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In the context of the longitudinally boost-invariant Bjorken flow with transverse expansion, we use three
different numerical methods to analyze the emergence of attractor solutions in an ideal gas of massless
particles exhibiting constant shear viscosity to entropy density ratio η=s. The fluid energy density is
initialized using a Gaussian profile in the transverse plane, while the ratio χ ¼ PL=PT between the
longitudinal and transverse pressures is set at initial time τ0 to a constant value χ0 throughout the
system employing the Romatschke-Strickland distribution. We introduce the hydrodynamization time
δτH ¼ ðτH − τ0Þ=τ0 based on the time τH when the standard deviation σðχÞ of a family of solutions with
different χ0 reaches a minimum value at the point of maximum convergence of the solutions. In the 0þ 1D
setup, δτH exhibits scale invariance, being a function only of ðη=sÞ=ðτ0T0Þ. With transverse expansion, we
find a similar δτH computed with respect to the local initial temperature, T0ðrÞ. We highlight the transition
between the regimes where the longitudinal and transverse expansions dominate. We find that the
hydrodynamization time required for the attractor solution to be reached increases with the distance from
the origin, as expected based on the properties of the 0þ 1D system defined by the local initial conditions.
We argue that hydrodynamization is predominantly the effect of the longitudinal expansion, being
significantly influenced by the transverse dynamics only for small systems or for large values of η=s.
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I. INTRODUCTION

The Bjorken model for a longitudinally boost-invariant
expanding system [1] has proven successful for the
description of the fluid phase of the quark-gluon plasma
created after the collision of highly-energetic ultrarelati-
vistic heavy ions [2,3].
In the context of the transversally-homogeneous Bjorken

expansion (called the 0þ 1D Bjorken flow), it was shown
that the information regarding the nonequilibrium state of the
system (i.e., the ratio χ ¼ PL=PT between the longitudinal
and transverse pressures) disappears after a finite timescale
(called the hydrodynamization timescale [4]). In the early
onset of the rapid longitudinal expansion, the momentum
distribution of the partons is strongly transversal [5], before
the counter balancing of the dissipative impact of collisions
takes over to distribute the momenta in the longitudinal

direction as the Bjorken expansion time increases [5,6]. In
this still early regime, attractor solutions can develop, which
were shown to exist for a wide class of fluids (e.g., hard
spheres [7] and constant shear viscosity to entropy density
η=s ratio [4]), by using a variety of off-equilibrium models,
such as hydrodynamics [4,7], conformal [8] and noncon-
formal [9] kinetic theory, the Fokker-Planck model for
gluons [10], N ¼ 4 SYM model for strongly-coupled
plasmas [11,12] or the effective kinetic theory (EKT) for
weakly coupled QCD [13]. In the context of the Gubser
model, which accounts for transverse expansion via the
Gubser symmetry group [14], the existence of attractor
solutions has been considered in Refs. [15,16].
As pointed out in Ref. [17], in more realistic systems, the

attractor behaviormay be observed for quantities which differ
from the pressure anisotropydenoted in the presentwork byχ.
In such cases, it is instructive to search for the attractor
behavior at the level of the phase space. In thiswork,we focus
on systems exhibiting longitudinal boost invariancewhich are
nearly conformal, where the pressure anisotropy χ provides a
good measure of hydrodynamization.
As discussed in Ref. [9] in the context of the resummed

Baier-Romatschke-Son-Starinets-Stephanov [18] (rBRSSS)
theory, the attractor solutions can be identified also in
systems with transverse expansion. In Ref. [19], the
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properties of elliptic flow in Bjorken-like systems with
transverse expansion were investigated from the perspective
of the early-time attractor of the underlying 0þ 1D Bjorken
flow. As pointed out in Ref. [11], hydrodynamization in
systems with transverse dynamics may be expected to occur
as in the equivalent 0þ 1D setup when the transverse
gradients are weaker than the corresponding longitudinal
ones. Our present work reasserts this expectation by con-
sidering finite-size systems corresponding to p-p, p-A
(small) or A-A (large) collisions.
In this paper, we take the approach of characterizing the

onset of hydrodynamization on the basis of the loss of
memory with respect to the initial pressure anisotropy χ0.
For this purpose, we consider a family of systems
initialized with various values of χ0 and compute, at
each temporal instance τ (and each radial distance r
for the systems with transverse expansion), the standard
deviation σðχÞ of the pressure anisotropy, taken with
respect to the χ0 ensemble. As the hydrodynamic attractor
is approached, the curves corresponding to these systems
converge toward each other, causing σðχÞ to decrease. We
consider that hydrodynamization is achieved at the time
τH when σðχÞ reaches its minimum value σmin correspond-
ing to the point of maximal convergence. This value is not
strictly zero for two reasons, which we investigate in this
paper. The first reason concerns the time frame at which
the curves corresponding to various values of χ0 intersect
each other, which has a small but finite temporal extent.
The second reason why σðχÞ stays finite is that, after σðχÞ
reaches its minimum, the family of solutions overshoots
past the convergence point. This overshoot leads for a
short time to an increase of σðχÞ, after which σðχÞ resumes
its decreasing trend, confirming the validity of the
attractor solution.
For practical applications, one can consider that the

system loses the memory regarding its initial state when
σðχÞ drops below a certain threshold value σth (or when it
reaches the minimum value σmin, if this value is larger than
σth). The threshold can be regarded as a free-streaming
regulator, when σmin ¼ 0 is reached only asymptotically
as τ → ∞. We quantify the efficacy of hydrodynamization
on the basis of the hydrodynamization timescale δτσthH ¼
ðτσthH − τ0Þ=τ0, where τσthH and τ0 are the values of the time
coordinate when the hydrodynamization criterion is
reached and at initialization, respectively. In Sec. III, we
reveal that in the 0þ 1D boost-invariant setup, δτH is a
function only of the combination ðη=sÞ=ðτ0T0Þ.
The paper is structured as follows. In Sec. II, we review

the 0þ 1D Bjorken flow setup. The hydrodynamization
process is investigated using three different methods,
namely: second order hydrodynamics, Boltzmann approach
to multi-parton scattering and the relaxation time approxi-
mation of the relativistic Boltzmann equation. In Sec. III, we
introduce the hydrodynamization timescale δτH and discuss
its scaling properties in the 0þ 1D setup. In Sec. IV,

we investigate the hydrodynamization in systems with
transverse expansion and discuss the consequences of trans-
verse expansion on the hydrodynamization timescale δτH.
Our conclusions are summarized in Sec. V. This paper is
supplemented by two Appendices. In Appendix A, we
address the 0þ 1D Bjorken flow for hard-sphere particles
within the three frameworks mentioned above. Appendix B
presents a brief description of the RTA numerical method.

II. 0 + 1D BJORKEN FLOW

We begin our analysis by revisiting the 0þ 1D Bjorken
flow with full transverse plane homogeneity. Here and
henceforth, we restrict our analysis to the case of an
ultrarelativistic gas of massless particles, for which the
energy density e and isotropic pressure p are related via
e ¼ 3p. In order to take advantage of the longitudinal
boost-invariance, it is convenient to work with the Bjorken
time τ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
and space-time rapidity ηs ¼ 1

2
ln tþz

t−z,
giving rise to the line element

ds2 ¼ dτ2 − dx2 − dy2 − τ2dη2s : ð1Þ

The conservation of the energy-momentum tensor,
∇νTμν ¼ 0, entails

3τ∂τpþ 4pþ π ¼ 0; ð2Þ

where π is a measure of the pressure anisotropy which
can be related to the longitudinal (PL) and transverse (PT)
pressures via

PL ¼ pþ π; PT ¼ p −
π

2
: ð3Þ

The time evolution of π must be supplied by an equation
which is highly dependent on the model employed for the
description of the system. In this work, we consider three
methods to compute the solution of the above equation,
namely the viscous sharp and smooth transport algorithm
(vSHASTA) [20–22] for relativistic hydrodynamics
(hydro), the lattice Boltzmann method [23–25] for the
relativistic Boltzmann equation in the Anderson-Witting
relaxation time approximation for the collision term [26,27]
(RTA), and the Boltzmann approach to multiparton scatter-
ing [28,29] (BAMPS).
The RTA numerical solver is based on the vielbein

formalism, extending the implementation in Ref. [24] to
take into account the azimuthally symmetric flow in the
transverse plane. The details regarding this extension are
presented in Appendix B. The BAMPS results shown in
this work are generated with an optimized code version,
which still works in 3D Cartesian space coordinates, but
makes use of the longitudinal boost invariance. Since thus
only particles in the transversal plane at midrapidity have to
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be considered, numerical statistics better than 105 com-
pared to the calculations in [30] is possible.
Since BAMPS is a particle-based solver, it automatically

conserves the particle four-flow Nμ when only elastic binary
collisions are taken into account [6,30]. Therefore, Eq. (2) is
supplemented by the condition ∂μNμ ¼ 0, which reduces in
the case of the 0þ 1D Bjorken flow to [7]

∂τðnτÞ ¼ 0 ⇒ nðτÞ ¼ n0τ0
τ

; ð4Þ

where n is the particle number density and τ0 is the initial
time. In the theory of second-order hydrodynamics derived
based on the 14-moment approximation in the context of the
Anderson-Witting model, π satisfies the following evolution
equation [31]:

∂π
∂τ ¼ −

π

τR
− βπ

4

3τ
− λ

π

τ
; ð5Þ

where for a system consisting of a massless Boltzmann gas,
we have βπ ¼ η=τR and λ ¼ 38=21 [31]. The relaxation time
τR is related to the shear viscosity via [32]

η ¼ 4

5
τRp: ð6Þ

The initial pressure anisotropy ratio χ0 ≡ PLðτ0Þ=PTðτ0Þ is
introduced through the initial choice of π via Eqs. (3),
as follows:

π0 ¼ −p0

1 − χ0
1þ χ0=2

; ð7Þ

where p0 ¼ e0=3 is the pressure at initial Bjorken time τ0.
In the RTA and BAMPS approaches, the initial pressure

anisotropy is modeled by setting f to be equal to the
Romatschke-Strickland distribution for the ideal gas [33,34],

fRS ¼ geα0

ð2πÞ3 exp
�
−

1

Λ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk · uÞ2 þ ξ0ðk · ẑÞ2

q �
; ð8Þ

where kμ and uμ are the particle momentum and macro-
scopic velocity four-vectors, while ẑμ is the unit-vector along
the rapidity coordinate. With respect to the Bjorken coor-
dinates, uμ and ẑμ have only one nonvanishing component,
i.e., uτ ¼ 1 and ẑηs ¼ τ−1. Expressing the momentum vector
kμ in terms of k, ξ and φ defined via

kτ ¼ k;

�
kx

ky

�
¼ k

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p �
cosφ

sinφ

�
; kηs ¼ kξ

τ
;

ð9Þ

Eq. (8) reduces to

fRS ¼
geα0

ð2πÞ3 exp
�
−

k
Λ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ0ξ

2

q �
: ð10Þ

The degeneracy is set to g ¼ 16 to account for the gluonic
degrees of freedom. The anisotropy parameter ξ0 takes the
value 0 for an isotropic (Maxwell-Jüttner) distribution and∞
for an infinitely skewed distribution. The parameters α0 and
Λ0 allow the initial particle number density and pressure to
be specified independently via

eα0 ¼ π2n0
gΛ3

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ0

p
;

Λ0 ¼
2p0=n0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ0

p
�
arctan

ffiffiffiffiffi
ξ0

pffiffiffiffiffi
ξ0

p þ 1

1þ ξ0

�−1
: ð11Þ

In this work, we consider that at initial time, the chemical
potential vanishes, such that n0 ¼ gT3

0=π
2. The initial

longitudinal and transverse pressures are [35]

