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We construct a new holographic description of QCD using domain wall fermions. The construction
consists of probe D7 branes in a D5 brane geometry describing quarks on a ð4þ 1Þ-dimensional defect in a
ð5þ 1Þ-dimensional gauge theory. We then compactify one dimension of the D5 to introduce confinement
in the gauge degrees of freedom. In addition we allow a spatial dependent mass term for the D7 brane
quarks to isolate chiral fermions on ð3þ 1Þ-dimensional domain walls. The D7 world volume fields, when
restricted to the domain wall position, provide an AdS/QCD description. We compute the spectrum and
compare to data. We include higher dimension operators to systematically improve the description.
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I. INTRODUCTION

Domain wall fermions [1] are a powerful technique for
isolating massless chiral fermions within a gauge theory.
The technique is widely used in lattice QCD simulations
to enforce chiral symmetry. Recently, we investigated the
technique in a holographic setting [2] providing a holo-
graphic description of ð2þ 1Þ-dimensional domain wall
fermions on a probe D7 brane in the five dimensional anti-
de-Sitter space (AdS5) generated by N ¼ 4 super Yang-
Mills theory [3]. In the limit where the higher dimension
mass is very large, the position of the domain wall (where
the chiral fermions are massless) can be found exactly.
Restricting the holographic fields to the locus of the domain
wall gives a holographic description of the dynamics of
those chiral fermions.
Here we take this approach to provide a description of a

ð3þ 1Þ-dimensional domain wall theory with Nf chiral
quarks on the defect—the basic construct is a ð5þ 1Þ-
dimensional gauge theory (on a D5 brane) compactified in
one dimension (introducing confinement), with quarks
present on ð4þ 1Þ-dimensional defects (probe D7 branes).
The domain wall structure is then used to place chiral
fermions on ð3þ 1Þ-dimensional defects. When the
ð4þ 1Þ-dimensional mass is large the position of the
domain wall can be found and the holographic fields,
when reduced to this locus, provide a description of the
chiral fermions. We present the construction of this domain
wall AdS/QCD theory and compute the light meson

spectrum it predicts. The UV of the theory, reflecting that
the gauge dynamics is ð5þ 1Þ dimensional, does not match
to perturbative QCD, so we impose a cutoff at the 3 GeV
scale and only work at lower scales in the holographic
model. The predictions are comparable in quality to those
of other AdS/QCD constructions [4,5].
The holographic description should be matched at the

3 GeV upper cutoff to QCD in the intermediate coupling
regime, and higher dimension operators (HDOs) would be
expected to be present [6]. We include such operators using
Witten’s multitrace prescription [7] (see [8,9] for previous
examples of using HDOs in holographic descriptions of
QCD). We fit the couplings of these operators to the meson
data since we cannot compute the nonperturbative QCD
matching. We show that the predictions of the model can be
systematically improved in this way.

II. THE BRANE CONSTRUCTION

Our construction is built around the D5/probe D7 system
with five coincident directions in the configuration (one of
the systems discussed in [10]),

0 1 2 3 4 5 6 7 8 9

D5 − − − − − ð−Þ • • • •

D7 − − − − − • − − − •

ð1Þ

The UV theory is therefore a supersymmetric ð5þ 1Þ-
dimensional gauge theory with quark hypermultiplets
restricted to a ð4þ 1Þ-dimensional domain wall. The gauge
theory is strongly coupled in the UV, but we will set up our
QCD-like dynamics in the IR, where the supergravity
approximation holds. We will compactify one of the five
spatial directions on the D5 brane, shown by the brackets
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in (1). This breaks supersymmetry and introduces an IR
confinement scale by making the geometry a cigar in the x5
and radial direction.
Note if the D7 brane were at x9 ¼ 0, describing a

massless quark, then the D7 would wrap around the cigar
and reemerge as an anti-D7 brane antipodal on the circle
in x5. This demonstrates that the theory needs an anti-D7
in order for the D7 fluxes to have a sensible solution on the
x5 circle. Here though, we will, except on a domain wall,
set the quark mass very large so that the D7 only live at
large radius where they are widely separated on the x5
circle. We will assume that there is then no interaction
between the antipodal branes and concentrate on the
dynamics on one brane.
The final trickwewill employ is to allow the quarkmassM

on the ð4þ 1Þ-dimensional defect to be x4 dependent. We
will assume it is positive and very large everywhere except in
an interval of width w where the sign flips. The boundaries
of this region have M ¼ 0 and are the domain walls. One
expects the localization of ð3þ 1Þ-dimensional chiral fer-
mions, one on each domainwall.As in the previous examples
we studied in [2], the domain walls approach and merge as
one moves into the IR of the holographic description,
indicating the presence of chiral symmetry breaking. The
v9 field, which describes the condensate of the left and right-
handed fermions, can have solutions isolated on the domain
wall. We show that the solutions display, consistently, chiral
symmetry breaking solutions on the U-shaped embeddings
of the domain wall configurations.

