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The response of the hot QCD medium in the presence of external time dependent electromagnetic fields
has been studied within the relativistic Boltzmann transport theory. The impact of the time dependence of
the electromagnetic fields and collisional aspects of the medium to the induced electric and Hall current
densities has been explored. The nonequilibrium momentum distribution of degrees of freedom has been
obtained in the presence of space-time varying electromagnetic fields. Further, the analysis has been
extended to an anisotropic QCD medium while incorporating the in-medium interaction effects. It is
observed that the electric charge transport is sensitive to the inhomogeneity of the fields and the momentum
anisotropy of the QCD medium.
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I. INTRODUCTION

Experiments at Relativistic Heavy Ion Collider (RHIC)
and Large Hadron Collider (LHC) have provided evidence
for the existence of strongly interacting matter-quark gluon
plasma (QGP) [1]. Transport coefficients of the hot QCD
matter serve as the input parameters for the hydrodynam-
ical description of the evolution of the created medium and
act as a key ingredient to explore critical properties of the
medium [2]. Recent observations at the RHIC and LHC
have indicated the presence of a strong magnetic field in the
early stages of heavy-ion collision [3,4]. Even though there
is no definitive description of the evolution of the generated
magnetic field, various models predict that the magnetic
field may persist for much longer in the QGP due to the
backreaction in the medium [5–9]. This persisting magnetic
field may influence the behavior of the hot QCDmatter and
hence is pertinent to study the various properties of the
QCD medium in the presence of magnetic fields.
The electric charge transport in the hot deconfined quark

matter has gained much attention due to the generated
electromagnetic fields in the collision experiments. The
medium response to the external electromagnetic fields can
be studied in terms of the induced electric and Hall current
densities and associated conductivities. The generated
electric field in asymmetric heavy-ion collisions has a

preferred direction, and the conductivities may strongly
depend on the charge asymmetric flow [10]. The study of
electromagnetic responses on the QCD medium is also
relevant in the context of chiral magnetic effect [11] and
emission rate of soft photons [12] in the heavy-ion
collisions. Electric charge transport has been studied in
the presence of constant electric and magnetic fields in the
regimes where the strengths of the fields are weak [13–18]
and in the strong field limit [19–22]. Attributing to the fact
that the generated electromagnetic fields are varying with
space and time [5,23–26], it is important to investigate the
QCD medium response to the inhomogeneous fields. This
sets the motivation of the current study.
Electrical conductivity of the hot QCD medium has

been investigated in several studies within transport theory
[27–29], Kubo formalism [30] and lattice QCD estimations
[31,32]. Recently, we have estimated the additional com-
ponent to the current density due to the time dependence of
the external electric field [33]. The focus of the current
investigation is to extend the analysis to develop a general
framework to study the response of the QCD medium to a
time-varying electric and magnetic field. To that end, we
have obtained the general form of the near-equilibrium
quark degrees of freedom in the presence of inhomo-
geneous fields within the transport theory. We have also
explored the electric charge transport of an anisotropic
weakly magnetized QCD medium. The in-medium inter-
actions have been incorporated in the analysis by adopting
a recently developed effective fugacity quasiparticle model
(EQPM) [34]. We have analyzed the impact of time
dependence of the fields and momentum anisotropy of
the medium to the electric charge transport process along
with the effects of mean-field corrections to the respective
current densities.
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This may perhaps be the first attempt where the physics
of inhomogeneity of the external electromagnetic fields has
been incorporated in the analysis of electric charge trans-
port in the context of QCD medium. Our estimations are
consistent with the studies so far, as we have correctly
reproduced the earlier results within the general formalism
with the choice of appropriate electromagnetic fields.
Notations and conventions: The subscript k denotes the

particle species. The quantity qfk is the electric charge of
the particle with flavor f of the kth species. The particle
velocity is defined as v ¼ p

ϵ, where p is the momentum and

ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

f

q
is the energy (withmf as the mass of quark

with flavor f) of the particle. The component of a three
vector A is denoted with the Latin indices Ai. The
quantities E ¼ jEj and B ¼ jBj denote the magnitude of
the electric and magnetic fields.

II. ELECTRIC CHARGE TRANSPORT IN QCD
MEDIUM WITH TIME-VARYING FIELDS

The response of the QCD medium to the external
electromagnetic fields can be studied with induced current
densities and the associated conductivities. The general
form of the induced vector current in the QCD medium
with a nonvanishing quark chemical potential μ in terms of
quark and antiquark momentum distribution function
fk ¼ f0k þ δfk is as follows,

j ¼ 2Nc

X
f

Z
dPvðqqfq − qq̄fq̄Þ; ð1Þ

where vi is the component of velocity and dP ¼ d3p
ð2πÞ3.

The flavor summation (over the up, down, and strange
quarks) arises from the degeneracy factor 2Nc

P
f of the

quarks/antiquarks with Nc number of colors. To study the
impact of electromagnetic fields on the current density, one
needs to explore the nonequilibrium part of the distribution
function. We proceed further to find the near-equilibrium
distribution function by solving the transport equation
within the relaxation time approximation. The Boltzmann
equation that describes the dynamics of the distribution
function in the presence of an external electromagnetic field
has the following form,

∂fk
∂t þ v:

∂fk
∂x þ qfk ½Eþ v ×B�: ∂fk∂p ¼ −

δfk
τR

; ð2Þ

where τR is the relaxation time [35].We solve the relativistic
Boltzmann equation by assuming the following ansatz for
δfk due to the inhomogeneous electromagnetic fields,