PL;0 ¼
3gΛ4

0e
α0

2π2ξ0

�
arctan

ffiffiffiffiffi
ξ0

pffiffiffiffiffi
ξ0

p −
1

1þ ξ0

�
;

PT;0 ¼
3gΛ4

0e
α0

4π2ξ0

�
1þ ðξ0 − 1Þ arctan

ffiffiffiffiffi
ξ0

pffiffiffiffiffi
ξ0

p
�
; ð12Þ

such that their ratio χ0 ¼ PL;0=PT;0 depends solely on the
parameter ξ0:

χ0 ¼
2

1þ ξ0

ð1þ ξ0Þ arctan
ffiffiffi
ξ0

pffiffiffi
ξ0

p − 1

1þ ðξ0 − 1Þ arctan
ffiffiffi
ξ0

pffiffiffi
ξ0

p
: ð13Þ

Negative values of ξ0, corresponding to χ0 > 1, are not
considered in this paper. The details regarding the RTA
solver used in the 0þ 1D case were given in Refs. [24,35]
and are summarized in Appendix B.
Figure 1 shows a comparison between the results obtained

using the three methods enumerated above for η=s ¼ 0.05,
0.2, 1 and 5. The initial time (here and henceforth, unless
otherwise specified) is set to τ0 ¼ 0.2 fm and the initial
temperature is set to T0 ¼ 0.5 GeV. The anisotropy param-
eter is taken such that χ0 ∈ f0.25; 0.5; 0.75; 1g. At small
η=s, all methods are in very good agreement with each other.
At large η=s, the RTA and BAMPS maintain agreement,
while the hydro results present significant deviations (see in
this respect Ref. [6]). In particular, the hydro results achieve
negative values for χ at η=s ¼ 5, signaling the breakdown of
the hydrodynamic equations in this regime. Possible reso-
lutions to this problem include third order extensions of
hydrodynamics [6,36] and the anisotropic hydrodynamics
framework [37–39], however we do not pursue this further in
what follows.
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In addition, a comparison between our three numerical
methods in the case of a hard-sphere gas (interacting via a
constant cross-section) is presented in Appendix A.

III. HYDRODYNAMIZATION TIMESCALE δτH

By looking at Fig. 1, it is obvious that the curves
corresponding to different initial anisotropies χ0 merge after
some time τH, which increases with η=s. This can happen
either due to the approach to the attractor solution or due to a
“memory-loss process” which effectively causes all curves
to collapse on top of each other (see, e.g., the free streaming
limit discussed below). Also, the merger time can be seen to
be larger for the hydro curves than for the kinetic theory
curves (RTA and BAMPS). Without making any prior
assumption about the mathematical nature (or even exist-
ence) of a universal attractor solution for this type of flow,we
characterize the efficacy of hydrodynamization based on the
hydrodynamization timescale δτH ¼ ðτH − τ0Þ=τ0 onwhich
the solution becomes independent of the initial pressure
anisotropy. The quantity δτH is introduced formally in
Sec. III A and its behavior at small ðη=sÞ=ðτ0T0Þ is discussed
in Sec. III B on the basis of a transseries representation of χ.
Its properties in the extreme case of a free streaming fluid are
considered in Secs. III C and III D for hydro and RTA,
respectively. The scaling properties of δτH at finite relax-
ation time are discussed in Sec. III E.

A. Definition

Quantitatively, the memory-loss effect can be assessed
by looking at the standard deviation σ of χ with respect to
the initial pressure ratio χ0,

σðχÞ ¼
�Z

1

0

dχ0ðχ − χ̄Þ2
�
1=2

; χ̄ ¼
Z

1

0

dχ0χ: ð14Þ

The details regarding the computation of σðχÞ and χ̄ from
the simulation data are given at the end of Sec. III E. The
time dependence of σðχÞ computed within the RTA
framework is shown in Fig. 2(a) for the four cases
considered in Fig. 1, as well as for the free-streaming
(FS) regime (η=s → ∞), which will be discussed in
Sec. III D. In the FS regime, σðχÞ decreases monotonously
with τ. For finite η=s, σðχÞ exhibits a rebound after it
reaches a minimum (but very small) value (indicated by
the blue dots) σmin ≡ σminðη=sÞ, which depends on the

FIG. 1. Evolution of the pressure anisotropy χ ¼ PL=PT with
respect to the Bjorken time τ. The RTA and hydro results are
shown with solid and dashed lines, respectively, while the
BAMPS results are shown using empty circles.

(a)

(b)

FIG. 2. RTA results for (a) the dependence of σðχÞ on τ for
various values of η=s; and (b) the dependence of χ − χ̄ on τ for
various values of χ0 at η=s ¼ 1.
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value of η=s. A nonmonotonic behavior of this minimum
value can be seen, being lower for small (0.05) and large (5)
values of η=s, and larger for the intermediate values (0.2
and 1). After this rebound, a tail of milder descending slope
is observed, leading to smaller values of σðχÞ as τ → ∞.
The nature of the minimum marked by the blue dots can

be understood already from Fig. 1. It can be seen that, after
the χ curves for a given value of η=s corresponding to
various values of χ0 intersect, they have a tendency to
overshoot. This tendency is more pronounced for η=s ¼
0.2 and 1, which is consistent with the results for σðχÞ seen
above. Further details can be seen by looking at the time
evolution of χ − χ̄, shown for η=s ¼ 1 in Fig. 2(b). After
intersection, the lines corresponding to different values of
χ0 tend to follow a tubelike trajectory of finite width, which
eventually decreases as τ → ∞. The inset shows that the
curves corresponding to various initial values of χ0 intersect
the curve corresponding to χ ¼ χ̄ at different times, causing
σ to remain finite throughout the entire hydrodynamization
process. The minimum value of σðχÞ for η=s ¼ 1 is
σmin ¼ 4.82 × 10−4, which is indeed very small, but finite.
The times when σðχÞ drops below 10−2 and 10−3 are shown
by the vertical dotted lines in the main plot.
The discussion above prompts us to characterise the

progression of the hydrodynamization process from the
perspective of σðχÞ≡ σðχ; τÞ. We consider that the system
reaches hydrodynamization at τ0H when σðχ; τ0HÞ reaches
the minimum value σmin (τ0H is about 0.66, 1.14, 1.98 and
3.42 fm for η=s ¼ 0.05, 0.2, 1 and 5, respectively). The
hydrodynamization timescale in this case is denoted δτ0H.
From Fig. 2(a), it can be expected that δτ0H → ∞ as
η=s → ∞. For practical purposes, it is therefore convenient
to introduce a free-streaming regulator in the form of a
threshold value σth. In this approximation, we may consider
instead that hydrodynamization is achieved when σ drops
below σth and the corresponding time is denoted δτσthH .
In the case when σth < σmin, we will take δτ

σth<σmin
H ¼ δτ0H,

i.e., we will consider that hydrodynamization is reached
when σ ¼ σmin. In the following, we will often employ
σth ¼ 0.01, which is safely above the value of σmin
indicated by the blue points in Fig. 2(a) for all values of
η=s. However, for σth ¼ 10−4, Fig. 2 indicates that there
will be values of η=s where δτ0.0001H ¼ δτ0H.
As will be discussed in Subsec. III E, we assume that

δτσthH ≡ δτσthH ðw̃−1
0 Þ is a function only of the (inverse of the)

initial value w̃0 of the conformal variable [40]

w̃ ¼ τT
4πη=s

; ð15Þ

where π ≃ 3.14 should not be confused with the pressure
anisotropy. In the perfect (inviscid) fluid limit, when
η=s ¼ 0, hydrodynamization is instantaneous since the
pressure anisotropy satisfies π ¼ 0 for all τ > τ0. This
gives the limit δτσthH ð0Þ ¼ 0, regardless of the value of σth.

Away from w̃−1
0 ¼ 0, η=s can be considered as fixed, while

τ0T0 are taken as large quantities, such that w̃−1
0 remains

small but finite. In this regime, it is possible to estimate the
hydrodynamization time δτσthH ðw̃−1

0 Þ based on a hydrody-
namics transseries similar to the one derived in Ref. [4],
as discussed in Sec. III B. At the other end of the rare-
faction spectrum, in the free streaming limit, we have
limw̃−1

0
→∞δτ

0
Hðw̃−1

0 Þ ¼ ∞, since the fluid cannot exhibit any

attractor-like behavior. Nevertheless, δτσthH takes finite
values when σth is kept finite. The values δτ

σth
H will represent

thus maximum hydrodynamization times, which can be
computed exactly since the free-streaming limit can be
obtained analytically, as discussed in Secs. III C and III D
for the case of hydrodynamics and kinetic theory,
respectively.

B. Hydrodynamic limit: Transseries approach

In this section, we discuss the properties of δτσthH ðw̃−1
0 Þ at

small values of w̃−1
0 . For the purpose of this section, we

simplify the analysis by considering a conformally invari-
ant system at vanishing chemical potential, such that
τR ¼ 5ðη=sÞ=T. In this regime, we can expect that
second order hydrodynamics given by Eqs. (2) and (5)
provides an adequate description. Taking the derivative of
χ ¼ ðpþ πÞ=ðp − π

2
Þ with respect to τ, we obtain

τw̃−1

4π

dχ
dτ

¼ð1−χÞð2þχÞ
15

−
3w̃−1

70π

�
1þ23χ

3
þ2χ2

3

�
; ð16Þ

where π ≃ 3.14 appearing above should not be confused
with the pressure anisotropy. Taking into account the
relation

τ
dw̃
dτ

¼ w̃ð3þ χÞ
2ð2þ χÞ ; ð17Þ

it can be seen that χ is a function only of w̃ by changing the
derivative with respect to τ into a derivative with respect to
w̃ in Eq. (16),

3þ χ

8π

dχ
dw̃

¼ ð1 − χÞð2þ χÞ2
15

−
2þ χ

4πw̃
6

35

�
1þ 23χ

3
þ 2χ2

3

�
:

ð18Þ

The large w̃ series solution of Eq. (18),

χðw̃Þ ¼ 1 −
2

πw̃
þ 6

7π2w̃2
þOðw̃−3Þ; ð19Þ

is independent of the initial conditions and can be expected
to have vanishing radius of convergence.
As argued in Ref. [4], χðw̃Þ can be more suitably

represented as a transseries of the form
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χðw̃Þ ¼
X∞
m¼0

cmΩmðw̃ÞXmðw̃Þ;

Xmðw̃Þ ¼
X∞
n¼0

Xm;nw̃−n; ð20Þ

where c is a constant related to the initial condition
χ0 ≡ χðw̃0Þ, while Xm;n are constants which are fixed order
by order by the differential equation (18). The function
Ωðw̃Þ controls the exponential damping of deviations from
the attractor solution and can be shown by direct sub-
stitution to satisfy

Ωðw̃Þ ¼ w̃−γe−w̃ξ0 ; γ ¼ 18

35
; ξ0 ¼

6π

5
: ð21Þ

The above result for ξ0 is consistent with the one derived in
Eq. (11) of Ref. [4] when using CτΠ ¼ 5η=s, while the
difference in the exponent γ can be explained by the
discrepancy between the coefficient λ ¼ 38=21 appearing
in Eq. (5) and the coefficient 4=3 appearing in a similar
term in Eq. (4) of Ref. [4]. The m ¼ 0 term in Eq. (20) is
given by the series solution (19), from where the coef-
ficients Xm¼0;n can be easily read:

X0;0 ¼ 1; X0;1 ¼ −
2

π
; X0;2 ¼

6

7π2
: ð22Þ

At m ¼ 1, there is an ambiguity in determining the leading
order coefficient X1;0, which can be resolved by essentially
absorbing its value into the constant c and setting X1;0 ¼ 1.
All other coefficients Xm;n are then fixed by the differential
equation (18), e.g.:

X1;0¼1; X1;1¼−
3

10π
; X1;2¼

2657

12600π2
;

