interaction at the infrared region and dominates in the region
jkj < ΛQCD. The form of GIRðk2Þ determines whether the
DCSB and/or confinement can be realized.
In this work we adopt the Qin-Chang model [65], and the

interaction is expressed as (s ¼ k2)

GðsÞ ¼ 8π2

ω4
De−s=ω

2 þ 8π2γmF ðsÞ
ln½τ þ ð1þ s=Λ2

QCDÞ2�
; ð5Þ

where F ðsÞ ¼ ð1 − e−s=4m
2
t Þ=s with mt ¼ 0.5 GeV, γm ¼

12=ð33 − 2NfÞ is the dimension anomaly with the flavor
number Nf, and τ ¼ e2 − 1 is a constant. Following
Ref. [66], we take Nf ¼ 4 and ΛQCD ¼ 0.234 GeV. The
parameters D and ω control the strength and the width of
the interaction, respectively. In fact, observable properties
of light-quark, ground-state, vector- and isospin-nonzero
pseudoscalar mesons are insensitive to variations of
ω ∈ ½0.4; 0.6� GeV, as long as

ς3 ≔ Dω ¼ constant:

In this work, following the commonly used values, we set
D ¼ 1.024 GeV2 and ω ¼ 0.5 GeV [67].
After the vertex and gluon is specified, we can solve the

equation for the dressed quark propagator, which can be
decomposed as

S−1ðpÞ ¼ i=pAðp2Þ þ Bðp2Þ: ð6Þ

The renormalization condition of this approach reads

Aðp2Þjp2¼ζ2;mζ¼0 ¼ 1;

∂Bðp2Þ
∂mζ

����
p2¼ζ2;mζ¼0

¼ 1; ð7Þ

where ζ is again the renormalization point and mζ is the
renormalized current quark mass. The dressed quark mass
function is defined as

Mðp2Þ ¼ Bðp2; ζ2Þ=Aðp2; ζ2Þ; ð8Þ

which is independent of the renormalization point ζ.
In this paper, we adopt two renormalization points,

ζ ¼ 19 GeV and ζ ¼ ∞, for different approaches of
calculating the quark condensate. For ζ ¼ 19 GeV, the
renormalization constants Z2 and Zm are determined
using Eq. (7), and Z1 ¼ Z2

2 as our assumption. For
ζ ¼ ∞, all the renormalization constants are set to unity.

III. RESULTS AND DISCUSSIONS

A. Quark condensate beyond chiral limit

Now applying the conventional definition of the chiral
condensate as the trace of the quark propagator, one can
compute the condensate via

Tr½S� ¼ −Z4NcNf

Z
Λ

k
trD½Sðk; ζÞ�

¼ −
Z4NcNf

2π2

Z
Λ

0

k3dkMðk2; ζ2Þ=Aðk2; ζ2Þ
k2 þM2ðk2; ζ2Þ ; ð9Þ

where Z4 ¼ Z2Zm. If the current quark massmζ has a finite
value, then the constituent quark mass Mðp2; ζ2Þ does not
vanish at large p2, and the above integration suffers from
quadratic divergence.
In Refs. [15,47], the condensate beyond the chiral limit is

defined by a subtraction

−hq̄qimζ ≔
�
1 −mζ ∂

∂mζ

�
Tr½S�: ð10Þ

For simplicity, in the following, the condensate calculated
using Eqs. (9) and (10) will be referred to as “condensate A,”
and the approach to calculate condensate Awill be referred to
as “scheme A.” In this paper, for condensate A, the
renormalization point is chosen as ζ ¼ 19 GeV.
At chiral limit and small current quark mass, scheme A

works fine in calculating the quark condensate. However, at
large current quark mass, the condensate A still suffers from
a loglike divergence. In Fig. 2, we presented the calculated
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result of condensate A as a function of ultraviolet cutoff Λ at
several large current quark masses. From the figure, it can be
seen that, for large quark mass, the logarithmic dependence
of the cutoff still exists. As mentioned above, the renorm-
alization of such a composite operator is constrained by the
GOR relation at the chiral limit; however, the cutoff
dependence shown in Fig. 2 suggests that it may fail for
large quark mass, and the log divergence needs to be
carefully treated. Note that the pion condensate does not
suffer from this problem since it can be constrained by the
axial-vector Ward identity for any quark mass [68,69].
In order to obtain a better behavior of the quark

condensate at large current quark mass, in this paper, we
extract the condensate directly by fitting the asymptotic
behavior of the composite operator.
According to the operator product expansion technique,

the asymptotic behavior of the mass function at large
momentum is [5,36]

Mðp2Þasym ¼ C
p2

�
1

2
lnðp2=Λ2

QCDÞ
�
γm−1

þ m̂½lnðp2=Λ2
QCDÞ�−γm; ð11Þ

where

C ¼ −2π2γm
3

hq̄qiζ0
½1
2
lnðζ2=Λ2

QCDÞ�γm
; ð12Þ

and

m̂ ¼ mζ

�
1

2
lnðζ2=Λ2

QCDÞ
�
γm
: ð13Þ

Both C and m̂ are renormalization-independent quantities.
hq̄qiζ0 in Eq. (12) is the condensate at chiral limit with
renormalization point ζ.