A. D5 geometry

The geometry generated by the D5 branes with a
compact direction is known. One takes the thermal geo-
metry, for example, found in [11] and Wick rotates to
interchange a spatial and time direction, as described in

[12]. This leads to the near-horizon metric
�
U ¼ r=α0,

K ¼ ð2πÞ3=2
gYM

ffiffiffi
N

p
�
,

ds2

α0
¼KUð−dt2þdx24þhdz2Þþ 1

KU

�
1

h
dU2þU2dΩ2

3

�
;

ð2Þ
where

hðUÞ ¼ 1 −
U2

0

U2
; ð3Þ

eϕ ¼ U
K
; g2YM ¼ ð2πÞ3gsα0: ð4Þ

Note that in the ð5þ 1Þ-dimensional dual the gauge field is
of energy dimension one so 1=g2YM has energy dimension
two. Here we see that U has dimension one, and the dilaton
is dimensionless.

To find the circumference of the circle in z, we expand
near the “horizon” U ¼ U0 þ δU and find to leading order
in the U− z plane,

ds2 ¼ 2KδUdz2 þ 1

2KδU
dδU2:

We then set α ¼ Kz and δU ¼ 1
2
Kσ2 and obtain

ds2 ¼ ðdσ2 þ σ2dα2Þ;

which is a plane. To have no deficit angle, 0 < α < 2π
so 0 < z < 2π=K.
Before we can embed the D7 brane, we need to write the

metric so that the directions transverse to the D5 are a flat
plane (as in the cases explored in [13]). The relevant pieces
of the metric are

ds2 ¼ U
K

�
1

U2hðUÞ dU
2 þ dΩ2

3

�
: ð5Þ

We change coordinates so

dv2

v2
¼ dU2

U2hðUÞ ; ð6Þ

so that

ds2 ¼ 1

K
UðvÞ
v2

ðdv2 þ v2dΩ2
3Þ; ð7Þ

which we can then write as

ds2 ¼ 1

K
UðvÞ
v2

ðdρ2 þ ρ2dΩ2
2 þ dv29Þ: ð8Þ

Solving (6) gives

v2 ¼
1þ Uffiffiffiffiffiffiffiffiffiffiffi

U2−U2
0

p
Uffiffiffiffiffiffiffiffiffiffiffi

U2−U2
0

p − 1
or

U
U0

¼ 1þ v2

2v
: ð9Þ

Note that v → 1 as U=U0 → 1, and at large U we
find v2 ¼ 4U2=U2

0.
Finally, the metric can be written

ds2¼Gxðdx20−3þhdx25ÞþGvðdρ2þρ2dΩ2
2þdv29Þ; ð10Þ

with

Gx¼KU0

v2þ1

2v
; hðvÞ¼1−

�
2v

v2þ1

�
2

; ð11Þ
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Gv ¼
U0

K
1þ v2

2v3
; e−ϕ ¼ K

U0

2v
1þ v2

: ð12Þ

It is worth noting here that the holographic directions in
this set of coordinates do not carry the field theory energy
dimensions. Gx does and this is a useful check of
equations below.

