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The effects of the ΣcD̄� − Λcð2595ÞD̄ coupled-channel dynamics and various one-boson-exchange
(OBE) forces for the LHCb pentaquark states, Pcð4440Þ and Pcð4457Þ, are reinvestigated. Both the pion
and ρ-meson exchanges are considered for the ΣcD̄�-Λcð2595ÞD̄ coupled-channel dynamics. It is found
that the role of the Λcð2595ÞD̄ channel in the descriptions of the Pcð4440Þ and Pcð4457Þ states is not
significant with the OBE parameters constrained by other experimental sources. The naive OBE models
with the short-distance δðr⃗Þ term of the one-pion exchange (OPE) keep failing to reproduce the Pcð4440Þ
and Pcð4457Þ states simultaneously. The OPE potential with the full δðr⃗Þ term results in a too large mass
splitting for the JP ¼ 1=2− and 3=2− ΣcD̄� bound states with total isospin I ¼ 1=2. The OBE model with
only the OPE δðr⃗Þ term dropped may fit the splitting much better but somewhat underestimates the
splitting. Since the δðr⃗Þ potential is from short-distance physics, which also contains contributions from the
exchange of mesons heavier than those considered explicitly, we vary the strength of the δðr⃗Þ potential and
find that the masses of the Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ can be reproduced simultaneously with the
δðr⃗Þ term in the OBE model reduced by about 80%. While two different spin assignments are possible to
produce their masses, in the preferred description, the spin parities of the Pcð4440Þ and Pcð4457Þ are 3=2−
and 1=2−, respectively.

DOI: 10.1103/PhysRevD.104.094039

I. INTRODUCTION

The study of multiquark states began even before the
birth of QCD and was accelerated with the development of
QCD. It is speculated that, apart from well-known qqq
baryons and qq̄ mesons, there would be multiquark states,
glueballs, and quark-gluon hybrids in the quark model
notation, which are collectively called exotic hadrons.
Multiquark states can be categorized into tetraquark states
(qqq̄ q̄), pentaquark states (qqqqq̄), and so on. The study of
multiquark states and how the quarks are grouped inside
(i.e., in a compact multiquark state or as a hadronic

molecule) plays a crucial role for understanding the low-
energy QCD, and it is very important to search for them in
experiments.
In this century, many candidates of exotic tetraquark and

pentaquark states in the charm sector have been observed.
A great intriguing fact is that most of them are located near
hadron-hadron thresholds. This property can be understood
as there is an S-wave attraction between the relevant hadron
pair [1] and naturally leads to the hadronic molecular
interpretation for them (as reviewed in Refs. [2–6]). The
validity of the hadronic molecular picture is also reflected
by the successful quantitative predictions of some exotic
states in early theoretical works based on the hadron-
hadron interaction dynamics [7–15].
The first observation of pentaquark candidates with

hidden charm, Pcð4380Þ and Pcð4450Þ, was reported by
the LHCb Collaboration in 2015 [16,17]. These Pc states
are located very close to the hidden-charm N� states pre-
dicted above 4 GeV [8–15,18] and stimulated many further
theoretical studies based on various pictures, such as the
charmed baryon and anticharmedmesonmolecules [19–35],
compact pentaquark states [25,36–43], baryocharmonia
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[44–49], and triangle singularities [50–52]. With about
one-order-of-magnitude larger data sample from Run II of
the Large Hadron Collider, the Pcð4450Þ peak has been
reanalyzed by the LHCb Collaboration and found to be
composed of two narrow overlapping peaks, Pcð4440Þ and
Pcð4457Þ [53], and a new state, Pcð4312Þ, was also
observed in their new analysis. Those states were observed
in the J=ψp invariant mass spectrum, indicating that all
the states contain a combination of the uudcc̄ quark flavors.
The masses of Pcð4312Þ and Pcð4440; 4457Þ are just below
the mass thresholds of the ΣcD̄ and ΣcD̄� channels,
respectively, suggesting a ΣcD̄ð�Þ molecular structure for
them [6,34,54–81].
A lot of theoretical works have been done to identify

the spin parity of these three states. Chen et al. [82] study
them with the one-boson-exchange (OBE) model assisted
with heavy quark spin symmetry (HQSS). In their work,
by considering the coupled-channel effects and the S-D
wave mixing, the Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ
are assigned to be JP ¼ 1=2− ΣcD̄, 1=2− ΣcD̄� and
3=2− ΣcD̄� bound states, respectively. He [60] uses the
quasipotential Bethe-Salpeter approach to study the
ΣcD̄-Σ�

cD̄-ΣcD̄�-Σ�
cD̄� coupled-channel system and obtains

the same quantum numbers for those states as given in
Ref. [82]. However, in the ΣcD� molecular picture, there
are two possibilities for the quantum numbers of the
Pcð4440Þ and Pcð4457Þ. In addition to the above assign-
ment, the Pcð4440Þ and Pcð4457Þ may also be 3=2− and
1=2− states, respectively, as suggested in Refs. [59,67,83]
considering contact term interactions. Analyses consider-
ing one-pion exchange in addition to the contact terms for
the ΣcD̄ð�Þ interactions prefer the assignment of 3=2− for
Pcð4440Þ and 1=2− for Pcð4457Þ [66,68], which is also the
conclusion of the most sophisticated coupled-channel
analysis in Ref. [81]. Furthermore, the analysis of
Ref. [66] provides hints for the existence of a narrow
Pcð4380Þ in the new data [53], which was also pointed out
earlier in Ref. [57], in contrast to the broad one reported by
LHCb in 2015 [16].
In Ref. [84], Burns et al. investigated the role of

the Λc1D̄ channel, which has a threshold at 4457 MeV,
in the Pcð4440Þ and Pcð4457Þ states by considering the
ΣcD̄�-Λc1D̄ coupled-channel dynamics with the one-pion-
exchange (OPE) model. They suggest that the Pcð4457Þ
and Pcð4440Þ have spin-parity quantum numbers 1=2þ and
3=2−. In this model, the Pcð4457Þ state has a positive parity
because the quantum numbers of the Λc1 are 1=2−, and it is
bound by the interplay between the S-wave Λc1D̄ and the
P-wave ΣcD̄� [84,85]. The inclusion of theΛc1D̄ channel is
quite novel. It is argued [84] to be naturally produced with
the color-favored weak decay of the Λb, and does not
contribute to the isospin breaking ratio proposed in
Ref. [83] as a diagnosis of the internal structure of the
Pcð4457Þ. However, to reproduce the binding energy of the
Pcð4457Þ, this model requires the Λc1Σcπ coupling

constant to be much larger than the physical value deduced
from experimental measurements [86]. If the physical value
of that coupling constant is used, there would be only one
bound state with spin-parity JP ¼ 3=2−, which is related
to either Pcð4440Þ or Pcð4457Þ. In this work, we will
reinvestigate such a coupled-channel system by including
more possible meson exchange interactions. This will
enable us to estimate the effects of the Λc1D̄ channel more
comprehensively.
We will also investigate the role of the short-distance δðr⃗Þ

term in the Σð�Þ
c D̄ð�Þ coupled-channel systems. There are

different treatments of the δðr⃗Þ term in the literature
of the phenomenological meson-exchange models. In

Refs. [60,87], the coupled-channel effects of Σð�Þ
c D̄ð�Þ and

Λð�Þ
c D̄ð�Þ are studied by solving the Bethe-Salpeter equation

within the OBE model that includes the δðr⃗Þ term. In their
work, thePcð4312Þ,Pcð4380Þ,Pcð4440Þ, andPcð4457Þ are
reproduced with several cutoff parameters for the exchange
of different light mesons (Λσ, Λπ , Λη, Λρ, and Λω) as

scenario I

8>>><
>>>:

Pcð4312Þ∶ JP ¼ 1=2−ðΣcD̄Þ;
Pcð4380Þ∶ JP ¼ 3=2−ðΣ�

cD̄Þ;
Pcð4440Þ∶ JP ¼ 1=2−ðΣcD̄�Þ;
Pcð4457Þ∶ JP ¼ 3=2−ðΣcD̄�Þ:

These various cutoffs are related to one parameter α by
means of the definition Λex ¼ mex þ α × ð0.22 GeVÞ. The
same assignment for such four Pc states is also obtained in

Ref. [82], in which the authors solve the Σð�Þ
c D̄ð�Þ coupled-

channel systems in the coordinate space with also the δðr⃗Þ
contribution kept in their OBE potentials, and two different
cutoffs are needed in that work. However, in Ref. [68], thePc

states are studied separately in the single-channel Σð�Þ
c D̄ð�Þ

systems with the δðr⃗Þ term discarded in their OBE model.
FourPc states are reproduced with the same cutoff, and their
spin-parity quantum numbers are given as

scenario II

8>>><
>>>:

Pcð4312Þ∶ JP ¼ 1=2−ðΣcD̄Þ;
Pcð4380Þ∶ JP ¼ 3=2−ðΣ�

cD̄Þ;
Pcð4440Þ∶ JP ¼ 3=2−ðΣcD̄�Þ;
Pcð4457Þ∶ JP ¼ 1=2−ðΣcD̄�Þ;

where the spin parities of the Pcð4440Þ and Pcð4457Þ are
interchanged compared to scenario I. It may imply that
the δðr⃗Þ term in the OBE model plays an important role
in the hadronic molecular descriptions of the Pcð4312Þ,
Pcð4380Þ, Pcð4440Þ, and Pcð4457Þ states.
In principle, an effective field theory framework,

which introduces counterterms to parametrize additional
short-distance contributions, is needed for a consistent
treatment of the δðr⃗Þ term. In this work, we rather follow
a phenomenological path and investigate the role of the
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δðr⃗Þ term by adjusting its strength in the OBE model. We
will take the OBEmodel with the potential derived from the
Lagrangian with HQSS as given in Refs. [88–91]. A
percentage parameter a is introduced to represent how
much the δðr⃗Þ term is reduced in the potential of our OBE
model and thus mimics the variation of a constant contact
term in a nonrelativistic effective field theory framework at
leading order. The parameter a is varied in the range of [0,
1]; that is, a ¼ 0ð1Þ denotes fully including (excluding) the
δðr⃗Þ term.
This paper is organized as follows. The details of the

OBE model in the Σð�Þ
c D̄ð�Þ-Λc1D̄ coupled-channel system

are introduced in Sec. II. Numerical results and discussions
on the role of Λc1D̄ channel and the δðr⃗Þ term in the OBE
potential are given in Sec. III. Finally, we draw our
conclusion in Sec. IV.

