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We evaluate all two-point correlation functions of the Curci-Ferrari (CF) model in four dimensions and
in the presence of mass-degenerate fundamental quark flavors, as a natural extension of an earlier
investigation in the quenched approximation. In principle, the proper account of chiral symmetry breaking
(χSB) and the corresponding dynamical generation of a quark-mass function within the CF model requires
one to go beyond perturbation theory [M. Peláez, U. Reinosa, J. Serreau, M. Tissier, and N. Wschebor,
Phys. Rev. D 103, 094035 (2021)]. However, it is interesting to assess whether a perturbative description
applies to correlation functions that are not directly sensitive to χSB, such as the gluon, ghost and quark
dressing functions. We compare our two-loop results for these form factors to QCD lattice data in the two-
flavor case for two different values of the pion mass, one that is relatively far from the chiral limit, and one
that is closer to the physical value. Our results confirm that the QCD gluon and ghost dressing functions are
well described by a perturbative approach within the CF model, as already observed at one-loop order
[M. Peláez, M. Tissier, and N. Wschebor, Phys. Rev. D 90, 065031 (2014)]. Our new main result is that the
quark dressing function is also well captured by the perturbative approach, but only starting at two-loop
order, as also anticipated [M. Peláez, M. Tissier, and N. Wschebor, Phys. Rev. D 90, 065031 (2014)]. The
quark-mass function predicted by the CF model at two-loop order is in good agreement with the data if the
quarks are not too light but it shows some clear tension with respect to the two-loop CF dressing functions
in the close to physical case, as expected. Interestingly, however, we find that there is much less tension
between the nonperturbative quark-mass function, as it can be obtained from lattice simulations or from
M. Peláez, U. Reinosa, J. Serreau, M. Tissier, and N. Wschebor, Phys. Rev. D 103, 094035 (2021), and the
two-loop CF dressing functions, which confirms the perturbative nature of the latter.
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I. INTRODUCTION

The success of the Standard Model of particle physics in
describing three out of the four fundamental interactions is
not in any doubt. Nonetheless, while the properties of the
electroweak sector are very well understood over a large
range of energies, that part describing the strong sector is not.
At high energy, the quarks and gluons, the fundamental
fields of the SUð3Þ gauge theory of the strong sector known
as quantum chromodynamics (QCD), behave asymptotically
as free entities [1,2]. This is only a high energy property,

however, as in reality such quark and gluon states are never
realized in Nature as observable particles. Instead, they are
confined within nucleons and from lattice gauge studies of
their propagators, it has become clear that they do not share
the same fundamental behavior as the electrons and photons
of quantum electrodynamics. A distinctive feature is that, as
a function of the momentum p2, the propagators do not have
a simple real pole. See, for instance, [3–11].
Consequently there have been numerous theoretical

attempts to explain the behavior of the gluon propagator
analytically. The most common approaches rely on non-
perturbative methods such as the Dyson-Schwinger equa-
tions [12] or the functional renormalization group [13].
Alongside these nonperturbative studies, it has also been
advocated that valuable information could be obtained from
perturbative methods [14–16]. All these approaches center
around a common theme of there being a nonzero mass
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scale of some sort in the pure gauge sector of QCD—also
referred to in what follows as the Yang-Mills (YM)
sector—that is active primarily at low energies.
Ideally, one aims at generating this scale from first

principles, as for instance in the original work of Gribov
[17], where it arose out of endeavoring to globally fix the
Landau gauge uniquely. Amore phenomenological approach
relies on the inclusion of a nonzero gluon mass term in the
Landau gauge-fixed YM Lagrangian as a way to model the
effect of the nonperturbative gauge-fixing. This modified
Lagrangian corresponds in fact to one particular case of the
Curci-Ferrari (CF) model [18]. That approach from nearly
half a century ago fell out of favor despite leading to
renormalizable actions. Indeed, it transpired that the
Becchi-Rouet-Stora-Tyutin (BRST) charge is not nilpotent
in the presenceof the explicitmass.Consequently the standard
definition of the physical state space contained states with
negative norm [19–21]. Since then, however, lattice simu-
lations have identified positivity violations in the gluon
propagator [22,23]. This empirical observation, together with
the decoupling behavior of the gluon propagator observed for
dimensions strictly greater than two [24,25], has made of the
CFmodel one new avenue for exploring the infrared behavior
of the gluon and Faddeev-Popov ghost propagators.
In fact, over the past years, the model has been

extensively used to examine the infrared behavior of
YM correlation functions in the vacuum [14,26,27] as
well as the corresponding phase structure at nonzero
temperature [28–30], both using rather simple one-loop
calculations. One of the reasons why the model may be
regarded as a credible candidate for describing infrared
gluon dynamics is that it was argued that the mass
parameter can be interpreted as a necessary second gauge
parameter [31,32]. Its origin derives from taking into
account the presence and effect of Gribov copies; see also
[33] for more recent developments. In the ultraviolet, such a
mass is unnecessary and absent as it runs to zero consistent
with the fact that the Landau gauge is uniquely fixed in that
region. On the other hand, the success of one-loop CF
calculations rests on the fact that the pure gauge coupling of
the model remains perturbative1 in the whole energy range
and even decreases to zero at low energies, in agreement
with what is observed in lattice simulations [34,35].
While the one-loop studies of the gluon and ghost

propagators using the CF model [36,37] were very encour-
aging and gave good coverage of lattice data to all energies,
the natural question that arose concerned whether this could
be improved with the inclusion of higher loop corrections.
This question was examined at two-loop order in Ref. [38]
for the case of YM two-point correlation functions where a
much closer agreement with lattice data over all momenta

emerged. Similar observations were made in studies at
finite temperature [39,40]. While this does not imply that a
gluon mass term should be included in Landau gauge-fixed
YM theory, it did at least demonstrate that perturbative
computations could be used to quantitatively probe the
deeper infrared regions of pure YM theory that at first
might not seem possible. More recently, a similar inves-
tigation was pursued for the case of the ghost-antighost-
gluon vertex in one particular momentum configuration
[41], with the added difficulty that all relevant parameters
had been fixed in Ref. [38], thus representing a stringent
test of the method.2

Having demonstrated that a gluon mass term gives a
window into the infrared, the next natural extension of this
core idea is to include massive quarks on top of the YM
gluon mass term of the CF model and thereby endeavor to
access QCD in the infrared. This is certainly a challenge in
particular within the CF model as one needs to consider the
quark wave (or dressing) and the mass functions as extra
form factors on top of the gluon and ghost dressing
functions. Moreover, all these form factors depend a priori
on two mass scales.
More importantly, by including a quark mass one aims at

probing chiral symmetry breaking (χSB), another central
aspect of the infrared that is not fully understood. As is well
known, χSB lies out of the reach of any perturbative
approach. Thus, even though the perturbative CF model
still remains competitive for studies where the quark
masses are artificially large [43–45], it is doomed to fail
in (and close to) the chiral limit, in particular regarding the
dynamical generation of a nonzero quark-mass function.
We stress that this does not necessarily point to a

limitation of the model itself, but rather to a limitation
of the considered method. As a matter of fact, the CF model
has been investigated beyond perturbation theory using a
double expansion scheme, dubbed the rainbow-improved
(RI) expansion scheme, that exploits the perturbative nature
of the pure gauge sector of the CF model together with an
expansion in the inverse number of colors [46,47]. At
leading order, this approach essentially boils down to the
rainbow-ladder approximation (see e.g. [48,49]) with a
definite choice for the gluon propagator and the quark-
gluon vertex and a consistent inclusion of the running of the
parameters.3 It has been shown to capture χSB while

1More precisely, this is the Taylor coupling that can easily be
mapped to the coupling in the IR-safe scheme used in
Refs. [14,26], see also Ref. [15].

2We note related work [42] where propagators have been
studied with a nonzero gluon mass.

3One distinctive feature of this approach with respect to the
ever growing accurate description of QCD correlation functions
based on other nonperturbative approaches such as Dyson-
Schwinger or functional renormalization group equations (see
for instance Refs. [50–56]) is that it is based on a perturbative
expansion of the pure gauge vertices. This dictates, at each order,
the form of the gluon propagator and quark vertex to be
considered in the quark equation. In particular, at the level of
approximation considered in [46,47] they both need to be taken at
tree level.
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providing an accurate account of the quark mass function,
even close to the chiral limit.
It should not be deduced from the previous consider-

ations, however, that the perturbative CF approach is to be
completely abandoned in the case of QCD. It is true that the
quark mass function close to the chiral limit cannot be
satisfactorily reproduced within this approach because it is
directly sensitive to χSB breaking. However, many other
form factors, including the gluon, ghost and quark dressing
functions, are certainly less sensitive to these symmetry
considerations, and, therefore, potentially within the reach
of perturbative CF calculations.
With this line of thought, a one-loop investigation of the

CF model in the presence of massive quarks was carried out
in Ref. [36] where the various form factors were evaluated
using the IR-safe renormalization scheme for an arbitrary
number of colors (N), degenerate flavors (Nf) and dimen-
sions (d), and compared with lattice data for d ¼ 4, N ¼ 3,
and Nf ¼ 2, 2þ 1 or 2þ 1þ 1 flavors [57–60]. It was
shown in particular that the gluon and ghost propagators are
correctly accounted for by this perturbative approach.
Unexpectedly, however, the quark dressing function was
not properly reproduced and even featured the wrong
monotonicity as a function of the momentum. At first
sight, this seems to go against the above expectations and to
signal again a limitation of the perturbative approach within
the CF model.
However, as was pointed out in Ref. [36], there is a way

to reconcile and potentially cure these results within the
perturbative CF paradigm. The key observation is that the
one-loop correction to the quark dressing function is finite
and even vanishes identically in the limit of a massless
gluon in the Landau gauge. In effect, this means that this
leading order perturbative correction is abnormally small
and cannot be commensurate with the other form factors.
Therefore, to extract results that are meaningful at the same
level of precision as [38] for instance, a full two-loop study
is absolutely necessary. In fact, an estimate of the two-loop
corrections to this quantity indicates that they could greatly
contribute to resolve the tension with the lattice data for this
function [36]. The main goal of the present paper is to show
that this is indeed what happens and therefore that, just as
the gluon and ghost correlators, the quark wave function
admits an accurate description within the perturbative CF
paradigm, not only far from the chiral limit but also close to
the physical case.
This analysis is subtle because the quark-mass function

coincides with the running of the quark-mass parameter in
the renormalization scheme that we consider. Therefore, it
is inevitably coupled to the dressing functions. Since the
perturbative CF approach fails in reproducing the quark-
mass function close to the physical case (as we also
illustrate for completeness) and even though our first
estimation of the dressing functions will feature a two-
loop running quark mass, we will have to investigate how

the quality of these perturbative estimates is impacted by
the use, instead, of a nonperturbative running, as obtained
from lattice simulations or as dynamically generated within
the CF model in Ref. [46]. This impact will turn out to be
marginal, confirming the perturbative nature of the dressing
functions.
The paper is organized as follows. We provide the

necessary background details for the Curci-Ferrari model
in Sec. II. This includes the definition of the form factors
that are computed to two loops as well as a general review
of the finer points of the renormalization scheme that
allows us to probe the infrared. A summary of the one-loop
work of Ref. [36] is also provided together with the
definition of the infrared safe renormalization scheme to
be used throughout this work. Section III describes the
technical aspects of calculating the necessary two-loop
Feynman graphs contributing to each of the two-point
functions when there are two independent mass scales.4

A substantial part of the discussion is devoted to internal
checks in various limits that ensure the results are reliable
prior to constructing plots. The implementation of the
infrared safe renormalization scheme at two-loop order is
discussed in Sec. IV which completes the analytic aspect of
the computation. Our results are presented in Sec. V. In
particular, Sec. VA focuses on the main goal of this work,
namely the two-loop evaluation of the gluon, quark and
dressing functions and their comparison to several lattice
datasets corresponding to various pion masses. We find that
the two-loop perturbative expressions for these functions in
the CF model provide a good account of the data both far
from the chiral limit and close to the physical case.
Section V B illustrates the failure of the perturbative CF
approach with regard to the quark-mass function as one
approaches the physical case, while Sec. V C investigates
the impact of a nonperturbative running for the quark-mass
parameter on the quality of the perturbative determination
of the dressing functions. After concluding remarks in
Sec. VI there are four appendixes. The first illustrates all the
graphs we have computed while the next discusses finer
aspects of the two-loop renormalization group flow. These
ideas are illustrated in a third appendix using the simple
case of the minimal subtraction scheme which we used as
benchmark before implementing the infrared safe renorm-
alization scheme and which could also serve as a

4We stress that going to two-loop order in the present setup is
not a straightforward task. In Ref. [38] the focus was on pure YM
where there was only one mass scale. Here we will have two
distinct masses when the dynamical quarks are included. There-
fore we have to evaluate all possible two-loop massive Feynman
integrals contributing to the gluon, ghost and quark two-point
functions in the Landau gauge. Indeed aside from the one-loop
correction to the quark two-point function, it is not until two
loops that graphs with both mass scales are present in individual
diagrams. It is only at this point that we truly have a tool to fully
explore the interrelationship between the mass parameters behind
color confinement and chiral symmetry breaking.
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pedagogical introduction to two-loop running. The final
appendix gathers next-to-leading order UV and IR asymp-
totic expansions of the various anomalous dimensions used
in the present work.

II. THE CURCI-FERRARI MODEL

We turn to more specific aspects of our study and discuss
the necessary background to the Curci-Ferrari model. In
Ref. [18] themodelwas considered for an arbitrary covariant
gauge parameter which featured a mass for the Faddeev-
Popov ghosts as well as one for the gluons. However, as the
former depends linearly on the gauge parameter, the ghost
mass vanishes in the Landau gauge limit on which we focus
in this work. This is not unconnected with the massless
longitudinal mode of the gluon.

A. Generalities

In the Landau gauge limit, the Euclidean CF Lagrangian
density in the presence of Nf mass-degenerate quark
flavors (in the fundamental representation of the color
group) reads

L ¼ 1

4
Fa
μνFa

μν þ iha∂μAa
μ þ ∂μc̄aðDμcÞa

þ 1

2
m2ðAa

μÞ2 þ
XNf

i¼1

ψ̄ ið=DþMÞψ i; ð1Þ

where Fa
μν ≡ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν is the field-

strength tensor, ha a Nakanashi-Lautrup field, ðca; c̄aÞ a
pair of ghost and antighost fields, and ðψ i; ψ̄ iÞ a pair of
quark and antiquark fields for each flavor i. The covariant
derivatives in the adjoint (ϕ) and fundamental (ψ) repre-
sentations read respectively

ðDμϕÞa ≡ ∂μϕ
a þ gfabcAb

μϕ
c; ð2Þ

Dμψ ≡ ∂μψ − igAa
μtaψ ; ð3Þ

with fabc the structure constants of the SUðNÞ gauge group
and ta the generators of the corresponding Lie algebra,
normalized such that trðtatbÞ ¼ δab=2. The parameters g,m
andM denote respectively the bare coupling constant, bare
gluon mass and bare quark mass.
In what follows, we choose a Euclidean convention for

the Dirac matrices, such that fγμ; γνg ¼ 2δμν1, with 1 the
identity matrix in spinor space. The Feynman slash notation
=D≡ γμDμ is defined in terms of those Euclidean matrices.
The formulas to be derived below are valid for an arbitrary
number of colors and an arbitrary number of degenerate
quark flavors (in the Landau gauge), but we shall restrict
the comparison to the lattice data to the case of three colors
and two degenerate flavors.

The model is regularized by working in d ¼ 4 − 2ϵ
dimensions. This allows us to take full advantage of the
symmetries of the model, in particular the BRST symmetry
mentioned above. These symmetries, together with the
fact that the tree-level gluon propagator is transverse and
decreases with two powers of the momentum, ensure the
renormalizability of the model. Renormalization proceeds
along the usual lines. One first rescales the bare fields and
bare parameters in terms of their renormalized counterparts.
Denoting the bare quantities that appear in the action (1)
with a subscript B, this step reads as

Aaμ
B ¼

ffiffiffiffiffiffi
ZA

p
Aaμ; caB ¼

ffiffiffiffiffi
Zc

p
ca; c̄aB ¼

ffiffiffiffiffi
Zc

p
c̄a;

ψB ¼ ffiffiffiffiffiffi
Zψ

p
ψ ; ψ̄B ¼ ffiffiffiffiffiffi

Zψ

p
ψ̄ ; ð4Þ

and

gB ¼ Zgg; m2
B ¼ Zm2m2; MB ¼ ZMM: ð5Þ

Then, the divergences present in the n-point functions are
absorbed into the various renormalization factors ZX with
X ∈ fA; c; c̄;ψ ; ψ̄ ; g; m2;Mg and the finite parts of these
factors are fixed via a choice of renormalization scheme. In
this work, we consider the infrared-safe renormalization
scheme whose definition in terms of renormalization con-
ditions is reviewed below together with its main properties.
Let us recall here that, in dimensional regularization, the

bare coupling acquires the mass dimension ϵ, which is
usually convenient to make explicit by introducing a scale.
In this article, we denote this scale as Λ in such a way that
the bare and renormalized couplings in (5) are rescaled as
gB → ΛϵgB and g → Λϵg respectively. The reason for this
unusual choice is that this scale has a priori nothing to do
with the renormalization scale μ that is introduced via the
renormalization conditions. The scale Λ is in fact a scale
associated with the regularization procedure, and, as such,
the renormalized quantities do not depend on its choice in
the continuum limit (corresponding to ϵ → 0) while they
depend in general on the renormalization scale μ. We shall
illustrate this below when evaluating the anomalous
dimensions and the beta functions in the IR-safe scheme.
We will also see that, in intermediate computational steps,
that is prior to taking the continuum limit, it is convenient to
keep the two scales Λ and μ independent of each other.5

5Of course, it is also possible to make the standard choice
Λ ¼ μ. This hides, however, some of the simplifying features,
while obscuring the true source of μ dependence of the renor-
malized quantities. A well-known scheme where this happens is
the minimal subtraction scheme: in this case, there are no
renormalization conditions that introduce a μ dependence and
the only source of μ dependence seems to originate from the
regulating scale Λ which is taken equal to μ in this scheme. We
shall revisit the minimal subtraction scheme in Appendix C, show
how the paradox is solved and how this peculiar scheme fits the
general picture.
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B. Two-point functions

Our focus in this article is on the two-point functions of
the model. These are obtained by inverting the second field
derivative of the effective action Γ½A; ih; c; c̄;ψ ; ψ̄ �. In the
ghost sector, this second derivative will be written as

Γð2Þ
cac̄b

ðkÞ≡ δabΓðkÞ: ð6Þ

Similarly, in the gluon and quark sectors, we shall use the
notation

Γð2Þ
Aa
μAb

ν
ðkÞ≡ δabðP⊥

μνðkÞΓ⊥ðkÞ þ Pk
μνðkÞΓkðkÞÞ ð7Þ

and

Γð2Þ
ψψ̄ ðkÞ≡ −i=kΓγðkÞ þ 1Γ1ðkÞ; ð8Þ

where

P⊥
μνðkÞ≡ δμν −

kμkν
k2

and Pk
μνðkÞ≡ kμkν

k2
ð9Þ

are the transverse and longitudinal projectors.
The ghost propagator is obtained as GghðkÞ≡ 1=ΓðkÞ.

