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In this work we present the results from numerical simulations of an interacting ensemble of instanton
dyons in the SUð3Þ gauge group with Nf ¼ 2 flavors of massless quarks. Dynamical quarks are included
via the effective interactions induced by the fermionic determinant evaluated in the subspace of topological
zero modes. The eigenvalue spectrum of the Dirac operator is studied at different volumes to extract the
chiral condensate and eigenvalue gap, with both observables providing consistent values of the chiral
transition temperature Tc. We find that a sufficient density of dyons is responsible for generating the
confining potential and breaking the chiral symmetry, both of which are compatible with second-order
transitions.
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I. INTRODUCTION

A. Instanton dyons at finite temperature

Quantum chromodynamics (QCD) possesses approxi-
mate symmetries whose breaking/restoration correspond to
certain phase transitions. At finite temperature and zero
chemical potentials, QCD has two crossovers: deconfine-
ment and chiral symmetry restoration. In the infinite quark
mass (pure gauge) limit, the theory has an exact Z3

symmetry, for which the average Polyakov loop hPi is
an order parameter. (The Polyakov loop P̂ is a matrix and
we define the average Polyakov loop as the scalar quantity
hPi ¼ 1

3
hTr½P̂ðx⃗Þ�i.) At finite quark masses, it is no longer a

strict order parameter, but still has a rapid change and a
psuedocritical temperature that can be identified from its
inflection point.
The average Polyakov loop is associated with the

deconfinement of quark degrees of freedom by its relation
to the heavy quark free energy [1]

hPi ¼ expð−FQ=TÞ: ð1Þ

Of course, at large T the quarks are asymptotically free with
trivial Polyakov loop hPi → 1. The question is then: which
nonperturbative interactions drive the theory to the con-
fining Polyakov loop hPi ¼ 0 at low temperatures?

The instanton in SUðNÞ gauge theories is the minimum
of the action with vanishing fields Aa

μ at space-time infinity.
At finite temperature, with a nonzero VEVof the Polyakov
loop, one component along the Euclidean time direction is
nonzero hA4i ≠ 0. Looking for solutions of Yang-Mills
equations with such modified conditions at infinity, it was
found that the instanton dissolves intoNc constituent dyons
(also known as instanton monopoles) connected by Dirac
strings [2,3]. Unlike the instantons, the dyons interact
directly with the holonomy. It was suggested then that
the dyons can generate a confining potential which over-
comes the perturbative interactions of thermal gluons with
the Polyakov loop. For a review, see, e.g., Ref. [4].
Analytic descriptions of how the dyons generate confine-

ment are possible in particular supersymmetric models
[5,6], which can be achieved with a dilute gas of dyons due
to a cancellation of the deconfining potential. In the pure
Yang-Mills theories, the deconfining Gross-Pisarski-Yaffe
potential [7] means that a dense, strongly-coupled ensem-
ble is required to confine the theory. In these cases, the
dyons have been shown to generate confinement via
numerical simulations in both the pure SUð2Þ [8,9] and,
more recently, SUð3Þ [10] cases.
One can also take the “inverse” approach, identifying

dyons in lattice configurations using the Dirac operator and
gradient flow methods to reveal the dyons [11–13] from
underneath the quantum fluctuations of the gluon field.

B. Instanton dyons and fermions

If two light quark flavors are massless, QCD has an exact
SUð2ÞL × SUð2ÞR chiral flavor symmetry. Below some Tc
the axial part of this symmetry is spontaneously broken.
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The chiral quark condensate hq̄qi serves as the order
parameter of the transition.
The interactions between instantons and quarks have

been studied since the 1980s, starting with the instanton-
induced ’t Hooft Lagrangian. This interaction explicitly
breaks the UAð1Þ symmetry via the topological quark zero
modes. Later, the instanton liquid model (ILM) [14]
showed that the breaking of chiral symmetry is related
to the collectivization of said zero modes into the so-called
zero-mode zone (ZMZ). For a review, see, e.g., Ref. [15].
Following the discovery of the instanton dyons, it was

shown that the quark zero mode of the instanton localizes
to a single constituent dyon. Which one depends on the
quark periodicity condition [16]. These zero modes, like
the dyons themselves, have explicit dependence on the
holonomy. In the case of (physical) antiperiodic quarks, all
zero modes are localized to the L dyons as will be discussed
in the next sections.
Previous studies of ensembles of dyons have analyzed

the Dirac eigenvalue spectrum in this zero-mode zone and
confirmed their role in chiral symmetry breaking in the
SUð2Þ gauge group via mean-field methods [17] and
numerical studies [18,19]. Both techniques have also been
employed to study the phase transitions in theories with
modified quark periodicities [20,21]. The goal of this work
is then to extend such numerical studies, in an effort to
approach physical QCD, to the SUð3Þ gauge group with
Nf ¼ 2 flavors of massless, dynamical quarks, looking at
both the confinement and chiral symmetry transitions.
More recently dyons have been identified on the lattice

via their quark zero modes [13]. It has been shown that the
form of the quark zero modes are remarkably insensitive to
the many perturbative gluons in which they are submerged.
From studies such as this, dyon densities and correlation
functions can be calculated, serving as useful constraints on
models of the dyon interactions such as ours.
The structure of this paper is as follows: In Sec. II the

physics of the dyon ensemble, their interactions, and the
holonomy is described. Section III focuses on the quark
zero modes and the interactions induced by them. Technical
details of the simulations are discussed in Sec. IV. Finally,
Secs. Vand VI lay out the results relevant to the deconfine-
ment and chiral phase transitions, respectively.