II. FORMALISM

In this section, the phenomenological heavy hadron
chiral Lagrangian is reviewed, and the potentials for the

Σð�Þ
c D̄ð�Þ-Λc1D̄ system are constructed within the OBE

framework.

A. Lagrangian

To investigate the interactions between a charmed
baryon or an anticharmed meson with light scalar, pseu-
doscalar, and vector mesons, we employ the effective
Lagrangian, taking into account HQSS, which has been
developed in Refs. [88–94]. The light chiral and heavy
quark spin symmetric effective Lagrangian, which
describes the low-energy interactions between the Qqq
baryons=Q̄qmesons and the light bosons, can be written as

Leff ¼ lSS̄aμσS
μ
a −

3

2
g1εμνλκvκS̄

μ
abA

ν
bcS

λ
ca þ iβSS̄abμvαðΓα

bc − ραbcÞSμca þ λSS̄abμFμνðρbcÞScaν
− ih2½S̄μabv · AbcRcaμ þ R̄μ

abv · AcbScaμ� þ h3εμνλκivκ½S̄μabðΓν
bc − ρνbcÞRλ

ca þ R̄μ
abðΓν

bc − ρνbcÞSλca�
þ gSTr½H̄Q̄

a σH
Q̄
a � þ igTr½H̄Q̄

a γ · Aabγ
5HQ̄

b � − iβTr½H̄Q̄
a vμðΓμ

ab − ρμabÞHQ̄
b �

þ iλTr

�
H̄Q̄

a
i
2
½γμ; γν�FμνðρabÞHQ̄

b

�
; ð1Þ

where flavor indices are denoted by a, b, and c and σ is the lightest scalar meson, which is taken to be an SU(3) flavor
singlet,

Aμ ¼ 1

2
ðξ†∂μξ − ξ∂μξ†Þ ¼ i

fπ
∂μPþ � � � ;

Γμ ¼ i
2
ðξ†∂μξþ ξ∂μξ†Þ ¼ i

2f2π
½P; ∂μP� þ � � � ; ð2Þ

with ξ ¼ expðiP=fπÞ and ρα ¼ igVVα=
ffiffiffi
2

p
, where fπ ¼ 132 MeV is the pion decay constant. The symbolsP and Vα denote

the light pseudoscalar octet and the vector nonet, respectively,

P ¼

0
BBBBB@

π0ffiffi
2

p þ ηffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ ηffiffi
6

p K0

K− K̄0 −
ffiffi
2
3

q
η

1
CCCCCA; Vα ¼

0
BBB@

ρ0ffiffi
2

p þ ωffiffi
2

p ρþ K�þ

ρ− − ρ0ffiffi
2

p þ ωffiffi
2

p K�0

K�− K̄�0 ϕ:

1
CCCA

α

: ð3Þ

Field operators for the S- (positive parity) and P-wave (negative parity) heavy baryons Qqq are denoted as interpolating

fields Sμab and Rμ
ab, respectively. H

Q̄
a annihilates the antiheavy meson Q̄q. They are defined as

Sμab ¼ −
1ffiffiffi
3

p ðγμ þ vμÞγ5ðB6QÞab þ ðB�μ
6QÞab; S̄μab ¼ Sμ†abγ

0; ð4Þ

Rμ
ab ¼ −

1ffiffiffi
3

p ðγμ þ vμÞγ5ðB0
3QÞab þ ðB0�μ

3QÞab; R̄μ
ab ¼ Rμ†

abγ
0; ð5Þ

COUPLED-CHANNEL EFFECTS OF THE … PHYS. REV. D 104, 094039 (2021)

094039-3



HQ̄
a ¼ ðP̃�

aμγ
μ − P̃aγ

5Þ 1 − =v
2

; H̄Q̄
a ¼ γ0HQ̄†

a γ0; ð6Þ

where the anticharmed pseudoscalar P̃a and vector P̃�
aμ fields1 are defined in flavor/isospin space as ðD̄0; D−; D−

s Þ and
ðD̄�0; D�−; D�−

s Þ, respectively, with the subscript a is the light flavor index, and vμ ¼ ð1; 0; 0; 0Þ is the 4-velocity of the
heavy hadron. The charmed baryon fields B6c and B0

3c in the SU(3) flavor space are written as

B6c ¼

0
BB@

Σþþ
c Σþ

c =
ffiffiffi
2

p
Ξ0þ
c =

ffiffiffi
2

p

Σþ
c =

ffiffiffi
2

p
Σ0
c Ξ00

c =
ffiffiffi
2

p

Ξ0þ
c =

ffiffiffi
2

p
Ξ00
c =

ffiffiffi
2

p
Ω0

c

1
CCA; B0

3c ¼

0
B@

0 Λþ
c1 Ξþ

c1

−Λþ
c1 0 Ξ0

c1

−Ξþ
c1 −Ξ0

c1 0

1
CA: ð7Þ

B�
6c and B0�

3c are the spin excited states of B6c and B0
3c,

respectively, and have the same flavor matrix forms as
above; that is, B�

6c and B
0�
3c are spin-3=2 fields, and B6c and

B0
3c are spin-1=2 ones.

B. Partial wave representation

In our analysis, we consider three possible spin-parity

states, JP ¼ 1=2−; 3=2−, and 1=2þ for the Σð�Þ
c D̄ð�Þ-Λc1D̄

coupled-channel system. The corresponding partial wave
basis is listed in Table I, where we use the notation 2Sþ1LJ
to identify various partial waves. S, L, and J stand for the
total spin, orbital, and total angular momenta, respectively.
The partial wave function j2Sþ1LJi is explicitly written in
the standard form as

j2Sþ1LJi ¼ jLSJmi ¼
X
mlms

CJm
Lml;Sms

jLmlijSmsi; ð8Þ

where CJm
Lml;Sms

is the Clebsch-Gordan (CG) coefficient,
jSmsi is the spin wave function, and jLmli is the spherical
harmonics.
One critical point in the partial wave implementation is

the spin-orbital ordering convention, which is hardly
discussed in earlier works. Note that a change of the

ordering of spin and orbital angular momenta that converts
CJm
Lml;Sms

into CJm
Sms;Lml

will lead to an additional sign on the
matrix elements of the spin-orbital operators, such as
Sðr̂; σ; iϵ†4 × ϵ2Þ and ϵ2 · r̂, which are obtained after being
sandwiched between the j2Sþ1LJi states. A detailed illus-
tration can be found in the Appendix. However, as long as
the same convention is used throughout the calculation, the
derived potentials would not depend on the convention. In
this paper, all matrix elements are obtained with the
CJm
Lml;Sms

convention.

C. Potentials

To get the OBE potentials for the Σð�Þ
c D̄ð�Þ-Λc1D̄ system,

we need to derive the t-channel scattering amplitude M
in the center-of-mass frame first. Note that the non-
relativistic approximation for the charmed hadrons is
implemented in our calculation. Potentials in the momen-
tum space can be obtained from the t-channel scattering
amplitudes with the Breit approximation, that is,
Vðq⃗Þ ¼ −M=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΠi2MiÞðΠf2MfÞ
p

, where MfðiÞ are the
masses of particles in the final (initial) states.
It is convenient to label the five channels considered in

our work for the Σð�Þ
c D̄ð�Þ-Λc1D̄ system, i.e., ΣcD̄, Σ�

cD̄,
Λc1D̄, ΣcD̄�, Σ�

cD̄�, as the first, second, third, fourth, and
fifth channels, respectively. They are sorted simply by their
thresholds. The OBE potential in the momentum space for
this five-channel coupled system can be written as

V ¼ Vσ þ Vπ þ Vη þ Vρ þ Vω; ð9Þ

where all components are given as

TABLE I. Partial waves for the Σð�Þ
c D̄ð�Þ-Λc1D̄ coupled-channel system.