From the derivative nature of the ghost-antighost-gluon
tree-level vertex and the transverse nature of the tree-level
gluon propagator, it is easily argued that ΓðkÞ vanishes at
least as k2 in the limit k → 0.6 It is then convenient to define
the ghost dressing function

FðkÞ≡ k2GghðkÞ ¼ k2=ΓðkÞ: ð10Þ

As for the gluon propagator, it is obtained by first
inverting the second derivative of the effective action in
the A=ih sector and then restricting the so-obtained inverse
to the A sector. The ih sector cannot be disregarded because
it couples to the A sector. However, since the ih-dependent
part of the action is not renormalized [26], one is led to the
inversion of the following matrix:

�
P⊥
μνðkÞΓ⊥ðkÞ þ Pk

μνðkÞΓkðkÞ ikμ
−ikν 0

�
: ð11Þ

The inverse is easily found to be

�
P⊥
μνðkÞ=Γ⊥ðkÞ −ikμ=k2

ikν=k2 ΓkðkÞ=k2
�
; ð12Þ

from which it follows that the gluon propagator is trans-
verse, P⊥

μνðkÞGðkÞ, withGðkÞ ¼ 1=Γ⊥ðkÞ. By analogy with
the ghost sector, and despite the fact that Γ⊥ðkÞ does not
vanish as k → 0, it is customary to introduce a gluon
dressing function

DðkÞ≡ k2GðkÞ ¼ k2=Γ⊥ðkÞ: ð13Þ

Finally, the quark propagator is obtained by inverting

Γð2Þ
ψψ̄ ðkÞ. Multiplying Eq. (8) by i=kΓγðkÞ þ 1Γ1ðkÞ and

owing to the property =k2 ¼ k2, one finds the propagator

SðkÞ ¼ i=kΓγðkÞ þ 1Γ1ðkÞ
k2ðΓγðkÞÞ2 þ ðΓ1ðkÞÞ2 : ð14Þ

It is customary to rewrite this as

SðkÞ ¼ ZðkÞ i=kþ 1MðkÞ
k2 þM2ðkÞ ; ð15Þ

with

ZðkÞ≡ 1=ΓγðkÞ and MðkÞ≡ Γ1ðkÞ=ΓγðkÞ: ð16Þ

The benefit of this rewriting is that MðkÞ appears as the
ratio of two tensor components of the same two-point
function and, as such, is a finite, renormalization group
invariant quantity, known as the quark-mass function. As
for the function ZðkÞ, we shall refer to it as the quark
dressing function.
Although we shall not be dealing directly with three-

point vertices in this work, let us mention here that a similar
argument to the one used for the ghost propagator leads to
the conclusion that loop corrections to the ghost-antighost-
gluon vertex vanish in the limit of vanishing ghost
momentum k → 0:

Γð3Þ
caAb

μ c̄c
ð0; l; hÞ ¼ −ifabcgBΛϵhμ: ð17Þ

This is Taylor’s nonrenormalization theorem in the CF
model [26,61–65]. Another such theorem holds for the
combination ΓkðkÞF−1ðkÞwhich is related to the bare gluon
mass via the Slavnov-Taylor identity [26]:

ΓkðkÞF−1ðkÞ ¼ m2
B: ð18Þ

Upon renormalization, the two identities (17) and (18)
constrain the combinations Zg

ffiffiffiffiffiffi
ZA

p
Zc and Zm2ZAZc of

renormalization factors to remain finite. These constraints
are fully exploited within the infrared-safe renormalization
scheme which we now review.

6This is because each loop contribution to ΓðkÞ involves a
factor k from the vertex attached to the external antighost leg, and
another factor ðkþ qÞμP⊥

μνðqÞ ¼ kμP⊥
μνðqÞ from the vertex at-

tached to the external ghost leg, with q the momentum associated
with the internal gluon propagator attached to this vertex.
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C. Infrared-safe renormalization scheme

The infrared-safe (or IR-safe in short) renormalization
scheme is defined by extending the relations between the
divergent parts of the renormalization factors Zg, Zm2 , ZA
and Zc discussed in the previous section so as to include
their finite parts. One then requires that

Zg

ffiffiffiffiffiffi
ZA

p
Zc ¼ 1; Zm2ZAZc ¼ 1: ð19Þ

The benefit of these conditions is that they give access
to Zg and Zm2 solely in terms of ZA and Zc. The latter are
fixed by requiring that the renormalized ghost and gluon
two-point functions (which depend both on the external
momentum k and on the renormalization scale μ) satisfy the
conditions

Γðk ¼ μ; μÞ ¼ 1; Γ⊥ðk ¼ μ; μÞ ¼ μ2 þm2ðμÞ: ð20Þ

As for the quark renormalization factors Zψ and ZM they
are fixed by imposing the conditions

Γγðk ¼ μ; μÞ ¼ 1; Γ1ðk ¼ μ; μÞ ¼ MðμÞ: ð21Þ

Here, we are deliberately using the same notation for the
renormalized mass and for the quark-mass function defined
in the previous section. In a generic renormalization
scheme, these two functions do not need to coincide. In
the present scheme however, they do coincide because the
bare components ΓγðkÞ and Γ1ðkÞ renormalize identically,
so that one has

Γ1ðkÞ
ΓγðkÞ ¼

Γ1ðk; μÞ
Γγðk; μÞ ¼

Γ1ðk; kÞ
Γγðk; kÞ ; ð22Þ

with the left-hand side corresponding to the quark-mass
function and the right-hand side corresponding to the
renormalized mass in the present scheme and at scale
μ ¼ k.
Once all the renormalization factors are known from

(19)–(21), one can determine the various anomalous
dimensions and beta functions. These are necessary in
order to obtain a controlled perturbative description of the
various propagators, in those cases where large logarithms
(associated with large separations of scales) would invali-
date the use of a naïve perturbative expansion. For the
moment we skip all details concerning the practical
implementation of the renormalization group (RG) as they
will be recalled in full detail when considering the RG flow
at two-loop order in Sec. IV.
One of the main benefits of the IR-safe renormalization

scheme is that it features renormalization group trajectories
that are free of any Landau singularity and along which the
running coupling remains relatively small, allowing for a

perturbative investigation of the CF model over all scales.7

As already stated in the introduction, in the case of QCD,
such a perturbative investigation makes sense a priori for
those correlation functions that are not directly sensitive to
χSB. In what follows, we shall thus concentrate primarily
on the gluon, ghost and quark dressing functions. We shall
also evaluate the quark-mass function to two-loop order.
This will allow us to both illustrate the limitations of the
perturbative CF approach and to estimate the impact on the
perturbative dressing functions of the use of either a two-
loop or a nonperturbative running quark mass.
In the next section, we provide details on the evaluation

of the two-loop corrections to all the two-point functions of
the CF model. The implementation of the renormalization
group at two-loop order in the IR-safe scheme will be dealt
with in Sec. IV. Our results are finally discussed in Sec. V.

III. UNQUENCHED TWO-POINT FUNCTIONS
AT TWO-LOOP ORDER

We devote this section to the details of how the two-loop
corrections to the Landau gauge gluon, ghost and quark
two-point functions are evaluated in the presence of non-
zero gluon and quark masses. Once the two-point functions
are determined as functions of the bare parameters, we
carry out the renormalization at two-loop order. Aside from
being necessary for our ultimate goal, it provides an
intermediate check on our original setup. Additional
cross-checks will also be discussed. Some of these entail
checking that previous results, such as the case when
quarks are massless, correctly emerge in the limit M → 0
for example.

A. Notation

Since we shall often refer simultaneously to the various
two-point functions Γ, Γ⊥, Γk, Γγ , Γ1 introduced in the
previous section, it will be convenient to denote them
generically as ΓC with C ∈ f∅;⊥; k; γ; 1g and where the
empty set ∅ is used to refer to the ghost component ΓðkÞ.
Moreover, we write

ΓCðkÞ ¼ ΓC
0 ðk2; m2

B;MBÞ
þ λBΓC

1 ðk2; m2
B;MBÞ

þ λ2BΓC
2 ðk2; m2

B;MBÞ; ð23Þ

where ΓC
n ðk2; m2

B;MBÞ represents the sum of n-loop
Feynman diagrams contributing to ΓCðkÞ. For convenience,
we have factored out λnB, with

λB ≡ g2BN
16π2

; ð24Þ

7Other useful features of the IR-safe renormalization scheme
will be reviewed in Sec. IV.
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in front of ΓC
n ðk2; m2

B;MBÞ. In practice, this means
that, in computing Feynman diagrams contributing to
ΓC
n ðk2; m2

B;MBÞ, the d-dimensional momentum integrals
are replaced by

Z
ddp
ð2πÞd →

Z
p
≡16π2Λ2ϵ

Z
ddp
ð2πÞd ; ð25Þ

and the color factors are all systematically divided by Nn.
The tree-level contributions ΓC

0 ðk2; m2
B;MBÞ are linear in

any of their arguments. More precisely, we have

Γ0¼k2; Γ⊥
0 ¼k2þm2

B; Γk
0¼m2

B; Γγ
0¼1; Γ1

0¼MB:

The one-loop contributions ΓC
1 ðk2; m2

B;MBÞ have been
systematically evaluated in Ref. [36] and expressed in
terms of the two one-loop master integrals

Ama
≡

Z
p
Gma

ðpÞ; ð26Þ

Bmamb
ðk2Þ≡

Z
p
Gma

ðpÞGmb
ðpþ kÞ: ð27Þ

As for the two-loop contributions ΓC
2 ðk2; m2

B;MBÞ, as we
now explain, they can be systematically reduced to the
evaluation of the two-loop master integrals

Smambmc
ðk2Þ

≡
Z
p
Gma

ðpÞBmbmc
ððpþ kÞ2Þ; ð28Þ

Umambmcmd
ðk2Þ

≡
Z
p
Gmb

ðpÞGma
ðpþ kÞBmcmd

ðp2Þ; ð29Þ

Mmambmcmdme
ðk2Þ

≡
Z
p
Gma

ðpÞGmc
ðpþ kÞ

×
Z
q
Gmb

ðqÞGmd
ðqþ kÞGme

ðq − pÞ; ð30Þ

which can then be evaluated numerically using the TSIL

package [66].

B. Reduction to master integrals

One starts with the generation of the two-loop Feynman
graphs contributing to each of the two-point functions. This
is achieved using the FORTRAN based QGRAF package [67].
There are 23, 7 and 7 graphs at two loops for the gluon,
ghost and quark two-point functions respectively compared
with 4, 1 and 1 graphs respectively at one loop. These are

illustrated in Appendix A. In generating the graphs we have
included snail topologies. Ordinarily, such graphs are
excluded when there is no gluon mass since they would
vanish in dimensional regularization in this particular case.
Once the graphs have been generated for each two-point

function, the next stage, after appending color and Lorentz
indices, is to write each Green’s function in terms of scalar
integrals. The reason for this resides in the techniques we use
to evaluate the large set of integrals. The path to the scalar
integrals proceeds in several steps. First, for the gluon and
quark two-point functions we have to project out the trans-
verse and longitudinal components in the former case, and in
the latter case we have to isolate the contributions propor-
tional to=k and1, seeEqs. (7) and (8).Of course, noprojection
is necessary for the ghost two-point function.
While this converts tensor Feynman integrals with no

free Lorentz or spinor indices into scalar ones, the resultant
integrals still contain scalar products of loop and external
momenta. To two-loop order, all such scalar products can
be rewritten in terms of the squared length of the propagator
momenta, using for instance

k · p ¼ 1

2
½k2 þ p2 − ðk − pÞ2� ð31Þ

for the massless case, where p is a loop momentum. When
a nonzero mass m is present one merely makes the extra
replacement

ðk − pÞ2 ¼ ½ðk − pÞ2 þm2� −m2 ð32Þ

for the appropriate propagator. This produces integrals with
no scalar products but rational polynomials of the propa-
gators. It is in this representation that each Feynman
integral of the large set of integrals appearing in the
two-point functions has to be written in order to implement
the standard integration technique now widely used in
multiloop computations. This is the Laporta algorithm [68],
which is based on a systematic use of integration by parts.
In particular, we used the REDUZE implementation [69,70],
written in Cþþ with GINAC [71], as the core algebra
foundation component. To organize the tedious algebra
associated with writing the integrals contributing to a
Green’s function, we have employed the symbolic manipu-
lation language FORM [72,73].
The consequence is that the two-loop integrals can all be

written in terms of two basic integrals which are a one-loop
one and a two-loop one. The one-loop one is

I1abðn1; n2Þ ¼
Z
p

1

½p2 þm2
a�n1 ½ðp − kÞ2 þm2

b�n2
; ð33Þ

where ni are integers both positive and negative. We usema
and mb as generic masses which can both take values from
the set f0; m;Mg of the three possible masses that will
concern us here. The two-loop core integral is
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Iabcdeðn1; n2; n3; n4; n5Þ ¼
Z
pq

1

½p2 þm2
a�n1 ½q2 þm2

b�n2 ½ðp − kÞ2 þm2
c�n3 ½ðq − kÞ2 þm2

d�n4 ½ðp − qÞ2 þm2
e�n5

ð34Þ

in the same notation as (33) which extends that used in
Ref. [38]. Moreover this syntax is the one we used for
defining the integral families of the Laporta algorithm. The
two integrals have the graphical representations given in
Fig. 1. While (34) is the most general massive two-loop
self-energy structure, we will only be concerned with two
nonzero masses. To understand the types of integrals that
can actually appear in the evaluation of the two-point
functions, we provide two examples for each of the gluon
and quark two-point functions in Fig. 2. The respective
labels shown underneath each graph indicate one of the set
of integrals of (34) that can arise. However for lines
involving gluons some of the propagators that emerge will
be massless. So in addition to Iababb the structures I0babb,
Iab0bb and I0b0bb will be present. When 0 appears in the
label it indicates a massless propagator with the convention
thatm0 ≡ 0. So for the other graphs Ibbbb0 will be present in
the other gluon self-energy diagram. For the two-quark
self-energy graphs I0bbab, Iabb0b and I0bb0b will also occur
in addition to Iabbab. For that labeled Iaabba there are seven
other contributions which are Iaabb0, Ia0bba, I0abba, I00bba,
I0abb0, Ia0bb0 and I00bb0.

While the actual nonzero masses in our computations are
m and M we use ma and mb for the integral definitions
since in the process to write each Green’s function in terms
of scalar integrals, other topologies are present at two loops
which are illustrated in Fig. 3. For example, each graph is
contained in Iabcde through Iabcdeð0; n2; 0; n4; n5Þ for
the sunset diagram and Iabcdeðn1; n2; 0; n4; n5Þ for the
graph with four propagators. The sunset integral
Iaaaabð0; n2; 0; n4; n5Þ that arises in the graph labeled
Iabbab in Fig. 2 is equivalent to Iababað0; n2; 0; n4; n5Þ
which occurs in that labeled by Iababb of the same figure.
One can see this by noting that if the propagator is absent
then the argument of the function corresponding to it is
zero. So the respective mass label can be anything or 0, a or
b in this case. In addition, the sunset topology has a sixfold
permutation symmetry that ensures the equality. The out-
come is that the labels a and b on the general two-loop
integral in the two-mass case could correspond to either
quark or gluon mass or vice versa depending on the Green’s
function and ultimate topology. Therefore in applying the
Laporta algorithm we have built the system of integration
by parts equations for a generic set of mass configurations
based on arbitrary massesma and mb. Therefore in (34) the
elements of the two-loop integral family is given by
allowing each of the labels in the integral to be one of
the set f0; ma;mbg. While this would produce 35 core
integrals the actual number is fewer due to using rotational
symmetry such as

I0aabaðn1; n2; n3; n4; n5Þ ¼ Ia0baaðn2; n1; n4; n3; n5Þ
¼ Ibaa0aðn4; n3; n2; n1; n5Þ ð35Þ

and similar relations for others with related label
patterns. Equally if the exponent of a massive propagator
is zero then we relabel the corresponding index on
Iabcdeðn1; n2; n3; n4; n5Þ as 0 by default.
Dwelling on this notational aspect of the calculation is

important since it is in a language that can be coded for the
REDUZE version of the Laporta algorithm. For instance, we
have used the labels in (33) and (34) to define the integral
families for the application of the REDUZE package. There
are not 35 cases in total since we reduce the number by

FIG. 2. Graphs in gluon and quark two-point functions
containing the labeled integrals as examples. Gluon propagators
are represented by curly lines while quarks are denoted by
straight ones.

FIG. 1. Graphical representations of I1abðn1; n2Þ and
Iabcdeðn1; n2; n3; n4; n5Þ defined in (33) and (34).

FIG. 3. Additional two-loop topologies that arise in each two-
point function.
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using the separate left-right and up-down symmetries of
the two-loop graph of Fig. 1. This substantially lowers the
number of cases. An example of this was given in (35). The
result of applying the Laporta algorithm [68] is to reduce
the evaluation of all the graphs and integrals in the two-
point functions to a set of master integrals which is
significantly smaller than the original input set. However
the coefficients of each master are functions of the two
masses, the external momentum and the spacetime dimen-
sion d. The presence of two nonzero masses means the set
of master integrals is larger than that for the single scale
problem of Ref. [38]. Given this, we follow the same
approach in the sense we choose a basis for the masters that
tallies with the integrals of the TSIL package [66] which we
use extensively. It evaluates two-loop self-energy integrals
with nonzero masses numerically and allows us to deter-
mine the behavior of the Green’s function over all
momenta. More specifically the mapping to the master
integrals given above (which are the ones defined in the
TSIL package) is

I1a0ð1; 0Þ ¼ Ama
; I1abð1; 1Þ ¼ Bmamb

ð36Þ

at one loop. At two loops we have

Iab00cð1; 1; 0; 0; 1Þ ¼ Imambmc
;

I0ab0cð0; 1; 1; 0; 1Þ ¼ Smambmc
;

Iabc0dð1; 1; 1; 0; 1Þ ¼ Umcmambmd
;

Iabcdeð1; 1; 1; 1; 1Þ ¼ Mmambmcmdme
; ð37Þ

where the first mapping corresponds to the two-loop
vacuum bubble Imambmc

¼ Smambmc
ðk2 ¼ 0Þ. We also

encounter

I0ab0cð0; 2; 1; 0; 1Þ ¼ Tmambmc
;

Iabc0dð2; 1; 1; 0; 1Þ ¼ Vmcmambmd
; ð38Þ

with Tmambmc
¼ −∂Smambmc

=∂m2
a and Vmcmambmd

¼
−∂Umcmambmd

=∂m2
a but we note that these mass derivatives

can be expressed in terms of the other master integrals. The
remaining masters are the product of one-loop masters
since

Iab000ð1; 1; 0; 0; 0Þ ¼ I1a0ð1; 0ÞI1b0ð1; 0Þ;
Iab000ð1; 1; 1; 0; 0Þ ¼ I1a0ð1; 1ÞI1b0ð1; 0Þ;
Iab0c0ð1; 1; 0; 1; 0Þ ¼ I1a0ð1; 0ÞI1bcð1; 1Þ;
Iabcd0ð1; 1; 1; 1; 0Þ ¼ I1acð1; 1ÞI1bdð1; 1Þ: ð39Þ

We note that the electronic version of each of our two-point
functions can be found in Ref. [74].