B. D7 probe action

Next we include ð4þ 1Þ-dimensional quark hypermul-
tiplets on defects in the ð5þ 1Þ-dimensional glue theory by
the inclusion of a probe D7 brane [14] in the configuration
of (1). The Dirac-Born-Infeld (DBI) action takes the form

SD7 ¼ −T7

Z
d8ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðP½Gab� þ 2πα0FabÞ

p
; ð13Þ

where ξ are the world volume coordinates, and P denotes
the pullback. We find, setting the worldvolume vector to
zero for now,

SD7 ¼ −N
Z

d5xdρρ2e−ϕG5=2
x G3=2

v

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂ρv9Þ2 þ

Gv

Gx
ð∂x0−4v9Þ2

s
; ð14Þ

where N ¼ T7

R
dΩ2. The factor

e−ϕG5=2
x G3=2

v ¼ K2U3
0

8

�
1þ 1

v2

�
3

ð15Þ

and blows up as v → 0, which encourages the D7 to bend
away from v ¼ 0 by switching on v9 and generating chiral
symmetry breaking. The equation for the D7 embedding
that encodes this is

∂ρ

2
64ρ2e−ϕG5=2

x G3=2
vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð∂ρv9Þ2
q ∂ρv9

3
75

− 2ρ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð∂ρv9Þ2

q �
d
dv2

e−ϕG5=2
x G3=2

v

�
v9 ¼ 0: ð16Þ

The UV solution is v9 ≃M þ C=ρð≃U=2U0Þ, and so the
mass is proportional to MU0 and the condensate (of
dimension four in ð4þ 1Þ dimensional) to CK2U2

0 [note
that the condensate is a derivative with respect to the mass
on the action so it naturally picks up the K2 factor from
(15)]. We will avoid this chiral symmetry breaking (and any
interaction with any antipodal anti-D7) by taking configu-
rations where M → ∞, except on domain walls.

C. Domain walls

Our final ingredient is to introduce a quark mass that
has spatial dependence in the x4 direction. We take the UV
mass to be M, except on the boundary,

v9 ¼ −M; −w=2 < x4 < w=2: ð17Þ

We expect ð3þ 1Þ-dimensional chiral fermions to be
isolated at the two discontinuities where M ¼ 0. We will
now work in the infinite M limit [2] so that any issues with
the ð4þ 1Þ-dimensional quarks are pushed to the far UV
and so that the x4 derivative of v9 becomes a delta function.
One must be careful to include appropriate Jacobian factors
in the form of the delta function (these are those that
effectively reduce the D7 action to that of a 6 brane). We
have, with M vanishing on the contour x4ðρÞ,

∂ρv9 ¼
1

G1=2
v ð∂4ρÞ

����
locus

δðx4 − x4ðρÞÞ: ð18Þ

We now insert this factor into the D7 action (14),
assuming that v9 ¼ 0 (formally v9 ≪ M), giving

Slocus¼−N
Z

d4xdρρ2e−ϕG2
xG

3=2
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þGx

Gv
ð∂ρx4Þ2

s
; ð19Þ

which is an action that determines the locus on which
M ¼ 0 in the ρ − x4 plane. Equation (19) has a conserved
quantity, which we denote C, and we find

∂ρx4 ¼
G1=2

v

G1=2
x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2ϕρ4G5

xG2
vC2 − 1

p : ð20Þ

Note the large ρ limit of this is 4
ffiffiffi
2

p
=ðCK7=2U5=2

0 ρ7=2Þ,
and C has energy dimension −5.
The solutions are U shaped in the ρ − x4 plane with the

minimum ρ value given when the denominator vanishes.
We display these solutions in Fig. 1.

FIG. 1. Loci of the domain walls in the ρ − x4 plane for
different choices of C=ρmin. Here we set KU0 ¼ 1 for numerics.
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III. THE DOMAIN WALL THEORY

We now wish to describe holographically the ð3þ 1Þ-
dimensional chiral fermions living on the domain walls and
their interactions—this is the domainwall AdS/QCD theory.
One wants solutions of the D7 brane world volume fields
that are of the form of a delta function on the loci found
above and shown in Fig. 1. To find such solutions we, by
hand, dimensionally reduce the D7 brane action in (14) onto
the loci by imposing a delta function of the form in (18).

A. The quark mass and condensate

As a first example let us find the vacuum configuration
describing the quark condensate by considering just the
field v9. We obtain the action

SD7 ¼ −N
Z

d4xdρρ2e−ϕG5=2
x

G3=2
v

G1=2
v ðρÞ

ð∂ρx4Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F ð∂ρv9Þ2 þ

Gv

Gx
ð∂x0−3v9Þ2

s
; ð21Þ

where

F ¼ 1þ Gv

Gxð∂ρx4Þ2
: ð22Þ

It is worth noting that in the large ρ limit for the pieces
relevant for the vacuum the configuration becomes