X2;0¼
5

12
; X2;1¼−

5

24π
; X2;2¼

349

1080π2
: ð23Þ

A more complex analysis based on the Borel transform
and Padé approximants presented in Ref. [4] is not
necessary, since we are concerned with the properties of
χ only at large initial values w̃0 of the conformal parameter.
In this regime, the (formally divergent) asymptotic series
Xmðw̃Þ can be truncated at zeroth order, since the higher
order terms represent corrections in powers of w̃−1

0 . The
damping in the function Ωðw̃Þ can in principle be offset by
the constant c, which we relabel as

c ¼ c̄
Ωðw̃0Þ

: ð24Þ

The ratio Ωðw̃Þ=Ωðw̃0Þ can be written as

Ωðw̃Þ
Ωðw̃0Þ

¼
�

τT
τ0T0

�
−γ

exp

�
−ξ0w̃0

�
τT
τ0T0

− 1

��
: ð25Þ

Considering now T ¼ T0ðτ0=τÞ13−δ, δ can be estimated
from Eq. (17) via

δ ≃
τ

T
dT
dτ

þ 1

3
¼ 1 − χ

6ð2þ χÞ : ð26Þ

Close to the attractor solution, χ can be approximated by
Eq. (19) such that δ ≃ 1=9πw̃, which becomes negligible
when w̃ is large. Therefore, we consider as an approxima-
tion that T=T0 ≃ ðτ0=τÞ1=3 and estimate

τT
τ0T0

≃ 1þ 2

3
δτ; ð27Þ

where δτ ¼ ðτ − τ0Þ=τ0. At leading order, Eq. (25)
simplifies to

Ωðw̃Þ
Ωðw̃0Þ

¼ exp

�
−
2ξ0
3

w̃0δτ

�
: ð28Þ

This suggests that, as w̃0 increases, the product δτσthH w̃0

remains finite. Taking just the m ¼ 0 and m ¼ 1 terms in
Eq. (20), we have

χðw̃Þ ¼ X0ðw̃Þ þ c̄e−
2ξ0
3
w̃0δτX1ðw̃Þ: ð29Þ

Imposing χ ¼ χ0 when δτ ¼ 0, we find

c̄ ¼ χ0 − X0ðw̃0Þ
X1ðw̃0Þ

: ð30Þ

This allows the standard deviation of χ to be expressed as

σðχÞ ¼ σðχ0Þe−
2ξ0
3
w̃0δτ

X1ðw̃Þ
X1ðw̃0Þ

; ð31Þ

where σðχ0Þ ¼ 1=
ffiffiffiffiffi
12

p
by direct computation. Imposing

now σðχÞ ¼ σth and ignoring w̃−1
0 corrections, the hydro-

dynamization time can be obtained as

δτσthH ¼ 5η=s
τ0T0

ln

�
σðχ0Þ
σth

�
: ð32Þ

The above equation shows that for any finite threshold σth,
δτσthH becomes proportional to ð4πw̃0Þ−1 ¼ η=s=ðτ0T0Þ and
reaches 0 as w̃−1

0 → 0. The apparent divergence of δτσthH as
σth → 0 can be understood by noting that our ansatz in
Eq. (29) assumes a smooth exponential decay toward the
attractor for all initial conditions, which cannot account for
the crossing and overshooting seen in Figs. 1 and 2.
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C. Hydro: Free streaming limit

The free streaming (FS) limit can be obtained in the
framework of hydrodynamics by taking τR → ∞. This
leaves Eq. (2) unchanged, while (5) becomes

τ
∂π
∂τ þ

16p
15

þ 38π

21
¼ 0: ð33Þ

The FS solution can be easily obtained as

p ¼ p0

ðτ=τ0Þ11=7
�
α

�
τ

τ0

�
γ

þ ð1 − αÞ
�
τ

τ0

�
−γ
�
;

π ¼ p0

ðτ=τ0Þ11=7
�
α

�
5

7
− 3γ

��
τ

τ0

�
γ

þ ð1 − αÞ
�
5

7
þ 3γ

��
τ

τ0

�
−γ
�
; ð34Þ

where the exponent γ ¼ ffiffiffiffiffiffiffiffi
101

p
=7

ffiffiffi
5

p
≃ 0.642 and the inte-

gration constant α is related to the initial anisotropic
pressure π0 via

α ¼ 1

6γ

�
5

7
þ 3γ −

π0
p0

�
: ð35Þ

The time evolution of χ can be obtained by taking the ratio
of PL and PT defined in Eq. (3). At large times, we find

χ ¼ χ∞ þ
�
τ0
τ

�
2γ

Δ∞ þ
�
τ0
τ

�
4γ

c4γ þOðτ−6γÞ; ð36Þ

where

χ∞ ¼ 2
4 − 7γ

3þ 7γ
≃ −0.132;

Δ∞ ¼ 1 − α

α

196γ

ð3þ 7γÞ2 ≃ 2.241
1 − α

α
; ð37Þ

while the coefficient c4γ ≡ c4γðαÞ is left unspecified. It can
be seen that in the FS limit, χ approaches a finite, negative
value, instead of 0 predicted by kinetic theory (discussed
below). The value χ∞ ≃ −0.132 given above is compatible
with the limit L1=L0 ¼ ðχ − 1Þ=ðχ þ 2Þ → −0.606 derived
in Ref. [41]. The approach to this value is governed by a
power law decay of exponent −2γ. The information about
the initial conditions is contained in the coefficient Δ∞ of
this transient term and hence is lost as τ → ∞. At large
values of τ, the standard deviation σðχÞ ¼ ½hχ2i − hχi2�1=2
can be computed by noting that

hχ2i ¼ χ2∞ þ 2χ∞hΔ∞i
�
τ0
τ

�
2γ

þ ð2χ∞hc4γi þ hΔ2
∞iÞ

�
τ0
τ

�
4γ

þOðτ−6γÞ;

hχi2 ¼ χ2∞ þ 2χ∞hΔ∞i
�
τ0
τ

�
2γ

þ ð2χ∞hc4γi þ hΔ∞i2Þ
�
τ0
τ

�
4γ

þOðτ−6γÞ:

Subtracting the above relations, we obtain:

σðχÞ ¼ σðΔ∞Þ
�
τ0
τ

�
2γ

þOðτ−3γÞ; ð38Þ

where σðΔ∞Þ¼ ½hΔ2
∞i−hΔ∞i2�1=2≃0.2591, since hΔ∞i ≃

0.5920 and hΔ2
∞i ≃ 0.4176. The hydrodynamization

timescale δτ∞H for the FS regime of the second order
hydrodynamics theory can therefore be estimated for
sufficiently small values of σth as

δτσthH ð∞Þ ≃
�
σðΔ∞Þ
σth

�
1=2γ

− 1: ð39Þ

The hydrodynamization timescale δτσthH ð∞Þ can be found
for any value of σth by writing χ ¼ ðpþ πÞ=ðp − π=2Þ as a
function of χ0 and τ, using the exact solutions for p and π
given in Eq. (34). Performing the χ0 integral numerically,
σðχÞ≡ σðχ; τÞ can be regarded as a function of τ and the
hydrodynamization time δτσthH ð∞Þ ¼ ðτσthH − τ0Þ=τ0 can be
found using a numerical root finding algorithm for the
problem σðχ; τσthH Þ ¼ σth. We find, e.g.,

σth ¼ 10−2; δτ0.01H ð∞Þ ¼ 11.6492;

σth ¼ 10−3; δτ0.001H ð∞Þ ¼ 74.785;

σth ¼ 10−4; δτ0.0001H ð∞Þ ¼ 454.199; ð40Þ

in very good agreement with Eq. (39). Because δτσthH ð∞Þ
stays finite when σth > 0, it is reasonable to interpret σth as
a FS regulator.

D. RTA: Free streaming limit

In the case of the RTA, the exact solution of the
Boltzmann equation in the free streaming (FS) limit is [35]

fFS ¼
geα0

ð2πÞ3 exp
�
−

k
Λ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ζξ2

p �
; ð41Þ

where ζ ¼ τ2

τ2
0

ð1þ ξ0Þ − 1. The longitudinal and transverse

pressures can be derived analytically,
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PL ¼ 3gΛ4
0e

α0

2π2ζ

�
arctan

ffiffiffi
ζ

pffiffiffi
ζ

p −
1

1þ ζ

�
;

PT ¼ 3gΛ4
0e

α0

4π2ζ

�
1þ ðζ − 1Þ arctan

ffiffiffi
ζ

pffiffiffi
ζ

p
�
; ð42Þ

while their ratio χ can be shown to obey

χ ¼ 2

1þ ξ0

�
τ0
τ

�
2

−
8

πð1þ ξ0Þ3=2
�
τ0
τ

�
3

þOðτ−4Þ: ð43Þ

It is clear that χ → 0 as τ → ∞ and the transient term drops
to 0 faster than in the case of the hydro solution in Eq. (36)
(2γ ≃ 1.28 compared to 2 in the case of RTA). The leading
term of σðχÞ is therefore given by

σðχÞ ¼ 2σ

�
1

1þ ξ0

��
τ0
τ

�
2

≃ 0.6871

�
τ0
τ

�
2

; ð44Þ

where the integration with respect to χ0 was performed by
switching the integration variable in Eq. (14) to ξ0:

hfðξ0Þi ¼
Z

1

0

dχ0fðξ0Þ

¼ −fðξ0 ¼ 0Þ −
Z

∞

0

dξ0χ0f0ðξ0Þ: ð45Þ

Using Eq. (13) to express χ0 as a function of ξ0, we find
hð1þ ξ0Þ−1i ¼ 0.1547 and hð1þ ξ0Þ−2i ¼ 0.1420. The
hydrodynamization timescale δτσthH ð∞Þ can thus be esti-
mated based on

δτσthH ð∞Þ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ½ð1þ ξ0Þ−1�

σth

s
− 1 ≃

0.7666ffiffiffiffiffiffi
σth

p − 1: ð46Þ

Solving numerically σðχÞ ¼ σth starting from the exact
solutions for PL and PT given in Eq. (42), the following
results can be obtained:

σth ¼ 10−2; δτ0.01H ð∞Þ ¼ 6.07422;

σth ¼ 10−3; δτ0.001H ð∞Þ ¼ 22.6203;

σth ¼ 10−4; δτ0.0001H ð∞Þ ¼ 75.0314: ð47Þ

The above values are in good agreement with those
obtained from Eq. (46). In comparison to the results
(40) obtained from the hydrodynamic equations, the values
of δτσthH ð∞Þ obtained from kinetic theory are notably
smaller. It is remarkable that the hydrodynamization
time corresponding to the threshold σth ¼ 10−2 remains
extremely short even in the FS regime.

E. Transition regime and scaling

The analysis in the preceding subsection revealed
that the two limits, δτσthH ðw̃−1

0 → 0Þ ¼ 0 and δτσthH ð∞Þ,
are valid at any initial temperature T0 or initial time τ0.
At finite but small values of w̃−1

0 , Eq. (32) indicates that
δτσthH is a function only of ð4πw̃0Þ−1 ¼ ðη=sÞ=ðτ0T0Þ. This
scaling is confirmed for both the hydrodynamics equa-
tions (2), (5) and for the RTA in Fig. 3(a). In this figure,
we considered a 3 × 3 ¼ 9 series of simulations corre-
sponding to initial times τ0 ∈ f0.02 fm; 0.2 fm; 2 fmg
and temperatures T0 ∈ f0.05 GeV; 0.5 GeV; 5 GeVg.
The ratio η=s is taken such that the horizontal axis
covers the range 10−2 ≤ η=s

τ0T0
≤ 102. It can be seen that all

curves are overlapped when expressed with respect
to ðη=sÞ=ðτ0T0Þ.
Next, we consider the dependence of δτσthH on the

threshold σth below which hydrodynamization is consid-
ered to be achieved. Figure 3(b) shows that, as σth is
decreased, δτσthH generally exhibits an increasing trend. This
trend is stopped at the values of η=s where σth < σmin. This
occurs at intermediate values of η=s first and extends
toward smaller and larger values of η=s as σth is decreased,
in agreement with the qualitative picture painted by
Fig. 2(a). While δτ0.01H represents a good approximation
for δτ0H only at very small values of w̃−1

0 , δτ0.001H gives
similar values as δτ0H up to ðη=sÞ=ðτ0T0Þ ≲ 1, while δτ0.0001H
deviates from δτ0H only for ðη=sÞ=ðτ0T0Þ≳ 20. It is worth
remarking that δτ0.01H reaches its asymptotic FS value for
ðη=sÞ=ðτ0T0Þ≳ 10, while at ðη=sÞ=ðτ0T0Þ ¼ 100, δτ0.001H
and δτ0.0001H are at 90% and 45% of their FS limits,
respectively. The inset confirms that δτσthH scales linearly
with w̃−1

0 at small values of w̃−1
0 , as predicted by Eq. (32).