C. Renormalization

Once written in terms of the master integrals, it is fairly
easy to isolate the UV divergences in each two-point
function (23), the renormalization of which proceeds along
the usual lines. First, one rescales the corresponding
function by the appropriate factor, ΓC → ZCΓC, with

Z∅ ¼ Zc; Z⊥ ¼ Zk ¼ ZA; Zγ ¼ Z1 ¼ Zψ : ð40Þ

Next, one expresses the bare parameters in terms of
renormalized ones, m2

B ¼ Zm2m2 and λB ¼ Zλλ. Finally,
one writes each renormalization factor Z as Z ¼ 1þ δZ
with δZ a formal series in powers of the renormalized
coupling λ, which one expands to the relevant order. At
one-loop order for instance, the renormalized two-point
functions read

ΓCðkÞ ¼ ΓC
0 ðk2; m2;MÞ þ λΓC

1 ðk2; m2;MÞ
þR1lΓC

0 ðk2; m2;MÞ; ð41Þ

where R is the operator

R≡ δZC þ δZm2m2
∂

∂m2
þ δZMM

∂
∂M ; ð42Þ

and Rnl refers to its n-loop truncation, obtained by
truncating the counterterms accordingly. It should be
mentioned that, because the tree-level contribution
ΓC
0 ðk2; m2;MÞ ¼ uCk2 þ vCm2 þ wCM is linear with

respect to any of its arguments (with uC, vC, wC equal
to 0 or 1), the action of the operator R on ΓC

0 ðk2; m2;MÞ
reads, at any order,

uCδZCk2þvCðδZCþδZm2Þm2þwCðδZCþδZMÞM: ð43Þ

This applies in particular to the term in the second line of
Eq. (41). Therefore, each counterterm appearing in this
term allows one to absorb the one-loop divergences that are
present in the first line of (41) and that are proportional to
k2, m2 and M. More precisely, writing the one-loop
counterterms δZ1l

X with X ∈ fC;m2;Mg as

δZ1l
X ¼ λ

zX;1
ϵ

; ð44Þ

with zX;1 ¼ zX;11 þ ϵzX;10, the elimination of divergences
amounts to the proper adjustment of the factors zX;11. We
mention that these factors are universal numbers that do not
depend on the considered renormalization scheme. We
checked that the values we obtained agree with the well-
known results, see for instance [75,76]. In particular, we
find that zψ ;11 ¼ 0, in line with the fact that the one-loop
corrections to ZðkÞ vanish in the limit of a massless gluon,
and, therefore, that they are UV finite for a nonzero m. On
the other hand, the factors zX;10 (which produce finite
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contributions to the one-loop counterterms) have to do with
the scheme specification. They can depend on the scales Λ
and μ as well as on the various masses present in the
problem and will enter directly the anomalous dimensions
and beta functions which we discuss in Sec. IV.
Similarly, at two-loop order, one finds

ΓCðkÞ ¼ ΓC
0 ðk2;m2;MÞ þ λΓC

1 ðk2;m2;MÞ
þ λ2ΓC

2 ðk2;m2;MÞ þ λðδZ1l
λ þR1lÞΓC

1 ðk2;m2;MÞ
þR2lΓC

0 ðk2;m2;MÞ: ð45Þ

The role of the second term in the second line of (45) is to
absorb the subdivergences hidden in the first term of the
same line. We mention that all the divergent parts of the
counterterms appearing in this term have been determined
in the previous step, with the exception of the one in δZ1l

λ .
However, the latter can be easily determined from the fact
that, after this divergent part is fixed, there should only
remain divergences that are proportional to k2, m2 and M,
so that they can be absorbed in the last term of (45) which
has again the form (43). The two-loop counterterms in this
term can be written as

δZ2l
X ¼ λ

zX;1
ϵ

þ λ2
zX;2
ϵ2

; ð46Þ

where zX;1 has already been determined at one-loop order
and zX;2 ¼ zX;22 þ ϵzX;21 þ ϵ2zX;20. Again, the factors zX;22
are pure constants that do not depend on the renormaliza-
tion scheme, and we have checked that the values we
obtained match known results [75,76]. The factors zX;21,
even though they have also to do with divergences, are not
universal and are impacted by the choice of scheme at one-
loop order. Obviously, the factor zX;20 is also impacted by
the choice of scheme. It will enter the anomalous dimen-
sions and beta functions at two-loop order, as we show
in Sec. IV.
Before closing this section, let us make an important

remark. Of course, the main purpose of eliminating the
divergences is to obtain finite expressions for the two-point
functions in the continuum limit ϵ → 0. In this respect, one
should not forget certain terms that survive in this limit
from cancellations of the form ϵ × 1=ϵ. One important such
contributions arises from ϵ2 corrections to the factor zX;1 in
(46). In principle, when implementing a given renormal-
ization scheme at one-loop order, the factor zX;1 receives
such a contribution and in fact any power of ϵ. Of course,
when it comes to evaluating the one-loop order two-point
functions in the continuum limit, these higher powers of ϵ
are irrelevant. However, the ϵ2 contribution to zX;1 is
not irrelevant in the first term of the second line of (45)
because it produces a term of order ϵ0 that persists in
the continuum limit. In this term, one should take
instead zX;1 ¼ zX;11 þ ϵzX;10 þ ϵ2zX;1ð−1Þ where zX;1ð−1Þ is

determined by implementing the renormalization scheme at
one-loop order and for a finite value of ϵ. For similar
reasons, the factors zX;1ð−1Þ also enter the anomalous
dimension and beta functions at two-loop order, as we
show in Sec. IV.

D. Cross-checks

As a result of the reduction of the two-loop two-point
functions, one obtains expressions in terms of master
integrals multiplied by rational functions of k2, m2 and
M2. Since these expressions are rather lengthy, it is pref-
erable to test them as much as possible before any serious
practical application. In this section, we review the various
tests that we used in order to cross-check our expressions.
We mention that all these tests can be performed prior to

renormalization. On the other hand, the renormalization of
the two-loop expressions represents a test in itself since the
cancellation of subdivergences by the counterterms deter-
mined at one-loop occurs only if the diagrams are com-
puted and combined correctly in order to generate the
correct subdivergences, as we described in the previous
section. Another test related to renormalization that we
considered was to retrieve the correct renormalization
factors in the minimal subtraction scheme. Although this
is not the scheme we use eventually for our comparison to
lattice data, it is useful in order to understand certain
features in a simpler setting and we provide a self-contained
discussion in Appendix C. Let us just mention here that,
in this scheme, one has zX;10 ¼ zX;1ð−1Þ ¼ zX;20 ¼ 0 by
definition. We checked that the values obtained for zX;11,
zX;22 and zX;21 correspond to the well-known results of
Refs. [75,76].
We now describe our other tests in detail.

1. Quenched limit

In Ref. [38], the ghost and gluon two-point functions
were studied in the quenched limit. We have checked that
our unquenched expressions for these functions lead to the
expressions of that reference in the limit Nf → 0.

2. Ultraviolet behavior

Based on the superficial degree of divergence of the
diagrams contributing to each of the two-point functions,
we expect the following large momentum behavior to hold
true from Weinberg’s theorem [77]:

lim
k→∞

ΓðkÞ
jkj3 ¼ 0; lim

k→∞

Γ⊥ðkÞ
jkj3 ¼ 0; ð47Þ

lim
k→∞

ΓγðkÞ
jkj ¼ 0; and lim

k→∞

Γ1ðkÞ
jkj ¼ 0: ð48Þ

One difficulty in checking these behaviors is that they are
not obeyed by all the terms that make the reduced
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expression of each two-point function. Rather, they emerge
after certain cancellations occur between these terms. Since
it is in general difficult to check these cancellations
numerically, we resorted to an analytical check using
UV asymptotic expansions of the various master integrals,
which were derived through our own implementation of the
algorithm described in Ref. [78]. An earlier version of this
algorithm was already used in Ref. [38]. For the present
investigation, we had to extend it to the case where two
mass scales are present in the master integrals. At leading
order, we obtain the expressions:

ΓðkÞ
k2

¼ 1 − λ

�
1þ 3

4
ln

�
μ2

k2

��

− λ2
�
1751

192
−
15

16
ζð3Þ − 95

48

Nf

N

þ
�
235

48
−
13

12

Nf

N

�
ln

�
μ2

k2

�

þ
�
35

32
−
1

4

Nf

N

�
ln

�
μ2

k2

�
2
�

þO
�
m2

k2
;
M2

k2

�
; ð49Þ

Γ⊥ðkÞ
k2

¼ 1−λ

�
97

36
−
10

9

Nf

N
þ
�
13

6
−
2

3

Nf

N

�
ln

�
μ2

k2

��

−λ2
�
2381

96
−
59

8

Nf

N
−
55

6

CF

N

Nf

N

−ζð3Þ
�
3þ4

Nf

N
−8

CF

N

Nf

N

�

þ
�
137

12
−
25

6

Nf

N
−2

CF

N

Nf

N

�
ln

�
μ2

k2

�

þ
�
13

8
−
1

2

Nf

N

�
ln

�
μ2

k2

�
2
�
þO

�
m2

k2
;
M2

k2

�
; ð50Þ

ΓγðkÞ ¼ 1þ λ2
CF

N

�
41

4
− 3ζð3Þ − 5

8

CF

N
−
7

4

Nf

N

þ
�
25

4
−
3

2

CF

N
−
Nf

N

�
ln

�
μ2

k2

��

þO
�
m2

k2
;
M2

k2

�
; ð51Þ

and

Γ1ðkÞ
M

¼ 1þ λ
CF

N

�
4þ 3 ln

�
μ2

k2

��

þ λ2
CF

N

�
1531

24
þ 13

CF

N
−
26

3

Nf

N
− ζð3Þ

�
21 − 12

CF

N

�

þ
�
445

12
þ 12

CF

N
−
16

3

Nf

N

�
ln

�
μ2

k2

�
þ
�
11

2
þ 9

2

CF

N
−
Nf

N

�
ln

�
μ2

k2

�
2
�
þO

�
m2

k2
;
M2

k2

�
; ð52Þ

which indeed verify (47) and (48). In the equations above,
CF ¼ ðN2 − 1Þ=ð2NÞ denotes the fundamental SUðNÞ
Casimir. We have also used that the adjoint Casimir is
CA ¼ N. For the sake of simplicity, we provide the asymp-
totic behaviors as obtained in the minimal subtraction
scheme. We could easily derive them in a generic renorm-
alization scheme, in which case the corresponding expres-
sions depend explicitly on zX;10, zX;1ð−1Þ and zX;20. Let us also
mention that the absence of terms of order λ in the leading
order contribution of ΓγðkÞ relates again to the fact that these
terms cancel in the limit of a vanishing gluon mass.
We mention that Weinberg’s theorem [77] implies also

that limk→∞ ΓkðkÞ=jkj3 ¼ 0, but in fact, from the Slavnov-
Taylor identity (18), we have a stronger constraint, namely
limk→∞ ΓkðkÞ=jkj ¼ 0. By plugging (23) into (18) and
expanding up at the relevant order, we find

m2
BΓ1 þ k2Γk

1 ¼ 0 ð53Þ

and

m2
BΓ2 þ k2Γk

2 þ Γ1Γ
k
1 ¼ 0: ð54Þ

We have checked that these identities hold true, thus
confirming the Slavnov-Taylor identity (18) at two-loop
order and the corresponding UV suppression of ΓkðkÞ with
respect to the naïve counting.

3. Infrared behavior

In the opposite momentum range, we expect the two-
point functions ΓCðkÞ to be regular. This is because, these
functions are built out of Euclidean Feynman integrals and
there are always enough massive propagators to regularize
the k → 0 limit. As we have already discussed, in the case
of the ghost two-point function, ΓðkÞ is not only regular in
this limit, but vanishes at least as k2.
Again, these expectations might be difficult to check

numerically because they typically emerge as the result of
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cancellations between various terms in the reduced expres-
sions for ΓCðkÞ, which themselves do not behave accord-
ingly. We then resorted to an analytical check that requires
the expansion of the various master integrals in powers
of k2.
We first checked that the various master integrals that

produce thewrongly behaving terms always involve enough
massive propagators in such away that the routing of k inside
the integral can always be chosen to avoid massless
propagators. In this situation, we can employ the strategy
of Ref. [79] that leads to a regular expansion in powers of k2

with coefficients given by the momentum independent
master integrals Ama

and Imambmc
≡ Smambmc

ðk2 ¼ 0Þ and
their mass derivatives. The latter mass derivatives can
always be conveniently reexpressed in terms of Ama

and
Imambmc

using

∂
∂m2

a
Ama

¼ ðd=2 − 1ÞAma

m2
a

ð55Þ

that follows from dimensional analysis and

Δmambmc

∂
∂m2

c
Imambmc

¼ ðd − 3Þðm2
a þm2

b −m2
cÞImambmc

þ ðd − 2Þ
�
Ama

Amb
þm2

a −m2
b −m2

c

2m2
c

Ama
Amc

þm2
b −m2

a −m2
c

2m2
c

Amb
Amc

�
; ð56Þ

with

Δmambmc
¼ m4

a þm4
b þm4

c

− 2ðm2
am2

b þm2
bm

2
c þm2

cm2
aÞ; ð57Þ

that follows from integration by parts techniques [79,80]. In
this way, the coefficients of the Taylor expansion at small k
are functions of these two master integrals. Using these
expansions, we could check that the various two-point
functions behave as expected.
Let us also mention that the regularity of ΓkðkÞ in the

limit k → 0 can alternatively be seen as a consequence of
the Slavnov-Taylor identity (18) and the fact that ΓðkÞ
vanishes at least as k2, or, equivalently, the fact that ΓðkÞ
vanishes at least as k2 can be seen as a consequence of the
Slavnov-Taylor identity and the regularity of ΓkðkÞ.

4. Spurious singularities

The limit k → 0 is not the only one where individual
terms in the reduced expression for ΓCðkÞ behave in a
singular manner. In the case of the ghost and gluon two-
point functions, we find that certain terms are singular as k2

approaches 2m2 or 2M2. Of course, the two-point function
in these limits should be regular, thus providing a test for
the reduced expressions. We have checked that this is
indeed the case since the residue of 1=ðk2 − 2x2Þ with x ¼
m or x ¼ M vanishes thanks to the following identity
between master integrals (kx ≡

ffiffiffi
2

p
x):

2ðd − 3Þx2½6ðd − 4Þx4Mxxxx0ðk2xÞ − ð3d − 8ÞSxx0ðk2xÞ�
¼ ½ðd − 2ÞAx − 2ðd − 3Þx2Bxxðk2xÞ�2
− 8ðd − 3Þ2x4B2

xxðk2xÞ; ð58Þ

that one can derive using the Laporta algorithm. When
expanded in ϵ, it is easily shown that this combination is
finite and reproduces the combination of finite master
integrals in Eq. (23) of Ref. [38] that was also found to
vanish using the results in Ref. [66].
In addition, all two-point functions contain terms that are

singular as m approaches 2M. Since the Euclidean two-
point functions have no reason to be singular in this limit,
some cancellations need to occur among these terms,
providing a further check on the reduced expressions.
For instance, in the case of Γ1ðkÞ, we found a potentially
singular term atm ¼ 2M, the residue of 1=ðm − 2MÞ being
proportional to

ðd − 2Þð2AM − A2MÞBMð2MÞðkÞ
þ 4M2ðTMð2MÞð2MÞðkÞ − 2Tð2MÞð2MÞMðkÞ
− ðd − 3ÞUð2MÞMð2MÞMðkÞÞ: ð59Þ

Using the Laporta algorithm, we verified that this combi-
nation of master integrals indeed vanishes. In particular we
built a different REDUZE database to the two-mass scale one
described earlier. Instead a single mass scale database was
constructed where we set ma ¼ M and mb ¼ 2M at the
outset. These cancellations played a role in other two-point
functions. In the case of the gluon two-point function, we
needed several other vanishing combinations of master
integrals. These are

ðd − 2Þð2AM − A2MÞBMMðkÞ
− 4M2ðTMð2MÞMðkÞ − 2Tð2MÞMMðkÞ
− ðd − 3ÞUMMð2MÞMðkÞÞ; ð60Þ

ðd − 2ÞAMBð2MÞð2MÞ
þ 2M2ðTMð2MÞM þ ðd − 3ÞUð2MÞð2MÞMMÞ; ð61Þ

and finally
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ðd − 3Þ½ðd − 4Þk2x2ðk2 þ 4x2Þ2Mxxxx0 − 2ð3d − 8Þðk2 þ 4x2ÞSxx0�
¼ ½ðd − 2Þ2A2

x − 2ðd − 2Þðd − 3Þk2AxBxx − 2ðd − 3Þ2k2x2B2
xx�ðk2 þ 4x2Þ

− 4ðd − 3Þ½3p2Txx0 þ 4ðd − 3Þðk2 þ x2ÞU0ð2xÞxx − 2ðd − 2Þðk2 þ x2ÞAxBð2xÞx�ðk2 − 2x2Þ ð62Þ

that we also substantiated using the Laporta algorithm. This
later cancellation boils down to (58) when k2 ¼ 2x2.

5. Zero mass limit

This is more an internal cross-check since we computed
independently the propagators in the case of vanishing
gluon and quark mass (M ¼ m ¼ 0) with the goal of
recovering them from the zero mass limit of the massive
propagators. In order to compute this limit it is useful to
bare in mind that any of the master integrals presented
above can be written as

ðΛ2ϵÞLF ðk2; m2;M2Þ ¼ ðΛ2ϵÞLðk2ÞD
× F ð1; m2=k2;M2=k2Þ; ð63Þ

where L is the number of loops and D the mass dimension
of the integral (leaving aside the powers of μ that multiply
it). As a result of this simple dimensional analysis it is clear
that the low mass expansion (m ≪ k and M ≪ k simulta-
neously) is equivalent to the large momentum expansion.
Consequently, the zero quark and gluon mass limits for
ΓðkÞ, Γ⊥ðkÞ, ΓγðkÞ are nothing but the leading terms in the
expansions (49)–(51). We have checked that these expres-
sions coincide with the results of a direct calculation with
massless fields (in the minimal subtraction scheme). Of
course, in this limit, ΓkðkÞ and Γ1ðkÞ are just zero.