ΣcD̄ Σ�
cD̄ ΣcD̄� Σ�

cD̄� Λc1D̄

JP ¼ 1=2− 2S1=2 4D1=2
2S1=2, 4D1=2

2S1=2;4 D1=2;6 D1=2
2P1=2

JP ¼ 3=2− 2D3=2
4S3=2;4 D3=2

4S3=2;2 D3=2;4 D3=2
4S3=2;2 D3=2;4 D3=2;6 D3=2

2P3=2

JP ¼ 1=2þ 2P1=2
4P1=2

2P1=2;4 P1=2
2P1=2;4 P1=2

2S1=2

1Note that here P̃a and P̃�
aμ are the heavy meson fields

satisfying the normalization relations h0jP̃jQ̄qð0−Þi ¼ ffiffiffiffiffiffiffiffi
MP̃

p
and h0jP̃�

μjQ̄qð1−Þi ¼ ϵμ
ffiffiffiffiffiffiffiffiffi
MP̃�

p
[90]. With this convention, all

physical effective couplings for the heavy meson pair (h1, h2)
interacting with light mesons are related to the couplings in the
Lagrangian (1) by multiplying an additional factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mh1Mh2

p
on

the latter.
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Vij
σ ðq⃗Þ ¼ −Aij

σ O
ij
1

1

q⃗2 þ μ2ij
; ð10Þ

Vij
π=ηðq⃗Þ ¼ Bij

π=ηðO⃗ij
3 · q⃗ÞðO⃗ij

4 · q⃗Þ 1

q⃗2 þ μ2ij
; ð11Þ

Vij
ρ=ωðq⃗Þ ¼ −Cij

ρ=ωO
ij
2

1

q⃗2 þ μ2ij

þDij
ρ=ωðO⃗ij

3 × q⃗Þ · ðO⃗ij
4 × q⃗Þ 1

q⃗2 þ μ2ij
; ð12Þ

V3k
π ðq⃗Þ ¼ E3k

π ðO⃗3k
5 · q⃗Þ 1

q⃗2 þ μ23k
; ð13Þ

V3k
ρ ðq⃗Þ ¼ F3k

ρ O⃗3k
6 · ðO⃗3k

5 × q⃗Þ 1

q⃗2 þ μ23k
: ð14Þ

Here, i, j, and k are the channel indies with i; j ¼ 1; 2; 4; 5,
and k ¼ 4, 5. O1;…;O6 are the spin operators in the
t-channel transition. They are given explicitly in

Appendix. q⃗ and μij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

ex − ω2
ij

q
are the 3-momentum

and effectivemass for the exchangedmeson, whereωij is the
energy of exchangedmeson in the t-channel transition i → j.
Note that there is no energy exchange in the elastic transition
(i ¼ j); that is, ωii ¼ 0. A; B;C;D; E and F denote sym-
metric constant matrices consisting of the coupling constants
and the flavor factors. All nonzero elements are listed,

A11
σ ¼ A22

σ ¼ A44
σ ¼ A55

σ ¼ lSgS;

B14
π=η ¼ Tπ=η

gg1
f2π

; B15
π=η ¼ B24

π=η ¼ B45
π=η ¼ Tπ=η

ffiffiffi
3

p
gg1

2f2π
;

B25
π=η ¼ B55

π=η ¼ −Tπ=η
3gg1
2f2π

; B44
π=η ¼ Tπ=η

gg1
f2π

;

C11
ρ=ω ¼ C22

ρ=ω ¼ C44
ρ=ω ¼ C55

ρ=ω ¼ Tρ=ω
1

2
ββSg2V;

D14
ρ=ω ¼ Tρ=ω

2

3
λλSg2V; D15

ρ=ω ¼ D24
ρ=ω ¼ D45

ρ=ω ¼ Tρ=ω
1ffiffiffi
3

p λλSg2V;

D25
ρ=ω ¼ D55

ρ=ω ¼ −Tρ=ωλλSg2V; D44
ρ=ω ¼ Tρ=ω

2

3
λλSg2V;

E34
π ¼ −τπ

h2gω34

f2π
; F34

ρ ¼ −τρ
1

3
h3λg2V; F35

ρ ¼ −τρ
iffiffiffi
3

p h3λg2V; ð15Þ

where fTπ; Tη; Tρ; Tωg ¼ f−1; 1=6;−1; 1=2g are the
flavor factors and τπ=ρ ¼

ffiffiffiffiffiffiffiffi
3=2

p
for the isospin-1=2

system.
After implementing the Fourier transformation, we can

obtain potentials in the coordinate space. With the dipole
form factors included, they read as

Vij
exðrÞ ¼ 1

ð2πÞ3
Z

Vij
exðq⃗Þ

�Λ2
ij − μ2ij

Λ2
ij þ q⃗2

�2

expðiq⃗ · r⃗Þd3q⃗;

ð16Þ

withΛij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − ω2

ij

q
. For the σ meson exchange, one gets

Vij
σ ðrÞ ¼ −Aij

σ O
ij
1 Yðr;Λij; μijÞ; ð17Þ

Yðr;Λij; μijÞ ¼
1

ð2πÞ3
Z

1

q⃗2 þ μ2ij

�Λ2
ij − μ2ij

Λ2
ij þ q⃗2

�2

× expðiq⃗ · r⃗Þd3q⃗; ð18Þ

where Yðr;Λij; μijÞ is the attractive Yukawa poten-
tial. Before implementing the Fourier integral of the
pseudoscalar-exchange potential, we decompose it into
two terms as usually done in the literature,

Vij
π=ηðq⃗Þ ¼ Bij

π=η

1

3

�
O⃗ij

3 · O⃗ij
4

�
1 −

μ2ij
q⃗2 þ μ2ij

�

þ ð3O⃗ij
3 · q̂O⃗ij

4 q̂ − O⃗ij
3 · O⃗ij

4 Þ
q⃗2

q⃗2 þ μ2ij

�
: ð19Þ

Note that the constant 1 inside the parentheses in the
first term leads to a short-range δ potential [δðr⃗Þ
term in the coordinate space]. As discussed in the
Introduction, the short-distance contribution cannot be
fully captured by the OBE model, which may be
viewed as there can be contributions from exchanging
heavier particles. Thus, we introduce a parameter a
to adjust the strength of the δðr⃗Þ potential. It is
introduced as
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Vij
π=ηðq⃗Þ ¼ Bij

π=η

1

3

�
O⃗ij

3 · O⃗ij
4

�
1 − a −

μ2ij
q⃗2 þ μ2ij

�
þ SðO⃗ij

3 ; O⃗
ij
4 ; q̂Þ

q⃗2

q⃗2 þ μ2ij

�
; ð20Þ

with SðO⃗ij
3 ; O⃗

ij
4 ; q̂Þ≡ 3O⃗ij

3 · q̂O⃗ij
4 q̂ − O⃗ij

3 · O⃗ij
4 . Thus, a ¼ 0 corresponds to the case with the full δðr⃗Þ potential of the

exchanged meson, and a ¼ 1 corresponds to the case without it. Then, the Vij
π=ηðrÞ can be obtained as

Vij
π=ηðrÞ ¼ −Bij

π=η

1

3
fO⃗ij

3 · O⃗ij
4 Cðr;Λij; μij; aÞ þ SðO⃗ij

3 ; O⃗
ij
4 ; r̂ÞTðr;Λij; μijÞg; ð21Þ

where

Cðr;Λij; μij; aÞ ¼
1

r2
∂
∂r r

2
∂
∂r Yðr;Λij; μijÞ þ a

1

ð2πÞ3
Z �Λ2

ij − μ2ij
Λ2
ij þ q⃗2

�2

eiq⃗·r⃗d3q⃗; ð22Þ

Tðr;Λij; μijÞ ¼ r
∂
∂r

1

r
∂
∂r Yðr;Λij; μijÞ: ð23Þ

With the same procedure, we can obtain the r-space potentials for Eqs. (12), (13), and (14),

Vij
ρ=ωðrÞ ¼ −Cij

ρ=ωO
ij
2 Yðr;Λij; μijÞ −Dij

ρ=ω

1

3
f2O⃗ij

3 · O⃗ij
4 Cðr;Λij; μij; aÞ − SðO⃗ij

3 ; O⃗
ij
4 ; r̂ÞTðr;Λij; μijÞg; ð24Þ

V3k
π ðrÞ ¼ −iE3k

π O⃗3k
5 · r̂

∂
∂r Yðr;Λ3k; μ3kÞ; ð25Þ

V3k
ρ ðrÞ ¼ −iFij

ρ O⃗
3k
6 · ðO⃗3k

5 × r̂Þ ∂
∂r Yðr;Λ3k; μ3kÞ: ð26Þ

The δðr⃗Þ term in the central potential CðrÞ appears not
only in the pseudoscalar exchange potentials but also in
the vector meson case. Figure 1 shows the contribution of
the δðr⃗Þ term to the central potential, where a ¼ 0ð1Þ
means a full inclusion (exclusion) of the δðr⃗Þ term. If the
δðr⃗Þ term is fully removed, the central potential becomes
very weak and repulsive.
For the numerical analysis, we need some input param-

eters, such as masses of particles and coupling constants in

Lagrangian Eq. (1). All the masses of particles are referred
to the isospin-averaged values of the experimental masses
listed in the Review of Particle Physics [86] and are
collected in Table II. The coupling constants are given
in Table III. It should be mentioned that the scalar meson
coupling constant gS ¼ 0.76 for theDDσ vertex is different
from the values used in Refs. [68,91,95] by a factor of 2mD
due to the different conventions as introduced in Sec. II A.