II. INTERACTING DYON ENSEMBLE

A. Holonomy and the dyon partition function

The instanton dyons are obtained by generalizing the
instanton solution to nonzero holonomy (nontrivial
Polyakov loop) [2,3]. In SUð3Þ, the instanton is decom-
posed into three dyon species, the M1 and M2 dyons
corresponding to the maximally diagonal subgroup and the
time dependent L dyon, as well as corresponding anti-
dyons. The holonomy parameters are the differences in the
phases μ1, μ2, μ3 of the eigenvalues of the gauge field

component A4 at spatial infinity. The holonomies are
defined as νi¼μiþ1−μi with

P
νi ¼ 1. Demanding that

hPi be real reduces the individual dyon holonomies to
depend on a single parameter ν.
The dyon actions and core sizes are directly related to

their individual holonomies. The actions of each dyon, in
terms of the instanton action S0, are

SM1 ¼ SM2 ¼ S0; νSL ¼ S0ð1 − 2νÞ ¼ S0ν̄: ð2Þ
The sizes of the dyon cores scale as 1=νi.
We work in dimensionless units with all lengths in units

of 1=T, and define the following dimensionless quantities:
the volume Ṽ3 ¼ ðLTÞ3, free energy F̃ ¼ F=T, free energy
density f ¼ F̃=Ṽ3, and dyon densities ni ¼ Ni=Ṽ3. The
single holonomy parameter is defined on the interval
ν ∈ ½0; 1=2� and is related to the Polyakov loop via

hPi ¼ 1

3
þ 2

3
cosð2πνÞ: ð3Þ

The main scale of interest, the instanton action S0, is related
to the temperature by

S0 ¼
8π2

g2
¼

�
11

3
Nc −

2

3
Nf

�
lnðT=ΛÞ; ð4Þ

where Nc ¼ 3, Nf ¼ 2, and Λ ¼ 4.8. The value of Λ is
chosen to set the critical temperature to be around S0 ∼ 12.
The dyon partition function and interactions are identical

to that of the ensemble in the pure SUð3Þ theory [10] with
two additional terms: a potential arising from the pertur-
bative interactions of the quarks with the holonomy, and
quark-induced interactions between L and L̄ dyons. Here
we provide a brief description of the partition function,
focusing on the new terms.
The partition function of the dyon ensemble is separated

into two parts as Z ¼ Z0Zint, where Z0 is the noninteracting
terms and Zint contains all of the dyon interactions. The
partition function is

Z0 ¼ eṼ3ðVGPYþVquarkÞ
X

NM1;NL;NM2

�
1

NM1!
ðṼ3dνÞNM1

�
2

×
�

1

NL!
ðṼ3d1−2νÞNL

�
2
�

1

NM2!
ðṼ3dνÞNM2

�
2

; ð5Þ

where dν is the weight of an individual dyon with
holonomy ν [22]

dν ¼
Λ
4π

S20e
−S0νν

8ν
3
−1: ð6Þ

The potentials in the partition function are the perturba-
tive potentials of the quarks and gluons with the holonomy.
The gluons experience the well-known Gross-Pisarski-
Yaffe potential VGPY [7], which in SUð3Þ is
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VGPY

Ṽ3T
¼ 4π2

3
ð2ðνð1 − νÞÞ2 þ ð2νð1 − 2νÞÞ2Þ: ð7Þ

The first term new to this work is the second potential
Vquark, which is the analogous interaction of Nf flavors of
massless quarks with the holonomy [23,24]. For SUð3Þ, it
has the form

Vquark

Ṽ3T
¼ −Nf

4π2

3
ð2ν4 − ν2Þ: ð8Þ

Both of these potentials favor the deconfining holonomy
ν ¼ 0. Figure 1 shows the contributions of both terms to the
free energy density.

B. Dyon interactions

Within the temperature range of interest near the critical
temperature Tc, the dyons are strongly interacting. These
interactions contribute significantly to the partition function
and their computation is nontrivial, requiring Monte-Carlo
integration over the 3ND-dimensional space of the dyons’
collective coordinates. The interaction terms of the partition
function can be written in the form

Zint ¼
1

Ṽð4NMþ2NLÞ
3

Z
Dx detðGÞ detðḠÞe−ΔScl

�Y
λi

�
Nf

ð9Þ

Here the interactions are separated into three parts: the
classical binary interactions of the dyonsΔScl, the one-loop

fluctuation determinants detðGÞ and detðḠÞ, and the
eigenvalues λi of the Dirac operator due to the inclusion
of Nf flavors of dynamical massless quarks.
The classical and one-loop interactions included are the

same as those in the pure SUð3Þ theory. At large distances,
the dyon interactions are Coulomb-like. We use the para-
metrized form

ΔSdd̄cl ¼ −
S0Cij

2π

�
1

rT
− 2.75π

ffiffiffiffiffiffiffiffi
νiνj

p
e−1.408π

ffiffiffiffiffiffi
νiνj

p
rT

�
; ð10Þ

between dyons i and j. The coefficient Cij is −2 for
dyon-antidyon pairs of the same type, 1 for dyon-antidyon
pairs of different types, and 0 for dyon-dyon or antidyon-
antidyon pairs. At distances shorter than the core size
x0 ¼ 2πνir0T, dyons of the same type, regardless of
duality, experience a repulsive core of the form

ΔScorecl ¼ νV0

1þ e2πνTðr−r0Þ
: ð11Þ

The volume metrics (G for the dyons and Ḡ for the
antidyons) are the Diakonov determinants [4], each with
the same form for matrix elements between the ith dyon of
type m and the jth dyon of type n

Gim;jn ¼ δijδmn

�
4πνm −

X
k≠i

2

Tjri;m − rk;mj

þ
X
k

1

Tjri;m − rk;p≠mj
�

þ 2δmn

Tjri;m − rj;nj
−

1 − δmn

Tjri;m − rj;nj
: ð12Þ

The other term in the interactions is fermionic determi-
nant, not included in our previous work. It can be written as
the product of the eigenvalues of the Dirac operator
detð=DÞ ¼ Q

λi. Its form is discussed in detail in the next
section.
Additionally all Coulomb-like terms in the classical and

one-loop interactions are regulated by an electric Debye
screening term eMDrT . There are three phenomenological
parameters of the model which at present are not known
from first principles, V0, x0, and MD. We use the values
V0 ¼ 40, x0 ¼ 1.8, and MD ¼ 1.5 in this work.
The contribution of the interaction potential to the free

energy density is computed via the standard integration
over a dummy interaction strength parameter λ,

Δf ¼ 1

Ṽ3

Z
1

0

dλhΔSi: ð13Þ

FIG. 1. Holonomy dependence of the perturbative SUð3Þ quark
and gluon potentials and their sum for Nf ¼ 2 and Ṽ3T ¼ 1.
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In total, the free energy density for an ensemble with specified input parameters is

fðT; ν; nM; nLÞ ¼ −Nf
4π2

3
ð2ν4 − ν2Þ þ 4π2

3
ð2ðνð1 − νÞÞ2 þ ð2νð1 − 2νÞÞ2Þ

− 4nM ln

�
dνe
nM

�
− 2nL ln

�
d1−2νe
nL

�
þ lnð8π3N2

MNLÞ
Ṽ3

þ Δf; ð14Þ

where Z0 has been expanded with Stirling’s approximation
to three terms. The central goal of this work is then to
compute f for a range of input parameters and determine
the location of the minimum for each value of T, thereby
determining the physical properties of the ensemble as
functions solely of the temperature.