IV. RENORMALIZATION GROUP

In principle, in order to compare the renormalized two-
point functions computed within a given approach to those
obtained within lattice simulations, it is enough to evaluate
the renormalized two-point functions at a given renormal-
ization scale, that is ΓCðk; μ0Þ. Indeed, the momentum
dependence of renormalized two-point functions as com-
puted within different approaches should differ only to
within an overall constant which is easily adjusted.
In practice, however, a direct perturbative evaluation of

ΓCðk; μ0Þ, such as the one described in the previous section,
is not accurate in the case of a large separation of scales
between k and μ0. Indeed, in this case, large logarithms
ln k=μ0 effectively modify the expansion parameter λ into
λ ln k=μ0 which has no reason to be small, even when λ is
small. As is well known, the way to cope with these large
logarithms is to use the renormalization group (RG).
The renormalized functions ΓCðk; μÞ for different values

of μ are trivially related to each other as they arise from the
same bare function ΓCðkÞ. The differential equation
governing the evolution of ΓCðk; μÞ with μ is the

Callan-Szymanzik equation. In its integrated form it can
be written as

ΓCðk;m2
0;M0; λ0; μ0Þ

¼ z−1C ðμ; μ0ÞΓCðk;m2ðμÞ;MðμÞ; λðμÞ; μÞ ð64Þ

and relates a given n-point function at the fixed scale μ0 to
the same n-point function at the running scale μ. The
benefit of Eq. (64) is that it allows one to evaluate ΓCðk; μ0Þ
while maintaining perturbative control at any scale. This is
achieved by evaluating the right-hand side of Eq. (64) with
the choice μ ¼ k that prevents the appearance of large
logarithms of the form ln k=μ. This requires in turn the
evaluation of the rescaling factor zCðμ; μ0Þ as well as the
running m2ðμÞ, MðμÞ and λðμÞ of the various parameters.
The rescaling factor is given by

zCðμ; μ0Þ ¼ exp

�Z
μ

μ0

dν γCðνÞ
�
; ð65Þ

where γC is the anomalous dimension related to the
corresponding renormalization factor ZC as

γC ≡ d lnZC

d ln μ
: ð66Þ

The running of the parameters is given by the beta functions

βm2 ≡ dm2

d ln μ
; βM ≡ dM

d ln μ
; βg2 ≡ dg2

d ln μ
: ð67Þ

It should be noted that the derivatives d=d ln μ in
Eqs. (66)–(67) are to be taken for fixed bare masses and
dimensionful bare coupling Λ2ϵZg2g

2. These constraints
imply8

0 ¼ γm2 þ βm2

m2
¼ γM þ βM

M
¼ γg2 þ

βg2

g2
; ð68Þ

where

γm2 ≡d lnZm2

d lnμ
; γM≡d lnZM

d lnμ
; and γg2 ≡d lnZg2

d lnμ
ð69Þ

8These equations are easily obtained by requiring that the
logarithms of Zm2m2, ZMM and Λ2ϵZg2g

2 do not depend on ln μ.
Here we are taking a μ-independent Λ. In Appendix B, we discuss
the case of a μ-dependent Λ, including the conventional choice of
Λ ¼ μ.
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are the anomalous dimension associated with the
parameters.
Thus, in a sense, the renormalization group allows us to

evaluate ΓCðk; μ0Þ by using perturbation theory indirectly:
rather than using perturbation theory to evaluate ΓCðk; μ0Þ,
one uses perturbation theory to determine all the anomalous
dimensions

γX ≡ d lnZX

d ln μ
; ð70Þ

(with X ∈ fC;m2;M; g2g) from which one can reconstruct
the running of the parameters and the rescaling factors that
enter (64). In the next section, we explain how the two-loop
anomalous dimensions are evaluated.
Finally, we stress that the choice μ ¼ k prevents the

appearance of large logarithms of the form ln k=μwhich are
the only ones present in the ultraviolet. In a theory with
massless degrees of freedom such as the CF model, one
may find other logarithms of the form lnm=μ in the
infrared. As we discuss in Appendix E, we show that

despite the presence of these logarithms in the anomalous
dimensions, the two-loop contributions remain perturbative
with respect to the one-loop contributions.

A. Two-loop anomalous dimensions and beta
functions in the IR-safe scheme

In a generic renormalization scheme, the renormalization
conditions allow us to access the various renormalization
factors ZX with X ∈ fA; c;ψ ; m2;M; λg from which one
can evaluate the corresponding anomalous dimensions γX.
More precisely, from

ZX ¼ 1þ λ
zX;1
ϵ

þ λ2
zX;2
ϵ

; ð71Þ

with zX;1 ¼ zX;11 þ zX;10ϵþ zX;1ð−1Þ and zX;2 ¼ zX;22 þ
zX;21ϵþ zX;20ϵ2 where the zX;ab are functions of Λ, μ,
m2 and M, it is possible to derive the following generic
expression for the anomalous dimension:

γX ¼ g2
∂zX;10
∂ ln μ þ g4

�∂zX;20
∂ ln μ −

�∂zX;10
∂ ln μ þ ∂zg2;10

∂ ln μ
�
zX;10 −

�∂zX;1ð−1Þ
∂ ln μ þ ∂zg2;1ð−1Þ

∂ ln μ
�
zX;11 −

X
i

∂zm2
i ;10

∂ ln μ
∂zX;10
∂ lnm2

i

�
; ð72Þ

where
P

i sums over all possible masses in the problem,
here mi ¼ m and mi ¼ M, see Appendix B for details.
Moreover, the finiteness of the anomalous dimensions
requires the following constraints to hold true:

0 ¼ ∂zX;11
∂ ln μ ¼ ∂zX;22

∂ ln μ
¼ ∂

∂ ln μ ðzX;21 − ðzX;10 þ zg2;10ÞzX;11Þ: ð73Þ

The first two are trivial since, as we have already seen zX;11
and zX;22 are pure constants. The last constraint is less
trivial and we have checked that it holds true in the
particular renormalization scheme considered here. It
should of course hold true in any other renormalization
scheme. In particular, we show in Appendix C that this
constraint is nothing but a generalization of the constraint
zX;22 ¼ zX;11ðzX;11 þ zg2;11Þ=2 that arises as a consequence
of the finiteness of the anomalous dimensions within the
minimal subtraction renormalization scheme.
We mention also that, in the case where zX;11 ≠ 0, the

above constraints can be used to simplify the formula (72)
by rewriting the second term within the round bracket as

− zX;10
zX;11

∂zX;21
∂ ln μ . When zX;11 ¼ 0, this replacement cannot be

made but the formula simplifies as well because the third
term within the bracket vanishes. In the present model, this
occurs for the quark anomalous dimension since zψ ;11 ¼ 0.

As we have already mentioned above, in this work we
consider the IR-safe renormalization scheme defined by the
conditions (19)–(21). In addition to the benefits of this
choice which were already reviewed in Sec. II C, we note
that the use of (19) allows us to bypass the calculation of
the anomalous dimensions for m2 and λ since they are
directly given in terms of the anomalous dimensions for A
and c via

γλ ¼ −ðγA þ 2γcÞ; γm2 ¼ −ðγA þ γcÞ; ð74Þ

leading to the beta functions

βλ
λ
¼ γA þ 2γc;

βm2

m2
¼ γA þ γc: ð75Þ

Moreover, one can formally solve this system for γA and γc
in terms of linear combinations of βm2=m2 and βλ=λ giving

γA ¼ βλ
λ
− 2

βm2

m2
; γc ¼

βm2

m2
−
βλ
λ
: ð76Þ

Then, one can explicitly integrate the rescaling factors
zAðμ; μ0Þ and zcðμ; μ0Þ in terms of the running parameters
m2ðμÞ and λðμÞ

zAðμ; μ0Þ ¼
m4

0

λ0

λðμÞ
m4ðμÞ ; zcðμ; μ0Þ ¼

λ0
m2

0

m2ðμÞ
λðμÞ : ð77Þ
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This, combined with the renormalization conditions (20),
provides explicit expressions for the gluon and ghost
dressing functions in terms of the running parameters [26]

Dðp; μ0Þ ¼
λ0
m4

0

m4ðpÞ
λðpÞ

p2

p2 þm2ðpÞ ; ð78Þ

Fðp; μ0Þ ¼
m2

0

λ0

λðpÞ
m2ðpÞ : ð79Þ

For the quark propagator, we need to determine the quark-
mass anomalous dimension in order to extract the corre-
sponding beta function, as well as the quark anomalous
dimension in order to obtain the corresponding rescaling
factor. However, with the parametrization (15), the rescal-
ing factor applies only to ZðkÞ, and because of the
renormalization condition, we have

Zðk; μ0Þ ¼ exp

�
−
Z

k

μ0

dν γψ ðνÞ
�
: ð80Þ

As already mentioned, the quark-mass function MðkÞ
identifies with the running mass in the chosen scheme.

B. Asymptotic behaviors

In Appendixes D and E, the interested reader can find the
UV and IR asymptotic expansion of the various two-loop
anomalous dimensions at next-to-leading order, which we
used in order to control the RG flow in these regimes.
With the RG flow at our disposal, we can now evaluate

the various two-point functions and compare to available
lattice data.

V. RESULTS

In this section, we investigate to which extent the lattice
data for the QCD two-point correlation functions can be
described within the perturbative CF model at two-loop
order. We consider SU(3) datasets for two mass-degenerate
quark flavors and for two values of the pion mass (used as a
label to the various datasets), one relatively far from the
chiral limit (Mπ ¼ 422 MeV) and one close to the physical
value (Mπ ¼ 150 MeV).
Our main focus are the ghost, gluon and quark dressing

functions which we analyze in Sec. VA. As already
explained, these functions are not directly impacted by
the spontaneous breaking of chiral symmetry and it is
reasonable to expect that they can be captured by pertur-
bation theory. Our results in Secs. VA 1 and VA 2 support
these expectations.
The quark-mass function is discussed in Sec. V B for

completeness and also as an illustration of the limitations of
the perturbative CF approach. We stress that these limi-
tations do not necessarily imply a failure of the CF model.
In fact, the spontaneous breaking of chiral symmetry can be

captured within the CF model using resummations that
allow one to dynamically generate a quark-mass function in
pretty good agreement with lattice data, with corrections
controlled by two small parameters [46]. However, this
means that it is mandatory to assess how the quality of the
perturbative description of the dressing functions discussed
in Sec. VA depends on the use of either the two-loop
perturbative quark-mass function or the fully nonperturba-
tive quark-mass function such as the one generated on the
lattice or in Ref. [46]. Indeed, in the considered renorm-
alization scheme, the quark-mass function coincides with
the quark-mass parameter and is thus inevitably coupled to
the dressing functions. This analysis is provided in
Sec. V C.

A. Dressing functions

In this section, we fit the one- and two-loop expressions
for the dressing functions to the lattice data. The perturba-
tive expressions depend on three parameters defined at the
initial scale μ0 of the RG flow: the renormalized coupling
λ0 ≡ λðμ0Þ, the renormalized gluon mass m0 ≡mðμ0Þ and
the renormalized quark mass M0 ≡Mðμ0Þ. In addition to
these three parameters, we have adjustable normalization
factorsN X, with X ∈ fD;F; Zg. In order to find the best fit
to the lattice data, the parameters and the normalizations
need to be chosen so as to minimize a joint error
function χDFZ combining the individual errors χX, with
X ∈ fD;F; Zg:

χ2DFZ ≡ 1

3
½χ2D þ χ2F þ χ2Z�: ð81Þ

The individual error for X ∈ fD;F; Zg is taken to be

χ2X ¼ 1

N

X
i

�
N X

XthðkiÞ
XltðkiÞ

− 1

�
2

; ð82Þ

which simply averages, over the available data points, the
relative error of the appropriately rescaled theoretical
values XthðkiÞ to the data XltðkiÞ. Because the error function
(81) depends quadratically on the normalizations N X, the
latter can be determined explicitly in terms of the lattice and
theoretical data. One finds

N X ¼
P

iXthðkiÞ=XltðkiÞP
iX

2
thðkiÞ=X2

ltðkiÞ
: ð83Þ

The fitting problem reduces then to the minimization of χ2

with respect to the three remaining parameters, λ0, m0 and
M0. Unless otherwise stated, the parameters will be defined
at the scale μ0 ¼ 1 GeV.
To test the quality of the perturbative approach, we

proceed in two ways. We first consider a global fit of the
three dressing functions and quantify both the total and
individual errors as one changes from one-loop to two-loop
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accuracy. We also consider partial fits of two of the dressing
functions supplemented by a “prediction” of the third
dressing function.

1. Global fit

We first compare our one- and two-loop results with
lattice data far from the chiral limit, simulated using a pion
mass Mπ ¼ 422 MeV, see Refs. [59,81]. The global and
individual errors at one- and two-loop order are gathered in
Table I while Fig. 4 shows the corresponding plots and
gives the relevant parameters. From now on, the horizontal
axis of all the plots refers to momenta in GeV, whereas the
unit used on each vertical axis is in GeV elevated to the
mass dimension of the plotted quantity.
We observe that the global agreement with lattice

data greatly improves once two-loop corrections are
included. The two-loop contributions appear to be small
in the ghost-gluon sector, as expected [47]. This suggests
that perturbation theory is well controlled in the gauge
sector of the CF model. On the other hand, the improve-
ment on the quark dressing function is quite remarkable,
given the inconsistent results obtained at one loop for this
quantity [36]. As already mentioned earlier, this is an
indication that the quark dressing function is well
described by perturbation theory within the CF model,
the mismatch of the one-loop results just meaning
that one needs to go at least up to two-loop order to
start having a good account of the function. In fact the
error χZ is comparable to χF and χD. This confirms
earlier expectations based on estimates of the two-loop
corrections [36].9

We can proceed to the same analysis with lattice data
close to the physical case, simulated using a pion mass
Mπ ¼ 150 MeV, see Refs. [59,81]. The global and indi-
vidual errors at one- and two-loop order are gathered in
Table II while Fig. 5 shows the corresponding plots and
gives the relevant parameters.
The three dressing functions are very well reproduced at

two-loop order and the quality of the fit is comparable (and
even slightly better than in the previous case) confirming

that these three quantities admit a good perturbative
description within the CF model, irrespectively of the
considerations on chiral symmetry breaking.

TABLE I. Global and individual errors as obtained from the
global fit of D, F and Z in the case Mπ ¼ 422 MeV.

Order χDFZð%Þ χDð%Þ χFð%Þ χZð%Þ
One-loop 7.3 4.6 4.9 10.8
Two-loop 2.7 3.2 3.1 1.2
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FIG. 4. Comparison of the one- and two-loop CF results for the
gluon (top), ghost (middle) and quark (bottom) dressing functions
to the lattice data of Ref. [59,81] using Mπ ¼ 422 MeV. The
parameters (determined from a global fit using the three functions
D, F, Z) are found to be λ0 ¼ 0.28, m0 ¼ 390 MeV, M0 ¼
300 MeV in the one-loop case, and λ0 ¼ 0.32, m0 ¼ 350 MeV,
M0 ¼ 100 MeV in the two-loop case.

TABLE II. Global and individual errors as obtained from the
global fit of D, F, Z in the case Mπ ¼ 150 MeV.

Order χDFZð%Þ χDð%Þ χFð%Þ χZð%Þ
One-loop 9.2 3.6 4.4 14.9
Two-loop 1.8 2.6 1.5 1.1

9In a certain sense, the leading order perturbative contribution
to the quark dressing function is the two-loop contribution. Based
on this remark, it would be even more consistent to fit the lattice
propagators using the two-loop expressions for F, D and the
three-loop expression for Z. A complete three-loop evaluation of
Z is a difficult task but one could imagine doing a rough estimate
similar to the estimate made in [36] for the two-loop corrections.
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2. Partial fits

To further test the quality of the perturbative evaluation of
the dressing functions within the CF model, we also
perform partial fits of two of these quantities, leaving
the third one as a pure prediction of the model. That is,
for two different quantities X and Y, with X,
Y ∈ fD;F; Zg, we choose the parameters m0, λ0 and M0

in such a way that they minimize the joint error χXY,
defined as

χ2XY ¼ 1

2
½χ2X þ χ2Y �: ð84Þ

There are, therefore, three different possible fits that
come from the minimization of χDF, χFZ or χZD. The
resulting errors are gathered in Table III while the corre-
sponding plots are shown in Figs. 6 and 7. Of course, one
expects the error on the predicted function to increase as
compared to the case where it was included in the global fit.
The errors remain quite reasonable, however. The largest
error is the one associated to the prediction of the gluon
dressing function in the case Mπ ¼ 422 MeV. This is
understandable from the fact that the CF model rests on
one phenomenological parameter related to the gluon field
and fitting this parameter using correlation functions which
do not directly involve gluons is probably not the best idea.
In addition, for this value of the pion mass, the lattice data
for the ghost dressing function contain only six points and
none under 1 GeV which is not accurate enough to provide
a ghost dressing fit of good quality in this range.

B. The quark-mass function

For completeness, let us here discuss the case of the
quark-mass function. This will allow us to illustrate the
limitations of the perturbative approach within the CF
model, which calls for the use of a more sophisticated, yet
controlled approach, see Ref. [46].
It is also to be stressed that the perturbative analysis of the

quark-mass function within the CF model is not totally
academic. Indeed, the argument ruling out a priori the use
of perturbation theory relies on the inability of the latter
to describe the spontaneous breaking of chiral symmetry
strictly in the limit of a vanishing bare quark mass. Although
it ismost probable that no perturbative approach can describe
the quark-mass function for small enough bare quarkmasses,
it is also reasonable to expect that perturbation theory
becomes again valid for large enough bare quark masses.
An intriguing question is then which value of the bare quark
mass sets the frontier between a perturbative and a non-
perturbative description of the quark-mass function. The
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FIG. 5. Comparison of the one- and two-loop CF results for the
gluon (top), ghost (middle) and quark (bottom) dressing functions
to the lattice data of Ref. [59,81] using Mπ ¼ 150 MeV. The
parameters (determined from a global fit using the three functions
D, F, Z) are found to be λ0 ¼ 0.33, m0 ¼ 410 MeV, M0 ¼
250 MeV in the one-loop case, and λ0 ¼ 0.32, m0 ¼ 370 MeV,
M0 ¼ 160 MeV in the two-loop case.

TABLE III. Global and individual errors as obtained from the
partial fit of X and Y using the two-loop expressions and the
corresponding error on the predicted dressing function in the case
Mπ ¼ 422 MeV (top) and in the case Mπ ¼ 150 MeV (bottom).