The coupling lS in the Σð�Þ
c Σð�Þ

c σ vertex is determined in
Refs. [91,96] with the chiral multiplet assumption [97].
The pseudoscalar meson couplings g and g1 are determined
in Refs. [91,98] from the experimental decay widths
of D� → Dπ and Σ�

c → Λcπ [86] (quark model rela-
tions are used to relate g1 to the latter process). The vector
meson couplings β, λ, βS, λS, and gV are determined in
Refs. [91,99] with the vector-meson dominance
assumption. The coupling of the vector meson with the
P- and S-wave baryons h3 may be roughly estimated from
the Λc1 → Σcγ decay via the vector meson dominance
assumption [100,101]. At the tree level, the radiative decay
width of Λc1 → Σcγ can be calculated as

ΓðΛc1 → ΣcγÞ ¼
αEMh23

36m5
Λc1

m2
ρ
ðmΛc1

−mΣc
ÞðmΛc1

þmΣc
Þ3

× ðm4
Λc1

− 2m2
Λc1

m2
Σc
þ 6m2

Λc1
m2

ρ þm4
Σc
Þ

¼ 1.28h23 MeV; ð27ÞFIG. 1. Central potential with different a values.
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where αEM ¼ 1=137 is the fine structure constant. The
radiative decay width ΓðΛc1 → ΣcγÞ has not been mea-
sured, but the prediction of it may help us to estimate the
value of h3. The decay width ΓðΛc1 → ΣcγÞ is investigated
in Ref. [102] with HQSS and predicted to be 71 keV. One
can infer the coupling constant h3 from this to be 0.24.

III. NUMERICAL RESULTS AND DISCUSSION

A. Role of the Λc1D̄ channel

The Λc1D̄ channel has its threshold very close to the
mass of the Pcð4457Þ and couples to JP ¼ 1=2þ in an S
wave due to the negative parity of the Λc1 baryon. It is
interesting to study whether the Λc1D̄ channel can trigger
the formation of some JP ¼ 1=2þ molecular candidate
near its threshold. In Ref. [84], the JP ¼ 1=2þ system
was investigated with the ΣcD̄�-Λc1D̄ coupled channels
considering OPE with couplings from quark model. They
demonstrated that if the nondiagonal potential of the

ΣcD̄�-Λc1D̄ coupled channel is strong enough it is possible
to reproduce the Pcð4457Þ and Pcð4440Þ as JP ¼ 1=2þ and
3=2− molecules simultaneously. Now, we revisit the role of
Λc1D̄ channel by including the vector meson exchange
potential in the coupled channels of Λc1D̄-ΣcD̄�-Σ�

cD̄�. The
other channels below theΛc1D̄ threshold are not considered

because Σð�Þ
c D̄ → Λc1D̄ transitions, where only ρ meson

exchange is allowed, give zero amplitudes which can be
deduced from the Lagrangian in Eq. (1).
All potentials needed in our work are formulated in

Sec. II C. Here, we use potentials of the Λc1D̄-ΣcD̄�-Σ�
cD̄�

coupled channels to solve the Schrödinger equation to
probe the molecular states with JP ¼ 1=2þ and 3=2−. To be
consistent with Sec. II C, we enumerate the three channels
Λc1D̄, ΣcD̄�, and Σ�

cD̄�, with channel labels 3, 4, and 5,
which are ordered according to the channel thresholds W3,
W4, and W5. The coupled-channel Schrödinger equation
for spherically symmetric potentials can be written as

2
6664
0
BBB@

− ℏ2
2μ3

∇2
3 0 0

0 − ℏ2
2μ4

∇2
4 þ Δ4 0

0 0 − ℏ2
2μ5

∇2
5 þ Δ5

1
CCCAþ

0
B@

V33 V34 V35

V43 V44 V45

V53 V54 V55

1
CA
3
7775
0
B@

R3ðrÞ
R4ðrÞ
R5ðrÞ

1
CA ¼ E

0
B@

R3ðrÞ
R4ðrÞ
R5ðrÞ

1
CA; ð28Þ

where ∇2
i , μi and RiðrÞ are the Laplacian, reduced mass,

and radial wave function of the ith channel ði ¼ 3; 4; 5Þ;
Δ4 ¼ W4 −W3 and Δ5 ¼ W5 −W3 are the mass
differences; and E is the binding energy. In the spherical
coordinate, the Laplacian and radial wave function may
be written as ∇2

i ¼ r−2 ∂
∂r r2

∂
∂r −

liðliþ1Þ
r2 and RiðrÞ ¼ uiðrÞ

r ,
respectively. The ground-state binding energies of the
JP ¼ 1=2þ and 3=2− systems are obtained by solving
the Schrödinger equation with the help of the Gaussian-
expansion method [104].
It is useful to take a look at the coupled-channel

potentials. We plot the potentials with the coupling con-
stants in Table III for the JP ¼ 1=2þ and 3=2− system with
total isospin I ¼ 1=2 in Fig. 2, in which we fully remove

the δðr⃗Þ term by setting a ¼ 1 as is the case in Ref. [84].
The diagonal Λc1D̄ potential is neglected in our formalism.
This is because our motivation is to check the mechanism

proposed in Ref. [84] where the Λc1D̄-Σð�Þ
c D̄ð�Þ coupling

forms a bound state lying below the Λc1D̄ threshold.2 The
potentials for other exchanged mesons absent from the
potential plots are forbidden due to the HQSS, isospin, and
parity conservations. The exchange of the isoscalar mesons

TABLE II. Masses of the involved particles in units of MeV used in our calculation.

σ π η ρ ω D̄ D̄� Σc Σ�
c Λc1

500.0 137.2 547.9 775.3 782.7 1867.2 2008.6 2453.9 2518.1 2592.3

TABLE III. Coupling constants used in the calculation.

gS [96] lS [91] g [98] g1 [91] β [99] βS [91] λ [99] λS [91] gV [99] h2 [103] h3

0.76 6.2 −0.59 0.94 0.9 −1.74 0.56=GeV −3.31=GeV 5.9 0.62 0.24

2Basically, the diagonal Λc1D̄ component can be contributed
by σ and ω meson exchange. However, the ω exchange is
repulsive, which is similar to D̄Λc system as shown in Ref. [6].
The σ exchange gives the attractive force, which is considered to
be small due to the weak D̄ D̄ σ coupling.
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σ, ω, and η for the Λc1D̄ → ΣcD̄� is forbidden considering
isospin symmetry, which is the case here, and since the Λc1
couples to Σ�

cπ in the D wave, the pion exchange for
Λc1D̄ → Σ�

cD̄� is also not considered. We can see that in the
1=2þ system the diagonal potentials V44 and V55 are
attractive, but they couple in P waves and are largely
canceled by the strong repulsive centrifugal potential. The
off-diagonal elements involving the S-wave Λc1D̄ channel

contributes to the JP ¼ 1=2þ system and may trigger the
1=2þ system to form a bound state. The quark model
calculation in Ref. [84] indicates that the Pcð4457Þ and
Pcð4440Þ can be simultaneously reproduced as JP ¼
1=2þ; 3=2− states within the Λc1D̄-ΣcD̄� coupled channel
as long as the off-diagonal elements of the Λc1D̄ potential
are strong enough. Here, we further investigate such a
scenario within the OBE model.

(a) (b) (c)

(d) (e) (f)

(g)

(j)

(h) (i)

FIG. 2. Coupled-channel potentials for the JP ¼ 1=2þ and JP ¼ 3=2− isodoublet systems with Λ ¼ 1 GeV and without the δðr⃗Þ term
(a ¼ 1). (a) Λc1D̄ð2S1=2Þ → ΣcD̄ð2P1=2Þ (b) Λc1D̄ð2P3=2Þ → ΣcD̄�ð4S3=2Þ (c) Λc1D̄ð2S1=2Þ → Σ�

cD̄�ð4P1=2Þ (d) Λc1D̄ð2P3=2Þ →
Σ�
cD̄�ð4S3=2Þ (e) ΣcD̄�ð2P1=2Þ → ΣcD̄�ð2P1=2Þ (f) ΣcD̄�ð4S3=2Þ → ΣcD̄�ð4S3=2Þ (g) ΣcD̄�ð2P1=2Þ → ΣcD̄�2P1=2Þ (h) ΣcD̄�ð4S3=2Þ →

ΣcD̄�ð4S3=2Þ (i) Σ�
cD̄�ð2P1=2Þ → Σ�

cD̄�ð2P1=2Þ (j) Σ�
cD̄�ð4S3=2Þ → Σ�

cD̄�ð4S3=2Þ.
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The combined coupling of the OPE potential for the
Λc1D̄ → ΣcD̄� channel is defined in Ref. [84] as

ĝ ¼ gh2ω

25=2πf2π
; ð29Þ

where the values of g and h2 are given in Table III, and the
pion energy ω in the t-channel transition Λc1D̄ → ΣcD̄� is
given by ω ¼ MΛc1

−MΣc
. The physical value of ĝ is

0.17ð4Þ GeV−1, as mentioned in Ref. [84], with coupling
constants in Table III. In Ref. [84], it is required to be
ĝ ¼ 0.52 GeV−1 in order to set the lower 3=2− state match
the Pcð4440Þ. Note that quark model predictions of the
OPE potential for the elastic channel ΣcD̄� which was
studied in Ref. [84] is roughly 1.7 times stronger than the
one derived in our work. Here, we take a simple ratio of the
OPE potentials,