III. QUARK-INDUCED INTERACTIONS

A. Fermionic determinant

The main result of incorporating dynamical quarks into
the gauge theory is the inclusion of the fermionic deter-
minant in the partition function. In the context of the
instanton-dyon ensemble, the fermionic determinant is
approximated by considering only the subspace of quark
states spanned by the zero modes. This approximation
results in the ’hopping matrix’

ðdetð=DþmaÞÞNf ≈ ðdetðT̂ÞÞNf ; ð15Þ

assuming equal masses for all quark flavors a. Here we
have removed a factor of i from the left-hand side (lhs) of
the equation in order to write T̂ as a purely real matrix.
For physical (antiperiodic) quarks, the right-handed zero

modes are localized on the L dyons and the left-handed
zero modes are localized on the L̄ dyons. Individual
elements of the hopping matrix can be interpreted as the
“hopping amplitude” for a quark going between L dyon i
and L̄ dyon j. These elements are then given by

Tij¼hij=Dþmjji¼
Z

d4xψ†
i ðx−xiÞð=DþmÞψ jðx−xjÞ:

ð16Þ

If one approximates the total gauge field as the sum of
the fields of two dyons, then the covariant derivative
can be reduced to an ordinary derivative by the zero
mode equations of motion. This hopping amplitude only
has a nonzero contribution from =D when the zero
modes have opposite chirality (i.e., hopping within LL̄
pairs, but not LL or L̄ L̄) and because the zero modes are
approximately orthogonal, the mass term only contributes
along the diagonal. Thus, the hopping matrix takes on the
simple form

T̂ ¼
�
mδij Tij

−Tji mδij

�
: ð17Þ

The hopping matrix T̂ is a 2NL × 2NL antisymmetric
matrix in the case of massless quarks which we consider in
most of this work. The fermionic determinant may be
interpreted as a sum of all closed loops of the quarks
hopping between dyon-antidyon pairs. As an explicit
example, let us consider the case of two L dyons 1 and
2 and two L̄ dyons 1̄ and 2̄. In this case the determinant of
the hopping matrix is

detðT̂Þ ¼ T2
11T

2
22 þ T2

12T
2
21 − 2T11T21T22T12: ð18Þ

The first two terms correspond to the two possible two-loop
diagrams in which each L dyon forms a closed loop with a
single L̄ dyon each (the upper diagrams in Fig. 2). The last
term represents the one-loop diagram in which the quark
hops between all four dyons (the bottom diagram in Fig. 2).
For arbitrary number of L-dyons NL, there are NL! terms in
the determinant of the hopping matrix. (Of course, numeri-
cally we evaluate the determinant by a more efficient
algorithm.)
Whether the determinant is dominated by paths involv-

ing single pairs (‘instanton molecules’) or paths of many

FIG. 2. The set of diagrams corresponding to detðT̂Þ for the
system of two L dyons (solid circles) and two L̄ antidyons
(dashed circles). Red arrows represent quark hoppings between
dyons. Each diagram corresponds to a term in Eq. (18).
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dyons (“instanton polymers”) determines the state of the
chiral symmetry. Consider the case in which the dyons are
arranged into well-separated LL̄ pairs. In this case, the
determinant is dominated by Tii and Tij → 0 for i ≠ j. In
this case the eigenvalues of the matrix are λ ≈�Tii. In this
configuration, the eigenvalues are then all large for the
nearby dyon-antidyon pairs, suppressing the density of
near-zero eigenvalues, leading to the disappearance of the
quark condensate. It is in the collectivized “polymer”
regime, where there are many Tij’s of comparable magni-
tude which nearly cancel each other in the eigenvalues,
which possesses a nonvanishing density of eigenvalues
near zero.

B. Parametrization of the hopping matrix elements

The general form of the quark zero modes on the SUðNÞ
dyon gauge fields was first given in Ref. [16]. An explicit
form for the zero mode density, in terms of all dyon
coordinates is far too complicated to be of a practical use.
(See Appendix A for a discussion of the general solution.)
Instead, we start here with the form of the zero mode for a
lone L dyon1:

ψA
a ¼

ffiffiffiffiffiffi
2π

p ν̄ tanhðπν̄rTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rT sinhð2πν̄rTÞp eiπτTϵAa ; ð19Þ

where the ϵ symbol contains the color and spin structure.
The left-handed zero mode on the L̄ dyon is found by
changing the spin of the quark in the ϵ symbol. The spatial
structure of the wave function is the same for all SUðNÞ. In
this limit, the zero mode density has no Euclidean time
dependence. The effect of nearby Mi dyons is to destruc-
tively interfere with the gauge field of the L dyon localizing
the zero mode in both space and time. For some observ-
ables, such as hadronic correlation functions [25], these
nonbinary forces seem to be necessary to achieve reason-
able results.
In some preliminary computations for this work, an

ad hoc approach to including the effects of interference
was considered by appending a term estimating the
localization effects to the wave function in Eq. (19). It
was found that these terms led to only a modest modi-
fication of the quark-induced interactions. Thus we do not
include such effects in out parametrization of the hopping
matrix.
Computing Tij requires numerical integration, and its

parametrization is used. For a detailed derivation of Tij see
Ref. [19]. We use the same parametrization as in the SUð2Þ
work [18], known there as “Parametrization A,”