XY χXYð%Þ χXð%Þ χYð%Þ χpredð%Þ
DF 3.1 3.0 3.2 1.9
FZ 0.7 1.0 0.4 12.3
ZD 2.3 1.2 3.1 3.3

XY χXYð%Þ χXð%Þ χYð%Þ χpredð%Þ
DF 1.8 2.0 1.5 3.6
FZ 0.9 1.1 0.9 4.2
ZD 2.0 1.1 2.6 1.5
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answer depends a priori on the implementation details of
the perturbative approach, including the choice of gauge,
the renormalization scheme or the particular modeling of the
gauge fixing in the infrared. Consequently, it is interesting to
quantify more precisely the failure of the perturbative CF
approach (within the renormalization scheme considered in
this work) with regard to the quark-mass function.
We can try to address this question in various possible

ways depending on how the parameters are fixed or the
number of functions that are fitted to the lattice data. Since
the overall picture that we will obtain eventually is similar
in all cases, we shall refrain from including too many plots
in this section and describe our results in the main text
instead. In all the subsequent analyses, we use the follow-
ing error function:

χ2M ¼ 1

2N

X
i

�
1

M̄2
lt

þ 1

MltðkiÞ2
�
ðMltðkiÞ −MthðkiÞÞ2 ð85Þ

as an estimator of the quality of the quark-mass function
obtained within our approach. This formula corresponds to
an average between the relative and absolute error (the latter
is normalized by the maximal value M̄lt reached by the

lattice quark-mass function). The reason for this choice is
that the quark-mass function decreases rapidly in the UV, in
such away that the use of a pure relative error gives toomuch
weight to the UV tail, while a pure absolute error gives too
much weight to the IR tail. Since both regimes of momenta
contain relevant information with regard to the spontaneous
breaking of chiral symmetry (dynamically generated quark
mass in the IR and quark condensate from the UV tail), we
have chosen a compromise between these two definitions of
the error. We mention that, if one aims at computing
observables that are mostly sensitive to the IR region of
the quark-mass function, a different error function giving
more weight to this range of momenta might be preferable.
We shall comment on these other choices below.
We have first investigated how much quark mass is

generated perturbatively within the CF model. That is,
embracing our hypothesis that the dressing functions are
essentially perturbative objects, we have used the param-
eters determined from the perturbative fits of these func-
tions (see the previous section) to see how much quark
mass is predicted in the two cases of study (far from chiral
and close to physical). We should here mention that, when
proceeding this way, part of the error on the quark-mass

FIG. 6. Fit of the two-loop CF results for the dressing functions X (left) and Y (middle) to the lattice data of Refs. [59,81] using
Mπ ¼ 422 MeV and the corresponding prediction of the third dressing function compared to data from the same references. The
parameters (determined from a fit minimizing the reduced joint error χXY) are found to be λ0 ¼ 0.31,m0 ¼ 350 MeV,M0 ¼ 90 MeV in
the case XY ¼ DF, λ0 ¼ 0.43, m0 ¼ 490 MeV, M0 ¼ 200 MeV in the case XY ¼ FZ, and λ0 ¼ 0.31, m0 ¼ 350 MeV, M0 ¼
120 MeV in the case XY ¼ ZD.
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function originates from a too naïve fixing of the quark-
mass parameter. Indeed, fixing the latter by fitting only the
dressing functions is certainly not the best idea for none of
these functions involves the quark-mass parameter at tree
level. This is similar to fixing the gluon mass parameter of
the CF model by fitting only the ghost and quark dressing
functions, see above. For this reason, we proceed instead by
fixing the coupling and the gluon mass parameter from fits
of the dressing functions while the quark-mass parameter is
adjusted to agree with the lattice data for the quark-mass
function at some scale. When choosing this scale in the UV,
the corresponding prediction for the quark-mass function is
shown in Fig. 8 and the corresponding errors are collected
in Table IV.
In the case Mπ ¼ 422 MeV, the two-loop corrections

greatly improve the one-loop result and, even though the
two-loop error on the quark-mass function is still a few
times larger than the one on the dressing functions, the
trend from one- to two-loop order leaves room for improve-
ment from higher order corrections. In contrast, in the
case Mπ ¼ 150 MeV, although the two-loop corrections
produce more quark mass in the IR than the one-loop
expressions and the error on the quark-mass function is

reduced, the change is marginal and we are still far from
reproducing the quark-mass function. This is in line with
the expectation that perturbation theory within the CF
model cannot describe the quark-mass function close to the
physical case. We also mention that the quality of the fit of
the dressing functions deteriorates as compared to the case
where the quark-mass parameter was fixed by fitting the
dressing functions. This can clearly be seen by comparing
the second table in Table IV with Table II and is yet an
indication of the tension between the perturbative dressing
functions and the perturbative quark-mass function in the
close-to-physical case.10

In a second type of analysis, rather than trying to predict
the quark-mass function, we have investigated how the CF
perturbative approach allows to globally describe the data
for the dressing and quark-mass functions and whether this
perturbative description improves or worsens as the loop
order is increased. To this purpose, we have performed a
global fit of both the dressing functions and the quark-mass
function using the error function

FIG. 7. Fit of the two-loop CF results for the dressing functions X (left) and Y (middle) to the lattice data of Refs. [59,81] using
Mπ ¼ 150 MeV and the corresponding prediction of the third dressing function compared to data from the same references. The
parameters (determined from a fit minimizing the reduced joint error χXY) are found to be λ0 ¼ 0.31,m0 ¼ 360 MeV,M0 ¼ 90 MeV in
the case XY ¼ DF, λ0 ¼ 0.34, m0 ¼ 400 MeV, M0 ¼ 220 MeV in the case XY ¼ FZ, and λ0 ¼ 0.32, m0 ¼ 370 MeV, M0 ¼
160 MeV in the case XY ¼ ZD.

10The deterioration can also be seen in the plots (not shown),
which do not look as neat as those in Figs. 4 and 5.
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χ2DFMZ ¼ 1

4
½χ2D þ χ2F þ χ2M þ χ2Z�: ð86Þ

This is clearly less ambitious than trying to predict the
quark-mass function. The results for the quark-mass

function are shown in Figs. 9 while the joint and individual
errors are displayed in Table V.
Aside from a global deterioration in the quality of the

dressing functions, we observe similar results as before for the
quark-mass function. Although we obtain a reasonable
description of the quark-mass function far from the chiral
limit, the same function is poorly described in the close-to-
physical case, with an error which is even larger at two-loop
order than at one-loop order. The difference with the previous
plots is that here the error comes dominantly from theUV tails.
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FIG. 8. Prediction for the quark-mass function from the two-
loop CF expressions compared to the lattice data of Refs. [59,81]
in the casesMπ ¼ 422 MeV (top) andMπ ¼ 150 MeV (bottom).
The parameters m0 and λ0 are determined from a global fit of the
three functions D, F, Z and the constraint that the quark-mass
parameter at the scale μ0 ≃ 3 GeV coincides with the lattice
quark-mass function at this value of the momentum. For the case
Mπ ¼ 422 MeV, the parameters are found to be λ0 ¼ 0.24,m0 ¼
364 MeV at one-loop order and λ0 ¼ 0.34 andm0 ¼ 377 MeV at
two-loop order, while for Mπ ¼ 150 MeV, they are found to be
λ0 ¼ 0.30 and m0 ¼ 392 MeV at one-loop order and λ0 ¼ 0.28
and m0 ¼ 291 MeV at two-loop order.

TABLE IV. Global and individual errors as obtained from the
global fit ofD,F,Z enforcing the quarkmass to be equal to a lattice
value in the UV, Mð3.0 GeVÞ ¼ 5.1 MeV in the case Mπ ¼
422 MeV (top) and Mð2.9GeVÞ¼6.6MeV in the case Mπ¼
150MeV (bottom).

Order χDFZð%Þ χDð%Þ χFð%Þ χZð%Þ χMð%Þ
One-loop 8.3 5.6 5.3 12.1 34.6
Two-loop 3.0 4.5 2.7 0.9 16.0

Order χDFZð%Þ χDð%Þ χFð%Þ χZð%Þ χMð%Þ
One-loop 11.0 3.2 7.0 16.9 50.9
Two-loop 5.5 6.6 3.0 6.1 41.8
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FIG. 9. Fit of the two-loop CF results for the gluon, ghost and
quark (bottom) dressing functions and quark mass (from top to
bottom) Refs. [59,81] using Mπ ¼ 422 MeV (top) and Mπ ¼
150 MeV (bottom). In the case Mπ ¼ 422 MeV, the parameters
are found to be λ0 ¼ 0.42, m0 ¼ 420 MeV, M0 ¼ 120 MeV at
one-loop order and λ0 ¼ 0.33, m0 ¼ 390 MeV, M0 ¼ 140 MeV
at two-loop order, while in the case Mπ ¼ 150 MeV, the
parameters are found to be λ0 ¼ 0.43, m0 ¼ 430 MeV, M0 ¼
20 MeV at one-loop order and λ0 ¼ 0.39,m0 ¼ 400 MeV,M0 ¼
50 MeV at two-loop order.

TABLE V. Global and individual errors as obtained from the
global fit of D, F,M and Z in the caseMπ ¼ 422 MeV (top) and
in the case Mπ ¼ 150 MeV (bottom).

Order χDFMZð%Þ χDð%Þ χFð%Þ χZð%Þ χMð%Þ
One-loop 13.2 5.6 3.1 15.9 18.0
Two-loop 5.9 4.7 2.8 1.6 10.3

Order χDFMZð%Þ χDð%Þ χFð%Þ χZð%Þ χMð%Þ
One-loop 25.3 7.2 4.9 21.5 45.0
Two-loop 31.9 9.1 4.7 3.4 62.8
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In conclusion, no matter what strategy is used, not all the
features associated to chiral symmetry breaking can be
reproduced: one has either a too low quark mass in the
infrared or a not so accurate tail (and thus, probably, a not so
accurate quark condensate) in the UV. We note, nonetheless,
that, if one aims at computing observables that are mostly
sensitive to the IR part of the quark-mass function, our
second strategy provides a rather reasonable description of
the quark-mass function in this range. In fact, we have
checked that error functions that put more weight on the IR
region typically give errors of the order of 15% at two-loop
order both far from the chiral limit and close to the
physical case.

C. Impact of the quark-mass function on the
perturbative description of the dressing functions

In the previous section we illustrated the tension that
exists between the two-loop perturbative evaluation of the

dressing functions and the two-loop perturbative evaluation
of the quark-mass function within the CF model with
regard to the QCD data.
One may argue that the appearance of this tension could

jeopardize the perturbative picture for the various dressing
functions which we have advertised above. In this sub-
section, we would like to demonstrate that this is not so.
To this purpose, we reconsider the two-loop perturbative
expressions for the dressing function, but rather than
coupling them via the two-loop flow of the quark mass,
we couple them using the actual nonperturbative flow,
which we obtain from a simple interpolation of the lattice
data for the quark-mass function.11 We then minimize the
joint error (81), leaving λ0 and m0 as free parameters. Of
course, this procedure propagates the lattice data errors
(on the quark-mass function) to our results, but it still
remains useful as a first approximation to study up to
which extent the ghost, gluon and quark dressing func-
tions are perturbative quantities once the actual quark
mass is included in the game. In Fig. 10, we show the plots
for D, F and Z for Mπ ¼ 422 MeV and Mπ ¼ 150 MeV
and in Table VI the corresponding joint and individual
errors.
The quality of the fit for the dressing functions remains

very good, supporting the claim that the functionsD, F and
Z remain perturbative, even when the actual quark mass is
included in the analysis.

FIG. 10. Fit of the two-loop CF results for the gluon (left), ghost (middle) and quark (right) dressing functions Refs. [59,81] in the case
Mπ ¼ 422 MeV (top) and Mπ ¼ 150 MeV (bottom). The parameters are found to be λ0 ¼ 0.31, m0 ¼ 360 MeV and λ0 ¼ 0.32,
m0 ¼ 350 at two-loop order, λ0 ¼ 0.26, m0 ¼ 380 MeV and λ0 ¼ 0.31, m0 ¼ 400 MeV at one-loop order for Mπ ¼ 422 MeV and
Mπ ¼ 150 MeV respectively, and are determined from an interpolation of the lattice data for the quark mass and a global fit using the
three functions D, F, Z.

TABLE VI. Global and individual errors as obtained from the
global fit of D, F, Z and the interpolation of the quark-mass
lattice data in the caseMπ ¼ 422 MeV (top) andMπ ¼ 150 MeV
(bottom).

Order χDFZð%Þ χDð%Þ χFð%Þ χZð%Þ
One-loop 7.7 5.3 5.1 11.1
Two-loop 2.8 3.4 3.3 1.0

Order χDFZð%Þ χDð%Þ χFð%Þ χZð%Þ
One-loop 9.9 3.1 6.1 15.4
Two-loop 2.6 2.4 2.3 3.2

11Here, we exploit the fact that, in the considered renormal-
ization scheme, the flow of the quark mass and the quark-mass
function coincide.
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VI. CONCLUSIONS

In this work, we have determined all two-point corre-
lation functions of the Curci-Ferrari model in the presence
of mass-degenerate fundamental quark flavors, at two-loop
accuracy within the IR-safe renormalization scheme that
was put forward in Ref. [26]. We have also compared them
to QCD lattice data in the two-flavor case, corresponding to
various values of the pion mass; one that is relatively far
from the chiral limit and another one that is closer to the
physical value.
We find that those correlation functions that are not

directly impacted by the spontaneous breaking of chiral
symmetry are pretty well reproduced by the two-loop
calculation within the CF model and this irrespective of
the type of data that we try to reproduce. This includes the
gluon and ghost dressing functions but also the quark
dressing function. For the former two, the adequacy of the
perturbative CF model to reproduce the lattice data was
already seen at one-loop order [36]. The two-loop con-
tributions in this case represent tiny corrections that further
improve the comparison to the data. In contrast, in the case
of the quark dressing function, the two-loop corrections are
pivotal as they drastically correct for the qualitatively
inconsistent results obtained at one-loop order. As we have
argued, they represent, in a sense, the true leading order
contribution to the quark dressing function within the CF
model, which provides as accurate results as for the other
dressing functions.
As for the quark-mass function, no strict perturbative

approach can describe the spontaneous breaking of chiral
symmetry in the limit of vanishing bare quark mass. From
this fact, it is very reasonable to expect that no perturbative
approach can describe the quark-mass function close to the
physical QCD case. The details, however, depend on the
practical implementation of the perturbative approach. For
completeness, we have then illustrated how the perturbative
CF approach fails in reproducing the quark-mass function
at two-loop order. Related to this question, we have studied
the impact of the use of a nonperturbative running for the
quark-mass parameter extracted from the data (versus its
two-loop CF version) on the perturbative determination of
the quark dressing function. We find that the quality of the
two-loop perturbative predictions for the dressing functions
depends marginally on this consideration, confirming the
perturbative nature of the dressing functions within the
CF model.
These results are also of relevance for studies within the

CF model beyond perturbation theory. As already men-
tioned, the RI expansion of [46,47] captures the sponta-
neous breaking of chiral symmetry while dynamically

generating the correct quark-mass function. However, the
quark dressing function is again badly reproduced. The
problem is similar to the one in perturbation theory: at the
order of approximation considered in [46,47], the correc-
tion to the quark dressing function is abnormally small and
requires one to push the rainbow-improved expansion
scheme to a two-loop compatible level. The results in
the present paper strongly suggest that this would allow one
to have both the correct dynamically generated quark-mass
function and an accurate quark dressing function, in line
with what is observed in two-loop compatible Dyson-
Schwinger equations (DSE) approaches [56]. One could
even envisage a simpler, hybrid approach, combining the
two-loop perturbative estimate for the quark dressing
function and the quark-mass function obtained from the
rainbow-improved expansion at leading order.
In a future work, we also plan to extend the analysis to

the quark-gluon vertex in those particular configurations
where one of the external momenta vanishes, similar to the
analysis of the ghost-antighost-gluon vertex given in
Ref. [41]. The challenge is here again to reduce all the
Feynman integrals that enter the various form factors.
However, since one of the external momenta vanishes,
this is of the same complexity as the evaluation of the two-
point form factors. Moreover, no additional renormaliza-
tion group analysis needs to be carried out since all the
relevant beta functions and anomalous dimensions have
been evaluated in the present work.
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APPENDIX A: DIAGRAMS

1. Gluon two-point function

The two-loop diagrams contributing to the gluon two-
point function are displayed in Fig. 11.

2. Ghost two-point function

The two-loop diagrams contributing to the ghost two-
point function are displayed in Fig. 12.

3. Quark two-point function

The two-loop diagrams contributing to the quark two-
point function are displayed in Fig. 13.

FIG. 12. Two-loop diagrams contributing to the ghost two-
point function.

FIG. 11. Two-loop diagrams contributing to the gluon two-
point function.

FIG. 13. Two-loop diagrams contributing to the quark two-
point function.
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APPENDIX B: TWO-LOOP RUNNING

In this section, we derive general formulas for the two-
loop anomalous dimensions and beta functions within a
generic renormalization scheme defined from a given set of
renormalization conditions, such as for instance the IR-safe
conditions considered in this work. In Sec. C, for com-
pleteness, we shall also revisit the minimal subtraction
scheme and see how it fits the general discussion (despite
the absence of renormalization conditions in this case).
We consider a field theory involving various bare fields

φB;i of bare square mass m2
B;i. For simplicity, we assume

that interactions are controlled by only one bare coupling,
denoted by λB, but an extension to an arbitrary number of
coupling constants is straightforward. We work in dimen-
sional regularization, in which case the bare coupling has
dimension 4 − d ¼ 2ϵ and it is convenient to make this
explicit by introducing a scale. We shall then operate the
rescaling λB → Λ2ϵλB where the new λB is dimensionless.
As already mentioned in the main text, our notational
choice Λ (rather than μ) is not innocent. It is meant to
emphasize that this scale is in general different from the
renormalization scale μ. The latter is introduced upon
implementing a certain renormalization scheme via the
renormalization conditions. On the other hand, the scale Λ
is a regulating scale that has nothing to do with the
renormalization procedure.
To some extent, the scale Λ should be put on the same

footing as the cutoff scale in the cutoff regularization. This
analogy needs to be taken with a pinch of salt of course
because, in dimensional regularization, the regulating
parameter ϵ is dissociated from the regulating scale Λ.
In particular, the continuum limit is defined as the limit
ϵ → 0 and not as the limit Λ → ∞. However, as in any
other regularization, we expect the continuum results
obtained in the limit ϵ → 0, to be independent of the
regulating scale Λ, while they will in general depend on the
renormalization scale μ. This should apply in particular to
the anomalous dimensions and the beta functions and we
will check explicitly that this is indeed the case.
Let us mention that, in most approaches, the scale Λ is

identified with the scale μ. This is a perfectly acceptable
choice (and even a convenient one in some respects)12 since
the anomalous dimensions and the beta functions do
not depend on this choice and are in fact the same for
any choice of dependence ΛðμÞ. However, the choice of a
μ-dependent Λ tends to obscure the real source of μ
dependence within the renormalization group, while unnec-
essarily complicating the evaluation of the anomalous
dimensions and the beta functions (as we shall explicitly
illustrate below). In what follows, we shall first derive the

anomalous dimensions and the beta functions by taking Λ
independent from μ and then check that the so obtained
functions do not depend on the choice of Λ, even when the
latter is linked to μ in some way.

1. RG basics

Upon renormalization, the bare fields and the bare
parameters are rescaled by renormalization factors as

φB;i ¼ Z1=2
φi φi; m2

B;i ¼ Zm2
i
m2

i ; λB ¼ Zλλ: ðB1Þ

We shall denote the renormalization factors generically as
ZX with X ∈ fφi; m2

i ; λg. They depend a priori on the
regulator ϵ, the two scales Λ and μ, and the renormalized
parameters m2

i and g2.
The renormalized n-point functions are functions of the

renormalization scale μ. This μ dependence is controlled by
the Callan-Szymanzik equation which, in its integrated
form, is written as13

ΓðnÞ
φi1

…φin
ðfkg;fm2

0g;λ0;μ0Þ

¼
Yn
k¼1

z−1=2ik
ðμ;μ0ÞΓðnÞ

φi1
…φin

ðfkg;fm2ðμÞg;λðμÞ;μÞ; ðB2Þ

and relates a given n-point function at a fixed scale μ0 to the
same n-point function at the running scale μ. We have
already discussed the benefit of this type of equation in
maintaining perturbative control when large logarithms of
the form ln k=μ0 are present. This is achieved by evaluating
the right-hand side of Eq. (B2) with the choice μ ¼ k. This
requires in turn the evaluation of the rescaling factor
zðμ; μ0Þ as well as the running m2

i ðμÞ and λðμÞ of the
various parameters.
The rescaling factor is given by

ziðμ; μ0Þ ¼ exp

�Z
μ

μ0

dν γφi
ðνÞ

�
; ðB3Þ

where γφi
is the anomalous dimension of the field φi,

related to the corresponding renormalization factor Zφi
as

γφi
≡ d lnZφi

d ln μ
; ðB4Þ

where the d=d ln μ derivatives are to be taken for fixed bare
masses and dimensionful bare coupling Λ2ϵZλλ. On the
other hand, the running of the parameters is given by the
beta functions

12In particular, one does not need to introduce two scales in
intermediate calculations. We stress however that continuum
results do not depend on the scale Λ, so they depend only on one
scale, μ, even in the case where the choice Λ ≠ μ is made.