By inserting Eq. (11) into Eq. (9), we have

Tr½Sasym� ¼ −hq̄qiζ0 ½lnðΛ
2=Λ2

QCDÞ�γm
½lnðζ2=Λ2

QCDÞ�γm

þ Nc

2π2

Z
Λ
pm̂½ln ðp2=Λ2

QCDÞ�−γmdp: ð14Þ

It is apparent that there exists a logarithmic divergence when
mζ ¼ 0 and an extra quadratic divergence for finite mζ.
From Eq. (14), one can notice that the trace of the quark

propagator is cutoff dependent and needs a subtraction to
eliminate the quadratic divergence that comes from the linear
dependence of the current quark mass in the mass function
and then a renormalization to deal with the logarithmic
divergence.
In the ordinary approach, one would apply renormaliza-

tion first and then do the subtraction. In this paper, we
present an approach that does the subtraction first and then
extracts the condensate from the logarithmic divergence
behavior.
Applying Eq. (10) on Eq. (14), we find that the second

term in Eq. (14) vanishes. However, the logarithmic
divergence remains as

�
1 −mζ ∂

∂mζ

�
Tr½Sasym� ¼ −hq̄qi

�
1

2
lnðΛ2=Λ2

QCDÞ
�
γm
:

ð15Þ

Notice that hq̄qi defined in the above equation is a
renormalization and cutoff-independent condensate. We
rewrite the rhs of Eq. (15) as

F ðhq̄qi;ΛQCD; γmÞ ¼ −hq̄qi
�
1

2
lnðΛ2=Λ2

QCDÞ
�
γm
: ð16Þ

After figuring out the asymptotic behavior of the
subtracted condensate, we can use F ðhq̄qi;ΛQCD; γmÞ
defined in Eq. (16) to fit the trace of the propagator,
ð1 −mζ ∂

∂mζ
ÞTr½Sasym�, and we can extract the condensate

hq̄qi as the fitting parameter. For simplicity, we do the
renormalization at infinity, i.e., taking ζ ¼ Λ, and sending
Λ to infinity. This is equivalent to the unrenormalized
approach and all the renormalization constants become 1.
The renormalized condensate at renormalization point ζ
can be derived as

hq̄qiζ ¼ hq̄qi
�
1

2
lnðζ2=Λ2

QCDÞ
�
γm
: ð17Þ

For simplicity, in the following, the condensate calcu-
lated from extracting asymptotic behavior will be referred
to as “condensate B,” and the approach to calculate
condensate B will be referred to as “scheme B.”

FIG. 2. The calculated quark condensate using Eq. (9), as a
function of the cutoff Λ. Different lines correspond to different
current quark masses. The renormalization point is ζ ¼ 19 GeV.
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The result of the fitting is shown in Fig. 3. As can be seen
from the figure, the fit is with a quite high precision for a
range of current quark masses.
In the chiral limit, the fitting parameters are ΛQCD ¼

0.2749 GeV, γm ¼ 0.4799, and −hq̄qi0 ¼ ð223 MeVÞ3.
The condensate at 2 GeV is derived from Eq. (17):
−hq̄qi0ζ¼2 GeV ¼ ð249 MeVÞ3. This is comparable with
lattice studies [see, e.g., ð252ð5Þð10Þ MeVÞ3 in Ref. [70]
and other lattice results in Refs. [71–77] ].
We need to mention that, although both Figs. 2 and 3

show a logarithmic dependence on the cutoff, they have
totally different meanings. In Fig. 2, this divergence is
what we intend to avoid since we have already applied
the renormalization. In Fig. 3, however, this divergence
is exactly what we need in order to extract the quark
condensate.
Now we get a cutoff-independent chiral condensate in

terms of the quark propagator beyond the chiral limit. In
Fig. 4, we present the obtained result of the quark condensate
as a function of the current quark mass and the comparison
of the two schemes. From the figure, we can see that the two
approaches agree well with each other at chiral condensate
and small current quark mass. For large current quark mass,
however, the two schemes give different results. There are
two key differences that should be noticed. First, the dashed
lines, which are the condensates calculated using Eqs. (9)
and (10), exhibit a significant cutoff dependence, especially
at large current quark masses. This is the same as what we
can see from Fig. 2, where the logarithmic divergence of the
condensate is explicit. The solid lines are the condensate
extracted from the asymptotic behavior. For larger quark
mass, there is slight Λ dependence that comes from the error
of the fitting process. The error increases slightly due to the
sizable current quark mass scale that drives the ultraviolet
behavior of quark mass function to deviate from the

asymptotic form. The error can be reduced by setting a
larger cutoff.
Another difference is the behavior at large current quark

mass. For the dashed lines, the condensate depends almost
linearly on the current quark mass, while for the solid lines,
the increasing speed slows down obviously at large mζ. The
rapid increases of condensate A is mainly due to the remnant
of the logarithmic divergence. However, it does not change
the conclusion about the existence of the critical mass as will
be shown below.