SD7 ∼ −
Z

d4xdρ
1

CKρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ C2K5U5

0

32
ρ5ð∂ρv9Þ2

s
: ð23Þ

The large ρ solution is v9 ¼ mþ c=ρ3. Note here we use
little m and c—they are masses and condensates between
the chiral fermions on the domain wall, which are distinct
from the M, C of the ð4þ 1Þ-dimensional theory. The
condensate is identified by taking a derivative with respect
to the mass mU0 on the action—as written in this limit the
action is m independent so one must imagine a subleading
term, for example, coming from the expansion of the
dilaton

R
dρv29=CKρ. Now one sets v9 ¼ mþ c=ρ3 and

differentiates the cross term with respect to U0m: thus, we
find the condensate is proportional to c=CKU0, which is
both proportional to c and of dimension three.
The resulting full equation of motion for an x indepen-

dent v9 vacuum solution is

∂ρ

0
B@e−ϕρ2

G5=2
x G3=2

v

G1=2
v ðρÞ

ð∂ρx4Þ
F∂ρv9ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þF ð∂ρv9Þ2
q

1
CA

−
2ρ2ð∂ρx4Þ
G1=2

v ðρÞ
v9

∂
∂v2

�
e−ϕG5=2

x G3=2
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þF ð∂ρv9Þ2

q �
¼0:

ð24Þ

In the UV the solution is of the form mþ c=ρ2. We find
solutions numerically by shooting from the IR boundary
conditions v9ðρminÞ ¼ ρmin (this is required for the IR mass
gap to be consistent with the gap described by the loci in
Fig. 1) and v09ðρminÞ ¼ 0. We display the results in
Fig. 2. The numerics become highly tuned as ρmin
approaches one and the U-shaped loci become infinitely
wide, but the results look very consistent with the UV quark
mass being zero in this limit (which is the case for the
D7 embedding in an uncompactified D5 background).
For small separations of the domain walls, large ρmin,
the quark mass scales as 1=ρmin as we found in similar
configurations in [2]. The massless embedding shows
chiral symmetry breaking behavior generating the
ρmin ¼ 1 mass gap.

B. Pions

The quark condensate and mass are complex objects, and
we would expect a second degree of freedom in the dual
that forms a complex pair with v9. Let us call this v10,
although, there is no such field in the DBI action. We can
immediately write down its equation, following that for v9,
since it has a U(1) symmetry that mixes it with that field.
The equation of motion for fluctuations of v10 in the
background of the v9 vacuum solution is simply

∂ρ

�
e−ϕρ2

G5=2
x G3=2

v

G1=2
v ðρÞ

ð∂ρx4Þ
F∂ρv10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þF ð∂ρv9Þ2
q �

−
2ρ2ð∂ρx4Þ
G1=2

v ðρÞ
v10

∂
∂v2

�
e−ϕG5=2

x G3=2
v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þF ð∂ρv9Þ2

q �

þM2e−ϕρ2
G3=2

x G5=2
v

G1=2
v ðρÞ

ð∂ρx4Þ
v10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þF ð∂ρv9Þ2
q ¼0: ð25Þ

This equation is therefore sufficient to compute the behav-
ior of the Goldstone mode and its radially excited states of

FIG. 2. Numerical solutions for the vacuum functions v9ðρÞ.
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the theory. v10 does not appear explicitly in the model, but
this is because the v9 þ iv10 complex number can be
written as v9eiϕ and then a Uð1ÞA transformation used to
set ϕ ¼ 0. The degrees of freedom though remain, and the
solutions will emerge as components of the gauge fields,
which are present on the U-shaped locus. It is easiest to
compute using the logic here though.
TheGoldstone nature of this v10 state follows simply from

(25). If one setsM2 ¼ 0 and v10 equal to the v9 background
solution, then (25) is simply (24). This solution though can
only be used as a physical state for the massless theory since
we require that asymptotically it falls to zero so it describes
a fluctuation of the operator (rather than asymptoting to a
source).Away from themassless quark theorywemust solve
(25) numerically with v010ðρminÞ ¼ 0 and varyM2 to achieve
v10ð∞Þ ¼ 0. We show our numerical data in Fig. 3. The
results sensibly match a Gell-Mann-Oakes-Renner relation
ðM2

π ∼mqÞ [15] at small quarkmass but at larger quarkmass
M2 ∼m2

q, as one would expect.

