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We investigate the rare electromagnetic decays of neutral vector mesons (exemplified by J=ψ, ϒ, ρ0,
ω;ϕ,…) into four charged leptons [2ðeþe−Þ, 2ðμþμ−Þ, 2ðτþτ−Þ, eþe−μþμ−, eþe−τþτ−,…] at lowest order
in QED. In contrast to the case of vector meson decay into a single pair of leptons, the lepton mass must be
retained in these four-lepton decay channels to cut off the mass singularity. Owing to more pronounced
collinear enhancement, the branching fractions of vector mesons decays into 2ðeþe−Þ are considerably
greater than those for decays into 2ðμþμ−Þ. The decay channels J=ψðϒÞ → 2ðeþe−Þ; eþe−μþμ− are
predicted to have branching fractions of order 10−5, which appear to have bright observation prospect at
BESIII, Belle 2, and LHC experiments.
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I. INTRODUCTION

The leptonic decays of neutral vector mesons are arguably
one of the cleanest and most exhaustively studied hadronic
processes. To dematerialize into a lepton pair, the valence
quark and antiquark inside the vector meson have to first
annihilate into a virtual photon, which then subsequently
transition into a lepton pair. Since the hadronic decay part and
the electromagnetic production part of the amplitude simply
factorizes, one can write down the well-known formula for
vector meson leptonic decay:

ΓðV → eþe−Þ ¼ 4πe2qα2f2V
3MV

; ð1Þ

where α denotes the fine structure constant, and eq signifies
the electric charge of the valence quark ofV.MV denotes the
vector meson mass, and fV denotes the decay constant
associated with V1:

h0jq̄γμqjVðPÞi ¼ fVMVε
μ ðPÞ; ð2Þ

where εμ signifies the polarization vector of the V meson.
In (1), the lepton mass has been neglected for simplicity.

It is obviously a perfect approximation for the vector
meson decay into electrons, and still a decent one for
heavy vector quarkonia such as J=ψ and ϒ decay into a
muon pair.
As one can tell from Tables I and II, the branching

fractions of various leptonic decays of vector mesons have
been measured quite precisely. From these experimental
inputs, one sees that discarding the lepton mass is indeed a
satisfactory approximation in (1), and one can also deduce
the values of the nonperturbative factor fV for different
vector mesons.
At present, the BESIII [2], Belle 2 [3], KLOE experiment

[4], and LHC experiments [5] have accumulated a gigantic
number of J=ψ and ϒ, as well as light vector mesons ρ, ω,
and ϕ, which make it feasible to search some truly rare
decay channels. The aim of this paper is to explore a special
kind of rare electromagnetic decay process, that is, a neutral
vector meson decay into four charged leptons. Concretely
speaking, we are interested in considering two types of
electromagnetic decays, V → 2ðlþl−Þ and lþl−l0þl0− with
l; l0 ¼ e, μ, τ. Such multilepton rare decay of quarkonia
represents a novel testing bed for QED predictions, and we
hope they can be seen at BESIII, Belle 2, KLOE, and LHC
experiments in near future.

II. CALCULATION SETUP AND ANALYSIS OF
COLLINEAR ENHANCEMENT

The partial width of neutral vector meson decay to four
leptons reads
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1If V indicates a heavy quarkonium, the decay constant can then

be approximated by fV ≈
ffiffiffiffiffiffiffi
3

πMV

q
RVð0Þ, with the factor RVð0Þ sig-

nifying the radial wave function at the origin for a 3S1 quarkonium.
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ΓðV → 4lÞ ¼ 1

2MV

Z
dΠ4

1

3

X
spins

jMðV → 4lÞj2

¼ e2qe2f2V
6M3

V

Z
dΠ4

X
spins

jMðγ� → 4lÞj2; ð3Þ

where dΠ4 is the four-body phase space with possible
symmetry factors due to identical leptons. We will dedicate
the Appendix for a detailed account of the technicalities
related to four-body phase-space integration. In the second

equality, we utilize the fact that, entirely analogous to the
process V → 2l, the decay amplitude simply factorizes into
the product of the V → γ� hadronic part and the γ� → 4l
leptonic part.
We employ the packages FeynArts [6] to generate the