13We use the notation fkg and fm2g to designate respectively
the set of all external momenta of the considered n-point function
and the set of all masses in the problem.
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βλ ≡ dλ
d ln μ

; βm2
i
≡ dm2

i

d ln μ
: ðB5Þ

By expressing that lnðZm2
i
m2

i Þ and lnðΛ2ϵZλλÞ do not depend
on ln μ, one easily relates the beta functions to the anomalous
dimensions associated with the parameters as14

0 ¼ γm2
i
þ βm2

i

m2
i
; 0 ¼ γλ þ

βλ
λ
; ðB6Þ

where

γm2
i
≡ d lnZm2

i

d ln μ
and γλ ≡ d lnZλ

d ln μ
: ðB7Þ

It follows that the implementation of the renormalization
group equation (B2), requires the determination of the
various anomalous dimensions

γX ≡ d lnZX

d ln μ
; ðB8Þ

with X ∈ fφi; m2
i ; λg. Because they correspond to infini-

tesimal variations of ratios of renormalization factors at
different scales, which in turn can be written as ratios of
renormalized correlation funtions, the anomalous dimen-
sions are finite. Below, we evaluate these anomalous
dimensions at one- and two-loop order.
We mention that, in deriving Eq. (B6), we have made use

of our assumption of a μ-independentΛ.Werewe to consider
a μ-dependent Λ, the right-hand side of the second equation
of (B6) would involve an additional term 2ϵd lnΛ=d ln μ
which cannot be neglected because it can (and does) end up
multiplying contributions proportional to 1=ϵ. By choosing a
μ-independentΛ, we donot need toworry about this subtlety.
A related convenient feature of using a μ-independent Λ is
that both βm2

i
=m2

i and βλ=λ are of order λ, whereas with a

μ-dependent Λ, βλ=λ is of order λ0 which leads to new
contributions when evaluating the anomalous dimensions at
a given order. We will show below that despite these
implementation differences, the various additional contribu-
tions that one needs to consider in the case of aμ-dependentΛ
cancel with each other, making the μ-independent choice the
simpler one in practice.

2. One-loop running

To derive the anomalous dimension γX at one-loop order,
we start from the one-loop renormalization factor ZX

expanded up to order ϵ0. We write it as

ZX ¼ 1þ λ
zX;1
ϵ

; ðB9Þ

with

zX;1 ¼ zX;11 þ ϵzX;10; ðB10Þ
and where zX;11 and zX;10 are a priori functions of Λ, μ and
the masses m2

i . We will see below that there are some
constraints on the factors zX;ab.
From (B8) and (B9), the anomalous dimension becomes

γX ¼ 1

ZX

�
λ

ϵ

∂zX;1
∂ lnμþ

βλ
λ

λ

ϵ
zX;1þ

X
i

βm2
i

m2
i

λ

ϵ

∂zX;1
∂ lnm2

i

�
: ðB11Þ

The term with the partial derivative ∂=∂μ takes into
account the explicit μ dependence of zX;1, while the terms
involving the beta functions, see Eq. (B5), take into account
the implicit μ dependence of zX;1 via its dependence on λ
and m2

i . Since βm2
i
=m2

i and βλ=λ are of order λ, see the
discussion above, we can neglect the terms proportional to
the beta functions to the present order of accuracy.
Moreover, we can replace ZX by 1 in the denominator
of (B11). We find eventually

γX ¼ λ

ϵ

∂zX;1
∂ ln μ : ðB12Þ

Expanding to order ϵ0, this gives

γX ¼ λ

ϵ

∂zX;11
∂ ln μ þ λ

∂zX;10
∂ ln μ : ðB13Þ

The finiteness of the anomalous dimensions imposes zX;11
not to depend explicitly on μ. This is not really a surprise
since zX;11=ϵ corresponds to the divergence of a one-loop
Feynman integral and, as such, is a pure constant that does
not depend on the considered renormalization scheme. We
eventually arrive at

γX ¼ λ
∂zX;10
∂ ln μ : ðB14Þ

We notice that the anomalous dimension could a priori still
depend on Λ (via the factor zX;10). We will show below that
this is not the case and also that the same expression could
be obtained using a μ-dependent Λ.

3. Two-loop running

In order to extend the anomalous dimension γX to two-
loop order, we need the renormalization factors to order λ2

and ϵ1, which we write as

ZX ¼ 1þ λ
zX;1
ϵ

þ λ2
zX;2
ϵ2

; ðB15Þ

with

zX;1 ¼ zX;11 þ zX;10ϵþ zX;1ð−1Þϵ2; ðB16Þ
zX;2 ¼ zX;22 þ zX;21ϵþ zX;20ϵ2: ðB17Þ

14For the moment, we take Λ as μ independent. We later
discuss the case of a μ-dependent Λ, including the conventional
choice Λ ¼ μ.
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We need to include zX;1ð−1Þ because, although it is a contribution of order ϵ1 to ZX, it contributes at order ϵ0 to the two-loop
two-point functions; see the discussion in the main text. We will see below that it also contributes to the anomalous
dimensions at this order.
From (B8) and (B15), the anomalous dimension becomes

γX ¼ 1

ZX

�
λ

ϵ

∂zX;1
∂ ln μþ

λ2

ϵ2
∂zX;2
∂ ln μþ

βλ
λ

�
λ
zX;1
ϵ

þ 2λ2
zX;2
ϵ2

�
þ
X
i

βm2
i

m2
i

�
λ

ϵ

∂zX;1
∂ lnm2

i
þ λ2

ϵ2
∂zX;2
∂ lnm2

i

��
: ðB18Þ

Using the fact that βm2
i
=m2

i and βλ=λ are both of order λ and expanding ZX up to order λ, we find

γX ¼ λ

ϵ

∂zX;1
∂ ln μþ

λ2

ϵ2
∂zX;2
∂ ln μ −

λ2

ϵ2
∂zX;1
∂ ln μ zX;1 − γλ

λ

ϵ
zX;1 −

X
i

γm2
i

λ

ϵ

∂zX;1
∂ lnm2

i
; ðB19Þ

where γλ and γm2 are the gamma functions determined at one-loop order, prior to an expansion in ϵ, see Eq. (B12). Using this
latter equation, we find

γX ¼ λ

ϵ

∂zX;1
∂ ln μþ

λ2

ϵ2

�∂zX;2
∂ ln μ −

�∂zX;1
∂ ln μþ

∂zλ;1
∂ ln μ

�
zX;1 −

X
i

∂zm2
i ;1

∂ ln μ
∂zX;1
∂ lnm2

i

�
; ðB20Þ

and expanding to order ϵ0, this gives

γX ¼ λ2

ϵ2
∂zX;22
∂ ln μ þ λ2

ϵ

�∂zX;21
∂ ln μ −

�∂zX;10
∂ ln μ þ ∂zλ;10

∂ ln μ
�
zX;11

�
þ λ

∂zX;10
∂ ln μ

þ λ2
�∂zX;20
∂ ln μ −

�∂zX;10
∂ ln μ þ ∂zλ;10

∂ ln μ
�
zX;10 −

�∂zX;1ð−1Þ
∂ ln μ þ ∂zλ;1ð−1Þ

∂ ln μ
�
zX;11 −

X
i

∂zm2
i ;10

∂ ln μ
∂zX;10
∂ lnm2

i

�
; ðB21Þ

where we used that zX;11 is a pure constant. The finiteness of the gamma function imposes that

∂zX;22
∂ ln μ ¼ 0 and

∂zX;21
∂ ln μ −

�∂zX;10
∂ ln μ þ ∂zλ;10

∂ ln μ
�
zX;11 ¼ 0: ðB22Þ

The first constraint is again not a real surprise since zX;22=ϵ2 has to do with the overall divergence of a two-loop Feynman
integral and, as such, should be a pure constant that does not depend on the considered renormalization scheme. The second
constraint is more subtle and relates to a similar well-known identity inminimal subtraction which constrains zX;22, zX;11, zλ;11,
see below. Since zX;11 is a pure constant, this second constraint can also be reformulated as stating that the combination
zX;21 − ðzX;10 þ zλ;10ÞzX;11 should not depend on μ. In turn, this provides a cross-check for any two-loop determination of the
n-point functions in a given scheme, which we have used in our particular application to the CF model. See the main text.
We eventually arrive at the following finite expression for the two-loop anomalous dimension

γX ¼ λ
∂zX;10
∂ ln μ þ λ2

�∂zX;20
∂ ln μ −

�∂zX;10
∂ ln μ þ ∂zλ;10

∂ ln μ
�
zX;10 −

�∂zX;1ð−1Þ
∂ ln μ þ ∂zλ;1ð−1Þ

∂ ln μ
�
zX;11 −

X
i

∂zm2
i ;10

∂ ln μ
∂zX;10
∂ lnm2

i

�
; ðB23Þ

in terms of the various factors zX;ab. In the case zX;11 ≠ 0, this expression can be simplified using the second constraint in
(B22). One finds

γX ¼ λ
∂zX;10
∂ ln μ þ λ2

�∂zX;20
∂ ln μ −

zX;10
zX;11

∂zX;21
∂ ln μ −

�∂zX;1ð−1Þ
∂ ln μ þ ∂zλ;1ð−1Þ

∂ ln μ
�
zX;11 −

X
i

∂zm2
i ;10

∂ ln μ
∂zX;10
∂ lnm2

i

�
: ðB24Þ

In the case zX;11 ¼ 0, one cannot use the second constraint but the formula also gets simpler:

γX ¼ λ
∂zX;10
∂ ln μ þ λ2

�∂zX;20
∂ ln μ −

�∂zX;10
∂ ln μ þ ∂zλ;10

∂ ln μ
�
zX;10 −

X
i

∂zm2
i ;10

∂ ln μ
∂zX;10
∂ lnm2

i

�
: ðB25Þ
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In the case zX;11 ≠ 0, we note that the anomalous dimen-
sions involve zX;1ð−1Þ and zλ;1ð−1Þ, that is order ϵ1 contri-
butions to the renormalization factors. This, in turn, can be
traced back to the fact that the one-loop anomalous
dimensions that appear in Eq. (B19) are multiplied by
1=ϵ and, therefore, need to be expanded up to order ϵ1,
contrary to the previous section where they were expanded
up to order ϵ0 only. That the terms with zX;1ð−1Þ and zλ;1ð−1Þ
are not present in the case zX;11 ¼ 0 is also visible in
Eq. (B19) since the just mentioned 1=ϵ terms are not
present.

4. Λ independence

The formula (B23) and its simplified versions (B24) and
(B25) are the ones we use in our implementation of the RG
in Sec. IV. We still need to clarify two questions however.
First, the expression (B23) was derived assuming a

μ-independent Λ and one is left wondering what would
happen with a μ-dependent Λ (such as the standard choice
Λ ¼ μ). We will show that one obtains exactly the same
expressions for the anomalous dimension γX, via a
lengthier procedure however. Second, even though the
expression (B23) does not depend explicitly on Λ, it could
still depend implicitly on Λ via the dependence of the
factors zX;ab. We will show that this is not so: the Λ
dependence cancels identically when the various zX;ab are
combined into Eq. (B23).
A key remark in demystifying these two questions is that

the only source of Λ dependence in the renormalization
factors appears via the ϵ expansion of Λ2ϵλ (since the scale
Λ is introduced as a rescaling of the coupling in the first
place). In practice this means that, if the renormalization
factors are written as

ZX ¼ 1þ
X
a≥1

�
λ

ϵ

�
a
zX;a; ðB26Þ

one should have ∂ðΛ−2aϵzX;aÞ=∂ lnΛ ¼ 0, that is

∂zX;a
∂ lnΛ − 2aϵzX;a ¼ 0: ðB27Þ

Writing each zX;a as

zX;a ¼
X
b≤a

zX;abϵa−b; ðB28Þ

the constraint (B27) can be rewritten as

∂zX;ab
∂ lnΛ ¼ 2azX;aðbþ1Þ; ðB29Þ

for b < a, and

∂zX;aa
∂ lnΛ ¼ 0; ðB30Þ

this later result being totally trivial since the zX;aa are
expected to be pure constants, independent of the consid-
ered renormalization scheme.

a. Explicit Λ dependence

Keeping these remarks in mind, let us now rederive the
one-loop anomalous dimensions using a μ-dependent Λ.
There are two main differences with respect to the
calculation that used a μ-independent Λ. First, there is a
new source of μ dependence in the renormalization factors,
via Λ. This leads to the expression

γX ¼ 1

ZX

�
λ

ϵ

∂zX;1
∂ ln μþ

λ

ϵ

∂zX;1
∂ lnΛ

d lnΛ
d ln μ

þ βλ
λ

λ

ϵ
zX;1 þ

X
i

βm2
i

m2
i

λ

ϵ

∂zX;1
∂ lnm2

i

�
; ðB31Þ

where we note the presence of a new term proportional to
d lnΛ=d ln μ as compared to (B11). Second, there is an
additional term in the relation between the beta function
and the anomalous dimension for λ, see (B6):

0 ¼ 2ϵ
d lnΛ
d ln μ

þ γλ þ
βλ
λ
: ðB32Þ

When expanding the anomalous dimension (B31) up to
order λ, this term cannot be neglected unlike γλ because
(i) it is of one order less in λ as compared to γλ and therefore
produces a new order λ contribution, and (ii) this new
contribution survives the continuum limit since it has the
form ϵ × 1=ϵ. One eventually arrives at

γX ¼ λ

ϵ

∂zX;1
∂ ln μþ λ

�
1

ϵ

∂zX;1
∂ lnΛ − 2zX;1

�
d lnΛ
d ln μ

: ðB33Þ

A similar but lengthier calculation at two-loop order leads
to (B19) supplemented with the term

��
λ −

λ2

ϵ
zX;1

��
1

ϵ

∂zX;1
∂ lnΛ − 2zX;1

�

þ λ2

ϵ

�
1

ϵ

∂zX;2
∂ lnΛ − 4zX;2

��
d lnΛ
d ln μ

: ðB34Þ

Owing to Eq. (B27), it is easy to see that all these extra
terms that one generates when evaluating the anomalous
dimension with a μ-dependent Λ eventually cancel. As
announced above, the final expression for the anomalous
dimension in terms of the factors zX;a does not depend on
the particular choice of Λ, and the fastest way to arrive at
the result (avoiding unnecessary cancellations) is to use
a μ-independent Λ.
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b. Implicit Λ dependence

So farwehave shown that the expressions (B12) and (B19)
have no explicit dependence on Λ. Obviously, this con-
clusion extends to (B14) and (B23)which are nothing but the
order ϵ0 truncated versions of these expressions. However,
there could still be an implicit dependence with respect to Λ
via the factors zX;ab. We now show that this is not the case.
Consider for instance (B14) and take a ∂=∂ lnΛ deriva-

tive. Owing to Eq. (B29), we have

∂γX
∂ lnΛ ¼ λ

∂2zX;10
∂ ln μ∂ lnΛ ¼ 2λ

∂zX;11
∂ ln μ ; ðB35Þ

which vanishes since zX;11 is a pure constant.
A similar conclusion can be reached starting from

the two-loop expression (B23) and exploiting (B29).
Focusing on the terms inside the bracket multiplying λ2,
we find

∂
∂ lnΛ ð…Þλ2 ¼ 4

∂zX;21
∂ ln μ − 2

�∂zX;11
∂ ln μ þ ∂zλ;11

∂ ln μ
�
zX;10 − 2

�∂zX;10
∂ ln μ þ ∂zλ;10

∂ ln μ
�
zX;11 − 2

�∂zX;10
∂ ln μ þ ∂zλ;10

∂ ln μ
�
zX;11

−
�∂zX;1ð−1Þ

∂ ln μ þ ∂zλ;1ð−1Þ
∂ ln μ

� ∂zX;11
∂ lnΛ − 2

X
i

∂zm2
i ;11

∂ ln μ
∂zX;10
∂ lnm2

i
− 2

X
i

∂zm2
i ;10

∂ ln μ
∂zX;11
∂ lnm2

i

¼ 4

�∂zX;21
∂ ln μ −

�∂zX;10
∂ ln μ þ ∂zλ;10

∂ ln μ
�
zX;11

�
¼ 0; ðB36Þ

where we have again used that zX;11 is a pure constant, as
well as the second constraint in (B22).
We mention that, contrary to the absence of explicit Λ

dependence, the absence of implicit Λ dependence applies
only to the anomalous dimensions in the continuum limit
ϵ → 0. For instance, the one-loop anomalous dimension to
order ϵ1

γX ¼ λ
∂zX;10
∂ ln μ þ λ

∂zX;1ð−1Þ
∂ ln μ ðB37Þ

depends implicitly on Λ since one has

∂γX
∂ lnΛ ¼ λ

∂2zX;1ð−1Þ
∂ ln μ∂ lnΛ ¼ 2λ

∂zX;10
∂ ln μ ; ðB38Þ

which is usually not zero. As we already discussed above,
this Λ-dependent, order ϵ1 one-loop anomalous dimension
is crucial for the correct evaluation of the order ϵ0 two-loop
anomalous dimension since it is multiplied by a 1=ϵ factor
in Eq. (B19). In this case, however, theΛ dependence (B38)
gets canceled by other Λ-dependent terms in the ϵ0 order
two-loop anomalous dimension, thus ensuring the Λ
independence of the latter.

5. Nonrenormalization theorems

The formula for the two-loop anomalous dimensions that
we have derived above is general. It may happen, as in the
model considered in this work, that some of the renorm-
alization factors obey a nonrenormalization theorem stating
that their product

Q
i ZXi

is finite and allowing one to
consider a scheme where this product is set equal to 1. This,

in turn, implies the relation
P

i γXi
¼ 0 between the

corresponding anomalous dimensions.
Let us here check that the general formula (B20) is

compatible with this expectation. The nonrenormalization
theorem implies

0 ¼
X
i

zXi;1; ðB39Þ

0 ¼ 2
X
i

zXi;2 þ
X
i≠j

zXi;1zXj;1: ðB40Þ

Owing to (B39), it is trivial to check that the terms of (B20)
that are linear in zX;1 cancel in the sum

P
i γXi

. To check
that the remaining terms cancel as well, we use (B39) in
order to rewrite (B40) as

0 ¼ 2
X
i

zXi;2 −
X
i

z2Xi;1
: ðB41Þ

Then, the remaining terms in (B20) are proportional to

X
i

�∂zXi;2

∂ ln μ −
∂zXi;1

∂ ln μ zXi;1

�

¼ 1

2

∂
∂ ln μ

X
i

ð2zXi;2 − z2Xi;1
Þ ¼ 0: ðB42Þ

APPENDIX C: MINIMAL SUBTRACTION

Up until now, we have restricted our attention to
renormalization schemes associated with renormalization
conditions. In this section, for completeness, we revisit the
minimal subtraction scheme which relies, not on
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renormalization conditions, but rather on the strict absorp-
tion of 1=ϵ poles in the renormalization factors. We will
show that, despite appearances, this scheme fits the general
discussion of the previous section.
In the minimal subtraction scheme, renormalization

factors contain purely divergent terms in the limit ϵ → 0
(whose prefactors are pure constants), and do not involve
any finite part. At two-loop order for instance, we have

ZX ¼ 1þ λ
zMS
X;1

ϵ
þ λ2

zMS
X;2

ϵ2
; ðC1Þ

with zMS
X;1 ¼ zX;11 and zMS

X;2 ¼ zX;22 þ ϵzMS
21 ,

15 and thus

zMS
X;10 ¼ zMS

X;1ð−1Þ ¼ zMS
X;20 ¼ 0. Naïvely, it seems that one

cannot use the formulas (B14) and (B23) for these would
give simply 0. Moreover, it seems that there is no point in
distinguishing between a renormalization scale μ and a
regulating scale Λ as we did above since there are no
renormalization conditions to introduce the renormalization
scale μ in the first place.
On the other hand, the only scale μ that is introduced in

minimal subtraction is the scale that makes the bare
coupling dimensionless. As we have already mentioned,
this is a regulating scale a priori, which has nothing to do
with renormalization (denoting it as μ is not enough to
qualify it as a renormalizaiton scale) and it is not clear how
such a scale could control the renormalization group flow.
In this section, we first derive the minimal subtraction

anomalous dimensions in the standard way, without paying
much attention to these considerations. We then revisit the
same calculations using a point of view more in line with
the general discussion of the previous section. While
making the minimal subtraction scheme fit the general
picture, this point of view clarifies the true source of μ
dependence in this scheme and makes the determination of
anomalous dimensions simpler and compatible with the
formulas (B14) and (B23).