C. Vector and axial vector mesons

The Lagrangian for a small Fμν fluctuation is given by

L¼N
2
ρ2
e−ϕG5=2

x G3=2
v

G1=2
v ðρÞ

ð∂ρx4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þF ð∂ρv9Þ2

q gμαgνβFμνFαβ: ð26Þ

Note here the x4 derivative should be included in the sense
that on the vacuum locus it contributes to the ρ derivative as
∂x4 ¼ ∂ρ=∂ρx4. The resulting equation for the spatial
mesons is given by

∂ρ

2
64ρ2e−ϕG3=2

x
G1=2

v

G1=2
v ðρÞ

ð∂ρx4ÞFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þF ð∂ρv9Þ2

q ∂ρAx

3
75

þM2ρ2e−ϕG1=2
x

G3=2
v

G1=2
v ðρÞ

ð∂ρx4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þF ð∂ρv9Þ2

q Ax¼0: ð27Þ

Vector mesons have IR boundary conditions ∂ρAðρminÞ ¼ 0

and Að∞Þ ¼ 0 (note the linearized equation does not
depend on AðρminÞ so one variesM2 to satisfy the UV boun-
dary condition). Axial-vector mesons have AðρminÞ ¼ 0
and Að∞Þ ¼ 0 (again the linearity means the derivative is
only defined up to a constant—so one picks some fixed IR
derivative and variesM2 to find a solution that matches the
UV boundary conditions).
The solutions for the vector meson must be normalized—

one requires that its kinetic term is canonical so

N
Z

dρρ2
e−ϕG1=2

x G3=2
v

G1=2
v ðρÞ

ð∂ρx4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ F ð∂ρv9Þ2

q ðAxÞ2 ¼ 1: ð28Þ

To normalize the source solutions we must investigate
the UV behavior of (27). At large ρ we have

∂ρ

�
CK4U3

0

8
ρ4∂ρAx

	
þM2

4

CK3U2
0

1

ρ3
Ax ¼ 0: ð29Þ

The solutions of this are not of the logQ2=ρ2 form found in
AdS/QCD [4] since the UVof the theory is not a conformal
ð3þ 1Þ-dimensional theory (the higher dimensional glue
theory’s coupling runs as a power law in the UV). However,
it is always a sleight of hand to match a gravity dual to
perturbative QCD since the dual must fail (or become
strongly coupled itself) as QCD becomes perturbative. A
simple fix is to only allow the gravity description to extend
to a UV cutoff. We will take 10U0 where U0 sets the scale
of the IR quark mass as shown in Fig. 2 so is matched to
of order 300 MeV—thus the UV cutoff scale corres-
ponds 3 GeV or so. One should match to QCD at this
UV cutoff in the region, where QCD is between weak and
strong coupling. Rather than attempting to match (which
would require calculation in QCD in an intermediate
coupling regime), we will simply set the normalization
of the source solutions by fitting to FV . We can then predict
FA and fπ .
Note that F2

V is defined as the Feynman rule for a vector
meson to turn directly into its source at q2 ¼ 0. We must
solve (27) withM2 ¼ 0 to find a solution that asymptotes to
a constant in the UV to represent the source.
Now we can compute the decay constant (removing the

UV surface term between the operator and source) as

F2
V ¼ N

Z
dρ∂ρ

2
64ρ2 e−ϕG3=2

x G1=2
v

G1=2
v ðρÞ

×
ð∂ρx4ÞFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ F ð∂ρv9Þ2
q ∂ρAV

3
75Asource: ð30Þ

FIG. 3. A plot of M2
π against mq with a guiding linear function

plotted (red).
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We cut the integration off at 10U0 and set the source
normalization to give the observed value of FV . The FA
coupling is then a repeat of this computation with the axial
vector meson solutions and using the same normalization at
the cutoff.
Note that f2π is given by the axial axial correlator

f2π ¼ N
Z

dρρ2
e−ϕG3=2

x G1=2
v

G1=2
v ðρÞ

×
ð∂ρx4ÞFffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ F ð∂ρv9Þ2
q ð∂ρAsourceAÞ2: ð31Þ