Vq
π

V44
π

¼ −
8

3

g2q
gg1

≈ 1.7; ð30Þ

where the quark model potential Vq
π is given in Ref. [84]

with gq ¼ 0.59 and V44
π is obtained in our work. The ratio

arises due to different determinations of the coupling
constants at the quark and hadronic levels. As given in
Table III, the pseudoscalar couplings g and g1 are deter-
mined from the experimental data on the decays of D� →
Dπ and Σ�

c → Λcπ, respectively, and used in our work.
For the Λc1D̄-ΣcD̄�-Σ�

cD̄� coupled-channel system, we
remove the δðr⃗Þ term in the whole potentials by setting
a ¼ 1. In this case, the JP ¼ 1=2− state, which was a deep
bound state when a ¼ 0, cannot be bound in this system
with a value of Λ up to almost 5 GeV. In the rest of this
subsection, we will keep a ¼ 1 as the potential for the
Λc1D̄ → ΣcD̄�, which triggers the JP ¼ 1=2þ state to be
bound is independent of the a parameter. We mainly focus
on the states below Λc1D̄ and ΣcD̄� thresholds with spin
parities JP ¼ 1=2þ and JP ¼ 3=2−, respectively, in order to
discuss the effect of the Λc1D̄ channel on these states,
corresponding to the Pcð4457Þ and the Pcð4440Þ. The other

Pc states at the resonance region above the ΣcD̄� threshold
will be discussed in Sec. III B.
In our manipulation of the coupled-channel equation

with threshold differences, the lowest threshold mass is
always chosen to be the origin of energy, and the S-D
mixing is also considered. Table IV shows the binding
energies of JP ¼ 1=2þ; 3=2− systems by varying the
cutoff Λ, with the coupling constants given in Table III,
and ĝ ¼ 0.17 GeV−1. The binding energies of JP ¼
1=2þ; 3=2− states for the two-channel Λc1D̄-ΣcD̄� case
with the OPE potential are given in the column labeled case
II and compared with the results from quark model
potentials as given in the column labeled case I. With g
absorbed into the definition of ĝ, their difference lies in the
value of g1 (g1 ¼ 0.94 for case II and 8gq=3 ¼ 1.57 for case
I). The results including the scalar and vector meson
exchange potentials are given in the column labeled case
III. Considering the Λc1D̄-ΣcD̄�-Σ�

cD̄� coupled channels
together with the OBE potentials, the results are given in
the last column labeled case IV. One sees that the JP ¼
1=2þ system, which couples to the S wave Λc1D̄ and the P
wave ΣcD̄�, does not form a bound state because the
Λc1D̄ → ΣcD̄ð�Þ transition potential is not strong enough,
and there is only one bound state with JP ¼ 3=2− in this
system, which is mainly formed by the S wave ΣcD̄�.
As shown in Ref. [84], if ĝ ¼ 0.52 GeV−1, then a JP ¼

1=2þ bound state emerges, and masses of both Pcð4457Þ
and Pcð4440Þ would be reproduced with the same cutoff
Λ ¼ 1.42 GeV. The results with ĝ ¼ 0.52 GeV−1 are given
in Table V, where the results in the column labeled case I
are consistent with Ref. [84], as they should be. It is shown
within the same table that it is more difficult to bind the
3=2− state using the g1 value from Table III comparing with
case I using g1 from the quark model. Because of the larger
value of ĝ in contrast to Table IV, the 1=2þ bound state
appears with relatively large cutoffs. The inclusion of the
scalar and vector meson exchange (case III) as well as the
Σ�
cD̄� coupled channel (case IV) only makes minuscule

contributions to the binding energy of the 1=2þ state.

TABLE IV. Binding energies of the JP ¼ 1=2þ and 3=2− Λc1D̄-ΣcD̄�-Σ�
cD̄� coupled-channel systems with isospin I ¼ 1=2 as a

function of cutoff Λ. We compare the binding energies obtained from several cases. For all cases, we take ĝ ¼ 0.17 GeV−1. In cases I, II,
and III, we consider only theΛc1D̄-ΣcD̄� coupled channels. Case I stands for the results obtained by considering only the OPE potentials
with g1 ¼ 8gq=3 ¼ 1.53 from quark model. The results obtained using OPE potentials V44

π in our work are given as case II. The results
obtained by considering OBE potentials in our work are given as case III. For case IV, we consider the OBE potentials for the
Λc1D̄-ΣcD̄�-Σ�

cD̄� coupled channels. Each entry with a “…” means that the potentials are not enough to form a bound state. The values
of Λ and binding energy are in units of MeV.

Λ

Case I Case II Case III Case IV

1=2þ 3=2− 1=2þ 3=2− 1=2þ 3=2− 1=2þ 3=2−

1000 … −0.36 … … … … … −0.23
1200 … −4.52 … … … −5.32 … −8.47
1420 … −17.73 … … … −21.91 … −31.64
1600 … −38.68 … −0.67 … −41.91 … −59.36
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Another S-wave channel for the 1=2þ state is the Λc1D̄�.
One may expect a sizeable role it would play, although its
threshold is around 140 MeV above the Λc1D̄ one.
However, its S-wave elastic potential is repulsive since
the repulsive ω-exchange force contributes dominantly.
And it is found that the nondiagonal dynamics of the Λc1D̄�
channel is also negligible due to the experimental con-
straints on the Λc1 couplings similarly to the Λc1D̄ case. An
explicit inclusion of this channel into case III would only
slightly increase the numerical values of the absolute values
of the binding energies by less than 0.5 MeV for the cutoff
in the range listed in Table IV. All other S-wave channels
for the 1=2þ state with higher thresholds are expect to be
irrelevant.

B. Role of the δð⃗rÞ term in the OBE model

In the hadronic molecular picture, the masses of the latest
observed pentaquarks Pcð4312Þ, Pcð4440Þ, and Pcð4457Þ
are claimed to be well reproduced as the Σð�Þ

c D̄ð�Þ bound
states with various OBE models [60,68,82,87,105].
However, for the two higher states Pcð4440; 4457Þ close
to the ΣcD̄� threshold, their spins are very model dependent
to be either JPð4440; 4457Þ ¼ ð1=2−; 3=2−Þ [105] or
JPð4440; 4457Þ ¼ ð3=2−; 1=2−Þ [68]. A recent analysis
using an effective field theory framework shows that the
LHCb data can be well described with both quantum
number assignments, while the latter is preferred because
of its insensitivity on the cutoff values used in regularizing
the coupled-channel Lippmann-Schwinger equation [81].
In this section, first, we use the OBE potentials derived in
Sec. II to simultaneously reproduce all the observed Pc
states by varying the cutoff Λ and the magnitude of the δðr⃗Þ
term without coupled channels. Then, we include the

Σð�Þ
c D̄ð�Þ coupled-channel effects and try to distinguish

the two spin-parity assignments for Pcð4440Þ and
Pcð4457Þ with help of the δðr⃗Þ term. Here, we consider
four channels ΣcD̄, Σ�

cD̄, ΣcD̄� and Σ�
cD̄� and exclude the

Λc1D̄ channel due to the fact that its contributions are
negligible for negative parity states with the physical value
for ĝ.
To be consistent with Sec. II C, we enumerate

the channels ΣcD̄, Σ�
cD̄, ΣcD̄�, and Σ�

cD̄� with 1, 2, 4,

and 5, respectively, which are ordered according to the
channel thresholds W1, W2, W4, and W5. First, we take a
look at the potentials for the JP ¼ 1=2− and 3=2− systems.
Figure 3 shows the diagonal S-wave potentials, where we
compare the potentials with the δðr⃗Þ term (a ¼ 0) and those
without it (a ¼ 1) using a cutoff Λ ¼ 1 GeV. The V11 and
V22 potentials are independent of spin and a. Both vertices
in the t-channel transitions are in S waves, and there is no
central term as discussed in Sec. II C which leads to the δðr⃗Þ
term. Both the pseudoscalar and vector meson exchange
potentials in V44 have the δðr⃗Þ term originated from central
potentials. As shown in Figs. 3(b), 3(c), 3(d), and 3(e),
when we fully remove the δðr⃗Þ term, the total potential for
JP ¼ 1=2− becomes very weakly attractive, while that of
JP ¼ ð3=2−Þ becomes strongly attractive. The potentials
for V55 also have the same behavior. We do not show the
off-diagonal elements of the potentials. The analytic
expressions can be found in Sec. II C, and the δðr⃗Þ term
also has similar effects. In the following, we use these
potentials to solve the Schrödinger equation to reproduce
the masses of the Pcð4312Þ, Pcð4380Þ, Pcð4440Þ, and
Pcð4457Þ states.
It is worth it to mention the method of solving the

coupled-channel Schrödinger equation with threshold
differences in our approach. In the ΣcD̄-Σ�

cD̄-ΣcD̄�-Σ�
cD̄�

coupled channels, the Pcð4312Þ, Pcð4380Þ, Pcð4440Þ, and
Pcð4457Þ masses determined in the experimental analyses
are located as

Mð4312Þ < W1 < Mð4380Þ < W2 < Mð4440Þ
< Mð4457Þ < W4 < W5; ð31Þ

where Wi is the threshold energy of the ith channel. Here,
we directly solve the coupled-channel Schrödinger equa-
tion,

�
−
ℏ2

2μi

d2

dr2
þℏ2liðliþ 1Þ

2μir2
þΔi

�
uiþ

X
j

Vijuj ¼Eui; ð32Þ

where i is the channel index, ui is defined by uiðrÞ ¼
rRiðrÞ with the radial wave function RiðrÞ for the ith
channel, and μi is the corresponding reduced mass.