Tij ¼ ν̄c0 exp
�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11.2þ ðπν̄rTÞ2

q �
: ð20Þ

The magnetically-charged dyons have Dirac strings which
are, in principle, pure gauge artifacts. However, the use of
the sum ansatz in combining the two gauge fields intro-
duces gauge-dependent factors in the zero modes. This
leaves ambiguity in the overall normalization, handled here
by c0 which we treat as a tunable parameter of the model
and have chosen to use lnðc0Þ ¼ 4.45.
This choice was made, like the choices of other para-

meters, to achieve a phase transition near S0 ∼ 12. The
parameter c0 gives a constant shift to the effective quark
potential. The L-dyon density is thus directly sensitive to
this choice; a larger c0 results in a larger nL. This leads to
greater overlap of the quark zero modes and thus a higher
critical temperature.
The fermionic determinant adds an effective potential to

the ensemble of the form

ΔSquarks ¼ −Nf lnðdetðT̂ÞÞ: ð21Þ

This induces complicated many-body interactions between
all L and L̄ dyons, but at the simplest level is an attractive
force within LL̄ pairs.

IV. SIMULATIONS AND ANALYSIS

The simulation setup and analysis follows much of what
was done in the previous work (see Sec. III of Ref. [10]).
The free energy density of the dyon ensembles are
computed via Monte-Carlo integration using the standard
Metropolis algorithm. For each set of input parameters the
simulation is run with 10 values of the dummy parameter
λ ¼ 0.1;…; 1. Every dyon position is updated five times
between samplings and 2000 configurations are sampled
for each value of λ.
Each simulation is run at fixed dyon number ND ¼ 120

(60 dyons and 60 antidyons). The densities of the dyons are
controlled by varying the length L of the sides of the
simulation box and the relative number of each type of
dyon. Periodic (spatial) boundary conditions are imposed
by a set of 26 image boxes placed around the main
simulation box. Because of the large cost of computing
the determinants of the matrices, only dyon interactions
within a local box of length L centered on the dyon whose
position is being updated are computed at each update step.
Compared to the pure SUð3Þ case, the only addition to the
Metropolis update step is computing the fermionic deter-
minant. Because it only involves the positions of the L and
L̄ dyons, it is much smaller than the Diakonov determinant
and does not increase the computational cost significantly.
This is in contrast to lattice simulations, where the
fermionic determinant is typically the most computation-
ally expensive task.

1In the equations in this section we explicitly restore factors of
2π and T which are suppressed in other works.
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For any finite number of images there are dyons near the
faces of the total simulation box which feel unphysical
effects of the boundaries. In the pure SUð3Þ case, where all
interactions were exponentially suppressed by the Debye
mass, these finite-volume effects were only a percent-level
correction to the free energy. The quark-induced inter-
actions are linear at long distances and must be treated more
carefully. When computing the potential from these
interactions, for each pair of dyons i and j one should
consider only the image of j which minimizes the distance
between the pair. This ensures that the short-distance
(large-eigenvalue) interactions of dyons near the faces of
the boxes are not excluded while long-distance (small-
eigenvalue) of dyons on the opposite sides of the
boxes are not overcounted. This introduces an effective
cutoff distance L=2 considered in the hoping matrix which
is remedied when taking the infinite-volume limit. Without
using this technique, the eigenvalue distribution has a large
number of unphysical, arbitrarily small eigenvalues.
The physical parameters of the dyon ensemble are

determined by a fit near the free energy minimum in the
space of the input parameters for each value of S0. The space
of parameters studied is given in Table I. Once the minima
are found, additional simulations are run with the physical
parameters generating 60,000 configurations to compute the
eigenvalue distributions with better statistics. In order to
more accurately represent both fitted densities simultane-
ously, the dyon number of these runs is allowed to vary
slightly with 120 ≤ ND ≤ 128. Additionally, in order to
study finite-volume effects, 30,000 configurations are gen-
erated with 2ND dyons and 20,000 configurations are
generated with 3ND dyons at the physical parameters for
each temperature (thus the number of eigenvalues computed
is the same for all three ensemble sizes).

V. THE POLYAKOV LOOP AND
DECONFINEMENT

The physical properties of the dyon ensemble are
determined by the location of the free energy minimum
in the space of input parameters. The holonomy- and
density-dependence of the potential determines the
Polyakov loop and the nature of the deconfinement phase
transition. Figure 3 gives an example of the holonomy
potential. The same general features are seen here as in the
pure SUð3Þ case, namely that at high densities the

minimum is located in the confining phase (ν ¼ 1=3) as
the dyon interactions dominate, while as the densities are
reduced, the minima are pushed to lower values of ν, driven
by the perturbative potentials. It is the location of the global
minimum, at some intermediate densities, that represents
the physical value of the holonomy in the thermodynamic
limit. Crucially, however is the fact that the holonomy now
varies smoothly as a function of temperature. Unlike the
pure SUð3Þ case, there are not two nearly-degenerate
minima near Tc (see Fig. 4 of Ref. [10]).
In QCD the deconfinement transition is a smooth

crossover occurring almost simultaneously with the chiral
transition, Tdeconf ∼ Tc [26,27]. In the Nf ¼ 2 massless
case we consider, evidence is less conclusive. Recently
much progress has been made, in particular by the Bielefeld
group [28–33], on studying the phase transition in
ð2þ 1Þ—QCD on the lattice in the chiral limit—QCD
with massless up and down quarks and a physical strange
quark ms ≈ 95 MeV. Of note is the fact that the location
and form of the deconfinement transition is very sensitive
to the light quark masses.
The order of the phase transition in the chiral limit is

dependent on the state of the Uð1ÞA symmetry breaking
near the chiral restoration temperature. If the Uð1ÞA
breaking remains significant at these temperatures, as is
expected, the phase transitions are expected to be second
order belonging to the Oð4Þ universality class, for large
enough values of the strange quark mass ms [34,35]. If the
Uð1ÞA breaking is small near Tc, the transition may be first
order. Recent lattice results suggest that in the chiral limit
Uð1ÞA breaking remains significant up to at least ∼1.6Tc
[36], supporting the second-order case. The phase diagram

TABLE I. Ranges of the input parameters used for the main
simulation runs.