δfk ¼ ðp:ΞÞ ∂f
0
k

∂ϵ ; ð3Þ

where the vector Ξ is related to the strength of the
electromagnetic field and its first-order (leading order)
spacetime derivatives, with the following form,

Ξ ¼ α1Eþ α2 _Eþ α3ðE ×BÞ þ α4ð _E ×BÞ þ α5ðE × _BÞ
þ α6ð∇ ×EÞ þ α7Bþ α8 _Bþ α9ð∇ ×BÞ: ð4Þ

Here, αi (i ¼ ð1; 2;…; 9Þ) are the unknown functions that
relate to the respective electric charge transport coefficients
and can be obtained by the microscopic description of the
QCD medium. The present focus is on the case with chiral
chemical potential is zero and hence αi ¼ 0 for i ¼ ð6; 7; 8Þ
considering the parity symmetry in the analysis [36].
Employing Eq. (3) and Eq. (4) in Eq. (2) we have,

ϵv:½α1 _Eþ _α1Eþ α2Ëþ _α2 _Eþα3ð _E × BÞ þ α3ðE × _BÞ þ _α3ðE × BÞ þ α4ð _E × _BÞ þ α4ðË × BÞ þ _α4ð _E ×BÞ
þ α5ð _E × _BÞ þ α5ðE × B̈Þ þ _α5ðE × _BÞ þ α9ð∇ × _BÞ þ _α9ð∇ × BÞ� þ qfkv:E − α1qfkv:ðE ×BÞ − α2qfkv:ð _E ×BÞ
þ α3qfkðv:EÞðB2Þ − α3qfkðv:BÞðB:EÞ þ α4qfkðv: _EÞðB2Þ − α4qfkðv:BÞðB: _EÞ þ α5qfkðv:EÞð _B:BÞ − α5qfkð _B:vÞðE:BÞ
− α9qfkðB:vÞð∇:BÞ ¼ −

ϵ

τR
½α1v:Eþ α2v: _Eþ α3v:ðE ×BÞ þ α4v:ð _E ×BÞ þ α5v:ðE × _BÞ þ α9v:ð∇ ×BÞ�: ð5Þ

We consider the terms with first-order derivatives of the
fields and neglect higher-order derivative terms as the
electromagnetic fields vary slowly in space and time to
incorporate the collisional aspects of the QCD medium.
Hence, the terms with _α2; _α4; _α5; _α9 are neglected in the
current analysis. Incorporating this approximation and
comparing the coefficients of terms with the same tensorial
structure in both sides of Eq. (5), we obtain the coupled
differential equations as follows,

_α1 ¼ −
�
1

τR
α1 þ

�
qfkB2

ϵ
−
τRqfkB _B

ϵ

�
α3 þ

qfk
ϵ

�
;

_α3 ¼ −
1

τR
α3 þ

qfk
ϵ

α1; ð6Þ

along with the coupled equations,
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α2 ¼ −τR
�
α1 þ

qfkα4B
2

ϵ

�
; α5 ¼ −τRα3;

α4 ¼ −τR
�
α3 −

α2qfk
ϵ

�
: ð7Þ

with _B ¼ j _Bj. The coupled differential equations can be
described in terms of matrix equation as follows,

dX
dt

¼ AX þ G; ð8Þ

where the matrices can be defined as follows,

X ¼
�
α1

α3

�
; A¼

 
− 1

τR
− qfkF

2

ϵ

qfk
ϵ − 1

τR
;

!
; G¼

�−qfk
ϵ

0

�
;

with F ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BðB − τR _BÞ

q
. We solve Eq. (8) by finding the

solution of the homogeneous equation dX
dt ¼ AX by diag-

onalizing the matrix A. Then, we find the solution to the
nonhomogeneous part of Eq. (8) by replacing the constants
of integration with time dependent functions k1ðtÞ and
k2ðtÞ. Using the method of variation of constants, we obtain
the particular solution as follows,

α1 ¼ k1iFeη1 − k2iFeη2 ; α3 ¼ k1eη1 þ k2eη2 : ð9Þ

The functions k1ðtÞ and k2ðtÞ can be defined as k1 ¼ iqfk
2ϵ I1

and k2 ¼ − iqfk
2ϵ I2 where ηj and Ij, ðj ¼ 1; 2Þ take the

following forms,

ηj ¼ −
t
τR

þ aj
qfki

ϵ

Z
Fdt; Ij ¼

Z
e−ηj

F
; ð10Þ

with a1 ¼ 1 and a2 ¼ −1. Substituting Eq. (10) in Eq. (9)
and employing Eq. (7), we obtain the master equation for αi
as follows,

α1 ¼ −
Ω̃k

2
ðI1eη1 þ I2eη2Þ; ð11Þ

α3 ¼
qfki

2ϵ
ðI1eη1 − I2eη2Þ; ð12Þ

α5 ¼ −
τRqfki

2ϵ
ðI1eη1 − I2eη2Þ; ð13Þ

α2 ¼
ðΩ̃kτR

2
þ iΩ2

kτ
2
R

2
ÞI1eη1 þ ðΩ̃kτR

2
− iΩ2

kτ
2
R

2
ÞI2eη2

1þΩ2
kτ

2
R

ð14Þ

α4 ¼
−ðΩ̃2

kτ
2
R

2F þ iqfkτR
2ε ÞI1eη1 − ðΩ̃2

kτ
2
R

2F − iqfkτR
2ε ÞI2eη2

1þΩ2
kτ

2
R

; ð15Þ

with Ωk ¼ qfkB
ϵ represents the cyclotron frequency at finite

B and Ω̃k ¼ qfkF
ε for the time-varying magnetic field. Now,

we solve the master equation of αi for various choices of the
electromagnetic fields E and B.