TABLE V. Binding energies of the JP ¼ 1=2þ and 3=2− Λc1D̄-ΣcD̄�-Σ�
cD̄� coupled-channel systems with I ¼ 1=2 as a function of

cutoff Λ. The difference from Table IV is that here ĝ ¼ 0.52 GeV−1 is taken. Each entry with a “…” means that the potentials are not
enough to form a bound state. The values of Λ and binding energy are in units of MeV.

Λ

Case I Case II Case III Case IV

1=2þ 3=2− 1=2þ 3=2− 1=2þ 3=2− 1=2þ 3=2−

1000 … −0.99 … … … −0.55 … −1.06
1200 … −6.08 … … … −7.95 … −11.17
1420 −0.33 −20.19 −0.01 −0.54 −0.53 −26.50 −0.56 −35.97
1600 −1.33 −41.75 −0.42 −2.66 −1.64 −48.09 −1.70 −64.98
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The eigenmomentum for channel i is given as qi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μiðE − ΔiÞ

p
, where Δi is the threshold difference with

respect to the threshold of the lowest channel. By solving
Eq. (32), we obtain the coupled-channel wave function,
which is normalized to satisfy the boundary condition for
the jth channel given as [106]

uðjÞi ðrÞ !r→∞
δije−iqir − SijðEÞeiqir; ð33Þ

where SijðEÞ is the scattering matrix component. Bound
states and resonances are represented as poles at Epole of
SijðEÞ in the complex energy plane. Among them, bound
states emerge as poles on real energy axis (Epole < 0) in the
Riemann sheet where the momentum qi is purely positive
imaginary for each channel. While resonances are related
to those poles of SijðEÞ in the Riemann sheet closest to the
real axis of the physical sheet corresponding to the
scattering energy region (ReEpole > 0 and ImEpole < 0).

First, we show the results of the single channels
ΣcD̄, Σ�

cD̄, ΣcD̄�, and Σ�
cD̄� with the S-D wave mixing

effects considered.3 The quantum numbers can be
JP ¼ 1=2−; 3=2−, and 5=2−. Table VI shows the binding
energy of each single channel with various cutoffs. We list
the results for two different δðr⃗Þ-term contributions, that is,
a ¼ 0 and a ¼ 1. In the single-channel case, the binding
energies of the 1=2−ðΣcD̄Þ and 3=2−ðΣ�

cD̄Þ states are
independent of the δðr⃗Þ term, and the two systems are
loosely bound. The corresponding potentials for these two
systems are identical as given in Fig. (3a). The small
difference between the binding energies is completely
caused by the different reduced masses. However, for all
the other states, the δðr⃗Þ term has an impressive effect on
the binding energies. And the binding energies are heavily

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 3. Diagonal S-wave potentials for the JP ¼ 1=2− and JP ¼ 3=2− isodoublet systems with Λ ¼ 1 GeV. a ¼ 1means without the
δðr⃗Þ term. (a) V11=22 potentials which are independent of spin and a. (b) V44; JP ¼ 1=2−; a ¼ 0 (c) V44; JP ¼ 1=2−; a ¼ 1

(d) V44; JP ¼ 3=2−; a ¼ 0 (e) V44; JP ¼ 3=2−; a ¼ 1 (f) V55; JP ¼ 1=2−; a ¼ 0 (g) V55; JP ¼ 1=2−; a ¼ 1 (h) V55; JP ¼ 3=2−;
a ¼ 0 (i) V55; JP ¼ 3=2−; a ¼ 1.

3Note that the S-D wave mixing effects on binding energy are
calculated by solving the coupled-channel Schrödinger equation
with all partial wave channels for each single hadron pair.
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dependent on the cutoff Λ when the δðr⃗Þ term is included
because of the short-distance nature of the δðr⃗Þ term. The
single-channel results show that we cannot reproduce the
Pcð4312Þ, Pcð4380Þ, Pcð4440Þ, and Pcð4457Þ simultane-
ously by including or excluding fully the δðr⃗Þ term.
Then, let us move to the cases with the value of the

reduction parameter a taking a value somewhere between 0
and 1. The results with a ¼ 0.78 and Λ ¼ 1.6 GeV are
obtained as

ΣcD̄∶Mð1=2−Þ ¼ 4317.38; Eð1=2−Þ ¼ −3.73;

Σ�
cD̄∶Mð3=2−Þ ¼ 4381.34; Eð3=2−Þ ¼ −4.03;

ΣcD̄�∶Mð3=2−Þ ¼ 4441.01; Eð3=2−Þ ¼ −21.41;

ΣcD̄�∶Mð1=2−Þ ¼ 4458.44; Eð1=2−Þ ¼ −3.98;

Σ�
cD̄�∶Mð1=2−Þ ¼ 4518.17; Eð1=2−Þ ¼ −8.51;

Σ�
cD̄�∶Mð3=2−Þ ¼ 4514.67; Eð3=2−Þ ¼ −12.02;

Σ�
cD̄�∶Mð5=2−Þ ¼ 4498.19; Eð5=2−Þ ¼ −28.49;

where both the massM and the binding energy E are in the
units of MeV. The wave functions for the Pcð4312Þ,
Pcð4380Þ, Pcð4440Þ, and Pcð4457Þ as well as the other
pentaquarks located below the Σ�

cD̄� threshold are shown in
Fig. 4. The Pcð4312Þ and Pcð4380Þ are pure S-wave
molecules. For the Pcð4440Þ and Pcð4457Þ, the S-wave
components are dominant and mixed with a few percent of
the D-wave components.
If we take a ¼ 0.58, the Pcð4440Þ and Pcð4457Þ masses

can be well reproduced in the ΣcD̄� channel with the same
cutoff Λ ¼ 1.4 GeV. Their binding energies are solved as
Eð1=2−Þ ¼ −23.81 MeV and Eð3=2−Þ ¼ −4.51 MeV,
respectively. But there are no bound states for the lower
ΣcD̄ and Σ�

cD̄ channels with the same parameters. For the
Σ�
cD̄� system, three bound states with binding energies

Eð1=2−Þ ¼ −46.21 MeV, Eð3=2−Þ ¼ −12.98 MeV, and
Eð5=2−Þ ¼ −6.26 MeV can be obtained with that set of
parameters.
Finally, we consider the ΣcD̄-Σ�

cD̄-ΣcD̄�-Σ�
cD̄� coupled-

channel system with the S-D-wave mixing effects. We try
to reproduce the Pcð4312Þ, Pcð4380Þ, Pcð4440Þ, and
Pcð4457Þ states by varying the cutoff Λ and the reduction
parameter a. As mentioned at the beginning of this section,

the masses of Pcð4380Þ, Pcð4440Þ, and Pcð4457Þ lie above
the threshold of the ΣcD̄ channel. Then, these three Pc
states should be solved as resonances in the current
coupled-channel system, that is, the eigenenergies of
Pcð4380Þ, Pcð4440Þ, and Pcð4457Þ will take complex
values. Going to the appropriate Riemann sheets, one
can find the complex poles of the S matrix, which can
be interpreted as resonances. We interpret the real and
imaginary parts of the pole position as the mass and half
width of the corresponding resonance.4

Two sets of solutions are found that can reproduce the
Pcð4312Þ, Pcð4380Þ, Pcð4440Þ, and Pcð4457Þ masses
simultaneously. They are marked by different reduction
values, a ¼ 0.55 and a ¼ 0.79. Figure 5 shows the masses
(upper panel) and widths (lower panel) of the 1=2−ðΣcD̄Þ,
1=2−ðΣcD̄�Þ and 3=2−ðΣcD̄�Þ states as functions of Λ for
each value of a. The horizontal gray bands represent the
experimental uncertainties of Pc masses [53], and the
vertical gray bands stand for the cutoff range where masses
of all Pc states can be simultaneously reproduced. In this
figure, we do not include the curves of the 3=2−ðΣ�

cD̄Þ
molecule since its mass is always in line with the Pcð4380Þ
within the whole cutoff range covered by the plot (and thus
higher than the Pcð4337Þ structure reported recently in
Ref. [107]). The vertical dashed lines are the best-fit
solutions with Λ ¼ 1.23 GeV for a ¼ 0.55 and Λ ¼
1.40 GeV for a ¼ 0.79, which are obtained by minimizing
the χ2 that represents the deviation between our solved Pc
masses and the LHCb measurements.
The masses of Pc states for the best-fit solutions are

listed in Table VII. Note that the state with spin parity JP ¼
1=2− near the ΣcD̄ threshold does not have decay width
since it emerges as a bound state in our calculation where
the channel coupling to the lower channels is omitted. As
we can see from Table VII, the Pcð4312Þ can be interpreted
as the 1=2−ðΣcD̄Þ molecule in both solutions, and it is
consistent with the single-channel result. The spin-parity

TABLE VI. Binding energies of the JP ¼ 1=2−; 3=2−; 5=2− isodoublet states in the single-channel ΣcD̄, Σ�
cD̄, ΣcD̄�, and Σ�

cD̄�
systems by varying the cutoff Λ. The hadron pair inside each set of parentheses denotes the corresponding single channel. Each entry
with a “…” means that the potentials are not enough to form a bound state. The values of Λ and binding energy are in units of MeV.