Min. Max. Step size

S0 8 14.5 0.5
ν 0.1933 0.3533 0.01
nM 0.12 0.45 0.015
NM 19 28 1

FIG. 3. Holonomy dependence of the free energy density for
different values of the M-dyon density nM with S0 ¼ 9.0 and
nL ¼ nM=1.643. This ratio of densities is the closest to the fitted
value that can be achieved with ND ¼ 120 dyons. Error bars
omitted for readability.
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of the Oð4Þ class is characterized by the temperature T and
external field H. In the case of the gauge theory, the role of
the external field is played by the light quark masses,
meaning we look at the H ¼ 0 line with the massless
quarks.
We then fit the data for hPðTÞi a the form inspired by

Ref. [33].

hPðTÞi ¼ expð−a0 − tða1 þ Ajtj−αÞÞ; ð22Þ

where t ¼ ðT − TdeconfÞ=Tdeconf and α ¼ 2 − βð1þ δÞ is
the hyperscaling variable with the values of the Oð4Þ class
β ¼ 0.380, δ ¼ 4.824, and α ¼ −0.2131 [37,38]. From this
fit (χ2 ¼ 0.0257) we find the critical temperature of the
deconfinement transition S0ðTdeconfÞ ¼ 10.44� 0.29. We
also constrain the signs of the fit parameters to match those
determined from the lattice data a0; A > 0, a1 < 0.
Removing these constraints or treating α as a fit parameter
results in comparably-good fits with very different Tdeconf
values. For example, the Oð2Þ universality class is quali-
tatively similar but α ¼ −0.0172 [39,40] is an order of
magnitude different from the Oð4Þ value. The dyon data
shows slightly better agreement to that fit (χ2 ¼ 0.0178), so
we do not claim that our data supports Oð4Þ over other
OðNÞ universality classes, but merely that it is compatible
with the expected Oð4Þ behavior. Similarly, relaxing the
constraints on the signs of the fit parameters results
in a similar-quality fit with a larger (S0 ∼ 14) transition
temperature. Because of the multiple potential fits, one
should consider the determination of Tdeconf to have larger
uncertainties than those given by any individual fit, on the
order more than one unit of S0.
In QCD with massive quarks, with no exact chiral or Z3

symmetries, the transitions are analytic crossovers. The
psuedocritical temperature is defined by the inflection point
of the curve, where the derivative with respect to the
temperature has a maximum, since there is no universal
scaling expected near the transition from which a proper
critical temperature could be determined via a fit. Lattice
QCD studies find that, for the Polyakov loop, the peak is
broad and the location of its maximum is hard to accurately
define. We determine the derivative of hPðTÞi by simply
computing the slopes between points and see in Fig. 4 that
no distinct peak can be effectively determined due to the
large uncertainties.
The dyon densities, both shown in Fig. 5, decrease as the

temperature rises. Unlike the pure SUð3Þ case, the L-dyon
density remains smooth around Tc. Even in the confined
phase, when the dyon actions and sizes are equal, the
densities are not due to the quark-induced interactions
breaking the symmetry between the dyon types (or more
generally, breaking Z3 symmetry). The ratio of the den-
sities at low T is directly sensitive to our choice of c0.

VI. CHIRAL SYMMETRY BREAKING

A. Eigenvalue distribution of the Dirac operator

The breaking of chiral symmetry is associated with the
existence of a nonzero quark condensate hq̄qi generated by
nonperturbative effects at low temperatures. The quark

FIG. 4. Temperature dependence of the average Polyakov loop
and its (scaled) temperature derivative in the dyon ensemble.
Derivative is computed from the differences in consecutive data
points. Solid curve shows the fit to the form of the second-order
transition in the Oð4Þ universality class (22).

FIG. 5. Temperature dependence of the (dimensionless) den-
sities for L- and Mi-type dyons.
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condensate is related to the zero eigenvalues of the Dirac
operator by the Banks-Casher relation [41]

Σ ¼ jhq̄qij ¼ lim
λ→0

lim
V→∞

πρðλÞ; ð23Þ

where ρðλÞ is the spectral density of the Dirac operator.
With the hopping matrix being antisymmetric, its

spectrum is symmetric in the sign of the eigenvalue,
ρðλÞ ¼ ρð−λÞ. For simplicity, we only show the positive
spectrum in the plots. Figure 6 shows examples of the
spectrum in both phases.
The smallest eigenvalues correspond to collectivized

modes with the zero modes of many dyons overlapping.
For a system of finite size, the eigenvalues below some
value λmin are suppressed with λmin ∝ 1=V, meaning that
regardless of which phase the system is in, a finite system
will always have zero eigenvalue density near zero.
In Fig. 6 (left), the steep decrease in eigenvalues below

λ ∼ 0.06 is a result of the finite size of the system.
The dashed line extrapolating to λ ¼ 0 gives an estimate
of the spectral density in the absence of such effects. In the
restored phase [Fig. 6 (right)], there is a larger range of
decreasing eigenvalues. The decrease in density near zero
reflects a real absence of collectivization rather than finite
volume effects. This cannot be seen from a single eigen-
value distribution alone, and distinguishing the two phases
requires analyzing the distributions for multiple volumes.