Furthermore, we remark that at large w̃−1
0 , δτσth¼0

H seems to
exhibit a polynomial growth δτ0H ∼ ½ðη=sÞ=ðτ0T0Þ�α with
α ≃ 0.35, as indicated by the red dashed line.
Before ending this section, we discuss the procedure

employed to compute σðχÞ. For each value of τ0, T0 and
η=s, a series of 1 ≤ i ≤ Nχ simulations are performed,
in which χ0 is initialized with the value χ0;i ¼ 1

Nχ
ði − 1

2
Þ.

These values are chosen to allow the integration with
respect to χ0 necessary for the computation of σðχÞ to be
performed using the rectangle method. In practice, we
found that the maximum relative difference between the
values of δτH computed based on Nχ ¼ 5 and 10 intervals
was below 1% for RTA and below 1.2% for hydro. The
results shown in Fig. 3 are for definiteness computed with
Nχ ¼ 10 intervals.

IV. BJORKEN FLOW WITH
TRANSVERSE EXPANSION

In Sec. II, we considered “hydrodynamization” (or
memory-loss with respect to the initial pressure anisotropy
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χ0) due solely to the longitudinal expansions. In this
section, we consider the same problem in a system
undergoing also transverse expansion, by initializing a

longitudinally boost-invariant system with transverse
Gaussian density and temperature profiles:

n0ðrÞ ¼ n0ð0Þe−r2=w2

; T0ðrÞ ¼ T0ð0Þe−r2=3w2

; ð48Þ

The initial time is set for definiteness to τ0 ¼ 0.2 fm and
we consider that the system is homogeneous with respect to
the rapidity. The width parameter w is set to 3 fm and 1 fm,
corresponding roughly to Auþ Au and pþ p collisions,
respectively [30].
We first consider η=s ¼ 0.2, in order to be close to the

favored values describing the “fluid” behavior observed in
ultra-relativistic heavy ion collisions [2,29,42,43]. In Fig. 4,
we show the typical hydrodynamization dynamics occur-
ring at various distances from the origin, namely r ¼ 0, w
and 3w=2. The fate of the fluid at larger values of r is less
important, since the disks within r ¼ w and 3w=2 contain
74% and 95%, respectively, of the total energy available in
the transverse plane. Because of the r-dependence of the
initial state, the local conditions in each of these points are
different.
The evolution of χ can be divided into three parts. In the

initial stage, corresponding to small values of τ, the system
dynamics is dictated by the longitudinal expansion, follow-
ing closely the 0þ 1D results. After an intermediate stage,
χ increases significantly faster than in the 0þ 1D case,
signaling that the system dynamics is then dominated by
the transverse expansion of the fireball. Values of χ larger
than 1 can be seen, since PT is depleted at a faster rate than
PL as the transverse dynamics become dominant. As in the
0þ 1D case shown in Fig. 1, the RTA and BAMPS results
are in excellent agreement. Even though the hydro results
show some discrepancy during the longitudinal expansion-
dominated phase, they agree with both BAMPS and RTA
data at large values of τ. We remark that even at r ¼ 3w=2,
the RTA and BAMPS curves corresponding to w ¼ 3 fm
[Fig. 4(a)] follow closely the 0þ 1D curves all the way
until hydrodynamization. By contrast, in the w ¼ 1 fm
scenario, there is a clear departure between the curves
corresponding to the simulation with transverse dynamics
and the 0þ 1D case. Still, hydrodynamization can be seen
to take place on a similar timescale.
Note however that the hydrodynamization occurs at

different times for different radii: hydrodynamization in
the central region starts earlier than in the intermediate
region, and the latest in the outmost region, as we will
discuss in more detail below.
As an additional remark for the situation of both the

small and the large systems, but more significantly for the
smaller system, in the outer regions the hydrodynamization
occurs at stages when the energy density has already
dropped below values of 1 GeV=fm3. This behavior might
challenge the hydrodynamical simulations of pþ p or
pþ A collisions.

(a)

(b)

FIG. 3. Dependence of δτσthH on ðη=sÞ=ðτ0T0Þ, (a) measured
within hydro (upper curves) and RTA (lower curves), for various
values of τ0 and T0 at σth ¼ 0.01, with the horizontal dashed gray
lines indicating the free-streaming limit δτ0.01H ð∞Þ given in
Eqs. (40) and (47) for Hydro and RTA, respectively; (b) measured
within RTA at τ0 ¼ 0.2 fm and T0 ¼ 0.5 GeV for various values
of σth. The solid black line corresponds to the value δτ0H given by
the condition σ ¼ σmin, while the dashed horizontal gray lines
represent the RTA free-streaming limits δτ0.01H , δτ0.001H and δτ0.0001H ,
given in Eq. (47). The inset shows the same plot in log-log scale,
highlighting the asymptotic limit for small ðη=sÞ=ðτ0T0Þ derived
in Eq. (32) with dotted blue lines. The dashed red line represents a
polynomial fit to the δτ0H line for large values of ðη=sÞ=ðτ0T0Þ.
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In order to gain more insight on the radial dependence
of χ, Fig. 5 shows the radial profiles of χ at various values
of τ, corresponding to the initial conditions χ0 ¼ 1 (solid
lines) and χ0 ¼ 0.25 (dashed lines). The left and right
columns show the w ¼ 3 fm and w ¼ 1 fm systems,
respectively. The top line [panels (a) and (c)] represent
the early time evolution of χ. It can be seen that at small
times, the evolution of χ is similar between the w ¼ 3 and
1 fm simulations. At δτ ¼ ðτ − τ0Þ=τ0 ¼ 3, it can be seen
that the χ0 ¼ 1 and χ0 ¼ 0.25 curves are very close to each

other around r ¼ 0. However, the distance between these
curves increases with r, indicating that hydrodynamization
is more rapid at the fireball center than at the system
periphery. On the lower line of Fig. 5, the same hydro-
dynamization can be seen to be achieved at increasingly
large r as δτ is increased. This is in line with the analysis of
the 0þ 1D system from Sec. II, since the hydrodynamiza-
tion time δτH is expected to increase due to the increase of
the local value of w̃−1

0 ðrÞ ¼ ð4πη=sÞ=½τ0T0ðrÞ�. A key
difference between the larger (w ¼ 3 fm) and smaller
(w ¼ 1 fm) systems is that χ increases much faster in
the latter case. This is because the transverse expansion is
driven by larger gradients, becoming dominant compared
to the longitudinal expansion at a faster rate than in the
larger system.
Focusing now on the systems with η=s ¼ 0.2, we

investigate the evolution of σðχÞ at various distances r
from the fireball center in Fig. 6. In the w ¼ 3 fm system,
shown in panel (a), r ¼ 0 corresponds to the fireball center,
while r ¼ 6.59 fm and 9.32 fm correspond to initial values
of the local temperature T0ðrÞ ¼ 0.1 and 0.02 GeV,
respectively. In the w ¼ 1 fm system, the values 1.44 fm
and 2.20 fm of r correspond to T0ðrÞ ¼ 0.25 GeV and
0.1 GeV. The black dotted lines represent results obtained
in the 0þ 1D system, initialized such that the values of
w̃−1
0 ¼ ð4πη=sÞ=τ0T0 match those of the points considered

in the transversely expanding systems. In particular, we
kept τ0 ¼ 0.2 fm and T0 ¼ 0.5 GeV fixed and considered
η=s ¼ 0.2, 1 and 5 for w ¼ 3 fm, while the values
η=s ¼ 0.2, 0.4 and 1 were employed for the w ¼ 1 fm
system.
As in the 0þ 1D system, σðχÞ exhibits a decrease toward

a minimum value σmin reached after a relatively short time.
At r ¼ 0, the approach to this minimum is almost identical
in the 1þ 1D system as in the 0þ 1D system. As r is
increased, the agreement deteriorates and the minimum is
reached at a later time. The effect is more pronounced for
the smaller system, where the transverse gradients are
stronger, which indicates that the effect of the transverse
expansion is to delay hydrodynamization in comparison to
the prediction of the 0þ 1D model.
A remarkable feature seen for the r ¼ 0 curve in panel

(a) of Fig. 6 is that a second minimum emerges at later
times, namely at τ ¼ 5.78 fm and 2.50 fm for the w ¼ 3 fm
and 1 fm systems, respectively. From Fig. 4, it can be seen
that at these times, χ̄ is around 1.18 and 1.58 for the larger
and smaller system, respectively, thus the system evolution
at this stage is dominated by the transverse dynamics.
Thus, the second minima seen in Fig. 6 reveals a new
attractor solution which is due to the transverse expansion
of the system.
We now focus on the dynamics at the center of the

fireball and consider systems with various values of η=s. A
comparison between the 1þ 1D and the corresponding
0þ 1D systems is presented in Fig. 7. For the larger system

(a)

(b)

FIG. 4. The ratio χ¼PL=PT for (a) w¼3 fm and (b) w ¼ 1 fm,
obtained using the RTA (solid lines), BAMPS (red circles) and
hydro (dashed lines), calculated at r ¼ 0 (purple), r ¼ w (green),
and r ¼ 3w=2 (red), and represented with respect to the Bjorken
time τ. The RTA solution for the corresponding 0þ 1D system is
shown using the solid black lines.
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(w ¼ 3 fm), shown in panel (a), good agreement can be
seen even at η=s ¼ 5. In the smaller system, a discrepancy
can be seen at the level of the value of σmin, which increases
at larger η=s. However, for η=s≲ 0.4, the hydrodynamiza-
tion time δτσth¼0

H (when σ reaches the local minimum σmin)
remains similar to that of the 0þ 1D system. We can thus
conclude that the approach to the attractor solution is
dominated for both large and small systems by the
longitudinal dynamics of the 0þ 1D system. For the larger
system, the analogy holds up to very high values of η=s,
while the smaller system exhibits more visible deviations
even at small η=s. It is notable that the second minima
emerges significantly faster in the smaller system than in

the larger system, indicating that hydrodynamization due to
transverse expansion is more effective here.
Figure 8 shows the hydrodynamization timescale δτ0.01H

(corresponding to σth ¼ 0.01) in the scenario with trans-
verse expansion achieved from the RTA approach as a
function of w̃−1

0 ðrÞ ¼ ð4πη=sÞ=½τ0T0ðrÞ�. The results for
the larger (w ¼ 3 fm) and smaller (w ¼ 1 fm) systems are
shown in panels (a) and (b), respectively. The initial
temperature T0ðrÞ decreases with increasing r, as indicated
in Eq. (48). We considered simulations with η=s between
0.001 and 5. For each value of η=s, the simulation covers
the x-axis range from w̃−1

0 ð0Þ ¼ ð4πη=sÞ=½τ0T0ð0Þ� up to
infinity. It can be seen that δτ0.01H for the 1þ 1D system is

(a) (c)

(b) (d)

FIG. 5. Radial profiles of χ at different values of δτ ¼ ðτ − τ0Þ=τ0 for w ¼ 3 fm (left column) and 1 fm (right column). The initial
conditions are τ0 ¼ 0.2 fm and T0 ¼ 0.5 GeV, while χ0 ¼ 1 for the solid curves with filled symbols and χ0 ¼ 0.25 for the dotted curves
with empty symbols. The ratio η=s is 0.2.
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very similar to that for the 0þ 1D system at small
values of w̃−1

0 ðrÞ.
For fixed η=s, larger deviations between the 0þ 1D and

1þ 1D results appear as either r is increased or w is
decreased. When δτ0.01H for a given point in the system
exceeds a certain threshold value (δτH ≳ 3 and 2 for w ¼ 3
and 1 fm, respectively), a deviation with respect to the
0þ 1D results toward higher values of δτH can be seen.
Furthermore, there are always points which are sufficiently
far from the origin to exhibit deviations from the 0þ 1D
prediction in their hydrodynamization timescale.