Feynman diagrams for V → 4l. The corresponding four
Feynman diagrams for V → lþl−l0þl0− have been displayed
in Fig. 1, while the corresponding eight diagrams for V →
2ðlþl−Þ V → 2ðeþe−Þ are illustrated in Fig. 2. Subsequently
we use FeynCalc [7] to handle Dirac trace/Lorentz tensor
algebra.
For phenomenological purposes, it is more convenient to

introduce the following dimensionless ratio R, rather than
directly compute the partial width:

RðV → 4lÞ≡ ΓðV → 4lÞ
ΓðV → eþe−Þ : ð4Þ

As is evident in (1) and (3), the advantage of introducing
the R ratio is that the nonperturbative factor fV, as well as
the electric charge of valence quark eq, exactly cancel

TABLE I. The measured BðV → 2lÞ for V ¼ ρ0;ω;ϕ mesons [1].

ρ0 ω ϕ

eþe− ð4.72� 0.05Þ × 10−5 ð7.36� 0.15Þ × 10−5 ð2.973� 0.034Þ × 10−4

μþμ− ð4.55� 0.28Þ × 10−5 ð7.4� 1.8Þ × 10−5 ð2.86� 0.19Þ × 10−4

TABLE II. The measured BðV → 2lÞ for V ¼ J=ψ ;ϒ [1].

J=ψ ϒ

eþe− ð5.971� 0.032Þ% ð2.38� 0.11Þ%
μþμ− ð5.961� 0.033Þ% ð2.48� 0.05Þ%
τþτ− � � � ð2.60� 0.10Þ%

FIG. 1. Feynman diagrams for V → γ� → eþe−μþμ−.

FIG. 2. Feynman diagrams for V → γ� → 2ðeþe−Þ.
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between the numerator and the denominator. Therefore, the
prediction of the R ratio is dictated entirely by QED,
without contamination by any nonperturbative effects.
Since R is dimensionless, it can only be a function of
the mass ratio ml=MV . We envisage that the leading order
QED prediction should suffice to provide a decent account
for the R values for various V → 4l channels.
In (1) we have safely discarded the lepton mass in V →

lþl− since me;μ ≪ MV . One may wonder whether the same
simplification can be taken or not for V → 4l. As a matter
of fact, for the four-body decays, it is possible that three
particles can move collinear and some are simultaneously
soft, in which the collinear and soft singularity may be
developed. In fact, to assess the degree of mass singularity,
we invoke the reverse unitarity method [8] to analytically
compute the R ratio for vector meson V decay to four
massless leptons (as depicted in Fig. 2) in spacetime
dimension d ¼ 4 − 2ϵ:

RðV → 4lÞ ¼ 1

Γ3ð1− ϵÞ
�
M2

V

4πμ2

�−3ϵ� α

2π

�
2

×

�
−

1

3ϵ3
−

17

9ϵ2
þ 1

ϵ

�
−2ζð3Þ þ 10π2

9
−
1405

108

�

þ 103ζð3Þ
3

þ 367π2

54
−
8π4

45
−
60835

648

�
; ð5Þ

where μ is the ’t Hooft unit mass. Note that once
supplemented with the proper color factor, this piece
may be identified with the Abelian subset of the double-
real part of the next-to-next-leading order (NNLO) QCD
corrections for eþe− → γ� → qq̄, which has already been
known analytically long ago [9,10]. Note the occurrence of
the triple infrared pole in (5) unambiguously indicates that
the R ratio in (4) does not have a safeml → 0 limit, in sharp
contrast to V → eþe−.
In our numerical study we work in the d ¼ 4 spacetime

dimension and keep ml finite to regularize the emerging
mass singularity. It is intuitively envisaged that the leading
1=ϵ3 pole in (5) would be literally translated into the triple
logarithm ln3ðM2

V=m
2
l Þ in our case. Expanding the

μ-dependent prefactor in (5) to order ϵ3, multiplying with
the 1=ϵ3 pole, replacing μ by ml, we readily identify the
leading triple-logarithmic term:

RðV → 4lÞ ≈ 3α2

8π2
ln3

M2
V

m2
l

þO
�
ln2

M2
V

m2
l

�
: ð6Þ

It is illuminating to trace the origin of the triple logarithm
in (6) for the case of realistic lepton, or equivalently, the
1=ϵ3 pole in (5) for the case of massless lepton. Near the tri-
collinear limit, i.e., when one of the lþ and two l− become
nearly collinear, and the squared amplitude for γ� → 4l can
be factorized into the squared amplitude for γ� → lþl−

times the universal NNLO splitting function for l− → l− þ
ðl−lþÞ [11]. Double collinear poles would immediately
arise in the tricollinear limit. Furthermore, when the
invariant mass of the l−lþ pair also becomes simultane-
ously soft, the adjacent photon propagator also becomes
soft, which would develop an additional soft pole. We have
explicitly verified that, upon integrating the NNLO splitting
function over the three-lepton phase space, the leading
triple IR pole in (5) can indeed be recovered [12].

III. NUMERICAL RESULTS

For numerical analysis, we adopt the following values
for various input parameters [1]:

FIG. 3. The ratio RðV → 4lÞ as a function of ξ ¼ ml
MV

. Note that
this is a log-log plot, and the logarithmical divergence is reflected
by the negative slope of the curve in the ξ → 0 limit.

TABLE III. Predictions for R ratios and the affiliated branching fractions for light vector mesons → 4l. Note that the latter is obtained
by multiplying R with the corresponding measured branching fraction of V → lþl−, with our theoretical uncertainty entirely inherited
from experimental error on dileptonic decay of V.

Rð×10−4Þ Bð×10−8Þ
ρ0 ω ϕ ρ0 ω ϕ

eþe−μþμ− 2.05 2.08 2.74 0.970� 0.010 1.528� 0.031 8.14� 0.09
2ðeþe−Þ 4.68 4.71 5.37 2.211� 0.023 3.46� 0.07 15.97� 0.18
2ðμþμ−Þ 3.09 × 10−3 3.26 × 10−3 0.0114 ð1.456� 0.015Þ × 10−3 ð2.400� 0.049Þ × 10−3 ð3.383� 0.039Þ × 10−2
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α ¼ 1=137; me ¼ 0.511 MeV; mμ ¼ 0.106 GeV; mτ ¼ 1.78 GeV;

Mρ ¼ 0.77526 GeV; Mω ¼ 0.78265 GeV Mϕ ¼ 1.019461 GeV;

MJ=ψ ¼ 3.0969 GeV; Mϒ ¼ 9.4603 GeV: ð7Þ

TABLE IV. Predictions for R ratios and the affiliated branching fractions for J=ψ ;ϒ → 4l. Note the latter is
obtained by multiplying R with the measured branching fraction for V → lþl−, with our theoretical uncertainty
entirely propagating from experimental error.

Rð×10−4Þ Bð×10−5Þ
J=ψ ϒ J=ψ ϒ

eþe−μþμ− 6.31 11.5 3.763� 0.020 2.73� 0.13
eþe−τþτ− � � � 3.74 � � � 0.890� 0.041
μþμ−τþτ− � � � 0.252 � � � 0.0600� 0.0028
2ðeþe−Þ 8.85 13.7 5.288� 0.028 3.25� 0.15
2ðμþμ−Þ 0.163 0.648 0.0974� 0.0005 0.154� 0.007
2ðτþτ−Þ � � � 1.82 × 10−4 � � � ð4.33� 0.20Þ × 10−5

FIG. 4. e−e− (μ−μ−) invariant mass spectra in V → 4eð4μ; 4τÞ, where V stands for ρ0ðωÞ, ϕ, J=ψ , and ϒ.
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We use the numerical package CUBA [13] to conduct the
four-body phase space integration, which implements the
adaptive Monte Carlo integration algorithm.
The dependence of theR ratio for V → 4l on ξ≡ml=MV

is shown in Fig. 3. It can be readily visualized that the curve
becomes singular as ξ → 0. A numerical fit reveals that the
small-ml enhancement is compatible with the triply loga-
rithmical scaling behavior.
Our detailed predictions for ρ0;ω;ϕ → 4l and J=ψ ;ϒ →