1. Standard derivation

From Eq. (C1) at one-loop order, because the factors

zMS
X;ab are constants and because the only source for μ
dependence is λ, we find

γX ¼ βλ=λ
ZX

λ
zX;11
ϵ

: ðC2Þ

According to Eq. (B32) with Λ ¼ μ, βλ=λ starts at order λ0

with the contribution −2ϵ. To obtain the anomalous
dimension at order λ, we just need to keep this leading

contribution to βλ=λ and replace ZX by 1 in the denominator
of Eq. (C2). One finds eventually

γX ¼ −2zX;11λ; ðC3Þ

where we note that the ϵ coming from βλ=λ has combined
with the 1=ϵ in (C2) to produce an order ϵ0 anomalous
dimension.
One can proceed similarly at two-loop order. Starting

from Eq. (C1), one finds

γX ¼ βλ=λ
ZX

�
λ
zX;11
ϵ

þ 2λ2
zX;22 þ ϵzX;21

ϵ2

�
: ðC4Þ

This time, βλ=λ (as well as ZX) needs to be expanded to
order λ. This includes the contribution −2ϵ but also γλ as
given by Eq. (C3) with X ¼ λ. One finds

γX ¼ −4λ2
zX;22 − zX;11ðzX;11 þ zλ;11Þ=2

ϵ

− ð2zX;11λþ 4zMS
X;21λ

2Þ: ðC5Þ
The finiteness of the beta function imposes that

zX;22 ¼
1

2
zX;11ðzX;11 þ zλ;11Þ; ðC6Þ

and we finally arrive at

γX ¼ −ð2zX;11λþ 4zMS
X;21λ

2Þ: ðC7Þ

2. Connecting to the general discussion

Let us now rederive these results with a slightly different
perspective that makes the minimal subtraction fit the
general discussion. In particular, Eqs. (C3) and (C7) will
appear as particular cases of Eqs. (B14) and (B23).
Consider a slight generalization of the minimal sub-

traction scheme, which we refer to as ΛMS, defined by the
renormalization factors

ZΛMS
X ¼ 1þ λ

zΛMS
X;1

ϵ
þ λ2

zΛMS
X;2

ϵ2
; ðC8Þ

with

zΛMS
X;a ¼

�
Λ
μ

�
2aϵ

zMS
X;a; ðC9Þ

or, equivalently

zΛMS
X;aa ¼ zMS

X;aa; ðC10Þ

zΛMS
X;aða−1Þ ¼ zMS

X;aða−1Þ þ 2azMS
X;aa ln

Λ
μ
;

� � � ðC11Þ

15The values of zX;11 and zX;22 are the same as in the previous
section since they are scheme independent. On the other hand,
zMS
X;10, z

MS
X;1ð−1Þ, z

MS
X;21 and zMS

X;20 have no reason to be the same as
those in the previous section.
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where the dots represent zX;ab for b < a − 1. In fact, this
defines a family of schemes parametrized by Λ, of which
the standard minimal subtraction corresponds to the choice
Λ ¼ μ. The scale Λ plays the role of the regulating scale,
while the scale μ is the renormalization scale and the flow
with respect to this latter scale needs to be determined for
m2

B ¼ Zm2m2 and λB ¼ Λ2ϵZλλ fixed. In particular the
anomalous dimensions should again be independent of
the choice of Λ in the continuum limit (we will check this
explicitly below), thus providing an alternative way to
obtain the anomalous dimensions in minimal subtraction.
The benefit of this approach is that, upon the appropriate
introduction of Zλ factors, the only way the coupling
appears is via the combination Λ2ϵZλλ. Therefore one
never needs to consider βλ=λ and cancellations of the type
ϵ × 1=ϵ.
At one-loop order for instance, up to higher order

corrections, one writes

ZX ¼ 1þ Zλλ

�
Λ
μ

�
2ϵ zX;11

ϵ
: ðC12Þ

The only dependence on μ is via the factor μ−2ϵ and one
obtains immediately

γX ¼ −2zX;11
Zλ

ZX
λ

�
Λ
μ

�
2ϵ

¼ −2zX;11λ
�
Λ
μ

�
2ϵ

; ðC13Þ

which boils down to (C3) in the continuum limit. Similarly,
at two-loop order, one would write

ZX ¼ 1þ λ

�
Λ
μ

�
2ϵ zX;11

ϵ
þ λ2

�
Λ
μ

�
4ϵ
�
zX;22
ϵ2

þ zX;21
ϵ

�

¼ 1þ Zλλ

�
Λ
μ

�
2ϵ zX;11

ϵ

þ Z2
λλ

2

�
Λ
μ

�
4ϵ
�
zX;22 − zX;11zλ;11

ϵ2
þ zX;21

ϵ

�
: ðC14Þ

Again, the only μ dependence is via the factors μ−2aϵ and
one recovers (C7) together with the constraint (C6). In fact,
with this approach, it is not difficult to see that the minimal
subtraction anomalous dimension is given at any order by

γX ¼ −
X
a≥1

2azMS
X;a1g

2a: ðC15Þ

We mention also that the ΛMS-scheme is no different
from the generic schemes considered in the previous
section and, as such, the expressions (C3) and (C7) should
be compatible with (B14) and (B23). This is easily seen
after noting that, from (C9), the μ dependence of the factors

zΛMS
X;a is controlled by the same equation that controls the Λ
dependence, see Eq. (B27), up to a sign:

∂zΛMS
X;a

∂ ln μ þ 2aϵzΛMS
X;a ¼ 0: ðC16Þ

This in turn implies

∂zΛMS
X;ab

∂ ln μ ¼ −2azΛMS
X;aðbþ1Þ: ðC17Þ

Using these identities, it is easily seen that, in the minimal
subtraction scheme, (C3) and (C7) are compatible with
(B14) and (B23). Moreover, the identity (B22) is nothing
but a rewriting of (C6).
The present discussion also clarifies the true source of μ

dependence within the standard minimal subtraction
scheme. By revisiting the derivation (C14) with Λ ¼ μ,
we see that the scale μ that appears in the numerator of the
factor ðμ=μÞϵ, and that stems from the rescaling of
the coupling, has nothing to do with the RG running.
The running originates instead from the scale μ that appears
in the denominator of the factor ðμ=μÞϵ. Contrary to the
former which is nothing but a regulating scale needed
to make the coupling dimensionless in dimensional regu-
larization, this second occurrence of μ is the renormaliza-
tion scale. It is introduced here not by renormalization
conditions, but rather by the minimal subtraction require-
ment that the renormalization factors do not depend
explicitly on any scale and in particular on the regulating
scale.

3. Integrating the one-loop flow

For completeness, let us recall here how the minimal
subtraction beta functions and anomalous dimensions are
integrated out at one- and two-loop orders. At one-loop
order, we have

βλ
λ
¼ −γλ ¼ 2zλ;11λ: ðC18Þ

This is rewritten as

dλ
λ2

¼ zλ;11d ln μ2; ðC19Þ

which integrates to

λðμÞ ¼ λ0

1 − zλ;11λ0 ln
μ2

μ2
0

¼ 1

−zλ;11 ln
μ2

Λ2
LP

ðC20Þ

with

Λ2
LP ¼ μ20 exp

�
1

zλ;11λ0

�
: ðC21Þ
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The scale ΛLP is the Landau pole and, if zλ;11 is negative,
the flow makes sense only for μ > ΛLP. We restrict our
discussion to this case from now on.
Next, we write

β2m=m2

βλ=λ
¼ γm2

γλ
¼ zm2;11

zλ;11
; ðC22Þ

which is nothing but

d lnm2 ¼ zm2;11

zλ;11
d ln λ ¼ d lnðλÞ

z
m2 ;11
zλ;11 : ðC23Þ

It follows that

m2

m2
0

¼
�
λ

λ0

�z
m2 ;11
zλ;11 : ðC24Þ

Finally, we write

γφ
βλ=λ

¼ −
γφ
γλ

¼ −
zφ;11
zλ;11

; ðC25Þ

which is nothing but

d ln zi ¼ −
zφi;11

zλ;11
d ln λ ¼ d lnðλÞ−

zφi;11
zλ;11 ; ðC26Þ

where zi is the rescaling factor (B3). It follows that

ziðμ; μ0Þ ¼
�
λ

λ0

�
−
zφ;11
zλ;11 : ðC27Þ

4. Integrating the two-loop flow

We have

βλ
λ
¼ −γλ ¼ 2zλ;11λþ 4zλ;21λ2; ðC28Þ

which is nothing but

dλ
λ2ð1þ 2

zλ;21
zλ;11

λÞ ¼ zλ;11d ln μ2: ðC29Þ

We can rewrite this conveniently as

zλ;11d ln μ2 ¼ −
1
λ

ð1λ þ 2
zλ;21
zλ;11

Þ d
�
1

λ

�

¼
�
−1þ

2
zλ;21
zλ;11

1
λ þ 2

zλ;21
zλ;11

�
d

�
1

λ

�
; ðC30Þ

which integrates to

zλ;11 ln
μ2

μ20
¼ 1

λ0
−

1

λðμÞ þ 2
zλ;21
zλ;11

ln
1

λðμÞ þ 2
zλ;21
zλ;11

1
λ0
þ 2

zλ;21
zλ;11

; ðC31Þ

and gives μ as a function of λ. We notice that, because the
running of g is logarithmic, the second term is subleading in
the UV and we recover the one-loop running. We can
estimate the correction to the one-loop behavior by replac-
ing λðμÞ by λ1loopðμÞ in the logarithm. We obtain

1

λðμÞ ¼
1

λ0
− zλ;11 ln

μ2

μ20
þ 2

zλ;21
zλ;11

ln
−zλ;11 ln

μ2

μ2
0

1
λ0
þ 2

zλ;21
zλ;11

: ðC32Þ

We note that

λ2loop − λ1loop ¼ −2λ1loopλ2loop
zλ;21
zλ;11

ln
−zλ;11 ln

μ2

μ2
0

1
λ0
þ 2

zλ;21
zλ;11

; ðC33Þ

and thus the corrections are not that small. We mention also
that (C31) provides corrections to the Landau pole defined
by the scale at which 1=λðμÞ vanishes. One finds

Λ2
LP ¼ μ20

�
1

1þ zλ;11
2zλ;21λ0

�
2
zλ;21
z2
λ;11 exp

�
1

zλ;11λ0

�
; ðC34Þ

in terms of which we have

zλ;11 ln
μ2

Λ2
LP

¼−
1

λðμÞþ2
zλ;21
zλ;11

ln

�
1þ zλ;11

2zλ;21

1

λðμÞ
�
: ðC35Þ

Next, we write

βm2

m2
¼ −γm2 ¼ 2zm2;11λþ 4zm2;21λ

2; ðC36Þ

which is nothing but

d lnm2 ¼ ðzm2;11λþ 2zm2;21λ
2Þd ln μ2: ðC37Þ

Upon using (C30), this is rewritten as
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zλ;11d lnm2 ¼ −
zm2;11 þ 2zm2;21λ

1
λ þ 2

zλ;21
zλ;11

d

�
1

λ

�
¼ −

�
zm2;11

1
λ þ 2

zλ;21
zλ;11

þ 2zm2;21
1
λ ð1λ þ 2

zλ;21
zλ;11

Þ
�
d

�
1

λ

�

¼ −
�

zm2;11
1
λ þ 2

zλ;21
zλ;11

þ zλ;11
zλ;21

zm2;21

�
1
1
λ

−
1

1
λ þ 2

zλ;21
zλ;11

��
d

�
1

λ

�
; ðC38Þ

which is easily integrated to

ln
m2

m2
0

¼ zm2;21

zλ;21
ln

λ

λ0
þ
�
zm2;21

zλ;21
−
zm2;11

zλ;11

�
ln

1
λðμÞ þ 2

zλ;21
zλ;11

1
λ0
þ 2

zλ;21
zλ;11

¼ zm2;11

zλ;11
ln

λ

λ0
þ
�
zm2;21

zλ;21
−
zm2;11

zλ;11

�
ln

1þ 2
zλ;21
zλ;11

λ

1þ 2
zλ;21
zλ;11

λ0
; ðC39Þ

or

m2

m2
0

¼
�
λ

λ0

�z
m2 ;11
zλ;11

�
1þ 2

zλ;21
zλ;11

λ

1þ 2
zλ;21
zλ;11

λ0

�zλ;11zm2 ;21
−z

m2 ;11
zλ;21

zλ;21zλ;11

: ðC40Þ

The second factor approaches 1 in the deep UV and we recover the one-loop running.
Finally, if we solve formally (C28) and (C36) for λ and λ2, we find

λ ¼
βλ
λ zm2;21 −

βm2

m2 zλ;21
2ðzλ;11zm2;21 − zm2;11zλ;21Þ

and λ2 ¼
βm2

m2 zλ;11 −
βλ
λ zm2;11

4ðzλ;11zm2;21 − zm2;11zλ;21Þ
: ðC41Þ

Plugging this back into

γφi
¼ 2zφi;11

λþ 4zφi;21
λ2; ðC42Þ

gives

γφ ¼ −
zφ;11zm2;21 − zm2;11zφ;21
zλ;11zm2;21 − zm2;11zλ;21

βλ
λ

−
zφ;11zλ;21 − zλ;11zφ;21
zm2;11zλ;21 − zλ;11zm2;21

βm2

m2
ðC43Þ

from which it follows that

ziðμ; μ0Þ ¼
�
λ

λ0

�
−
zφ;11zm2 ;21

−z
m2 ;11

zφ;21

zλ;11zm2 ;21
−z

m2 ;11
zλ;21

×

�
m2

m2
0

�−
zφ;11zλ;21−zλ;11zφ;21

z
m2 ;11

zλ;21−zλ;11zm2 ;21 : ðC44Þ

To recover the one-loop behavior, we notice that deep in the
UV, Eq. (C24) holds, and this leads to

zðμ; μ0Þ ¼
�
λ

λ0

�
−
zφ;11zm2 ;21

−z
m2 ;11

zφ;21

zλ;11zm2 ;21
−z

m2 ;11
zλ;21

×
�
λ

λ0

�
−
z
m2 ;11
zλ;11

zφ;11zλ;21−zλ;11zφ;21
z
m2 ;11

zλ;21−zλ;11zm2 ;21 : ðC45Þ

We notice that the terms proportional to zφ;21 in the
numerator of the exponent cancel and we are left with

ziðμ; μ0Þ ¼
�
λ

λ0

�
−
zφ;11ðzm2 ;21

−
zλ;21
zλ;11

z
m2 ;11

Þ
zλ;11zm2 ;21

−z
m2 ;11

zλ;21

¼
�
λ

λ0

�
−
zφ;11
zλ;11 ; ðC46Þ

in agreement with Eq. (C27).
We mention that the previous derivation is not valid for a

massless field and the formula (C44) is plagued by
singularities (since zm2;ab ¼ 0). However, plugging (C40)
into (C44), we can combine the various powers of λ=λ0 just
as before and we arrive at

ziðμ; μ0Þ ¼
�
λ

λ0

�
−
zφ;11
zλ;11

�
1þ 2

zλ;21
zλ;11

λ

1þ 2
zλ;21
zλ;11

λ0

�zφ;11
zλ;11

−
zφ;21
zλ;21

: ðC47Þ
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These formulas do not make any reference to the mass of
the fields and apply, therefore, to a massless field as well.

APPENDIX D: ASYMPTOTIC EXPANSION
IN THE UV

In this section, we collect the next-to-leading order
UV and IR asymptotic expansions of the various two

anomalous dimensions as computed in the IR-safe scheme.
The corresponding expansions for the beta functions for λ
and m2 can be deduced from the nonrenormalization
theorems, whereas that for M can be deduced directly
from its relation to γM.
In the UV, at next-to-leading order of the asymptotic

expansion, we find for the gluon and ghost anomalous
dimensions

γA ¼ λ

��
−
13

3
þ
�
65

4
þ 3

2
ln

μ2

m2

�
m2

μ2

�
þ Nf

N

�
4

3
− 8

M2

μ2

��

þ λ2
�
−
85

6
þ
�
18343

96
þ π2

48
þ 171

4
ζð3Þ − 891

16
S2 þ

205

16
ln

μ2

m2
þ 35

8
ln2

μ2

m2

�
m2

μ2

þ Nf

N

�
17

3
−
�
8

3
þ 48ζð3Þ

�
m2

μ2
−
�
281

3
þ 16ζð3Þ

�
M2

μ2
þ 2

�
m2

μ2
− 2

�
1þM2

m2

�
M2

μ2

�
ĨmMM

þ
�
2 ln

μ2

m2
− 2 ln

μ2

m2
ln

μ2

M2
þ ln2

μ2

M2

�
m2

μ2
− 2

�
ln

μ2

m2
þ 2 ln

μ2

M2

�
M2

μ2

�

þNf

N
CF

N

�
4 −

�
128

3
− 32ζð3Þ

�
m2

μ2
− 48

M2

μ2

��
; ðD1Þ

γc ¼ λ

�
−
3

2
−
�
3

4
−
3

2
ln

μ2

m2

�
m2

μ2

�

þ λ2
�
−
17

4
þ
�
−
211

8
þ π2

48
þ 3

4
ζð3Þ − 891

16
S2 þ

103

8
ln

μ2

m2
þ 35

8
ln2

μ2

m2

�
m2

μ2

þ Nf

N

�
1

2
þ 3

2

m2

μ2
þ 11

M2

μ2
þ 2

�
m2

μ2
− 2

�
1þM2

m2

�
M2

μ2

�
ĨmMM

þ
�
ln

μ2

m2
− 2 ln

μ2

m2
ln

μ2

M2
þ ln2

μ2

M2

�
m2

μ2
− 2

�
ln

μ2

m2
þ 2 ln

μ2

M2

�
M2

μ2

��
; ðD2Þ

with

S2 ≡ 4

9
ffiffiffi
3

p ImLi2ðeiπ=3Þ; ðD3Þ

and

ĨmMM ¼ −mRe

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − 4M2

p

m2 − 4M2

�
π2

6
−
1

2
ln2

M2

m2
þ ln2

�
1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − 4M2

p

2m

�
− 2Li2

�
1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 − 4M2

p

2m

���
; ðD4Þ

where Li2 denotes the dilogarithm function. It is easily checked that the term between square brackets in ĨmMM vanishes
linearly as m → 2M and thus the above expressions for γA and γc are regular in this limit.
In mass-independent schemes, the coupling beta function is two-loop universal, whereas in mass-dependent schemes,

such as the IR-safe scheme considered here, it is two-loop universal in the UV. Using βλ=λ ¼ γA þ 2γc, we have checked
that we recover indeed the two-loop universal behavior in the UV [84].
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Similarly, for the quark anomalous dimensions, we find