We now consider the dependence of δτσthH on the thresh-
old value σth, represented in Fig. 9. As already seen in
Fig. 3(b), decreasing σth causes δτσthH to increase toward
the δτσth¼0

H limit, achieved when σth < σmin (more details
regarding this notation are given in Sec. III A). The analysis
focuses on the η=s ¼ 0.2 system, for which 95% of the
initial fireball energy (contained within r≲ 1.5w) is
between 0.4≲ ðη=sÞ=½τ0T0ðrÞ� ≲ 0.84, indicated as gray
lines in the figure. In this region, it can be seen that δτσthH for
the larger system behaves essentially as predicted by the
0þ 1D system. For the smaller system, δτσthH is close to the
0þ 1D prediction at the fireball center, increasing to a

(a)

(b)

FIG. 6. Evolution of σðχÞ measured at various values of r for
transversely expanding systems with η=s ¼ 0.2, having widths
(a) w ¼ 3 fm and (b) w ¼ 1 fm. The values of r are chosen such
that w̃−1

0 ðrÞ ¼ ð4πη=sÞ=½τ0T0ðrÞ� matches that of the 0þ 1D
system with T0 ¼ 0.5 GeV and the values of η=s inscribed next
to the 0þ 1D lines (shown with dotted black lines). The initial
time is τ0 ¼ 0.2 fm.

(b)

FIG. 7. Evolution of σðχÞ measured at r ¼ 0 for transversely
expanding systems with various values of η=s, having widths
(a) w ¼ 3 fm and (b) w ¼ 1 fm. The dotted lines represent results
from the 0þ 1D system having T0 ¼ 0.5 GeV and the same
value of η=s as that in the transversely expanding system. The
initial time is τ0 ¼ 0.2 fm.
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value about 50% larger than the 0þ 1D prediction
at r ¼ 3w=2.
For both the larger and the smaller systems, δτσthH at

σth ¼ 10−3 is almost equal to its limit value δτ0H, being
further from this limit for the larger system than for the

smaller system (for the latter, the curves corresponding to
σth ¼ 0.001 and 0 are almost overlapped). This indicates
that σmin has a larger value for the w ¼ 1 fm system
compared to that for w ¼ 3 fm, as also seen in Figs. 6
and 7. Furthermore, while for σth ¼ 0.01, the w ¼ 1 fm
value for δτσthH is larger than the value corresponding to
w ¼ 3 fm over the whole domain considered in Fig. 9,
at σth ¼ 0 it can be seen that δτ0H becomes smaller for
w ¼ 1 fm when r ≃ 2.51w. The time coordinate corre-
sponding to this point, where δτ0H ≃ 14.45, is τ ≃ 3.09 fm.
As seen in Fig. 4, for the smaller system, the transverse
expansion is already dominant, which may explain why
hydrodynamization is accelerated compared to the larger
system, which is still in a transition phase from longitu-
dinally dominated to transversally dominated expansion.

V. CONCLUSION

In this work, we considered the problem of hydro-
dynamization in a system of a conformal ideal gas of
ultrarelativistic particles undergoing boost-invariant longi-
tudinal expansion with and without transverse dynamics.
Quantitatively, we described hydrodynamization on the
basis of a (nondimensional) timescale δτσthH ¼ðτσthH −τ0Þ=τ0,
defined in terms of the time τσthH in which the standard
deviation σðχÞ of the ratio χ ¼ PL=PT with respect to its
initial value (0 ≤ χ0 ≤ 1 were considered) either reaches its

(a)

(b)

FIG. 8. The hydrodynamization timescale δτ0.01H corresponding
to a threshold σth ¼ 0.01 for the w ¼ 3 fm (a) and w ¼ 1 fm
(b) systems, representedwith respect to ðη=sÞ=½τ0T0ðrÞ�, where the
initial temperature T0ðrÞ is given by Eq. (48). The circles represent
δτ0.01H corresponding to the central point (r ¼ 0) of the fireball and
each curve corresponds to a different value of η=s. The red dashed
lines mark the positions r ¼ 0, w and 3w=2 for the system with
η=s ¼ 0.2, corresponding to the curves shown in Fig. 4.

FIG. 9. Hydrodynamization time δτσthH with respect to
ðη=sÞ=½τ0T0ðrÞ� for the w ¼ 3 fm (red lines) and 1 fm (blue
lines) systems at η=s ¼ 0.2. The results for σth ¼ 0.01, 0.001 and
0 (corresponding to σmin) are shown with dashed, dotted and
continuous lines, respectively. The black lines represent the
0þ 1D results from Fig. 3(b). The gray lines delimit the region
between the fireball center and r ¼ 3w=2. The inset shows the
same plot in log-log scale.
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minimum value σmin, corresponding to the (imperfect)
merger of this family of curves, or decreases below a
threshold value σth.
In the conformal limit of the 0þ 1D problem, δτσthH is a

function only of the conformal parameter w̃−1
0 ¼ ð4πη=sÞ=

ðτ0T0Þ. With respect to this parameter, δτ0.01H (obtained for
σth ¼ 0.01) is bounded between two limits, δτ0.01H ð0Þ ¼ 0

and δτ0.01H ð∞Þ ≃ 6 (about 1.2 fm after initial time
τ0 ¼ 0.2 fm), corresponding to the inviscid and free-
streaming regimes, respectively. For the system with trans-
verse dynamics, there appears a competition between the
0þ 1D hydrodynamization timescale and the timescale
associated with transverse dynamics.
In the 1þ 1D setup, we described the initial transverse

distribution of Gaussian form with widths w ¼ 1 and 3 fm,
corresponding to small (pþ p) and large (Aþ A) colli-
sions. A comparison between the results obtained with the
three numerical schemes considered in this paper (Hydro,
RTA and BAMPS) is presented in Fig. 4. While Hydro
presents some deviations from RTA and BAMPS, the RTA
results follow closely the BAMPS results in all tested flow
regimes (see Figs. 1, 4, and 10). It is worth stressing that
the excellent agreement between RTA and BAMPS rec-
ommends RTA as a simulation tool for this type of systems,
since it is a significantly faster numerical method
than BAMPS.
For the points with sufficiently small values of ðη=sÞ=

½τ0T0ðrÞ� (where T0ðrÞ is the local initial temperature), the
hydrodynamization time is very well approximated by the
0þ 1D prediction. With increasing values of the radius,
δτσthH deviates from the 0þ 1D prediction to larger values,
faster for the smaller system than for the larger one. For the
system with larger transverse size (w ¼ 3 fm), we found
that at η=s ¼ 0.2, the hydrodynamization of the region
r < 3w=2 (containing 95% of the initial energy of the
fireball) follows very closely the 0þ 1D dynamics. While
the center of the smaller fireball is also well captured by the
0þ 1D dynamics, hydrodynamization times of up to 50%
larger can be seen around r ¼ 3w=2, indicating that the
transverse dynamics has the effect of slowing down hydro-
dynamization due to longitudinal expansion. Our analysis
revealed the emergence of a second minimum of σðχÞ,
suggesting the existence of an attractor due to the transverse
expansion.
In our picture of a heavy-ion collision, our results

indicate that for a given η=s one always finds a radius
in the overlap region beyond which the transversal dynam-
ics become dominant and the hydrodynamization is
delayed compared to the innermost region of the fireball.
For the outermost regions, this has to be confronted also
with the timescales connected with the decrease of energy
density and freeze out, making the situation challenging
for a hydrodynamical description in the case of very small
systems.
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APPENDIX A: 0 + 1D BJORKEN FLOW
FOR HARD-SPHERES

In this section, we consider the 0þ 1D Bjorken flow of a
gas of hard spheres (HS), as described, e.g., by Denicol and
Noronha in Ref. [7]. In the context of the BAMPS
approach, the collision cross section is set to a constant
value σ. The degree of rarefaction can be conveniently
characterized by the Knudsen number Kn, defined as [7]

Kn ¼ 1

nτσ
¼ 1

n0τ0σ
: ðA1Þ

In the Hydro setup, the HS gas can be implemented by
noting that the shear viscosity is related to σ via [44]

FIG. 10. Evolution of the pressure anisotropy χ ¼ PL=PT with
respect to the Bjorken time τ in the context of the hard-sphere gas
for various values of the Knudsen number Kn (A1). The initial
conditions are τ0 ¼ 0.2 fm and T0 ¼ 0.5 GeV. The RTA and
hydro results are shown with solid and dashed lines, respectively,
while the BAMPS results are shown using empty circles.
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η ¼ 1.2654T
σ

; ðA2Þ
where T ¼ p=n ¼ pτ=n0τ0 is the local temperature. In the
RTA approach, the HS gas is simulated by setting the
relaxation time τR according to Eq. (6), with η given
by Eq. (A2).
In Fig. 10, the Hydro, RTA, and BAMPS results for χ ¼

PL=PT are compared for various values of Kn. The initial
conditions are set as in Fig. 1, namely τ0 ¼ 0.2 fm and
T0 ¼ 0.5 GeV. The values of Kn are chosen such that the
asymptotic value of χ is 0.75, 0.5, 0.25 and 0.05. As also
noted for the case of the gas with constant η=s reported in
Fig. 1, all three methods agree at small Kn. The hydro
results exhibit a departure from the RTA and BAMPS
results already at Kn ¼ 0.33, achieving negative values
for χ when Kn ¼ 5.25. The agreement between RTA
and BAMPS remains excellent for both small and large
values of Kn.
As remarked in Ref. [44] and confirmed in Fig. 10, χ

reaches a constant value as τ → ∞, which depends on Kn.
In Fig. 11, we compare our RTA results for −Π=4p ¼
ð1 − χÞ=½2ð2þ χÞ� with the results computed on the basis
of the full Boltzmann collision integral for the hard sphere
gas in Ref. [44], finding excellent agreement throughout the
whole Knudsen range (between 0 and 5).

APPENDIX B: NUMERICAL METHOD
FOR THE RTA

In this section, we present the details of the numerical
method employed to solve the relativistic Boltzmann equa-
tion in the Anderson-Witting relaxation time approximation

[26,27]. The method is inspired by the finite difference
Lattice Boltzmann (LB) algorithm [23–25,45–47].
The strategy for devising the numerical method is

split into three main parts described in this Appendix.
The derivation of the relativistic Boltzmann equation in
the context of the longitudinal boost-invariant system with
transverse expansion is presented in Sec. B 1. At the heart of
this derivation is the vielbein formalism [48], which allows
spherical coordinates to be employed in the momentum
space together with curvilinear spatial coordinates [24].
The momentum space discretization is based on Gauss

quadratures for the integration with respect to spherical
coordinates and follows LB methodology [23,24,45], being
described in Sec. B 2. The algorithm for computing the
derivatives with respect to the momentum space degrees
of freedom, appearing due to the use of a curvilinear co-
ordinate system, is also discussed here.
The spatial and temporal discretization, as well as the

numerical schemes employed for the advection and time
stepping, are briefly summarized in Sec. B 3.
The parameters employed for the simulations discussed

in Sec. IV are summarized for convenience in Table I. We
tested that the simulation results were within 1% errors
compared to the values obtained by doubling the resolution
in any of the numerical parameters shown in Table I.