4l are tabulated in Table III and Table IV. By multiplying the
measured branching fractions for V → lþl− as given in
Tables I and II, we then predict the branching fractions for
V → 4l. As one can see, the branching fractions for ρ0;ω →
2ðeþe−Þ; eþe−μþμ− are of order 10−8, while those for ϕ →
2ðeþe−Þ; eþe−μþμ−may reach 10−7. The rather tiny branch-
ing fractions make the observation of these rare decays of
light vector mesons a great challenge. On the other hand, the
branching fractions of J=ψ → 2ðeþe−Þ; eþe−μþμ− can

reach the order of 10−5.2 Concerning the billions of J=ψ
events collected at BESIII, it is hopeful to discover these two
channels in near future. In contrast, because a muon is much
heavier than an electron, the triple logarithmic enhancement
for J=ψ → 2ðμþμ−Þ is much less pronounced. From
Table IV, we observe BðJ=ψ → 2ðμþμ−ÞÞ is only about
2% of BðJ=ψ → 2ðeþe−ÞÞ, which renders the observation
prospect in near future obscure. The pattern of predictions for
ϒ → 4l is similar.Bðϒ→2ðeþe−ÞÞ;eþe−μþμ−Þ;eþe−τþτ−Þ
are of order 10−5, while Bðϒ → 2ðμþμ−ÞÞ; μþμ−τþτ−Þ are
1 ∼ 2 orders of magnitude smaller. Compared with these
channels,Bðϒ → 2ðτþτ−ÞÞ is too tiny to have any chance for
observation. It is interesting to note that, the branching

FIG. 5. eþe− (μþμ−) invariant mass spectra in V → eþe−μþμ−, where V stands for ρ0ðωÞ, ϕ, J=ψ , and ϒ.

2Needless to emphasize, it should be obvious that all our
predictions for the R ratios in Table IV can be carried over to the
four-lepton decays of excited vector quarkonia such as ψð2SÞ and
ϒð2S; 3SÞ.
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fractions associated with three decay channels
ϒ → 2ðeþe−Þ; eþe−μþμ−, and ϒ → eþe−τþτ− do not
exhibit considerable hierarchy, all of which is of order
10−5. We hope the dedicated analysis in Belle 2 and perhaps
LHC will observe these channels in the foreseeable future.
The four-body leptonic final state allows one to probe a

variety of differential spectra, which can sharpen the test of
our QED predictions in a greater detail. In Figs. 4–6, we
present the invariant mass spectra of various combinations
of lepton pairs in the final state. It is desirable if the future
experiments can confront our predictions for invariant mass
distributions.

IV. SUMMARY

In summary, in this work we have investigated a specific
type of rare electromagnetic decays of vector mesons, where
the final state is composed of four charged leptons. To the
best of our knowledge, the current work represents the first
theoretical study of these processes. For simplicity, we have
only considered the lowest-order QED contribution, which
should already constitute decent predictions according to our
experiences. In sharp contrast to the predicted width for
vector meson into a lepton pair, where the lepton mass is
usually discarded, we must explicitly retain the finite lepton
mass to regularize the potential collinear/soft divergences.
The branching fractions of V → 2ðeþe−Þ are orders of
magnitude greater than that of V → 2ðμþμ−Þ because of
more pronounced triple-logarithmic enhancements received
by the former channel. We predict that the branching
fractions associated with the J=ψ → 2ðeþe−Þ; eþe−μþμ−,
andϒ → 2ðeþe−Þ; eþe−μþμ−; eþe−τþτ− channels all reach
the order 10−5, which may indicate a bright observation
opportunity at BESIII, Belle 2, and LHC experiments in the
near future.
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APPENDIX: FOUR-BODY PHASE-SPACE
INTEGRATION

In this Appendix, we present some technical details about
the four-body phase-space integration. To be specifical, let us
consider J=ψðPÞ → e−ðk1Þeþðk2Þμ−ðk3Þμþðk4Þ. The four-
body phase-space integration can be carried out recursively,
owing to its factorization property [1]. To our purpose, it is
most convenient to lump the eþe− into a compound particle,
and lump μþμ− into another compound particle. The four-
body phase space can then be factorized into the convolution
of three two-body phase-space integration measures:

Z
dΠ4≡

Z Y4
i¼1

½dki�ð2πÞ4δð4Þ
�
P−

X4
i¼1

ki

�

¼ 1

ð2πÞ2
Z

dM2
12dM

2
34dΠK12K34

dΠk1k2dΠk3k4 ; ðA1Þ

where dΠq1q2 ≡ ½dq1�½dq2�ð2πÞ4δð4ÞðQ − q1 − q2Þ denotes
the two-body phase-space integration measure dΠ2, with

FIG. 6. eþe− (μþμ−; τþτ−) invariant mass spectra in ϒ → eþe−τþτ−ðμþμ−τþτ−Þ.
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½dq�≡ d3q
ð2πÞ32Eq

. In (A1), we define the momentum of the

compound system as Kab ≡ ka þ kb, with its invariant

mass Mab ≡
ffiffiffiffiffiffiffiffi
K2

ab

q
.

Since the two-body phase space dΠ2 is Lorentz invariant,
we can choose to calculate in any reference frame. We
prefer to work in the center-of-mass frame for each
individual two-body phase-space integral:

dΠK12K34
¼ jK12j

16π2MV
d cosΘdΦ; ðA2aÞ

dΠk1k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

12 − 4m2
e

p
32π2M12

d cos θ1dφ1; ðA2bÞ

dΠk3k4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

34 − 4m2
μ

q
32π2M34

d cos θ2dφ2; ðA2cÞ

where MV is the mass of the vector quarkonium, Θ and Φ
denote the polar and azimuthal angles of K12 in the rest
frame of J=ψ , θ1 and φ1 denote the polar and azimuthal
angles of k1 in the rest frame of K12, and θ2 and φ2

represent the polar and azimuthal angles of k3 in the rest
frame of K34. It is straightforward to obtain jK12j ¼
jK34j ¼ 1

2MV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

12 þM2
34 −M2

JÞ2 − 4M2
12M

2
34

p
. Because

of rotational symmetry, the unpolarized squared ampli-
tude is independent of Θ and Φ, and depends on the
azimuthal angles φ1 and φ2 only through the difference
φ≡ φ1 − φ2. Integrating over dummy variables, and
relabeling θ1 and θ2 by θ and θ0, we then have

Z
dΠ4 ¼

1

211π6MV

Z
MV

2me

dM12

Z
MJ−M12

2mμ

dM34d cos θd cos θ0dφ

× jK12j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM2

12 − 4m2
eÞðM2

34 − 4m2
μÞ

q
: ðA3Þ

Because the squared amplitude is a Lorentz scalar, it can be evaluated in an arbitrary frame. We choose the rest frame of
J=ψ to compute the unpolarized decay rate. We further assume K12 and K34 to move along the z axis, while k3 lies in the
y − z plane. k2 can be replaced by K12 − k1, and k4 can be replaced by K34 − k3. The rest of momenta are parametrized by

K0
12 ¼ K0

34 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

12 þM2
34

q
; K12 ¼ −K34 ¼ ð0; 0; jK12jÞ; ðA4aÞ

kμ1 ¼ Lμ
νðK12Þk0ν1 ; kμ3 ¼ Lμ

νðK34Þk0ν3 ; ðA4bÞ

with the reference momenta given by

k001 ¼ M12

2
; k01 ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

12 − 4m2
e

q
ðsin θ cosφ; sin θ sinφ; cos θÞ; ðA5aÞ

k003 ¼ M34

2
; k03 ¼

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

34 − 4m2
μ

q
ðsin θ0; 0; cos θ0Þ: ðA5bÞ

Here Lμ
νðKabÞ represents a Lorentz boost matrix (with ða; bÞ ¼ 1, 2 or 3,4), whose matrix elements are explicitly given by

L0
0ðKabÞ ¼

K0
ab

Mab
; ðA6aÞ

L0
iðKabÞ ¼ Li

0 ¼
1

Mab
Ki

ab; ðA6bÞ

Li
jðKabÞ ¼ δij þ

1

MabðMab þ K0
abÞ

Ki
abK

j
ab; ðA6cÞ

with the latin indices i, j ¼ 1, 2, 3.
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