γψ ¼ λ
CF

N

�
9

2
− 3 ln

μ2

m2

�
m2

μ2

þ λ2
CF

N

�
25

2
þ
�
695

8
−
π2

24
− 45ζð3Þ þ 891

8
S2 −

47

2
ln

μ2

m2
−
35

4
ln2

μ2

m2

�
m2

μ2
− ð31 − 18ζð3ÞÞM

2

μ2

þ CF

N

�
−3 − 8ð5 − 6ζð3ÞÞm

2

μ2
þ 24

M2

μ2

�

þ Nf

N

�
−2 − 5

m2

μ2
− 18

M2

μ2
− 4

�
m2

μ2
− 2

�
1þM2

m2

�
M2

μ2

�
ĨmMM

− 2

�
ln

μ2

m2
− 2 ln

μ2

m2
ln

μ2

M2
þ ln2

μ2

M2

�
m2

μ2
þ 4

�
ln

μ2

m2
þ 2 ln

μ2

M2

�
M2

μ2

��
; ðD5Þ

and

γM ¼ λ
CF

N

�
6 −

�
9

2
þ 3 ln

μ2

m2

�
m2

μ2
− 6

M2

μ2
ln

μ2

M2

�

þ λ2
CF

N

�
67

2
−
�
41

2
þ π2

24
þ 69ζð3Þ − 891

8
S2 þ

49

4
ln

μ2

m2
þ 35

4
ln2

μ2

m2

�
m2

μ2
þ
�
3 − 36ζð3Þ − 46 ln

μ2

M2

�
M2

μ2

þ CF

N

�
3 −

�
35

2
− 48ζð3Þ

�
m2

μ2
þ 2ð7 − 12ζð3ÞÞM

2

μ2
− 72ĨmMM

M2

μ2

− 45 ln
μ2

m2

m2

μ2
þ 18

�
3 − 2 ln

μ2

M2

�
ln

μ2

M2

M2

μ2

�

þ Nf

N

�
−2þ 5

m2

μ2
− 10

M2

μ2
− 4

�
m2

μ2
− 2

�
1þM2

m2

�
M2

μ2

�
ĨmMM

− 2

�
ln

μ2

m2
− 2 ln

μ2

m2
ln

μ2

M2
þ ln2

μ2

M2

�
m2

μ2
þ 4

�
ln

μ2

m2
þ 3 ln

μ2

M2

�
M2

μ2

��
: ðD6Þ

APPENDIX E: ASYMPTOTIC EXPANSION IN THE IR

In order to obtain the IR asymptotic expansion of the two-loop anomalous dimensions at next-to-leading order, we first
checked that all the master integrals required to obtain the anomalous dimensions to order μ4=m4 and μ4=M4 are either
known analytically or such that one can always root the external momentum through massive propagators. For this second
type of master integrals, one can employ the strategy of Ref. [79] that we briefly reviewed in Sec. III D 3. For completeness,
we here provide the resulting expansions.
In the case of Sabc, assuming a ≠ 0, it is convenient to choose the loop momenta as follows:

SabcðkÞ ¼
Z
p

Z
q

1

ðpþ kÞ2 þ a
1

ðqþ pÞ2 þ b
1

q2 þ c
: ðE1Þ

One can then expand the massive propagator carrying the external momentum k:

1

ðpþ kÞ2 þ a
¼

X∞
n¼0

ð−1Þn ð2ðp · kÞ þ k2Þn
ðp2 þ aÞnþ1

¼
X∞
n¼0

ð−1Þn
Xn
l¼0

n!
l!ðn − lÞ!

ð2ðp · kÞÞlðk2Þn−l
ðp2 þ aÞnþ1

: ðE2Þ

This yields
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SabcðkÞ ¼
X∞
n¼0

ð−1Þn
Xn
l¼0

n!
l!ðn − lÞ!

Z
p

Z
q

ð2p · kÞlðk2Þn−l
ðp2 þ aÞnþ1

1

ðqþ pÞ2 þ b
1

q2 þ c
: ðE3Þ

The p integral vanishes for l odd, whereas for l even, one can use the formula

Z
ddp
ð2πÞd fðp

2Þð2p · kÞl ¼ l!
ðl=2Þ!

ðk2Þl=2
ðd=2Þl=2

Z
ddp
ð2πÞd fðp

2Þðp2Þl=2; ðE4Þ

given in Ref. [78], where ðaÞn ≡ aðaþ 1Þ � � � ðaþ n − 1Þ is the Pochhammer symbol. One then arrives at

SabcðkÞ ¼
X∞
n¼0

ð−1Þn
X½n=2�
l¼0

n!
l!ðn − 2lÞ!

ðk2Þn−l
ðd=2Þl

Z
p

Z
q

ðp2Þl
ðp2 þ aÞnþ1

1

ðqþ pÞ2 þ b
1

q2 þ c

¼
X∞
n¼0

X½n=2�
l¼0

Xl
h¼0

ð−1Þnþl−h n!
ðn − 2lÞ!h!ðl − hÞ!

ðk2Þn−l
ðd=2Þl

al−hIðnþ1−hÞ11ða; b; cÞ; ðE5Þ

where we redefined l → 2l (since it is even) and ½n=2� denotes the integer part of n=2.
We have thus expressed the IR expansion of Sabc in terms of the integrals Iðnþ1−hÞ11 which are essentially nothing but

multiple derivatives of I111ða; b; cÞ with respect to a. These multiple derivatives can be conveniently obtained by repeated
use of Eq. (56).16 We note that l ≤ n=2 and thus the exponent of k2 in (E5) is such that n − l ≥ n=2. This implies that terms
with n > 2p contribute to powers of k2 with an exponent strictly larger than p. In other words, to obtain the expansion up to
order ðk2Þp, it is enough to truncate the sum over n up to and including n ¼ 2p.
In the case of UabcdðkÞ, assuming a ≠ 0, we write

UabcdðkÞ ¼
Z
p

Z
q

1

ðpþ kÞ2 þ a
1

p2 þ b
1

q2 þ c
1

ðqþ pÞ2 þ d
; ðE6Þ

which is similar to (E1) with b → d and an additional propagator 1=ðp2 þ bÞ. It is then clear that by using the same
technique as above, we arrive at

UabcdðkÞ ¼
X∞
n¼0

ð−1Þn
X½n=2�
l¼0

n!
l!ðn − 2lÞ!

ðk2Þn−l
ðd=2Þl

Z
p

Z
q

ðp2Þl
ðp2 þ aÞnþ1

1

p2 þ b
1

q2 þ c
1

ðqþ pÞ2 þ d

¼
X∞
n¼0

X½n=2�
l¼0

Xl
h¼0

ð−1Þnþl−h n!
ðn − 2lÞ!h!ðl − hÞ!

ðk2Þn−l
ðd=2Þl

al−h

×
Z
p

Z
q

1

ðp2 þ aÞnþ1−h
1

p2 þ b
1

q2 þ c
1

ðqþ pÞ2 þ d
: ðE7Þ

In the case where a ¼ b, we then obtain

UaacdðkÞ ¼
X∞
n¼0

X½n=2�
l¼0

Xl
h¼0

ð−1Þnþl−h n!
ðn − 2lÞ!h!ðl − hÞ!

ðk2Þn−l
ðd=2Þl

al−hIðnþ2−hÞ11ða; c; dÞ: ðE8Þ

In the case a ≠ b, we write

16One could wonder why it is not possible to simply take multiple derivatives of the explicit expression for I111ða; b; cÞ. Although
possible this leads to cumbersome combinations of hypergeometric functions and their derivatives. It is much more convenient to first
express the multiple derivatives algebraically in terms of I111ða; b; cÞ using Eq. (56) and only then do the substitution of I111ða; b; cÞ by
its explicit expression.
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αnþ1 ≡ 1

ðp2 þ aÞnþ1

1

p2 þ b
¼ 1

ðp2 þ aÞn
1
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1
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1
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�

1
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1
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�
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1

ðp2 þ aÞnþ1
−

1

b − a
αn ¼

1

b − a
1

ðp2 þ aÞnþ1
−

1

ðb − aÞ2
1

ðp2 þ aÞn þ
1

ðb − aÞ2 αn−1

¼ 1

b − a
1

ðp2 þ aÞnþ1
−

1

ðb − aÞ2
1

ðp2 þ aÞn þ � � � þ ð−1Þn
ðb − aÞnþ1

1

p2 þ a
−

ð−1Þn
ðb − aÞnþ1

α0

¼
Xn
j¼0

ð−1Þj
ðb − aÞjþ1

1

ðp2 þ aÞnþ1−j −
ð−1Þn

ðb − aÞnþ1

1

p2 þ b
; ðE9Þ

and then

UabcdðkÞ ¼ −
X∞
n¼0

X½n=2�
l¼0

Xl
h¼0

ð−1Þl n!
ðn − 2lÞ!h!ðl − hÞ!

ðk2Þn−l
ðd=2Þl

al−h

ðb − aÞnþ1−h I111ðb; c; dÞ

þ
X∞
n¼0

X½n=2�
l¼0

Xl
h¼0

Xn−h
j¼0

ð−1Þnþl−hþj n!
ðn − 2lÞ!h!ðl − hÞ!

ðk2Þn−l
ðd=2Þl

al−h

ðb − aÞjþ1
Iðnþ1−h−jÞ11ða; c; dÞ: ðE10Þ

As before, to obtain the expansion up to order ðk2Þp, we need to consider the sum over n up to n ¼ 2p.
Let us finally consider the case of Mabcde, assuming a ≠ 0 and b ≠ 0. We write

MabcdeðkÞ ¼
Z
p

Z
q

1

ðpþ kÞ2 þ a
1

ðqþ kÞ2 þ b
1

p2 þ c
1

q2 þ d
1

ðp − qÞ2 þ e
; ðE11Þ

where we assume a ≠ 0 and b ≠ 0. The expansion of the two propagators carrying k leads to

MabcdeðkÞ ¼
X∞
n1¼0

X∞
n2¼0

Xn1
l1¼0

Xn2
l2¼0

ð−1Þn1þn2n1!n2!
l1!l2!ðn1 − l1Þ!ðn2 − l2Þ!

ðk2Þn1þn2−l1−l2

×
Z
p

Z
q

ð2ðp · kÞÞl1

ðp2 þ aÞn1þ1

ð2ðq · kÞÞl2
ðq2 þ bÞn2þ1

1

p2 þ c
1

q2 þ d
1

ðp − qÞ2 þ e
: ðE12Þ

This can be simplified using the last formula in the appendix of Ref. [78]

MabcdeðkÞ ¼
X∞
n1¼0

X∞
n2¼0

Xn1
l1¼0

Xn2
l2¼0

X
2h1=2þh3¼l1=2

ð−1Þn1þn2n1!n2!
ðn1 − l1Þ!ðn2 − l2Þ!h1!h2!h3!

ðk2Þn1þn2−ðl1þl2Þ=2

ðd=2Þðl1þl2Þ=2

×
Z
p

Z
q

ðp2Þh1
ðp2 þ aÞn1þ1

ðq2Þh2
ðq2 þ bÞn2þ1

1

p2 þ c
1

q2 þ d
ð2p · qÞh3

ðp − qÞ2 þ e
: ðE13Þ

Using 2p · q ¼ p2 þ q2 þ e − ðp − qÞ2 − e, this rewrites as
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MabcdeðkÞ ¼
X∞
n1¼0

X∞
n2¼0

Xn1
l1¼0

Xn2
l2¼0

X
2h1=2þh3¼l1=2

X
j1þj2þj3þj4¼h3

ð−1Þn1þn2þj4n1!n2!
ðn1 − l1Þ!ðn2 − l2Þ!h1!h2!j1!j2!j3!j4!

×
ðk2Þn1þn2−ðl1þl2Þ=2

ðd=2Þðl1þl2Þ=2
ej3

Z
p

Z
q

ðp2Þh1þj1

ðp2 þ aÞn1þ1

ðq2Þh2þj2

ðq2 þ bÞn2þ1

1

p2 þ c
1

q2 þ d
1

ððp − qÞ2 þ eÞ1−j4

¼
X∞
n1¼0

X∞
n2¼0

Xn1
l1¼0

Xn2
l2¼0

X
2h1=2þh3¼l1=2

X
j1þj2þj3þj4¼h3

Xh1þj1

p1¼0

Xh2þj2

p2¼0

×
ð−1Þn1þn2þj4þh1þj1−p1þh2þj2−p2n1!n2!ðh1 þ j1Þ!ðh2 þ j2Þ!

ðn1 − l1Þ!ðn2 − l2Þ!h1!h2!j1!j2!j3!j4!p1!p2!ðh1 þ j1 − p1Þ!ðh2 þ j2 − p2Þ!
ðk2Þn1þn2−ðl1þl2Þ=2

ðd=2Þðl1þl2Þ=2

× ah1þj1−p1bh2þj2−p2ej3
Z
p

Z
q

ðp2 þ cÞ−1
ðp2 þ aÞn1þ1−p1

ðq2 þ dÞ−1
ðq2 þ bÞn2þ1−p2

1

ððp − qÞ2 þ eÞ1−j4 : ðE14Þ

In the case a ¼ c and b ¼ d, we arrive at

MababeðkÞ ¼
X∞
n1¼0

X∞
n2¼0

Xn1
l1¼0

Xn2
l2¼0

X
2h1=2þh3¼l1=2

X
j1þj2þj3þj4¼h3

Xh1þj1

p1¼0

Xh2þj2

p2¼0

×
ð−1Þn1þn2þj4þh1þj1−p1þh2þj2−p2n1!n2!ðh1 þ j1Þ!ðh2 þ j2Þ!

ðn1 − l1Þ!ðn2 − l2Þ!h1!h2!j1!j2!j3!j4!p1!p2!ðh1 þ j1 − p1Þ!ðh2 þ j2 − p2Þ!

×
ðk2Þn1þn2−ðl1þl2Þ=2

ðd=2Þðl1þl2Þ=2
ah1þj1−p1bh2þj2−p2ej3Iðn1þ2−p1Þðn2þ2−p2Þð1−j4Þða; b; eÞ: ðE15Þ

In the other cases, we need to make use of (E9). We note that li ≤ ni and thus ni − li=2 ≥ ni=2, so terms with n1 þ n2 >
2p contribute to powers of k2 with exponent n1 þ n2 − ðl1 þ l2Þ=2 > p. In other words, to obtain the expansion up to
order ðk2Þp, we need to truncate the double sum over n1 and n2 such that it includes all terms with n1 þ n2 ≤ 2p. For j4 ¼ 0,
we need to relate Iðn1þ2−p1Þðn2þ2−p2Þ1ða; b; eÞ to I111ða; b; eÞ by repeated use of (56). For j4 ≥ 1, we can relate
Iðn1þ2−p1Þðn2þ2−p2Þð1−j4Þða; b; eÞ to

Jα;βðaÞ≡
Z
p

1

ðp2 þ aÞαðp2Þβ ¼
a2−α−β−ϵ

ð4πΛ2Þ−ϵ
Γð2 − β − ϵÞΓðαþ β − 2þ ϵÞÞ

Γð2 − ϵÞΓðαÞ ðE16Þ

instead. More precisely

Iðn1þ2−p1Þðn2þ2−p2Þð1−j4Þða; b; eÞ

¼
Z
p

Z
q

1

ðp2 þ aÞn1þ2−p1

1

ðq2 þ bÞn2þ2−p2
ððp − qÞ2 þ eÞj4−1

¼
X

q1þq2þq3þq4¼j4−1

ðj4 − 1Þ!
q1!q2!q3!q4!

eq4
Z
p

Z
q

ðp2Þq1
ðp2 þ aÞn1þ2−p1

ðq2Þq2
ðq2 þ bÞn2þ2−p2

ð−2p · qÞq3

¼
X

q1þq2þ2q3þq4¼j4−1

ðj4 − 1Þ!
q1!q2!ð2q3Þ!q4!

ð2q3Þ!
q3!

eq4

ðd=2Þq3

Z
p

Z
q

ðp2Þq1þq3

ðp2 þ aÞn1þ2−p1

ðq2Þq2þq3

ðq2 þ bÞn2þ2−p2

¼
X

q1þq2þ2q3þq4¼j4−1

ðj4 − 1Þ!
q1!q2!q3!q4!

eq4

ðd=2Þq3
Jn1þ2−p1;−q1−q3ðaÞJn2þ2−p2;−q2−q3ðbÞ; ðE17Þ

where in the last steps we have used Eq. (E4).
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For instance up to order μ2, the gluon and ghost anomalous dimensions in the IR are found to be

γA ¼ λ

�
1

3
−
217

180

μ2

m2
þ 4Nf

5N
μ2

M2

�

þ λ2
μ2

m2

�
38687

25920
−

37

288
π2 þ 3647

288
S2 −

179

360
ln

μ2

m2
þ 13

144
ln2

μ2

m2

þ Nf

N

��
8

9
− 16x2 þ 994

9
x4 −

2756

9
x6 þ 520

9
x8 þ 7216

9
x10 −

1984

3
x12

�
Ĩ1xx

ð1 − 4x2Þ4

þ
�
151

90
−
3334

135
x2 þ 3280

27
x4 −

33112

135
x6 þ 3112

9
x8 −

992

3
x10

�
ln x2

ð1 − 4x2Þ4

−
25þ 1122x2 − 12128x4 þ 36760x6 − 44640x8

270ð1 − 4x2Þ3
�

þCF

N

Nf

N

�
−
�
16

9
− 32x2 þ 1952

9
x4 −

5888

9
x6 þ 1664

3
x8 þ 1280

9
x10

�
Ĩ1xx

ð1 − 4x2Þ4

−
�
4þ 504x2 − 8056x4 þ 47792x6 − 78432x8 þ 19840x10 þ 9600x12

135ð1 − x2Þ2
�

ln x2

ð1 − 4x2Þ4

−
4 − 416x2 þ 3904x4 − 5376x6 þ 4800x8

135ð1 − 4x2Þ3ð1 − x2Þ
�
; ðE18Þ

and

γc ¼ λ

�
−

5

12
þ 1

2
ln

μ2

m2

�
μ2

m2

þ λ2
μ2

m2

�
−
4295

576
þ 5

72
π2 þ 459

16
S2 þ

1

12
ln

μ2

m2
þNf

N

�
5

9
þ 4x2 þ 4x4Ĩ1xx þ

�
1

3
þ 2x2

�
ln x2

��
; ðE19Þ

where we have set x≡M=m. In deriving these expressions,
we have used that ψ1ð1=3Þ þ ψ1ð1=6Þ ¼ 8π2=3þ 81S2,
where ψ1 denotes the trigamma function. In the quenched
limit Nf → 0, we recover the results obtained in Ref. [38].
As already noticed in this reference, the gluon anomalous
dimension is entirely controlled by the one-loop result in
the infrared because the two-loop contribution carries an
extra factor μ2=m2. In the case of the ghost anomalous

dimension, both contributions have a factor μ2=m2 and
feature logarithms of the form ln μ2=m2. We note however
that the logarithm in the two-loop contribution has the same
power as the logarithm in the one-loop contribution and it is
thus perturbatively smaller in the deep infrared where the
coupling approaches 0 [15]. Similar (but lengthier) expres-
sions can be obtained for the anomalous dimensions γψ
and γM.
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