A. Case I: Constant electric and magnetic fields

For the case of constant electric and magnetic field, the
terms with α1 and α3 will give nonzero contributions to the
current density as the terms associated with space-time
derivatives of the fields vanish as described in Eq. (3).
Solving α1 and α3 from Eq. (11) and Eq. (12) for constant
electromagnetic fields, we obtain

α1¼
−ϵqfk

τR½ð ϵ
τR
Þ2þðqfkBÞ2�

; α3¼
−q2fk

½ð ϵ
τR
Þ2þðqfkBÞ2�

: ð16Þ

Employing Eq. (3) in Eq. (1), we obtain ji ¼ σeδ
ijEj þ

σHϵ
ijEj with σe and σH denote the electrical and Hall

conductivities, respectively. The results obtained are in
agreement with the observations of Ref. [13]. It is important
to emphasize that the Hall current vanishes at μ ¼ 0 case. In
the limit of vanishing magnetic field, we obtain the electric
current as,

j ¼ E
3
2Nc

X
k

X
f

ðqfkÞ2
Z

dPτR
p2

ϵ2

�
−
∂f0k
∂ϵ
�
; ð17Þ

which agrees with the results of [29]. However, in the
presence of a strong uniform magnetic field, the longi-
tudinal electrical conductivity has the dominant role in the
electric charge transport and σH ∼ 0 as the transverse
transport to the magnetic field is negligible due to the
1þ 1 − D Landau dynamics of quarks and antiquarks.

B. Case II: Response of weakly magnetized medium
to time dependent electric field

We consider the electric charge transport process in the
presence of a time-varying electric field in a weakly
magnetized QCD medium. Hence, the term with E × _B
will not contribute to the current density. In the case where
_B ¼ 0, we have F ¼ B and Eq. (10) reduces to,

ηj ¼
�
−

1

τR
þ ajΩki

�
t; Ij ¼

−e−ð−
1
τR
þajΩkiÞt

Bð− 1
τR
þ ajΩkiÞ

: ð18Þ

Substituting Eq. (18) in master equations Eqs. (11)-(15), we
obtain nonzero contribution for the current density from the
terms with αi; ði ¼ 1; 2; 3; 4Þ. The coefficient α1 and α3 that
relate to the electrical and Hall conductivities are defined in
Eq. (16). The additional parameters that arise due to the
time dependence of the external electric field take the
following forms,
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α2 ¼
qfkϵ½ð ϵ

τR
Þ2 − ðqfkBÞ2�

½ð ϵ
τR
Þ2 þ ðqfkBÞ2�2

; α4 ¼
2q2fkϵ

2

τR½ð ϵ
τR
Þ2 þ ðqfkBÞ2�2

:

ð19Þ

By employing Eq. (3) in Eq. (1), we can obtain an
additional component to the Ohmic current due to the time
dependence of the external electric field and can be
quantified in terms of α2. Note that the additional compo-
nent is higher-order in τR in comparison to the Ohmic
current density. Similarly, α4 is related to the additional
component to the Hall current in the presence of time-
varying electric field. The results obtained are consistent
with that of Ref. [33].

C. Case III: Response to time-varying
electromagnetic field

In the case where both electric and magnetic fields are
dependent on time, the contributions to the current density
from all the terms associated with αi; ði ¼ 1; 2; 3; 4; 5Þ need
to be considered systematically. We begin with evaluating
the integrals described in Eq. (10) by choosing a particular
time dependence of the external magnetic field. We con-

sider the magnetic field with the form B ¼ B0e
− t
τB ẑ, where

B0 is its amplitude and τB is the decay time parameter

[24,36] such that F ¼ B
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ τR

τB

q
, in the current analysis.

Within the limit that the cyclotron frequency Ωk is
approximately equal to the decay frequency (τ−1B ) of the
magnetic field, Eq. (10) reduces to the following form,

ηj ¼ −
t
τR

þ aj

�
i

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ τR

τB

q
τB

t

�
; ð20Þ

Ij ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þ τR
τB

q
B0

eð
1
τR
þ 1

τB
−aji

ffiffiffiffiffiffi
1þτR

τB

p
τB

Þt

ð 1τR þ 1
τB
− aji

ffiffiffiffiffiffiffiffi
1þτR

τB

p
τB

Þ
: ð21Þ

Further, we proceed with the estimation of all αi coeffi-
cients by substituting Eq. (20) and Eq. (21) in Eq. (11)-(15).
Incorporating the nonzero contributions associated with
αi; ði ¼ 1; 2; ::5Þ in Eq. (4), we obtain five components of
the induced current j ¼ jeêþ jHðê × b̂Þ as follows,

je ¼ jð0Þe þ jð1Þe ; jH ¼ jð0ÞH þ jð1ÞH þ jð2ÞH ; ð22Þ

where je corresponds to the electric current in the direction
of the electric field ê and jH is the electrical current in the
direction perpendicular to both electric and magnetic fields
ðê × b̂Þ with