Λ

1=2−ðΣcD̄Þ 3=2−ðΣ�
cD̄Þ 1=2−ðΣcD̄�Þ 3=2−ðΣcD̄�Þ 1=2−ðΣ�

cD̄�Þ 3=2−ðΣ�
cD̄�Þ 5=2−ðΣ�

cD̄�Þ
a ¼ 0 a ¼ 1 a ¼ 0 a ¼ 1 a ¼ 0 a ¼ 1 a ¼ 0 a ¼ 1 a ¼ 0 a ¼ 1 a ¼ 0 a ¼ 1 a ¼ 0 a ¼ 1

1000 … … −23.12 … … … −50.13 … −2.44 … … −0.48
1200 … … −117.27 … … −4.99 −351.24 … −27.15 … … −10.03
1400 −0.28 −0.36 −325.26 … −0.04 −19.42 < −500 … −88.16 −0.21 −0.24 −31.65
1600 −3.73 −4.03 < −500 … −0.98 −41.04 < −500 … < −500 −2.07 −1.78 −215.79

4Since only the Σð�Þ
c D̄ð�Þ channels are included, and the finite

widths of the Σð�Þ
c and D̄� are not considered, the width obtained

here should be understood as a partial width into the channels
considered. For an analysis with lower channels ΛcD̄ð�Þ, ηcN, and
J=ψN included, see Ref. [81].
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(a) (b) (c)

(d)

(g)

(e) (f)

FIG. 4. Reduced wave functions uðrÞ ¼ rRðrÞ corresponding to the partial wave components considered in the single-channel
analysis with Λ ¼ 1.6 GeV and a ¼ 0.78. The hadron pairs inside the parentheses are the corresponding channels. (a) JP ¼ 1=2−ðΣcD̄Þ
(b) JP ¼ 3=2−ðΣ�

cD̄Þ (c) JP ¼ 3=2−ðΣcD̄�Þ (d) JP ¼ 1=2−ðΣcD̄�Þ (e) JP ¼ 1=2−ðΣ�
cD̄�Þ (f) JP ¼ 3=2−ðΣ�

cD̄�Þ (g) JP ¼ 5=2−ðΣ�
cD̄�Þ.

(a) (b)

FIG. 5. Coupled-channel results of isodoublet system Σð�Þ
c D̄ð�Þ by varying the cutoff Λ. Upper (lower) panel shows the mass (decay

width through ΣcD̄ and Σ�
cD̄ channel) of corresponding states. Horizontal gray bands are representing the experimental uncertainties of

Pc masses, and vertical gray bands stand for the cutoff range where masses of Pc states can be simultaneously fitted. Lines for the
JP ¼ 3=2−ðΣ�

cD̄Þ state are not shown, and its mass always lies in the experimental mass of Pcð4380Þ. (a) a ¼ 0.55 (b) a ¼ 0.79.
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assignments for the Pcð4440Þ and Pcð4457Þ states are
interchanged between these two solutions. In the solution
with a ¼ 0.55, the masses of Pcð4440Þ and Pcð4457Þ can
be reproduced well by the 1=2− and 3=2− ΣcD̄� molecules,
respectively. However, the Pcð4440Þ and Pcð4457Þ are
described as the 3=2− and 1=2− ΣcD̄� molecules in the
solution with a ¼ 0.79 as in the single-channel case.
Such spin-parity interchange can be understood as the

dependence behavior of 1=2− and 3=2− ΣcD̄� elastic poten-
tial on the parameter a. We plot the impact of the parameter a
on the ΣcD̄� elastic potential for JP ¼ 1=2− and 3=2− in
Fig. 6. As one can see, the 1=2− potential gets shallower as a
increases, leading to a smaller binding energy (absolute value
ofEB) of the 1=2− bound state, while the situation is reversed
for the 3=2− potential—the 3=2− potential becomes deeper
as a increases, and the 3=2− bound state will have a larger
binding energy. It results in 3=2−-Pcð4440Þwith larger a and
1=2− − Pcð4440Þwith smaller a. This behavior is originated
from the sign difference of the δðrÞ term in the 1=2− and
3=2− ΣcD̄� elastic potentials; see the value of the spin

operator O⃗44
3 · O⃗44

4 in Appendix.

In our model, we may distinguish the two possible
solutions by thedecays of the two states into the subdominant
channels ΣcD̄ and Σ�

cD̄, which behave differently in these
two spin-parity assignments. In the model calculation of
Ref. [108], the dominant decay channel for both Pcð4440Þ
andPcð4457Þ is suggested to beΛcD̄�. For the solution with
a ¼ 0.55, the partial decay width of the 3=2− ΣcD̄� state
corresponding to the Pcð4457Þ is already larger than the
central value of the experimentally measured total decay
width of the Pcð4457Þ, Γexp ¼ 6.4� 2.0þ5.7

−1.9 MeV, and
marginally consistent within 1σ. It indicates that scenario
I with a 3=2− Pcð4457Þ, corresponding to the a ¼ 0.55
solution, is not favored. For the solution with a ¼ 0.79,
corresponding to scenario II, the spin parities of Pcð4440Þ
and Pcð4457Þ are f3=2−; 1=2−g, and their partial decay

widths through the subdominant Σð�Þ
c D̄ channels are much

smaller than the measured total widths and thus could be
compatible with the experimental observations once lower
channels such as ΛcD̄ð�Þ, J=ψN, and ηcN are considered.
At last, let us mention that, since the widths of theD� and

Σð�Þ
c are not taken into account, the partial widths of the

obtained states would be underestimated. It is expected that
the widths for the states with ΣcD̄ð�Þ as the main compo-
nents are only marginally affected, while those for the
Σ�
cD̄ð�Þ can get a sizeable correction from the Σ�

c width
(around 15 MeV). In the favored scenario II, the 1=2− and
3=2− Σ�

cD̄� states have a small mass difference of only
7 MeV; considering further their decay widths, they could
behave as a single structure around 4.52 GeV in the
experimental data. The 5=2− state has a mass about
4.50 GeV. These results are similar to those obtained from
fitting to the LHCb data in Ref. [81]. It is worthwhile to
notice that the LHCb data show a signal of nontrivial
structures around 4.50 and 4.52 GeV in the J=ψp invariant
mass distribution, in particular in the “mKp all” dataset [53].
Future data with higher statistics will be able to resolve the
Σ�
cD̄� states.

TABLE VII. Poles of the Smatrix (corresponding toM − iΓ=2)
closest to physical real axis in the coupled-channel analysis of the

isodoublet Σð�Þ
c D̄ð�Þ systems with ðΛ; aÞ ¼ ð1.23 GeV; 0.55Þ and

ðΛ; aÞ ¼ ð1.4 GeV; 0.79Þ, corresponding to scenario I and sce-
nario II, respectively. The channel closest to each pole is given in
the parentheses in the first column. The results are in units of MeV.

JP (dominant
channel)

ðΛ; aÞ ¼
ð1.23 GeV; 0.55Þ

ðΛ; aÞ ¼
ð1.4 GeV; 0.79Þ

1=2−ðΣcD̄Þ 4317.1 4312.8
3=2−ðΣ�

cD̄Þ 4379.8 − 0.0i 4375.6 − 0.1i
1=2−ðΣcD̄�Þ 4441.0 − 8.0i 4458.8 − 1.3i
3=2−ðΣcD̄�Þ 4456.9 − 5.9i 4439.4 − 4.2i
1=2−ðΣ�

cD̄�Þ 4498.6 − 6.6i 4525.0 − 0.8i
3=2−ðΣ�

cD̄�Þ 4511.1 − 16.6i 4518.0 − 4.2i
5=2−ðΣ�

cD̄�Þ 4521.9 − 5.1i 4498.3 − 6.3i

FIG. 6. The S-wave potentials for the ΣcD̄� channel with spin parities of JP ¼ 1=2− and JP ¼ 3=2−, where the total potentials
(summing up all light-meson-exchange potentials) are shown.
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IV. CONCLUSION