B. Infinite-volume extrapolation and results

We locate the chiral phase transition by two different
methods. The first is by extracting the chiral condensate

ΣðTÞ by extrapolating the small eigenvalue distribution to
infinite volume using results from random-matrix theory.
The vanishing of the condensate is related to the pseudoc-
ritical temperature Tc. The other way is to use the
eigenvalue gap ΔðTÞ by fitting the smallest eigenvalues
to a linear function [similar to Figs. 6 (right) and 7]. Above
a temperature Tgap, the restoration of chiral symmetry leads
to a finite size of the smallest eigenvalues, meaning the
lowest excitations have finite mass.
The mesoscopic volume scaling of the near-zero eigen-

values can be understood from random-matrix theory,
which for Nc ¼ 3, Nf ¼ 2, gives a Dirac eigenvalue
spectrum of the form [42]

ρðzÞ ¼ VΣ2

�
z
2
ðJ22ðzÞ − J1ðzÞJ3ðzÞÞ

�
; ð24Þ

where z ¼ λVΣ1 and Jn are the Bessel functions. Here Σ1 is
the scaling factor and Σ2 is the overall normalization factor.
In the infinite volume limit ρð0Þ → VΣ2.
Both of the factors Σ1 and Σ2 are related to different

physics with different volume-dependence. In the case
of the dense, low-temperate ensemble the eigenvalue
distribution should be dominated by the collectivized
modes. In this case, increasing the volume should reduce
the region of suppressed eigenvalues by the same factor and
Σ1 ∝ V ∝ ND. On the opposite end, when the ensemble is
dilute and comprised of dyon-antidyon pairs, Σ1 is inde-
pendent of the system size. Of course, in the region near Tc,
the ensemble is a mixture of both components and we must
interpolate between the two.

FIG. 6. Normalized probability distribution of eigenvalues in the near-zero-mode zone for both the broken and restored phases.
Dashed lines show fits to the linear regions of the distributions. Left: S0 ¼ 8, the y-intercept of the fit is proportional to the chiral
condensate Σ, the solid curve is the fit to the random-matrix theory results (24), Right: S0 ¼ 14, the x-intercept of the fit is the eigenvalue
gap Δ. Note that the linear fit to determine the y-intercept on the left plot is not used in the analysis and is merely illustrative.
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A fit to the distribution gives two parameters per
ensemble size. To extract the infinite-volume value of
the condensate we use an interpolating function to deter-
mine how much of the region of smallest eigenvalue is real
or a finite volume effect. We use the function

Σ ¼ Σ2

�
2Σ3V

1

Σ2V
1

− 2

��
Σ2V
1

ΣV
1

− 1

�
; ð25Þ

where Σ2 ¼ ðΣV
2 þ Σ2V

2 þ Σ3V
2 Þ=3 is the overall scale and

each term in parenthesis we call a scaling factor.
The philosophy of these scaling functions is as follows:

each scaling factor is linear in the ratios of Σi
1 and chosen

such that it gives 0 or 1 in the opposite cases described
above. In the case where the lowest-eigenvalue portion of
the spectrum is real and doesn’t change with the volume,
the scaling factors are 0, and thus the condensate is 0 as
there is a finite eigenvalue gap. In the case where the
suppressed region is entirely due to finite volume
effects, the factors should scale with V and Σ3V

1 ¼ 3=2Σ2V
2 ,

Σ2V
1 ¼ 2ΣV

2 the scale factors are 1 meaning the overall value
of the condensate remains in the infinite-volume limit
Σ ¼ Σ2. Additionally we enforce an upper bound of 1
on each scaling factor in cases where the values scale faster
than V. Two scale factors are used to scale between the
three volumes. Alternative functions using just two of the
volumes are discussed in Appendix B.
Along the H ¼ 0 line, the chiral condensate (analogous

to the magnetization M in the Oð4Þ spin model) takes the
form

ΣðTÞ ¼
�
CðTc − TÞβ if T < Tc

0 if T ≥ Tc

ð26Þ

where C is some (nonuniversal) constant. We qualitatively
compare this form to our results in Fig. 8. As expected, we
see a very rapid drop in the condensate to zero just below
Tc. More data points just above and below Tc would be
needed to get a more accurate fit to the data. Going to the
lowest temperatures we do not see the continued increase in
Σ expected by Eq. (26), however this universal scaling
behavior is only applicable in the region near the critical
temperature. As with the deconfinement transition, we
claim our results are compatible with the second-order
transition of the Oð4Þ class. Certainly, like the lattice data,
our results disfavor the potential first-order transition.
To determine the eigenvalue gap, a linear fit is performed

on the smallest eigenvalues for each of the ensemble sizes.
The x-intercept of each fit gives the eigenvalue gap, as
shown in Fig. 7. In order to extract the true value of the gap
and remove finite-volume effects, a linear function in 1=V is
fit to the three gaps for different volumes. The value of the
gap at 1=V ¼ 0 gives the true value of the gap ΔðTÞ in the
absence of the finite-volume suppression of small eigen-
values. The results of this analysis are also seen in Fig. 8.
Below a certain temperature, the gaps are all compatible

with zero, indicating a finite density of zero eigenvalues. At
S0 ∼ 13.0–13.5, a finite gap forms and quickly rises, nearly
simultaneously with the steep drop in the value of the
condensate. Both of the fitting methods for the condensate
ΣðTÞ and gap ΔðTÞ give consistent temperatures for the

FIG. 7. Eigenvalue distributions at S0 ¼ 8.5 for three different
ensemble sizes. Dashed lines represent fits to the approximately-
linear portion of the distribution near zero. The eigenvalue gaps
are given by the x-intercepts of the fits. Note that the relative
normalization of the distributions does not affect results.

FIG. 8. The chiral quark condensate ΣðTÞ and the eigenvalue
gap ΔðTÞ as functions of the temperature. Solid curve is the form
of the condensate from theOð4Þ universality class (26) and is a fit
to the four data points just below Tc. The overall normalization of
ΣðTÞ is arbitrary.
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chiral symmetry restoration. From a fit of the condensate to
the Oð4Þ form, we get S0ðTcÞ ¼ 13.14� 0.14, the central
value of which sets the relative temperature scale in our
plots. With this result, there is still one nonzero data point
above Tc. The fit shown in the plot provides better
agreement with the data points just below Tc and is also
more in line with the appearance of a nonzero gap. The
value of Tc depends on the points included in the fit and we
suggest its uncertainty is on the order of half a unit of S0.
With Tc and Tdeconf both determined, let us briefly

discuss their relative values. From lattice data it is known
that the two transitions are coincident. As previously
mentioned, the uncertainties in the temperatures are larger
than the uncertainties of the fits suggest. At the present
accuracy, one cannot claim there is some statistically-
significant separation of the two transitions. Both transi-
tions are also highly sensitive to the model parameters and
their coincidence may be improved with revised choices.
Like deconfinement, in massive QCD the chiral phase

transition is an analytic crossover [43], but is second order
in the massless case. One of the most interesting results
from the ð2þ 1Þ—QCD lattice works [28–33] is that taking
the chiral limit and reducing the light quark masses by just a
few MeV results in a significantly-reduced transition
temperature Tc [32,43]. Critical temperatures for the
physical, massive case and the massless limit are