jð0Þe ¼ 2E
3
Nc

X
k

X
f

ðqfkÞ2
Z

dP
p2

ϵ2

�
−
∂f0k
∂ϵ
�
M1; ð23Þ

jð1Þe ¼ 2 _E
3
Nc

X
k

X
f

ðqfkÞ2
Z

dP
p2

ϵ2
∂f0k
∂ϵ M2; ð24Þ

jð0ÞH ¼ 2E
3
Nc

X
k

X
f

ðqfkÞ3
Z

dP
p2

ϵ3

�
−
∂f0k
∂ϵ
�
M; ð25Þ

jð1ÞH ¼ 2 _E
3
Nc

X
k

X
f

ðqfkÞ3
Z

dP
p2

ϵ3
∂f0k
∂ϵ M3; ð26Þ

jð2ÞH ¼ 2E
3τB

Nc

X
k

X
f

ðqfkÞ3
Z

dP
p2

ϵ3

�
−
∂f0k
∂ϵ
�
τRM; ð27Þ

where _E¼j _Ej and Mj ðj¼1;2;3Þ functions can be defined

as M1 ¼ ð 1τR þ 1
τB
ÞM, M2 ¼ −ðτRM1 −

τ2R
τ2B
MÞ=ð1þ ðτRτBÞ2Þ

and M3 ¼ ðτRM þ τ2RM1Þ=ð1þ ðτRτBÞ2Þ with,

M ¼

2
64 1

τR
þ 1

τB
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ τR

τB

q
τB

3
75
−1

: ð28Þ

In Eqs. (23)-(27), jð0Þe denotes the leading-order Ohmic

current and jð1Þe is the correction to the Ohmic current due to

time dependence of the fields. The current jð0ÞH is the Hall
current in the medium generated due to the perpendicular

electric and magnetic fields, and jð1ÞH and jð2ÞH are the
correction to Hall current that comes from the terms
ð _E ×BÞ and ðE × _BÞ, respectively.

III. EFFECTS OF QCD MEDIUM
INTERACTIONS AND ANISOTROPY

The hot QCD equation of state (EoS) effect can be
incorporated in the analysis through the quasiparticle
description of the QCDmedium [37]. In the present analysis,
we employ the EQPM in which the thermal medium
interactions are captured by a temperature-dependent fugac-
ity parameter [34]. Considering the fact that large anisotro-
pies arise due to the rapid expansion of the QGP, especially
in the initial stages of heavy-ion collisions, the response of
the anisotropic medium to the electromagnetic fields needs
to be studied. The momentum anisotropy has been seen to
have a visible impact on the response of the medium to the
constant external fields [38]. We explore the impacts of
thermal interaction and momentum anisotropy of the
medium to the electric charge transport in the presence of
time-varying fields below.
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A. EoS effect: Quasiparticle description

Within the EQPM prescription, the thermal QCD
medium can be described in terms of noninteracting/
weakly interacting quasiparticles with the EQPM effective
degrees of freedom and modified single-particle energy
dispersion as [34],

f0k ¼
zke

−ϵ∓μ
T

1 ∓ zke
−ϵ∓μ
T

; ωk ¼ ϵþ δωk; ð29Þ

where zk is the effective fugacity parameter and is related to
medium modified part of the energy dispersion as
δωk ¼ T2∂T ln zk. The near-equilibrium dynamics of the
thermal medium can be described within the effective
kinetic theory based on the EQPM [39]. The mean-field
force term in the effective transport equation, which
emerges from in-medium interactions, indeed appears as
the mean-field contribution to the transport coefficients
associated with the dissipative process. Following the
prescriptions of the EQPM kinetic theory, we have the
following forms for the components of current density:

jð0Þe ¼ E
X
k

X
f

ðqfkÞ2
Z

dP̃1k

�
M1 − δωk

M1

p

�
; ð30Þ

jð1Þe ¼ − _E
X
k

X
f

ðqfkÞ2
Z

dP̃1k

�
M2 − δωk

M2

p

�
; ð31Þ

jð0ÞH ¼ E
X
k

X
f

ðqfkÞ3
Z

dP̃1k

�
M
ϵ
− δωk

M
pϵ

�
; ð32Þ

jð1ÞH ¼ − _E
X
k

X
f

ðqfkÞ3
Z

dP̃1k

�
M3

ϵ
− δωk

M3

pϵ

�
; ð33Þ

jð2ÞH ¼ E
τB

X
k

X
f

ðqfkÞ3
Z

dP̃1kτR

�
M
ϵ
− δωk

M
pϵ

�
; ð34Þ

where dP̃1k ¼ dP 2Nc
3ωk

p2

ϵ ð−
∂f0k∂ϵ Þ. The term associated with

δωk represents the mean-field correction term to each
component of the current density. Note that at asymptoti-
cally high temperature, the medium behaves as an ultra-
relativistic system with ideal EoS with zk → 0 and hence,
the mean field contribution vanishes.

B. Effect of momentum anisotropy

The physics of anisotropy can be embedded in momen-
tum distribution functions and can be represented in terms
of rescaled isotropic distribution as [40,41],

fðanisoÞk ¼
ffiffiffiffiffiffiffiffiffiffiffi
1þ ξ

p
f0kð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ξðp · nÞ2

q
Þ; ð35Þ

where ξ is the anisotropic parameter and n is the direction
of anisotropy. For a weakly anisotropic medium, we have
ξ ≪ 1, and Eq. (35) reduces to,

fðanisoÞk ¼ f0k −
ξ

2ϵT
ðp · nÞ2f02k e

ϵ∓μ
T ; ð36Þ

with p ¼ ðp sin θ cosϕ; p sin θ sinϕ; p cos θÞ and we con-
sider n ¼ ðsin α; 0; cos αÞ for the current analysis. The
angles θ and ϕ denote spherical angles, and α denotes
the projection of the anisotropic vector (define the angle
between the anisotropic vector and z-axis). The above
choice of n indicates that the anisotropy is in the xz plane.
Note that one can consider anisotropy in yz plane by
choosing n ¼ ð0; sin α; cos αÞ. Following the formalism of
Ref. [38], and solving the relativistic Boltzmann equation
we obtain the component of current density in the direction
of an external time-varying electric field (ê) in an aniso-
tropic medium as,