B. Interference between DCSB and ECSB

From Fig. 4, we find that the chiral condensate increases
monotonically with the current quark mass. This behavior
seemingly means that the DCSB effect is stronger for heavier
quarks. This is in contradiction to the nonrelativistic QCD
(NRQCD) computation of heavy quarkonium, whose result
shows that the heavier system can be better described with
current quark by the nonrelativistic potential [78–80].
However, the increasing condensate only means that the
mass scale brought by the chiral symmetry breaking effect
grows along with the scale of current quark mass. This mass
scale contains three parts of contribution: the dynamical part
(DCSB), the explicit part (ECSB), and their interference.
By doing the subtraction, the ECSB effect is excluded from
the definition of condensate, and the condensate consists of
the DCSB and the interference part. The sum of the DCSB
and the interference effect increases as the ECSB increases,
but the proportion from the DCSB effect should be small
when the current quark mass is large, since the interaction is
negligible for extremely heavy quark systems. To illustrate
this, we can define a dimensionless chiral susceptibility as

FIG. 3. The calculated trace of the quark propagator as a
function of cutoff Λ. The symbols with different shapes
correspond to the trace of the propagator calculated from
Eq. (9), and the solid lines with different colors correspond
to the fitted curves in Eq. (16).

FIG. 4. The calculated current quark mass dependence of the
quark condensate with different cutoffs. The dashed lines corre-
spond to the condensate calculated using Eqs. (9) and (10) and are
the counterparts of Fig. 2. The solid lines correspond to the
condensate extracted from the asymptotic behavior of the quark
propagator trace. For each method, we calculate the condensate
under several different values of the cutoff Λ.
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χðmÞ ¼ −∂hq̄qi1=3
∂m : ð18Þ

The calculated current quark mass dependence of the
dimensionless chiral susceptibility is shown in Fig. 5. The
response of the quark condensate to the current mass
increases near the chiral limit and then decreases gradually.
There then exists a critical mass, mcrit ¼ 0.22 GeV, which
separates the two regions (in comparison, the critical mass
obtained from condensate A is mcrit ¼ 0.45 GeV). The
critical mass is well located around ΛQCD ∼ 0.234 GeV,
which is naturally the critical scale between the nonpertur-
bative and perturbative dynamics. It also puts the strange
quark on the transition boundary for internal hadron dynam-
ics, since this critical scale is located in the neighborhood
of the strange quark mass. This indicates that no expansions
in the strange quark mass can be reliable. This critical mass
represents the relation between the DCSB and ECSB effect
through the interference. For m < mcrit, the χðmÞ function is
increasing, which indicates that the interference is mainly
induced by the DCSB effect; while for m > mcrit, the χðmÞ
function is decreasing, indicating that the interference is
mainly induced by the ECSB effect. Therefore, the χðmÞ
function can be taken to identify which effect dominates the
interference.
Also, the behavior of χðmÞ is surprisingly consistent with

the analysis of the PDA of hadrons [63,64]. For the mesons
with light quark, the PDA is a broadening function in
comparison to the asymptotic form 6xð1 − xÞ, while for
heavy quarkonia, the PDA becomes narrower. The PDA of
hadrons gives then this critical mass also in the neighbor-
hood of the strange quark, where the respective PDA
becomes precisely the asymptotic form. This consistence
reveals the connection between the internal hadron dynamics
and the condensate of quarks inside. The different response
of the quark condensate to the external source might induce
an intrinsic transition of internal hadron dynamics.

Notice that the condensate defined above is purely in terms
of the quark propagator and is thus independent of hadrons.
It is then interesting to investigate the behavior of the
condensate when putting the quarks into hadrons. In con-
sidering the pion, these features are expressed in the axial-
vector Ward-Takahashi identity (AV-WTI) [42,68,81].
Equating pole contributions of the corresponding axial and
pseudoscalar vertexes in the AV-WTI, it entails

f2πm2
π ¼ ðmζ

u þmζ
dÞfπρζπ; ð19Þ

where fπ and ρζπ are defined as

ifπPμ ¼ h0jq̄γ5γμqjΠi

¼ Z2ðζ;ΛÞtrD
Z

Λ

k
iγ5γμSðkþÞΓπðk;PÞSðk−Þ; ð20Þ

iρζπ ¼ −h0jq̄iγ5qjΠi

¼ Z4ðζ;ΛÞtrD
Z

Λ

k
γ5SðkþÞΓπðk;PÞSðk−Þ; ð21Þ

respectively, where Γπðk;PÞ is the pion Bethe-Salpeter
amplitude, which reads

Γπðk;PÞ ¼
Z

Λ

q
SðqþÞΓπðq;PÞSðq−ÞKðq; k;PÞ; ð22Þ

where Kðq; k;PÞ is the fully amputated quark-antiquark
scattering kernel and P2 ¼ −m2