1. Separation of variables in momentum space
using the vielbein formalism

The relativistic Boltzmann equation can be written with
respect to the Minkowski (Cartesian) coordinates ðt; x; y; zÞ
as follows:

kμ∂μf ¼ C½f�; ðB1Þ

where kμ ¼ ðkt; kx; ky; kzÞ represent the Cartesian
momentum-space components and C½f� is the collision
integral (discussed below).
In a system with longitudinal boost invariance, it is

convenient to employ the Bjorken coordinates in Eq. (1).
Moreover, in this paper, we consider systems with azimu-
thal symmetry in the transverse plane. Thus, the macro-
scopic observables depend only on Bjorken time τ and on
the radial distance r. The line element (1) becomes

ds2 ¼ dτ2 − dr2 − r2dθ2 − τ2dη2s : ðB2Þ

FIG. 11. The asymptotic value of −π=4p ¼ ð1 − χÞ=½2ð2þ χÞ�
as a function of the Knudsen number Kn (A1). Our results obtained
using RTA are shown with the black line, while the results reported
by Denicol and Noronha [7] are shown with red circles.

TABLE I. Parameters used for the RTA simulations presented
in Sec. IV. See Appendix B for the intepretation of the above
notation.

w (fm) η=s S δτ=τ0 Qφ Qξ

1 ≤ 0.005 200 0.005 20 80
1 >0.005 200 0.0025 80 160
3 (all values) 200 0.01 40 160
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In order to take advantage of this symmetry in the full phase-
space, the momentum space degrees of freedom can be
chosen with respect to the following vielbein field (tetrad),

eτ̂ ¼ ∂τ; er̂ ¼ ∂r; eθ̂ ¼ r−1∂θ; eη̂s ¼ τ−1∂ηs ;

ωτ̂ ¼ dτ; ωr̂ ¼ dr; ωθ̂ ¼ rdθ; ωη̂s ¼ τdηs:

ðB3Þ

The tetrad components kα̂ ¼ kμωα̂
μ are then employed to

perform the momentum space integration, such that the
particle four-flow vectorNα̂ and the stress-energy tensor T α̂ β̂

are computed as follows:

Nα̂ ¼
Z

d3k
kτ̂

fkα̂; T α̂β ¼
Z

d3k
kτ̂

fkα̂kβ̂: ðB4Þ

The hatted indices are raised and loweredwith theMinkowski
metric ηα̂β̂¼diagð1;−1;−1;−1Þ, i.e., Nα̂¼ηα̂β̂Nβ̂. In order
to perform the integrals in Eq. (B4), it is convenient to
introduce spherical coordinates in the momentum space, via

�
kr̂

kθ̂

�
¼ k

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p �
cosφ

sinφ

�
; kη̂s ¼ kξ: ðB5Þ

In the case of the ultrarelativistic gas, kτ̂ ¼ k.
We are now ready to write down the relativistic

Boltzmann equation for the distribution function
fðxμ; k{̃Þ with the phase-space dependence on the curvi-
linear coordinates xμ ¼ ðτ; r; θ; ηsÞ and the momentum
space degrees of freedom k{̃ ¼ ðk; ξ;φÞ. It is based on
the general theory developed by Cardall and Mezzacappa
[48] and employed also in Ref. [24]:

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
eμα̂k

α̂fÞ− kτ̂ffiffiffi
λ

p ∂
∂k{̃

�
K{̃

{̂Γ{̂
α̂ β̂

kα̂kβ̂

kτ̂
f

ffiffiffi
λ

p �
¼C½f�;

ðB6Þ

where λ−1=2 ¼ j detK|̃
{̂j and the matrix K|̃

{̂ ¼ ∂k|̃=∂k{̂,
computed in Eq. (2.20) of Ref. [24], is reproduced below
for convenience:

K|̃
{̂ ¼

0
BBB@

cosφ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
sinφ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
ξ

− ξ
k cosφ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
− ξ

k sinφ
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
1−ξ2
k

− sinφ

k
ffiffiffiffiffiffiffi
1−ξ2

p cosφ

k
ffiffiffiffiffiffiffi
1−ξ2

p 0

1
CCCA:

ðB7Þ

The connection coefficients Γ{̂
α̂ β̂ appearing in Eq. (B6) can

be computed via

Γσ̂
β̂ γ̂ ¼

1

2
ησ̂ α̂ðcα̂ β̂ γ̂ þ cα̂ γ̂ β̂ − cβ̂ γ̂ α̂Þ; ðB8Þ

where the Cartan coefficients are based on the commu-
tators of the vielbein tetrad vectors, ½eα̂; eβ̂� ¼ cα̂ β̂

γ̂eγ̂ .
Based on Eq. (B3), we find cτ̂η̂s η̂s ¼ −cη̂s τ̂η̂s ¼ τ−1 and
cr̂ θ̂ θ̂ ¼ −cθ̂ r̂ θ̂ ¼ r−1, with all other Cartan coefficients
vanishing, leading to

Γτ̂
η̂sη̂s ¼ Γη̂s

τ̂η̂s ¼ τ−1; Γr̂
θ̂ θ̂ ¼ −Γθ̂

r̂ θ̂ ¼ −r−1: ðB9Þ

Plugging now Eqs. (B7) and (B9) into Eq. (B6), we find

1

τ

∂ðfτÞ
∂τ þ kr̂

rkτ̂
∂ðfrÞ
∂r þ kθ̂

rkτ̂
∂f
∂θ þ

kη̂s

τkτ̂
∂f
∂η −

ξ2

τk2
∂ðfk3Þ
∂k

−
1

τ

∂½ξð1 − ξ2Þf�
∂ξ −

k
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
rkτ̂

∂ðf sinφÞ
∂φ ¼ 1

kτ̂
C½f�:

ðB10Þ

In the case of massless particles (considered throughout this
paper and in what follows), m ¼ 0 and kτ̂ ¼ k.
The collision integral C½f� appearing in Eq. (B18) is

computed in the Anderson-Witting relaxation time approxi-
mation (RTA) [26,27],

C½f� → CA−W½f� ¼ −
k · u
τR

½f − fðeqÞ�; ðB11Þ

where τR is the relaxation time and fðeqÞ is the local
equilibrium distribution function. In this paper, we consider
that the equilibrium statistics are described by the Maxwell-
Jüttner model for massless particles,

fðeqÞ → fðeqÞM−J ¼
g

ð2πÞ3 exp
�
μ − k · u

T

�

¼ n
8πT3

exp

�
−
k · u
T

�
; ðB12Þ

where g is a degeneracy factor (g ¼ 16 for the gluonic
degrees of freedom), while μ and T are the local chemical
potential and temperature, respectively. The macroscopic
velocity u ¼ uα̂eα̂ is obtained via the Landau matching
condition,

T α̂
σ̂uσ̂ ¼ euα̂; ðB13Þ

where the energy density e ¼ 3p represents the positive
eigenvalue of the stress-energy tensor, T α̂

σ̂. The temper-
ature T ¼ p=n is determined using the particle number
density n, which is computed from the particle four-flow
and is related to the chemical potential μ via
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n ¼ Nα̂uα̂ ¼
gT3

π2
eμ=T: ðB14Þ

Both the stress-energy tensor and the particle four-flow are
computed using Eq. (B4) from the distribution function f.
In the case of the 0þ 1 D Bjorken flow, there is no

dependence on the spatial coordinates r, θ and ηs, while
the macroscopic velocity is given by uα̂ ¼ ð1; 0; 0; 0ÞT at all
times. Since we consider no dependence on the azimuthal
coordinate φ of the momentum space in the initial
Romatschke-Strickland distribution given in Eq. (10), it
is clear that ∂φf ¼ 0 at all times and Eq. (B10) reduces
after setting m ¼ 0 and kτ̂ ¼ k to

1

τ

∂ðfτÞ
∂τ −

ξ2

τk2
∂ðfk3Þ
∂k −

1

τ

∂½ξð1 − ξ2Þf�
∂ξ ¼ −

1

τR
½f − fðeqÞ�:

ðB15Þ

In the free-streaming limit, τR → ∞ and the solution of
Eq. (B15) is given at time τ > τ0 precisely by

fFSðτ; k; ξÞ ¼ fFSðτ0; k̃; ξ̃Þ; ðB16Þ

where [49]

k̃ ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
τ2

τ20
− 1

�
ξ2

s
; ξ̃ ¼ kξ

k̃

τ

τ0
: ðB17Þ

Assuming that the distribution at initial time fFSðτ0; k; ξÞ is
given by the Romatschke-Strickland fRSðτ0; k; ξÞ distribu-
tion in Eq. (10), the free-streaming solution (B16) reduces
to Eq. (41) in the main text.
In the case with transverse expansion, the longitudinal

boost invariance and the invariance under azimuthal plane
rotations imply that ∂θf ¼ ∂ηsf ¼ 0. Restricting the dis-
cussion to massless particles, when kτ̂ ¼ k, Eq. (B1)
reduces to

1

τ

∂ðfτÞ
∂τ þ kr̂

rk
∂ðfrÞ
∂r −

ξ2

τk2
∂ðfk3Þ
∂k −

1

τ

∂½ξð1 − ξ2Þf�
∂ξ

−
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2

p
r

∂ðf sinφÞ
∂φ ¼ − k · u

kτR
½f − fðeqÞ�: ðB18Þ

The Landau frame velocity uα̂ ¼ ðuτ̂; ur̂; 0; 0Þ and the
energy density e are given by the solution of the eigenvalue
equation (B13) [24],

e ¼ 1

2

�
T τ̂ τ̂ − Tr̂ r̂ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðT τ̂ τ̂ þ Tr̂ r̂Þ2 − 4ðT τ̂ r̂Þ2

q �
;

ur̂

uτ̂
¼ T τ̂ r̂

eþ Tr̂ r̂ : ðB19Þ

2. Momentum space discretization

In this paper, we employ the discretization of the momen-
tum space discussed in Ref. [24]. In this scheme, we employ
QL ×Qξ ×Qφ discrete values for k, ξ and φ, such that

kα̂ → kα̂lji ¼ klð1;
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2j

q
cosφi;

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2j

q
sinφi; ξjÞ. The

discrete set of distributions flji are related to the original
distribution function fðk; ξ;φÞ via [24]

flji ¼
2π

Qφ
T3
0e

k̄lwL
l w

ξ
jfðkl; ξj;φiÞ: ðB20Þ

The weights wL
l , w

ξ
j and 2π=Qφ are computed following the

prescription of the Gauss-Laguerre, Gauss-Legendre and
Mysovskikh (trigonometric) quadratures, respectively [50].
The values for k are chosen as the roots of the

generalized Laguerre polynomials Lð2Þ
QL
ðk̄Þ of order QL,

where k̄ ¼ k=kref and kref is an arbitrary scale which we set
equal to the initial temperature, kref ¼ T0. Two values are
chosen (QL ¼ 2), k̄1 ¼ 2 and k̄2 ¼ 6, thus ensuring the
exact recovery of the evolution of Nα̂ and T α̂ σ̂ (for details,
see Ref. [24]). The corresponding weights are wL

1 ¼ 3=2
and wL

2 ¼ 1=2. The derivative term k−2∂ðfk3Þ=∂k is
projected onto the space of generalized Laguerre poly-
nomials and is truncated at order QL, giving