ðjeÞaniso ¼ jð0Þe þ δjð0Þe þ jð1Þe þ δjð1Þe ; ð37Þ

where jð0Þe and jð1Þe are the isotropic components defined in
Eq. (23) and Eq. (24), respectively. The corrections to the
electric current due to momentum anisotropic of the

medium, denoted by δjð0Þe and δjð1Þe , can be defined as,

δjð0Þe ¼ −ξ
E
3
Nc

X
k

X
f

ðqfkÞ2l
Z

∞

0

dpLe
ϵ∓μ
T M1; ð38Þ

δjð1Þe ¼ ξ
_E
3
Nc

X
k

X
f

ðqfkÞ2l
Z

∞

0

dpLe
ϵ∓μ
T M2; ð39Þ

with l ¼ 1
6π2T2 and L ¼ p6

ϵ ðf0kÞ2. It is important to empha-
size that in the absence of magnetic field Eq. (38) reduces
back to the findings of [38]. Similarly, we define the
components of current density in the direction transverse to
the fields [ðê × b̂Þ] in the anisotropic medium as,

ðjHÞaniso ¼ jð0ÞH þ δjð0ÞH þ jð1ÞH þ δjð1ÞH þ jð2ÞH þ δjð2ÞH :

The isotropic terms are described in Eqs. (25)-(27) and the
anisotropic contributions take the following forms,

δjð0ÞH ¼ −ξ
E
3
Nc

X
k

X
f

ðqfkÞ3l
Z

∞

0

dp
L
ϵ
e
ϵ∓μ
T M; ð40Þ

δjð1ÞH ¼ ξ
_E
3
Nc

X
k

X
f

ðqfkÞ3l
Z

∞

0

dp
L
ϵ
e
ϵ∓μ
T M3; ð41Þ

δjð2ÞH ¼ −ξ
E
3τB

Nc

X
k

X
f

ðqfkÞ3l
Z

∞

0

dp
LτR
ϵ

e
ϵ∓μ
T M: ð42Þ
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IV. RESULTS AND DISCUSSIONS

We initiate the discussion with the QCD medium
response to the time-varying electromagnetic field. The
medium response to the fields is quantified in terms of
induced current in the direction of the external electric field
je and in the direction perpendicular to electromagnetic
fields jH. We define the following ratios,

Re ¼
jð0Þe

ET
þ jð1Þe

ET
; RH ¼ jð0ÞH

EBT
þ jð1ÞH

EBT
þ jð2ÞH

EBT
;

such that jð0Þe =ðETÞ ¼ σe=T denotes the dimensional less
quantity in the case of constant electromagnetic fields

where the term jð1Þe =ðETÞ gives further correction due to the
time dependence ofE. Similarly, jð0ÞH =ðEBTÞ represents the
leading order term σH=ðBTÞ followed by the correction

terms with jð1ÞH and jð2ÞH in the direction ðê × b̂Þ. The space-
time profile of the electric and magnetic fields are described
in Ref. [24] in which the strength of the inhomogeneity in
time can be quantified with decay time τE=B as _E=E ∝ τE
and _B=B ∝ τB.
The impact of the time dependence of the external fields

on the temperature behavior of Re is depicted in Fig. 1 (left
panel). We observe that the time dependence of the electric
and magnetic fields has a significant impact on the medium
response of the system. In the case of a constant magnetic
field and time-varying electric field, Re is higher than
that in the case of constant electric and magnetic field.
The increment is due to the extra component of electrical
current density associated with _E as described in Eq. (4).
Unlike in the case of a time-varying electric field, the
inclusion of time dependence of the magnetic field
decreases the value Re for the chosen temperature range.

Note that the αi ¼ 0 for i ¼ ð6; 7; 8Þ due to the parity
symmetry in the analysis, which indicates that the con-
tribution from the components associated with B, _B
vanishes in the present analysis. It is important to empha-
size that these components may have a significant role in a
chiral medium. However, the time dependence of magnetic
field enters in the analysis of electric current density
through the α1 and α2 (i.e, through the components
associated with E and _E). The general forms of α1 and
α2 in a time-varying electromagnetic field are described in
Eq. (11) and Eq. (14), respectively. We compare the results
with the lattice estimation of σe=T at vanishing magnetic
field and constant electric field as described in
Refs. [32,42,43] and also with the transport theory results
[15]. Notably, the effect of inhomogeneity of time of the
fields to the current density is seen to be more pronounced
in the temperature regime closer to the transition temper-
ature Tc. The effect of additional components to the Hall
current due to the time dependence of the fields is studied
by demonstrating the temperature dependence of RH in
Fig. 1 (right panel). Similar to the case of jeê, the inclusion
of time dependence of the electric and magnetic fields has a
visible impact on the Hall current, especially in the low-
temperature regimes. It is also important to note that unlike
in the case of electrical current density, the Hall current has
a nonzero contribution from the component associated with
the time dependence of magnetic field ðE × _BÞ in addition
to the dependence of the time varying magnetic field on α3
and α4.
The impact of the momentum anisotropy on the temper-

ature behavior of Re and RH are plotted in Fig. 2. We
observe both jeê and jHðê × b̂Þ in the presence of time-
varying fields decrease with an increase in anisotropy in
the medium. This observation agrees with the study of
charge transport with constant electromagnetic fields [38].