TQCD
c ¼ 156.5� 1.5 MeV; T2þ1

c ¼ 132þ3
−6 MeV: ð27Þ

Our results for the Nf ¼ 2 massless case are shown in
Fig. 8, in which we show both the quark condensate and the
eigenvalue gap values extrapolated to the infinite volume
limit. Both of them indicate the same location of the critical

temperature, which is finally determined by a fit with the
expected critical exponent (solid curve). Translating our
scale to approximate absolute temperature, we found that
our simulations roughly cover the temperature range of
about 80 MeV < T < 150 MeV.

C. Effects of nonzero quark mass

A nonzero quark mass explicitly breaks chiral symmetry
in the QCD Lagrangian. As seen in the previously-
mentioned lattice works, the dynamics of the chiral phase
transition in particular are sensitive to the masses of the
lightest quark flavors. A full treatment of a theory with
nonzero quark masses would require the following mod-
ifications to our dyon partition function:

(i) A generalization of the perturbative quark potential
(8) to arbitrary quark mass, the form of which is
given in Ref. [24].

(ii) A generalization of the hopping matrix elements Tij
to arbitrary quark mass, which is not yet known.

(iii) The inclusion of quark mass terms on the diagonal
elements of the hopping matrix as shown in Eq. (17).

We do not do such a full treatment in this work. Instead
we include only the quark mass term on the diagonals of the
hopping matrix to demonstrate the qualitative impact it has
on the eigenvalue spectrum. The nonzero quark mass
effectively adds new diagrams to the fermionic determinant
in which single dyons are allowed to have closed loops with
a mass insertion that flips the chirality of the quark. The
mass mediates the behavior of the quark-induced potential,
driving it to a constant value at large distances, rather than
remaining linear as in the massless case.
Eigenvalue spectra for a small, nonzero quark mass are

compared to the massless case in Fig. 9. The nonzero quark

FIG. 9. Normalized probability distributions of eigenvalues in the near-zero-mode zone for both massless and m ¼ 0.05 quarks. Left:
S0 ¼ 8, Right: S0 ¼ 14.
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mass allows for near-zero eigenvalues even at finite
volume. The quark mass smooths the distribution of
eigenvalues in the vicinity λ ∼m. At eigenvalues λ > m,
the distributions are the same as in the massless case. In the
broken phase, increasing the quark mass reduces the value
of the condensate. It is known for example that the strange
quark condensate is smaller than the up quark condensate
[44]. The increased mass causes the condensate to decrease
more slowly, becoming an analytic crossover with
increased (now psuedocritical) Tc. One can see from
Fig. 9 (right) that there is a nonzero condensate in the
nonzero mass case, while it has already reduced to zero in
the massless case. The finite-mass condensate never exactly
goes to zero, as there is no longer an exact symmetry.

VII. SUMMARY AND DISCUSSION

In this work we have performed numerical simulations of
a semiclassical ensemble of SUð3Þ instanton dyons with
Nf ¼ 2 flavors of massless quarks. Integration over the
dyon degrees of freedom was performed in a periodic 3D
box via Monte-Carlo methods. From tens of thousands of
simulations, the properties of the ensemble in the thermo-
dynamic limit were determined.
The main addition to the simulations stemming from the

inclusion of quarks is the computation of the fermionic
determinant. This is approximated by the so-called hopping
matrix, which contains only the subspace spanned by the
quark zero modes. Quarks then “hop” between L and L̄
dyons generating an effective interaction between all such
dyons in the ensemble. These interactions, which can be
dominated by single LL̄ pairs or collective modes involving
the overlap of many zero modes (see Fig. 2), determine the
state of the chiral symmetry breaking.
The two phase transitions—deconfinement and chiral

symmetry restoration—were observed. Confinement is
studied by the value of the average Polyakov loop
hPðTÞi, seen in Fig. 4. Indeed we find that the inclusion
of quarks changes the deconfinement transition from first
order to one compatible with that of the second-order
transition in the Oð4Þ universality class.
The near-zero-mode zone of the Dirac eigenvalue spec-

trum (Fig. 6) is used to determine the zero-eigenvalue
density. This is directly related to the quark condensate via
the Banks-Casher relation (23). We performed simulations
at three different ensemble sizes in order to observe the
nontrivial volume dependence of the spectra (Fig. 7) and
measure both the quark condensate and the eigenvalue gap
as functions of the temperature. Figure 8 shows that both
observables see nearly simultaneous transitions to/from
zero giving consistent determinations of the critical temper-
ature Tc. Finally, we show that a small, but nonzero quark
mass smooths the distribution and produces near-zero
eigenvalues at higher temperatures, increasing Tc.
Our results suggest that both phase transitions are driven

primarily by the dyon densities. Confinement requires a

sufficient density of dyons to overcome the perturbative
quark and gluon interactions and shift the minimum
to the confining holonomy. Chiral symmetry is similarly
broken by a large density of L and L̄ dyons causing
significant overlap between zero modes, leading to a
dominance of large quark hopping loops, producing
near-zero eigenvalues.
Let us conclude with some discussion of the dyon model

itself. It should be reminded that, as with the pure SUð3Þ
theory, our model contains parameters related to the short-
range classical interactions (namely V0 and x0) which are
phenomenological choices not known from first principles.
With the hopping matrix elements we choose a simple
parametrization that does not include the effects of inter-
ference from nearbyMi dyons. Both of these aspects of the
model should be studied more rigorously in order to
improve the quantitative predictions of the model.
While we have been able to identify both phase

transition, compared with the pure SUð3Þ work [10] the
lack of a jump in the order parameters makes precise
determinations of the critical temperatures more difficult.
The deconfinement transition is slow and fits to potential
forms yield a large variance in Tdeconf . With the chiral
transition, the drop in the condensate is much sharper, but
requires better control of finite volume effects and different
methods of extrapolation can modestly modify the deter-
mination of Tc (see Appendix B).
Despite its relative simplicity, there are some advantages

to the dyon model compared with analogous lattice studies.
The most obvious is the computational cost. Our largest
simulations with ND ≃ 360 involve integration over ∼1000
degrees of freedom, while modern lattice simulations can
involve some hundreds of millions of degrees of freedom.
Additionally our largest simulations containOð100Þ instan-
tons at a time, significantly more than the number of
instantons that are observed on a single time slice of lattice
simulations. Thus, our simulations correspond to much
larger spatial volumes than are used on the lattice. Lastly
we are able to work directly with massless quarks, where
the recent lattice results [28–33] require nonzero quark
masses and an extrapolation to the chiral limit.
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APPENDIX A: QUARK ZERO MODE DENSITY