�
1

k2
∂ðfk3Þ
∂k

�
lji

¼
XQL

l0¼1

KL
l;l0fl0ji; ðB21Þ

where the elements of theQL ×QL matrixKL
l;l0 are given in

Eq. (3.51) of Ref. [24]. For L ¼ 2, KL
l;l0 ¼ 1

6
wL
l ð3 − k̄lÞk̄l0 ,

such that KL
1;10 ¼ −KL

2;10 ¼ 1
2

and KL
1;20 ¼ −KL

2;20 ¼ 3
2
,

leading to

�
1

k2
∂ðfk3Þ
∂k

�
1ji

¼ 1

2
f1ji þ

3

2
f2ji;�

1

k2
∂ðfk3Þ
∂k

�
2ji

¼ −
1

2
f1ji −

3

2
f2ji: ðB22Þ

In the case of ξ, we employ the Gauss-Legendre
quadrature of order Qξ, meaning that the values ξj
(1 ≤ j ≤ Qξ) are the roots of the Legendre polynomial
of order Qξ, PQξ

ðξjÞ ¼ 0. Both the roots and the weights

wξ
j up to order Qξ ¼ 1000 are available as data files in

the supplementary material of Ref. [24]. The term
∂½ξð1 − ξ2Þf�=∂ξ is computed by projection onto the space
of Legendre polynomials,

�∂½ξð1 − ξ2Þf�
∂ξ

�
lji

¼
XQξ

j0¼1

KP
j;j0flj0i; ðB23Þ
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where the Qξ ×Qξ elements of the matrix KP
j;j0 are

computed from Eq. (3.54) of Ref. [24], reproduced below
for convenience:

KP
j;j0 ¼wj

XQξ−3

m¼1

mðmþ1Þðmþ2Þ
2ð2mþ3Þ PmðξjÞPmþ2ðξj0 Þ

−wj

XQξ−1

m¼1

mðmþ1Þ
2

PmðξjÞ

×

� ð2mþ1ÞPmðξj0 Þ
ð2m−1Þð2mþ3Þþ

m−1

2m−1
Pm−2ðξj0 Þ

�
: ðB24Þ

Finally, the trigonometric angle φ is discretized usingQφ

values, φi ¼ φ0 þ 2πði − 1Þ=Qφ (1 ≤ i ≤ Qφ), where the
arbitrary offset φ0 is set to φ0 ¼ 0 for definiteness. The
derivative term ∂ðf sinφÞ=∂φ can be computed via

�∂ðf sinφÞ
∂φ

�
lji

¼
XQφ

i0¼1

KM
i;i0fl;j;i0 ; ðB25Þ

where

KM
i;i0 ¼

1

Qφ

XbQφ=2c

m¼0

fðmþ 1Þ cos½mðφi − φi0 Þ þ φi�

− ðm − 1Þ cos½mðφi − φi0 Þ − φi�g; ðB26Þ

where b·c is the floor function.
Before ending this subsection, we discuss the strategy

employed for computing the initial conditions for f, as well
as the equilibrium distribution fðeqÞ. Because the momen-
tum magnitude k is discretized using only two values, the
direct evaluation of the distribution function at these values
suffers from severe accuracy problems when attempting to
extract the macroscopic quantities Nα̂ and T α̂ β̂. Instead, we
employ the strategy of Refs. [23,24] and consider the
projection of f onto the space of Laguerre polynomials:

f ¼ e−k=T0

T3
0

XQL−1

l¼0

F lL
ð2Þ
l ðk=T0Þ

ðlþ 1Þðlþ 2Þ ;

F l ¼
Z

∞

0

dpp2fLð2Þ
l ðk=T0Þ: ðB27Þ

The sum over l is truncated at QL − 1 in order to facilitate
the recovery of the integrals of f following the Gauss-
Laguerre quadrature prescription. The initialization of f is
performed at the level of the coefficients F l, which for the
Romatschke-Strickland distribution are given by [35]:

FRS
0 ¼ geα0

ð2πÞ3
Λ3
0

ð1þ ξ0ξ
2Þ3=2 ;

3FRS
0 − FRS

1 ¼ 3geα0

ð2πÞ3
Λ4
0=T0

ð1þ ξ0ξ
2Þ2 : ðB28Þ

After the discretization of the momentum space, the
Romatschke-Strickland distribution becomes

fRSlji ¼
geα0Λ3

0

ð1þ ξ0ξ
2
jÞ3=2

wL
l w

ξ
j

4π2Qφ

×

"
4 − k̄l þ

Λ0=T0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ0ξ

2
j

q ð3 − k̄lÞ
#
: ðB29Þ

The Maxwell-Jüttner distribution necessary for the com-
putation of the collision term is obtained by replacing
eα0 → π2n=gT3, Λ0 → T and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ0ξ

2
p

→ uα̂kα̂=k ¼
uτ̂ − kr̂ur̂=k:

fðeqÞlji ¼ nwL
l w

ξ
j

4Qφðuτ̂ − ur̂
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2j

q
cosφiÞ3

×

"
4 − k̄l þ

ð3 − k̄lÞT=T0

uτ̂ − ur̂
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2j

q
cosφi

#
: ðB30Þ

3. Finite difference methods

The time stepping is performed using the third-order
Runge-Kutta scheme [51,52]. Writing Eq. (B18) as
∂f=∂τ ¼ L½f� and considering an equal time step discreti-
zation of the time coordinate, τn ¼ τ0 þ nδτ, the value fnþ1

of the distribution function at time step nþ 1 can be
obtained from that at time step n via two intermediate stages:

fð1Þn ¼ fn þ δtL½fn�;

fð2Þn ¼ 3

4
fn þ

1

4
fð1Þn þ 1

4
δtL½fð1Þn �;

fnþ1 ¼
1

3
fn þ

2

3
fð2Þn þ 2

3
δtL½fð2Þn �: ðB31Þ

For the advection along r, care must be taken because
of the r−1 factor appearing in Eq. (B18). Following
Refs. [53–55], this factor is absorbed in the derivative,
i.e., r−1∂ðfrÞ=∂r ¼ 2∂ðfrÞ=∂r2. The discretization of the
radial coordinate is performed using S equal intervals of
width δr ¼ L=S (where L ¼ 6w and w is the width of the
Gaussian, as discussed in Sec. IV), centered on coordinates
rs ¼ ðs − 1

2
Þδr, with 1 ≤ s ≤ S. The derivative term is then

computed using a flux-based finite-difference scheme,

VICTOR E. AMBRUŞ et al. PHYS. REV. D 104, 094022 (2021)

094022-18



�
1

r
∂ðfvrÞ
∂r

�
s
¼ 2

rsþ1
2
F sþ1

2
− rs−1

2
F s−1

2

r2
sþ1

2

− r2
s−1

2

; ðB32Þ

where rs�1
2
¼ rs � 1

2
δr and v ¼ kr̂=kτ̂ → cosφi

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ξ2j

q
is

the advection velocity. The fluxes F s�1
2
are computed using

an upwind-biased approach. For increased stability, we

employ the fifth-order weighted essentially nonoscillatory
(WENO-5) scheme [56,57], which is summarized also in
Refs. [24,55]. For brevity, the algorithm is not repeated
here. We note that, while the WENO-5 method is of fifth
order, the formulation in Eq. (B32) gives rise to a second-
order algorithm due to the rs�1

2
factors appearing in the

numerator [55].

[1] J. D. Bjorken, Highly relativistic nucleus-nucleus collisions:
The central rapidity region, Phys. Rev. D 27, 140 (1983).

[2] P. Romatschke and U. Romatschke, Viscosity Information
from Relativistic Nuclear Collisions: How Perfect is the
Fluid Observed at RHIC?, Phys. Rev. Lett. 99, 172301
(2007).

[3] R. D. Weller and P. Romatschke, One fluid to rule them all:
Viscous hydrodynamic description of event-by-event central
pþ p, pþ Pb and Pbþ Pb collisions at

ffiffiffi
s

p ¼ 5.02 TeV,
Phys. Lett. B 774, 351 (2017).

[4] M. P. Heller and M. Spalinski, Hydrodynamics Beyond the
Gradient Expansion: Resurgence and Resummation, Phys.
Rev. Lett. 115, 072501 (2015).

[5] A. H. Mueller, The Boltzmann equation for gluons at early
times after a heavy ion collision, Phys. Lett. B 475, 220
(2000).

[6] A. El, Z. Xu, and C. Greiner, Third-order relativistic
dissipative hydrodynamics, Phys. Rev. C 81, 041901(R)
(2010).

[7] G. S. Denicol and J. Noronha, Exact Hydrodynamic At-
tractor of an Ultrarelativistic Gas of Hard Spheres, Phys.
Rev. Lett. 124, 152301 (2020).

[8] M. P. Heller, A. Kurkela, M. Spaliński, and V. Svensson,
Hydrodynamization in kinetic theory: Transient modes and
the gradient expansion, Phys. Rev. D 97, 091503(R) (2018).

[9] P. Romatschke, Relativistic hydrodynamic attractors with
broken symmetries: Non-conformal and non-homogeneous,
J. High Energy Phys. 12 (2017) 079.

[10] A. Behtash, S. Kamata, M. Martinez, T. Schaefer, and V.
Skokov, Transasymptotics and hydrodynamization of the
Fokker-Planck equation for gluons, Phys. Rev. D 103,
056010 (2021).

[11] A. Kurkela, W. van der Schee, U. A. Wiedemann, and B.
Wu, Early- and Late-Time Behavior of Attractors in Heavy-
Ion Collisions, Phys. Rev. Lett. 124, 102301 (2020).

[12] P. Romatschke, Relativistic Fluid Dynamics Far From Local
Equilibrium Phys. Rev. Lett. 120, 012301 (2018).

[13] D. Almaalol, A. Kurkela, and M. Strickland, Nonequili-
brium Attractor in High-Temperature QCD Plasmas, Phys.
Rev. Lett. 125, 122302 (2020).

[14] S. S. Gubser, Symmetry constraints on generalizations of
Bjorken flow, Phys. Rev. D 82, 085027 (2010).

[15] A. Behtash, S. Kamata, M. Martinez, and H. Shi, Global
flow structure and exact formal transseries of the Gubser
flow in kinetic theory, J. High Energy Phys. 07 (2020) 226.

[16] A. Dash and V. Roy, Hydrodynamic attractors for Gubser
flow, Phys. Lett. B 806, 135481 (2020).

[17] M. P. Heller, R. Jefferson, M. Spaliński, and V. Svensson,
Hydrodynamic Attractors in Phase Space, Phys. Rev. Lett.
125, 132301 (2020).

[18] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets, and
M. A. Stephanov, Relativistic viscous hydrodynamics, con-
formal invariance, and holography, J. High Energy Phys. 04
(2008) 100.

[19] A. Kurkela, S. F. Taghavi, U. A. Wiedemann, and B. Wu,
Hydrodynamization in systems with detailed transverse
profiles, Phys. Lett. B 811, 135901 (2020).

[20] E. Molnar, H. Niemi, and D. H. Rischke, Numerical tests of
causal relativistic dissipative fluid dynamics, Eur. Phys. J. C
65, 615 (2010).

[21] H. Niemi, G. S. Denicol, P. Huovinen, E. Molnar, and D. H.
Rischke, Influence of a temperature-dependent shear vis-
cosity on the azimuthal asymmetries of transverse momen-
tum spectra in ultrarelativistic heavy-ion collisions, Phys.
Rev. C 86, 014909 (2012).

[22] J. A. Fotakis, M. Greif, C. Greiner, G. S. Denicol, and H.
Niemi, Diffusion processes involving multiple conserved
charges: A study from kinetic theory and implications to the
fluid-dynamical modeling of heavy ion collisions, Phys.
Rev. D 101, 076007 (2020).

[23] P. Romatschke, M. Mendoza, and S. Succi, A fully
relativistic lattice Boltzmann algorithm, Phys. Rev. C 84,
034903 (2011).