FIG. 1. The temperature dependence of Re (left panel) and RH (right panel) for various choices of the external electromagnetic fields:
(i). (Constant E, B), (ii). Time-varying electric and constant magnetic field (E(t), constant B), (iii). Constant electric and time-varying
magnetic field [constant E, B (t)], (iv). Time-varying electromagnetic fields [E(t), B(t)]. For constant magnetic field case eB ¼
0.03 GeV2 and we choose τB ¼ 9 fm, τE ¼ 7 fm for the time-varying cases. The results are compared with lattice data [32,42,43] and
transport theory estimation [15] at B ¼ 0.
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We have also explored the effect of in-medium interactions
on the charge transport in the QCD medium (inset plots). It
is seen that the QCD EoS and the mean-field effects further
decrease the current densities. The effect of the EoS is
prominent at the low-temperature regimes, especially for
the Hall current density.

V. CONCLUSION AND OUTLOOK

In conclusion, we have explored the response of the
QCD medium to the time-varying electromagnetic fields.
We have obtained a general form of the near-equilibrium
distribution function of the medium constituents in the
presence of inhomogeneous electromagnetic fields. To that
end, we have solved the relativistic Boltzmann equation
within the relaxation time approximation. The QCD
medium response to the external time dependent fields
has been quantified in terms of induced current. Notably,
we have obtained additional components to the electrical
and Hall current densities that arise from the time depend-
ence of the fields. The impact of the additional terms on the
current densities and the respective conductivities are
observed to be significant, especially in the temperature
regime not very far from Tc. We have compared the results
with the lattice estimations and transport theory results
with constant external fields. Further, we have studied the
impacts of the thermal QCD EoS and momentum
anisotropy to the electric charge transport in the presence
of time-varying fields. The in-medium interaction effects
are incorporated in the analysis through the quasiparticle
and the followed effective kinetic theory description of the
charge transport. It is seen that both the EoS and anisotropic
effects to the current densities are non-negligible in the
temperature regime near Tc.
The additional components to the Ohmic and Hall

current densities due to the decay of the electric and
magnetic fields in the medium may perhaps play a
significant role in the realistic magnetohydrodynamical
framework for the QCD medium in the heavy-ion
collision experiments. Furthermore, the inclusion of time
dependence of the electromagnetic field along with the

impact of momentum anisotropy of the medium to charge
transport within an effective description is essential for the
complete understanding of charge-dependent directed flow
of final-stage particles in the asymmetric collision experi-
ments [44]. We intend to explore the phenomenological
aspect of the analysis in the near future. The study of
thermal and momentum transport in the presence of a time-
varying magnetic field in the QCD medium is another
interesting direction to explore in the future.
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APPENDIX: NEAR-EQUILIBRIUM
DISTRIBUTION FUNCTION

The nonequilibrium part of the distribution function in
the presence of an external electromagnetic field can be
obtained by solving the Boltzmann equation. The covariant
form of the Boltzmann equation takes the following
form,

pμ∂μfkðx; pÞ þ qfkF
μνpν∂ðpÞ

μ fk ¼ CðfkÞ; ðA1Þ

where CðfkÞ is the collision kernel that takes the following
form in the relaxation time approximation as,

Ck ¼ −ðu:pÞ δfk
τR

; ðA2Þ

with τR is the thermal relaxation time. Here, we have
employed the following four-vector notations: The quantity
uμ ¼ ð1; 0Þ is the fluid velocity, pμ ¼ ðp0;pÞ and Fμν is the
electromagnetic strength tensor. By employing the rela-
tions, F0i ¼ Ei and 2Fij ¼ ϵijkBk one can define the force
term due to the external electromagnetic fields as follows,

F μ ¼ qfkF
μνpν ¼ ðp0v ·F ; p0F Þ; ðA3Þ

FIG. 2. Effect of anisotropy and QCD EoS on the temperature behavior of Re (left panel) and RH (right panel) in the case of time-
varying fields with τB ¼ 9 fm. ðReÞaniso and ðRHÞaniso denote Re and RH in an anisotropic medium.
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where F ¼ qfkðEþ v × BÞ. To represent the Boltzmann
equation in terms of three vector notation, we need to
substitute the above-defined definitions of the four vectors
in the Boltzmann equation described in Eq. (A1). Hence,
we have

p0∂0fk þ pi∂ifk þ F 0∂ðpÞ
0 fk þ F i∂ðpÞ

i fk ¼ −p0
δfk
τR

;

∂fk
∂t þ v:

∂fk
∂x þF · v

p0

∂fk
∂p0

þF ·
∂fk
∂p ¼ −

δfk
τR

: ðA4Þ

Employing the chain rule of differentiation ∂p0

∂p
∂

∂p0 þ ∂
∂p →

∂
∂p in Eq. (A4), the Boltzmann equation takes the form as
follows,

∂fk
∂t þ v:

∂fk
∂x þ qfk ½Eþ v × B�: ∂fk∂p ¼ −

δfk
τR

: ðA5Þ

Next, we need to consider possible components of the
current density that are linear in terms of the external
electromagnetic field. Following Ref. [36], we have con-
sidered the possible components that are proportional to
E; _E; ðE×BÞ; ð _E×BÞ; ðE× _BÞ; ð∇×EÞ;B; _B; ð∇×BÞ.
Note that we have considered the case in which the
electromagnetic field varies slowly in space and time
(i.e., for larger value of τE and τB) and hence neglected
the terms with two and higher space-time derivatives. As
the parity property of the current density is different from
those of B; _B; ð∇ ×EÞ, the components of current density
associated with these quantities will exist only for a chiral
medium where the chiral chemical potential μ5 ≠ 0. It is

important to emphasize that the Maxwell’s equations
further simplify the expansion as terms ð∇ ×EÞ and _B
are related by Maxwell’s equations. To solve Eq. (A5), we
consider an ansatz to express the deviation of the distri-
bution function from the equilibrium in terms of possible
sources of perturbation due to electromagnetic fields as (for
the system with μ5 ¼ 0),