We investigate the coupled-channel dynamics of the

Λc1D̄ and Σð�Þ
c D̄ð�Þ channels within the OBE model to test

the mechanism of a JP ¼ 1=2þ state being triggered by the
Λc1D̄ channel. It is found that the JP ¼ 1=2þ system
cannot be bound with the OBE parameters constrained by
other experimental sources with reasonable cutoff values
because the nondiagonal potentials in the Λc1D̄ and ΣcD̄ð�Þ
coupled-channel system are not strong enough. The sit-
uation does not change qualitatively when the Σ�

cD̄�
channel is included in addition.
We further investigate the role of the δðr⃗Þ term in the

coupled-channel dynamics. Here, the δðr⃗Þ term comes
from the constant term of the t-channel scattering ampli-
tudes in the momentum space. Such a δðr⃗Þ-term contribu-
tion is of a short-distance nature and needs to be
regularized. Here, the regularization is performed by
introducing dipole form factors, the effects of which
may be recognized as the short-range interactions derived
by the exchange of mesons heavier than ρ and ωmesons. In
this work, as a phenomenological study, the δðr⃗Þ term is
corrected by introducing a reduction factor a that quantifies
how much the δðr⃗Þ potential is reduced in the OBE
potential. a varies in the range of [0, 1] in our analysis.
Two set of solutions for the parameters, the cutoffΛ and the
reduction parameter a, are found to be able to reproduce
the masses of the observed Pc states in the hadronic
molecular picture. In the first solution, called scenario I,
the best description of the Pc masses is given by the
parameters fΛ ¼ 1.23 GeV; a ¼ 0.55g, where Pcð4312Þ,
Pcð4440Þ, and Pcð4457Þ are interpreted as the 1=2−ðΣcD̄Þ,
1=2−ðΣcD̄�), and 3=2−ðΣcD̄�Þmolecules, respectively. The
second solution, called scenario II, has fΛ ¼ 1.4 GeV;
a ¼ 0.79g, and the spin-parity quantum numbers of the
Pcð4440Þ and Pcð4457Þ states are 3=2− and 1=2−, respec-
tively. Scenario II is favored since the partial decay width of
the Pcð4457Þ in scenario I is larger than the central value of
the experimental value. This is consistent with previous
analysis from an effective field theory point of view [81]. In
this preferred scenario, the Pcð4312Þ, Pcð4380Þ, Pcð4440Þ,
and Pcð4457Þ states are the 1=2−ðΣcD̄Þ, 3=2−ðΣ�

cD̄Þ,
3=2−ðΣcD̄�Þ, and 1=2−ðΣcD̄�Þ molecules, respectively.
Besides, another three Pc states exist below the Σ�

cD̄�
threshold, and their spin-parity quantum numbers and
masses are JPð4525; 4518; 4498Þ ¼ ð1=2−; 3=2−; 5=2−Þ

in scenario II. These three states may show up as two
structures at about 4.50 and 4.52 GeV. There are hints for
their existence in the LHCb data, and their confirmation is
expected with data of higher statistics.
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APPENDIX: SPIN OPERATORS

The spin wave functions for spin-1=2 and −3=2 particles
are denoted with χ and χ⃗, respectively, where χ is a
two-component spinor. With the Clebsch-Gordan coeffi-
cients, the spin-3=2 spinor χ⃗ for the ith particle can be
decomposed as

χ⃗iðhÞ ¼ C3=2;h
h1;h2

ϵ⃗iðh2Þχiðh1Þ; ðA1Þ

where ϵ⃗ is polarization vector and ϵ⃗ð�1Þ ¼ ∓1=ffiffiffi
2

p ð1;�i; 0Þ, ϵ⃗ð0Þ ¼ ð0; 0; 1Þ.
Oncewe enumerate channelsΣcD̄,Σ�

cD̄,Λc1D̄,ΣcD̄�, and
Σ�
cD̄� with upper indices 1,2,3,4, and 5, respectively, all

potentials for the coupled channels obtained by t-channel
transitions H1H2 → H3H4 can be generated by the opera-
tors below. Oij

1 and Oij
2 are diagonal, and O1 ¼ O2 ¼

ðχ†3χ1; χ⃗†3 · χ⃗1; 0; χ†3χ1; χ⃗†3 · χ⃗1Þ. In the following, we only
show the operators at the upper triangle of the coupled-
channel potential matrix; the others can be obtained with the
Hermitian condition of the potential matrix,

O⃗3 ¼

0
BBBBBB@

0 0 0 χ†3σ⃗χ1 iχ⃗†3 × σ⃗χ1

0 0 iχ⃗†3 × σ⃗χ1 iχ⃗†3 × χ⃗1

0 0 0

χ†3σ⃗χ1 iχ⃗†3 × σ⃗χ1

iχ⃗†3 × χ⃗1

1
CCCCCCA
; O⃗4 ¼

0
BBBBBB@

0 0 0 ϵ⃗�4 ϵ⃗�4
0 0 ϵ⃗�4 ϵ⃗�4

0 0 0

iϵ⃗2 × ϵ⃗�4 iϵ⃗2 × ϵ⃗�4
iϵ⃗2 × ϵ⃗�4

1
CCCCCCA
; ðA2Þ
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and O⃗34
5 ¼ ϵ⃗�4, O⃗34

6 ¼ χ†3σ⃗χ1, and O⃗35
6 ¼ χ⃗†3 × σ⃗χ1. The

other operators are zero.
The partial wave projection of operators in the JP ¼

1=2−; 3=2−; 1=2þ system is shown in theTableVIII,which is
calculated by sandwiching the operators given above
between the partial waves of the initial and final states
[109]. Every element of the spin operators is replaced by the
corresponding partial wave projections in the actual calcu-
lation.Here,we calculate the spin projection for the transition
1 → 5 (ΣcD̄ → Σ�

cD̄�) as an example. For JP ¼ 1=2−, the
partial waves for the initial and final states are

ΣcD̄∶2S1=2;

Σ�
cD̄�∶2S1=2;4D1=2;6 D1=2; ðA3Þ

From Eq. (A2) together with Eqs. (21) and (24), we
know that the spin operators, which are universal for the
pseudoscalar and vector exchange potentials, are O⃗15

3 ·

O⃗15
4 ¼ ðiχ⃗†3 × σ⃗χ1Þ · ϵ⃗�4 for the spin-spin coupling and

SðO⃗15
3 ; O⃗15

4 ; r̂Þ ¼ 3ðiχ⃗†3 × σ⃗χ1Þ · r̂ϵ⃗�4 · r̂− ðiχ⃗†3 × σ⃗χ1Þ · ϵ⃗�4 for
the tensor coupling. Then, it can be calculated as

h2S0þ1L0
Jjðiχ⃗†3 × σ⃗χ1Þ · ϵ⃗�4j2Sþ1LJi ¼ iCJ;m

ml0;ms0C
J;m
ml;msC

S0;ms0
m3;m4C

S;ms
m1;m2C

s3;m3
h1;h2

×
X3
i;j;k¼1

εijkϵ�i3 ðh2Þχ†3ðh1Þσjχ1ðm1Þϵ�k4 ðm4ÞhL0; ml0jL;mli; ðA4Þ

h2S0þ1L0
JjSðO⃗15

3 ; O⃗15
4 ; r̂Þj2Sþ1LJi ¼ iCJ;m

ml0;ms0C
J;m
ml;msC

S0;ms0
m3;m4C

S;ms
m1;m2C

s3;m3
h1;h2

×

�
3
X3

i;j;k;o¼1

εijkϵ�i3 ðh2Þχ†3ðh1Þσjχ1ðm1Þϵ�o4 ðm4ÞhL0; ml0jrkrojL;mli

−
X3
i;j;k¼1

εijkϵ�i3 ðh2Þχ†3ðh1Þσjχ1ðm1Þϵ�k4 ðm4ÞhL0; ml0jL;mli
�
; ðA5Þ

where the lower indices of Clebsch-Gordan coefficients which represent the magnetic quantum numbers should be
summed. h2S0þ1L0

Jj and j2Sþ1LJi stand for the partial waves for the final and initial states, respectively. The spherical
harmonics are integrated as

hL0; ml0jrkrojL;mli ¼
Z

dΩY�
L0;ml0 ðθ;ϕÞrkroYL;mlðθ;ϕÞ; ðA6Þ

where YL;mlðθ;ϕÞ is the spherical harmonics and rk and ro are the components of the unit vector r̂ in the spherical
coordinate. After having calculated Eqs. (A4) and (A5) with the partial waves given Eq. (A3), we get ð− ffiffiffi

2
p

; 0; 0Þ and
ð0; ffiffiffiffiffiffiffiffi

2=5
p

; 3
ffiffiffiffiffiffiffiffi
2=5

p Þ, respectively. One should be careful about the convention. If the ordering of the angular momenta in the
Clebsch-Gordan coefficient CJ;m

ml0;ms0 changes to CJ;m
ms0;ml0 , the result of Eq. (A5) will change to ð0;− ffiffiffiffiffiffiffiffi

2=5
p

; 3
ffiffiffiffiffiffiffiffi
2=5

p Þ. All
partial waves in our work are calculated with the convention of CJ;m

ml0;ms0 , and the results are collected in Table VIII.

TABLE VIII. Partial wave projection of the spin operators in the potentials.

JP ¼ 1=2− JP ¼ 3=2− JP ¼ 1=2þ

O11
1

(1) (1) (1)
O22

1
(1) diag(1,1) (1)

O44
1

diag(1,1) diag(1,1,1) diag(1,1)
O55

1
diag(1,1,1) diag(1,1,1,1) diag(1,1)

O⃗14
3 · O⃗14

4 ð ffiffiffi
3

p
; 0Þ ð0; ffiffiffi

3
p

; 0Þ ð ffiffiffi
3

p
; 0Þ

SðO⃗14
3 ·; O⃗14

4 ; r̂Þ ð0; ffiffiffi
6

p Þ ð− ffiffiffi
3

p
; 0;

ffiffiffi
3

p Þ ð0; ffiffiffi
6
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2
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p
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5
p ; 0; 1ffiffi

5
p ;−3
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2
35

q 
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(Table continued)
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