Here we present a discussion of the general form for the
quark zero mode density following the work in Ref. [45].
A detailed derivation of the gauge field and zero mode
solutions are quite involved, requiring a combination of the
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Nahm transformation [46] and ADHM construction [47].
We will simply present here the results that are most
relevant to this work; we will give the explicit forms for the
SUð3Þ gauge group and antiperiodic quarks.
We remind again that the Polyakov loop at infinity has

the holonomy phases (eigenvalues)

μ1 ≤ μ2 ≤ μ3 ≤ μ4 ¼ μ1 þ 1; ðA1Þ

and the dyon holonomies are defined as νi ¼ μiþ1 − μi. In
terms of the single holonomy parameter in this work, the
phases are μ1 ¼ −ν, μ2 ¼ 0, μ3 ¼ ν.
The action density of the gauge field can be written in the

simple form in terms of the positions of the constituent
dyons y⃗i,

trF2
μν ¼ ∂2

μ∂2
ν lnψ ;

ψ ¼ 1

2
trðA3A2A1Þ − cosð2πτTÞ;

Ai ¼
1

ri

�
ri jy⃗i − y⃗iþ1j
0 riþ1

��
coshðRiÞ sinhðRiÞ
sinhðRiÞ coshðRiÞ

�
;

ðA2Þ

where ri ¼ jx⃗ − y⃗ij and Ri ¼ 2πνiri. The index i is
cyclical, e.g., r4 ¼ r1. Plotting the action density numeri-
cally, one can see the interference effects of nearby dyons
and in particular, that the dependence on Euclidean time τ
vanishes when the dyons are all well separated.
The quark zero mode density can be written in a

remarkably similar framework, in terms of the same
matrices Ai. Quarks with the boundary condition
Ψ0ðx⃗; τÞ ¼ e2πizΨ0ðx⃗; τ þ βÞ have a zero-mode density

jΨ0ðxÞj2 ¼
−1
4π2

∂2
μf̂ðxÞ: ðA3Þ

For the antiperiodic quarks, z ¼ 1=2 and f̂ðxÞ is

f̂ðxÞ ¼ π

r3ψ
hv3jA2A1A3jw3i; ðA4Þ

where v3 and w3 are the 2-component spinors with
elements

v13 ¼ −w2
3 ¼ sinh

�
2π

�
1

2
− ν

�
r3

�
;

v23 ¼ w1
3 ¼ cosh

�
2π

�
1

2
− ν

�
r3

�
: ðA5Þ

The quark zero mode is localized on the dyon i such that
μi < z < μiþ1, which is the L dyon associated with i ¼ 3.
Taking the necessary derivatives to write out either

density directly in terms of the dyons’ coordinates, even
after simplification, results in formulas which are dozens of

lines long as Mathematica outputs. These are far too
complicated to compute at each step of a Metropolis
update, hence the use of a simple parametrization in this
work. In the limit that the dyons are well separated, one can
see that the general zero-mode density given here is exactly
what is predicted by Eq. (19), up to an overall normali-
zation constant.

APPENDIX B: COMPARISON OF
INFINITE-VOLUME EXTRAPOLATIONS

The determination of the chiral condensate depends a
choice of interpolation function between different system
sizes (25). Rather than interpolating between all three
volumes, one could consider using just two of the volumes.
In particular we consider scaling directly between volumes
V and 3V and scaling between 2V and 3V with the functions

ΣðV → 3VÞ ¼ Σ2

�
Σ3V
1

2ΣV
1

−
1

2

�
; ðB1Þ

Σð2V → 3VÞ ¼ Σ2

�
2Σ3V

1

Σ2V
1

− 2

�
: ðB2Þ

As with the interpolating function used in the main text, we
set a maximum value of 1 on the scaling factors.
Each of these functions results in different results for the

chiral condensate and are compared in Fig. 10. There are a
few qualitative differences between them. For several of the
data points, all three give the exact same answers as the
range of the suppressed region scales faster than 1=V and
the scaling functions are all taking on the ceiling value of 1.

FIG. 10. The chiral quark condensate ΣðTÞ determined from
three different interpolating functions. Points shifted slightly
horizontally for readability.
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At the lowest values the function using all three volumes
decreases slowly rather than increasing like the other two.
This is because the scaling factor from V to 2V is less than
1 while the others are 1. This may be an indication that at
these temperatures, where the density is highest and the
volumes are smallest, the system may not be large enough
for the mesoscopic scaling relations (24) to apply.
One should note that it is not the total number of dyons
ND, but the number of zero modes 2NL which is relevant
to the eigenvalue distributions. For the smallest ensemble
sizes, 2NL ∼ 20–25.
From Fig. 10 one can see that the value of Tc

can vary by about 10%, depending on the choice of

interpolating function. Of course, one could also consider
other functions which may produce even more varied
results.
One could also consider using only two ensemble sizes

for the linear fit to the eigenvalue gap data. Doing so
however, one finds much less dependence on the choice of
which sizes to include. At low T the gaps also show better
agreement with the expected 1=V scaling and do not need
an interpolating function. Thus we conclude that the
eigenvalue gap ΔðTÞ is a more stable and reliable indicator
of which chiral phase the system is in. Of course, the best
way to improve the results for either observable is to
continue to go to larger volumes.
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