δfk ¼ ðp:ΞÞ ∂f
0
k

∂ϵ ; ðA6Þ

where

Ξ ¼ α1Eþ α2 _Eþ α3ðE ×BÞ þ α4ð _E ×BÞ þ α5ðE × _BÞ
þ α6ð∇ ×EÞ; ðA7Þ

where the unknown coefficients αi can be obtained by
solving the Boltzmann equation. However, for a more
general case one needs to consider the quadratic terms in
electric field such as∇ðE2Þ;Eð∇ ·EÞ; ðE · ∇ÞE, and also in
magnetic field. For the current analysis, we have focused
on the leading order contributions (linear in electromag-
netic fields and their time derivatives). A more general
analysis is beyond the scope of the present analysis.
This method has been employed in the case of the
constant electromagnetic field in Refs. [13,45], and is also
widely used in the estimation of nonequilibrium part of
distribution function for the study of thermoelectric effect
[46–48] (where the temperature gradient is the source
term instead of the electric field) in a magnetized QCD
medium.

[1] J. Adams et al. (STAR Collaboration), Nucl. Phys. A757,
102 (2005).

[2] A. Jaiswal et al., Int. J. Mod. Phys. E 30, 2130001 (2021).
[3] S. Acharya et al. (ALICE Collaboration), Phys. Rev. Lett.

125, 022301 (2020).
[4] J. Adam et al. (STAR Collaboration), Phys. Rev. Lett. 123,

162301 (2019).
[5] K. Tuchin, Phys. Rev. C 88, 024911 (2013).
[6] L. McLerran and V. Skokov, Nucl. Phys. A929, 184 (2014).
[7] E. Stewart and K. Tuchin, Nucl. Phys. A1016, 122308

(2021).
[8] K. Tuchin, Phys. Rev. C 102, 014908 (2020).
[9] L. Yan and X.-G. Huang, arXiv:2104.00831.

[10] Y. Hirono, M. Hongo, and T. Hirano, Phys. Rev. C 90,
021903 (2014).

[11] K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Phys.
Rev. D 78, 074033 (2008).

[12] Y. Yin, Phys. Rev. C 90, 044903 (2014).

[13] B. Feng, Phys. Rev. D 96, 036009 (2017).
[14] A. Das, H. Mishra, and R. K. Mohapatra, Phys. Rev. D 99,

094031 (2019).
[15] L. Thakur and P. Srivastava, Phys. Rev. D 100, 076016

(2019).
[16] J. Dey, S. Satapathy, P. Murmu, and S. Ghosh, Pramana 95,

125 (2021).
[17] M. Kurian, Phys. Rev. D 102, 014041 (2020).
[18] A. Dash, S. Samanta, J. Dey, U. Gangopadhyaya, S. Ghosh,

and V. Roy, Phys. Rev. D 102, 016016 (2020).
[19] K. Hattori, S. Li, D. Satow, and H.-U. Yee, Phys. Rev. D 95,

076008 (2017).
[20] K. Fukushima and Y. Hidaka, Phys. Rev. Lett. 120, 162301

(2018).
[21] M. Kurian and V. Chandra, Phys. Rev. D 96, 114026

(2017).
[22] S. Ghosh, A. Bandyopadhyay, R. L. Farias, J. Dey, and G. a.

Krein, Phys. Rev. D 102, 114015 (2020).

GOWTHAMA K K, MANU KURIAN, and VINOD CHANDRA PHYS. REV. D 104, 094037 (2021)

094037-8

https://doi.org/10.1016/j.nuclphysa.2005.03.085
https://doi.org/10.1016/j.nuclphysa.2005.03.085
https://doi.org/10.1142/S0218301321300010
https://doi.org/10.1103/PhysRevLett.125.022301
https://doi.org/10.1103/PhysRevLett.125.022301
https://doi.org/10.1103/PhysRevLett.123.162301
https://doi.org/10.1103/PhysRevLett.123.162301
https://doi.org/10.1103/PhysRevC.88.024911
https://doi.org/10.1016/j.nuclphysa.2014.05.008
https://doi.org/10.1016/j.nuclphysa.2021.122308
https://doi.org/10.1016/j.nuclphysa.2021.122308
https://doi.org/10.1103/PhysRevC.102.014908
https://arXiv.org/abs/2104.00831
https://doi.org/10.1103/PhysRevC.90.021903
https://doi.org/10.1103/PhysRevC.90.021903
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevD.78.074033
https://doi.org/10.1103/PhysRevC.90.044903
https://doi.org/10.1103/PhysRevD.96.036009
https://doi.org/10.1103/PhysRevD.99.094031
https://doi.org/10.1103/PhysRevD.99.094031
https://doi.org/10.1103/PhysRevD.100.076016
https://doi.org/10.1103/PhysRevD.100.076016
https://doi.org/10.1007/s12043-021-02148-3
https://doi.org/10.1007/s12043-021-02148-3
https://doi.org/10.1103/PhysRevD.102.014041
https://doi.org/10.1103/PhysRevD.102.016016
https://doi.org/10.1103/PhysRevD.95.076008
https://doi.org/10.1103/PhysRevD.95.076008
https://doi.org/10.1103/PhysRevLett.120.162301
https://doi.org/10.1103/PhysRevLett.120.162301
https://doi.org/10.1103/PhysRevD.96.114026
https://doi.org/10.1103/PhysRevD.96.114026
https://doi.org/10.1103/PhysRevD.102.114015


[23] W.-T. Deng and X.-G. Huang, Phys. Rev. C 85, 044907
(2012).