[24] V. E. Ambrus and R. Blaga, High-order quadrature-based
lattice Boltzmann models for the flow of ultrarelativistic
rarefied gases, Phys. Rev. C 98, 035201 (2018).

[25] A. Gabbana, D. Simeoni, S. Succi, and R. Tripiccione,
Relativistic lattice Boltzmann methods: Theory and appli-
cations, Phys. Rep. 863, 1 (2020).

[26] J. Anderson and H. Witting, A relativistic relaxation-time
model for the boltzmann equation, Physica (Amsterdam) 74,
466 (1974).

[27] J. Anderson and H. Witting, Relativistic quantum transport
coefficients, Physica (Amsterdam) 74, 489 (1974).

[28] Z. Xu and C. Greiner, Thermalization of gluons in ultra-
relativistic heavy ion collisions by including three-body
interactions in a parton cascade, Phys. Rev. C 71, 064901
(2005).

[29] Z. Xu, C. Greiner, and H. Stocker, PQCD Calculations of
Elliptic Flow and Shear Viscosity at RHIC, Phys. Rev. Lett.
101, 082302 (2008).

BJORKEN FLOW ATTRACTORS WITH TRANSVERSE DYNAMICS PHYS. REV. D 104, 094022 (2021)

094022-19

https://doi.org/10.1103/PhysRevD.27.140
https://doi.org/10.1103/PhysRevLett.99.172301
https://doi.org/10.1103/PhysRevLett.99.172301
https://doi.org/10.1016/j.physletb.2017.09.077
https://doi.org/10.1103/PhysRevLett.115.072501
https://doi.org/10.1103/PhysRevLett.115.072501
https://doi.org/10.1016/S0370-2693(00)00084-8
https://doi.org/10.1016/S0370-2693(00)00084-8
https://doi.org/10.1103/PhysRevC.81.041901
https://doi.org/10.1103/PhysRevC.81.041901
https://doi.org/10.1103/PhysRevLett.124.152301
https://doi.org/10.1103/PhysRevLett.124.152301
https://doi.org/10.1103/PhysRevD.97.091503
https://doi.org/10.1007/JHEP12(2017)079
https://doi.org/10.1103/PhysRevD.103.056010
https://doi.org/10.1103/PhysRevD.103.056010
https://doi.org/10.1103/PhysRevLett.124.102301
https://doi.org/10.1103/PhysRevLett.120.012301
https://doi.org/10.1103/PhysRevLett.125.122302
https://doi.org/10.1103/PhysRevLett.125.122302
https://doi.org/10.1103/PhysRevD.82.085027
https://doi.org/10.1007/JHEP07(2020)226
https://doi.org/10.1016/j.physletb.2020.135481
https://doi.org/10.1103/PhysRevLett.125.132301
https://doi.org/10.1103/PhysRevLett.125.132301
https://doi.org/10.1088/1126-6708/2008/04/100
https://doi.org/10.1088/1126-6708/2008/04/100
https://doi.org/10.1016/j.physletb.2020.135901
https://doi.org/10.1140/epjc/s10052-009-1194-9
https://doi.org/10.1140/epjc/s10052-009-1194-9
https://doi.org/10.1103/PhysRevC.86.014909
https://doi.org/10.1103/PhysRevC.86.014909
https://doi.org/10.1103/PhysRevD.101.076007
https://doi.org/10.1103/PhysRevD.101.076007
https://doi.org/10.1103/PhysRevC.84.034903
https://doi.org/10.1103/PhysRevC.84.034903
https://doi.org/10.1103/PhysRevC.98.035201
https://doi.org/10.1016/j.physrep.2020.03.004
https://doi.org/10.1016/0031-8914(74)90355-3
https://doi.org/10.1016/0031-8914(74)90355-3
https://doi.org/10.1016/0031-8914(74)90356-5
https://doi.org/10.1103/PhysRevC.71.064901
https://doi.org/10.1103/PhysRevC.71.064901
https://doi.org/10.1103/PhysRevLett.101.082302
https://doi.org/10.1103/PhysRevLett.101.082302


[30] K. Gallmeister, H. Niemi, C. Greiner, and D. H. Rischke,
Exploring the applicability of dissipative fluid dynamics to
small systems by comparison to the Boltzmann equation,
Phys. Rev. C 98, 024912 (2018).

[31] A. Jaiswal, Relativistic dissipative hydrodynamics from
kinetic theory with relaxation time approximation, Phys.
Rev. C 87, 051901(R) (2013).

[32] C. Cercignani and G.M. Kremer, The Relativistic Boltz-
mann Equation: Theory and Applications (Birkhäuser
Verlag, Basel, Switzerland, 2002).

[33] P. Romatschke and M. Strickland, Collective modes of an
anisotropic quark gluon plasma, Phys. Rev. D 68, 036004
(2003).

[34] W. Florkowski, R. Ryblewski, and M. Strickland, Testing
viscous and anisotropic hydrodynamics in an exactly
solvable case, Phys. Rev. C 88, 024903 (2013).

[35] V. E. Ambrus and C. Guga-Rosian, Lattice Boltzmann study
of the one-dimensional boost-invariant expansion with
anisotropic initial conditions, AIP Conf. Proc. 2071,
020014 (2019).

[36] A. Jaiswal, Relativistic third-order dissipative fluid dynam-
ics from kinetic theory, Phys. Rev. C 88, 021903(R) (2013).

[37] W. Florkowski and R. Ryblewski, Highly-anisotropic and
strongly-dissipative hydrodynamics for early stages of
relativistic heavy-ion collisions, Phys. Rev. C 83, 034907
(2011).

[38] M. Martinez and M. Strickland, Dissipative dynamics of
highly anisotropic systems, Nucl. Phys. A848, 183 (2010).

[39] E. Molnár, H. Niemi, and D. H. Rischke, Closing the
equations of motion of anisotropic fluid dynamics by a
judicious choice of a moment of the Boltzmann equation,
Phys. Rev. D 94, 125003 (2016).

[40] S. Kamata, M. Martinez, P. Plaschke, S. Ochsenfeld, and S.
Schlichting, Hydrodynamization and nonequilibrium
Green’s functions in kinetic theory, Phys. Rev. D 102,
056003 (2020).

[41] J.-P. Blaizot and L. Yan, On attractor and fixed points in
Bjorken flows, arXiv:2106.10508.

[42] B. Schenke, S. Jeon, and C. Gale, Elliptic and Triangular
Flow in Event-by-Event ð3þ 1ÞD Viscous Hydrodynamics,
Phys. Rev. Lett. 106, 042301 (2011).

[43] J. Uphoff, F. Senzel, O. Fochler, C. Wesp, Z. Xu, and C.
Greiner, Elliptic Flow and Nuclear Modification Factor in
Ultrarelativistic Heavy-Ion Collisions within a Partonic
Transport Model, Phys. Rev. Lett. 114, 112301 (2015).

[44] G. Denicol, H. Niemi, E. Molnar, and D. Rischke, Deriva-
tion of transient relativistic fluid dynamics from the Boltz-
mann equation, Phys. Rev. D 85, 114047 (2012); Erratum,
Phys. Rev. D 91, 039902 (2015).

[45] V. E. Ambrus and V. Sofonea, High-order thermal lattice
boltzmann models derived by means of gauss quadrature in
the spherical coordinate system, Phys. Rev. E 86, 016708
(2012).

[46] S. Succi, The Lattice Boltzmann Equation: For Complex
States of Flowing Matter (Oxford University Press, Oxford,
United Kingdom, 2018).

[47] L. Bazzanini, A. Gabbana, D. Simeoni, S. Succi, and R.
Tripiccione, A lattice Boltzmann method for relativistic
rarefied flows in (2þ 1) dimensions, J. Comput. Sci. 51,
101320 (2021).

[48] C. Y. Cardall and A. Mezzacappa, Conservative formula-
tions of general relativistic kinetic theory, Phys. Rev. D 68,
023006 (2003).

[49] A. Kurkela, U. A. Wiedemann, and B. Wu, Opacity
dependence of elliptic flow in kinetic theory, Eur. Phys.
J. C 79, 759 (2019).

[50] I. P. Mysovskikh, Cubature formulae that are exact for
trigonometric polynomials, Dokl. Akad. Nauk SSSR 296,
023006 (2003); Sov. Math. Dokl. 36, 229 (1988).

[51] C.-W. Shu and S. Osher, Efficient implementation of
essentially non-oscillatory shock-capturing schemes, J.
Comput. Phys. 77, 439 (1988).

[52] S. Gottlieb and C.-W. Shu, Total variation diminishing
Runge-Kutta schemes, Math. Comput. 67, 73 (1998).

[53] S. A. E. G. Falle and S. S. Komissarov, An upwind numeri-
cal scheme for relativistic hydrodynamics with a general
equation of state, Mon. Not. R. Astron. Soc. 278, 586
(1996).

[54] T. P. Downes, P. Duffy, and S. S. Komissarov, Relativistic
blast waves and synchrotron emission, Mon. Not. R. Astron.
Soc. 332, 144 (2002).

[55] S. Busuioc and V. E. Ambrus, Lattice Boltzmann models
based on the vielbein formalism for the simulation of
flows in curvilinear geometries, Phys. Rev. E 99, 033304
(2019).

[56] G. S. Jiang and C. W. Shu, Efficient implementation of
weighted ENO schemes, J. Comput. Phys. 126, 202 (1996).

[57] L. Rezzolla and O. Zanotti, Relativistic Hydrodynamics
(Oxford University Press, Oxford, United Kingdom,
2013).

VICTOR E. AMBRUŞ et al. PHYS. REV. D 104, 094022 (2021)

094022-20

https://doi.org/10.1103/PhysRevC.98.024912
https://doi.org/10.1103/PhysRevC.87.051901
https://doi.org/10.1103/PhysRevC.87.051901
https://doi.org/10.1103/PhysRevD.68.036004
https://doi.org/10.1103/PhysRevD.68.036004
https://doi.org/10.1103/PhysRevC.88.024903
https://doi.org/10.1063/1.5090061
https://doi.org/10.1063/1.5090061
https://doi.org/10.1103/PhysRevC.88.021903
https://doi.org/10.1103/PhysRevC.83.034907
https://doi.org/10.1103/PhysRevC.83.034907
https://doi.org/10.1016/j.nuclphysa.2010.08.011
https://doi.org/10.1103/PhysRevD.94.125003
https://doi.org/10.1103/PhysRevD.102.056003
https://doi.org/10.1103/PhysRevD.102.056003
https://arXiv.org/abs/2106.10508
https://doi.org/10.1103/PhysRevLett.106.042301
https://doi.org/10.1103/PhysRevLett.114.112301
https://doi.org/10.1103/PhysRevD.85.114047
https://doi.org/10.1103/PhysRevD.91.039902
https://doi.org/10.1103/PhysRevE.86.016708
https://doi.org/10.1103/PhysRevE.86.016708
https://doi.org/10.1016/j.jocs.2021.101320
https://doi.org/10.1016/j.jocs.2021.101320
https://doi.org/10.1103/PhysRevD.68.023006
https://doi.org/10.1103/PhysRevD.68.023006
https://doi.org/10.1140/epjc/s10052-019-7262-x
https://doi.org/10.1140/epjc/s10052-019-7262-x
https://doi.org/10.1016/0021-9991(88)90177-5
https://doi.org/10.1016/0021-9991(88)90177-5
https://doi.org/10.1090/S0025-5718-98-00913-2
https://doi.org/10.1093/mnras/278.2.586
https://doi.org/10.1093/mnras/278.2.586
https://doi.org/10.1046/j.1365-8711.2002.05282.x
https://doi.org/10.1046/j.1365-8711.2002.05282.x
https://doi.org/10.1103/PhysRevE.99.033304
https://doi.org/10.1103/PhysRevE.99.033304
https://doi.org/10.1006/jcph.1996.0130