π; k� ¼ k� P=2, and
q� ¼ q� P=2, without loss of generality in a Poincaré
covariant approach.
The relation connects the pion mass mπ and decay

constant fπ to the u and d quark current masses and
κζπ ≔ fπρ

ζ
π , namely the in-hadron condensate introduced in

Refs. [60,61,69]. The identity holds in the whole range of
the current quark mass.
Using QCD quark-level Goldberger-Treiman relations,

one can prove [68]

f0πρ
ζ0
π ¼ −hq̄qiζ0; ð23Þ

where the superscript 0 indicates that the quantity is
computed in the chiral limit. The relation means that the
two definitions of the quark condensate coincide at the chiral
limit. However, the in-hadron condensate could deviate
against the quark condensate, since the quarks are now in
the bound state and the interaction could induce a change of
the DCSB effect of quarks. To identify such a point
explicitly, we define the ratio of the two condensates as

rhðmÞ ≔ fπρπ
−hq̄qi : ð24Þ

The calculated current mass dependence of the ratio
rhðmÞ is illustrated in Fig. 6. As we can see in Fig. 6, in

FIG. 5. The calculated dimensionless chiral susceptibility χðmÞ,
where the dashed vertical line indicates the steepest descent mass
of the corresponding condensate −hq̄qi1=3.
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sufficiently small current masses with rh > 1, the in-hadron
condensate is larger than the quark condensate, which
means that the interaction enhances the DCSB effect of
quarks. Again, we can find a critical mass in the neighbor-
hood of the strange quark, m ¼ 0.13 GeV (in comparison,
the critical mass obtained from condensate A is
m ¼ 0.09 GeV); after that, the ratio is smaller than 1
where the in-hadron condensate starts to be smaller than
the quark condensate. In this region, the interaction in
bound states reduces the DCSB effect and leads the system
gradually to the perturbative region.
The similarity of the variation behavior of the rhðmÞ

with the temperature dependence of the trace anomaly
ðε − 3PÞ=T4, which plays the role of a measure of the
interaction energy stored in the system (see, e.g., Refs.
[44,82–84]), confirms this point of view definitely.
This again illustrates the transition of the internal hadron

dynamics, and moreover, it manifests that this transition is
induced by the interference between the DCSB and ECSB
effects of the quark.

IV. SUMMARY AND REMARKS

In summary, we have shown that a cutoff-independent
condensate can be extracted after analyzing the asymp-
totic behavior of the quark mass function. This verifies a

well-defined quark condensate at the level of quark
propagator beyond the chiral limit. Along with the
increase of current quark mass, the DCSB effect man-
ifested via the condensate also shows an increasing
behavior because of the interference of the mass scale
between the two mass generation mechanisms. The
relative contribution can be evaluated after defining a
dimensionless chiral susceptibility. It gives then a critical
mass around ΛQCD, m ¼ 0.22 GeV. In the case where the
current quark mass is smaller, the ECSB effect enhances
the DCSB effect. For heavier quarks, the ECSB effect
reduces the DCSB effect, which is then consistent with the
NRQCD computations of heavy quarkonia.
Moreover, as we mentioned above, this condensate is

independent of hadrons and then different from the in-
hadron condensate. This difference represents the effect of
the interaction in hadrons. In fact, again we find a critical
mass close to the value from dimensionless chiral suscep-
tibility, m ¼ 0.13 GeV. For lighter quarks, as indicated by
the dimensionless chiral susceptibility, the external source
enhances the DCSB effect, and consequently, the inter-
action in hadrons brings in a stronger DCSB effect. When
the quark mass exceeds the critical mass, the in-hadron
condensate is then smaller and thus the DCSB effect is
reduced by the inside interaction of hadrons.
These observations are surprisingly consistent with the

previous studies of the PDA of hadrons. As the current quark
mass increases, the PDA of mesons with equal quark mass
changes from a broadening function to a narrow peak, and
there exists then a critical mass also in the neighborhood of
the strange quark, where the respective PDA becomes
precisely the asymptotic form 6xð1 − xÞ. All these phenom-
ena reveal that an intrinsic transition of internal hadron
dynamics takes place, and more interestingly, there could be
signals from the experiments of strange matter since the
location of the transition is very close.
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