[24] M. Hongo, Y. Hirono, and T. Hirano, Phys. Lett. B 775, 266
(2017).

[25] H. Li, X.-l. Sheng, and Q. Wang, Phys. Rev. C 94, 044903
(2016).

[26] X.-G. Huang, Rep. Prog. Phys. 79, 076302 (2016).
[27] M. Greif, I. Bouras, C. Greiner, and Z. Xu, Phys. Rev. D 90,

094014 (2014).
[28] W. Cassing, O. Linnyk, T. Steinert, and V. Ozvenchuk,

Phys. Rev. Lett. 110, 182301 (2013).
[29] A. Puglisi, S. Plumari, and V. Greco, Phys. Rev. D 90,

114009 (2014).
[30] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
[31] N. Astrakhantsev, V. V. Braguta, M. D’Elia, A. Y. Kotov,

A. A. Nikolaev, and F. Sanfilippo, Phys. Rev. D 102,
054516 (2020).

[32] A. Amato, G. Aarts, C. Allton, P. Giudice, S. Hands, and
J.-I. Skullerud, Phys. Rev. Lett. 111, 172001 (2013).

[33] K. K. Gowthama, M. Kurian, and V. Chandra, Phys. Rev. D
103, 074017 (2021).

[34] V. Chandra and V. Ravishankar, Phys. Rev. D 84, 074013
(2011).

[35] A. Hosoya and K. Kajantie, Nucl. Phys. B250, 666 (1985).

[36] D. Satow, Phys. Rev. D 90, 034018 (2014).
[37] V. Mykhaylova and C. Sasaki, Phys. Rev. D 103, 014007

(2021).
[38] P. K. Srivastava, L. Thakur, and B. K. Patra, Phys. Rev. C

91, 044903 (2015).
[39] S. Mitra and V. Chandra, Phys. Rev. D 97, 034032 (2018).
[40] B. Schenke, M. Strickland, C. Greiner, and M. H. Thoma,

Phys. Rev. D 73, 125004 (2006).
[41] P. Romatschke and M. Strickland, Phys. Rev. D 68, 036004

(2003).
[42] G. Aarts, C. Allton, J. Foley, S. Hands, and S. Kim, Phys.

Rev. Lett. 99, 022002 (2007).
[43] H.-T. Ding, A. Francis, O. Kaczmarek, F. Karsch, E.

Laermann, and W. Soeldner, Phys. Rev. D 83, 034504
(2011).

[44] U. Gürsoy, D. Kharzeev, E. Marcus, K. Rajagopal, and C.
Shen, Phys. Rev. C 98, 055201 (2018).

[45] A. Das, H. Mishra, and R. K. Mohapatra, Phys. Rev. D 100,
114004 (2019).

[46] A. Das, H. Mishra, and R. K. Mohapatra, Phys. Rev. D 102,
014030 (2020).

[47] M. Kurian, Phys. Rev. D 103, 054024 (2021).
[48] H.-X. Zhang, J.-W. Kang, and B.-W. Zhang, Eur. Phys. J. C

81, 623 (2021).

ELECTROMAGNETIC RESPONSE OF HOT QCD MEDIUM IN THE … PHYS. REV. D 104, 094037 (2021)

094037-9

https://doi.org/10.1103/PhysRevC.85.044907
https://doi.org/10.1103/PhysRevC.85.044907
https://doi.org/10.1016/j.physletb.2017.10.028
https://doi.org/10.1016/j.physletb.2017.10.028
https://doi.org/10.1103/PhysRevC.94.044903
https://doi.org/10.1103/PhysRevC.94.044903
https://doi.org/10.1088/0034-4885/79/7/076302
https://doi.org/10.1103/PhysRevD.90.094014
https://doi.org/10.1103/PhysRevD.90.094014
https://doi.org/10.1103/PhysRevLett.110.182301
https://doi.org/10.1103/PhysRevD.90.114009
https://doi.org/10.1103/PhysRevD.90.114009
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1103/PhysRevD.102.054516
https://doi.org/10.1103/PhysRevD.102.054516
https://doi.org/10.1103/PhysRevLett.111.172001
https://doi.org/10.1103/PhysRevD.103.074017
https://doi.org/10.1103/PhysRevD.103.074017
https://doi.org/10.1103/PhysRevD.84.074013
https://doi.org/10.1103/PhysRevD.84.074013
https://doi.org/10.1016/0550-3213(85)90499-7
https://doi.org/10.1103/PhysRevD.90.034018
https://doi.org/10.1103/PhysRevD.103.014007
https://doi.org/10.1103/PhysRevD.103.014007
https://doi.org/10.1103/PhysRevC.91.044903
https://doi.org/10.1103/PhysRevC.91.044903
https://doi.org/10.1103/PhysRevD.97.034032
https://doi.org/10.1103/PhysRevD.73.125004
https://doi.org/10.1103/PhysRevD.68.036004
https://doi.org/10.1103/PhysRevD.68.036004
https://doi.org/10.1103/PhysRevLett.99.022002
https://doi.org/10.1103/PhysRevLett.99.022002
https://doi.org/10.1103/PhysRevD.83.034504
https://doi.org/10.1103/PhysRevD.83.034504
https://doi.org/10.1103/PhysRevC.98.055201
https://doi.org/10.1103/PhysRevD.100.114004
https://doi.org/10.1103/PhysRevD.100.114004
https://doi.org/10.1103/PhysRevD.102.014030
https://doi.org/10.1103/PhysRevD.102.014030
https://doi.org/10.1103/PhysRevD.103.054024
https://doi.org/10.1140/epjc/s10052-021-09409-w
https://doi.org/10.1140/epjc/s10052-021-09409-w