Now we can compute mπ , MV , MA, FV , FA, and fπ . We
useMV andMπ to set the overall scale and quark mass, and
FV sets the source normalization, leaving three predictions.
We display these results in Table I. The model, like many
AdS/QCDmodels, gives the correct ball-park spectrum, but
here we find the axial sector predictions (fπ ,MA, FA) all lie
above the QCD values. Radially excited states’masses also
rise sharply suggesting M ∼ n rather than M ∼

ffiffiffi
n

p
as is

widely the case in AdS/QCD models [16].
We can improve the predictions by adding higher

dimension operators at the UV cutoff scale [6]. These
should represent the generation of such operators in the
intermediate regime between strong and weak coupling,
where one should match to perturbative QCD. Using
Witten’s multitrace prescription, we change the UV boun-
dary conditions on the holographic fields to allow solutions
with nonzero source. We interpret the source as due to the
presence of a generic Lagrangian term GO†O which when
O condenses generates an effective source GhOi.
See [9] for recent examples of this methodology in

alternative AdS/QCD set ups.
In particular, we proceed as follows. We start by

considering different background embeddings for v9 that
asymptote in the UV to different source values. For each we

compute the pion mass. We then fix by hand the ratio of the
vector meson mass to the pion mass to its observed value
and find the wave function, which does not asymptote to
zero in the UV—we can extract the HDO coupling from
the source and operator values at the cutoff, assuming the
presence of an operator g2V=Λ2jq̄γμqj2 (we will quote
g2V ¼ Λ2J =O). Next we fit the normalization of the source
to fit FV . In the axial sector we allow a coupling
g2A=Λ2jq̄γμγ5qj2 to fit the axial vector meson mass. Now
FA and fπ can be computed. Repeating this for all the v9
embeddings, we can achieve the physical value of fA,
fixing the background embedding. The pion decay constant
reduces a little as shown in Table I but not as low as the
physical value. There is a bigger improvement in the
predictions of the radial excited state masses, as we show
for the first excitations of the ρ and amesons, although they
too still remain high.

IV. DISCUSSION

We have presented a holographic domain wall theory of
ð3þ 1Þ-dimensional chiral quarks interacting via confining
gauge interactions. Here the gauge interactions are five
dimensional albeit with one compact dimension to generate
the confinement scale. The quarks of a ð4þ 1Þ-dimensional
theory are isolated on separated domain walls, where the
ð4þ 1Þ-dimensional theory’s mass vanishes. The holo-
graphic fields on the locus of the defects provide a holo-
graphic description of a QCD-like theory. We have shown
the theory has chiral symmetry breaking and generates a
spectrum that quite closely resembles QCD. Deviations are
likely due to the gauge coupling growing into the UV—we
have included an UV cutoff to stop this growth and included
some higher dimension operators at the cutoff. The spectrum
is then improved but the full effects of the higher dimension
gauge dynamics are not suppressed.
In lattice simulations using the domain wall fermion

method, the gauge fields are isolated on the defects and
independent of the higher dimensions. It would be inter-
esting to try to arrange such a set up holographically using
multicenter brane solutions, although nonsupersymmetric
multicenter solutions are hard to find.
We have presented themodel on the surface of a singleD7

brane, generating just a single flavor of quarks. However,
one would expect the domain wall trick to generate non-
Abelian SUðNfÞL × SUðNfÞR flavor symmetries—on a
domain wall only a single chiral quark is massless whilst
the other is massive, so the interactionwith the adjoint scalar
superpartner of the gauge field is suppressed on the wall.
Thus, the theory on the surface of Nf D7 branes is just that
of the Abelian case, but fields are promoted to Nf × Nf

matrices, and the full action should be traced in flavor space.
The bosonic fields will form UðNfÞmultiplets of the vector
flavor symmetry with the masses and couplings of the
Abelian case we have described.

TABLE I. Mesonic observables—QCD values and the basic
domain wall (DW) AdS/QCD model’s predictions. Starred
quantities are used to fix parameters as described in the text.
In the final column we list the values of the higher dimension
operator couplings in the improved version of the model—here
fπ , and the excited state masses are predicted.

QCD DW AdS/QCD Improved DW AdS/QCD

mρ 775 MeV 775� gq ¼ 0.247
mπ 139 MeV 139� gv ¼ 0.656
ma 1230 MeV 1,955 gA ¼ 1.287
FV 345 MeV 345�
FA 433 MeV 726.7 433�
fπ 93 MeV 135.3 128.8
Mv;n¼1 1465 MeV 3284 1881.8
MA;n¼1 1655 MeV 5043 2752.5
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In conclusion, we believe it has been interesting to
generate a new type of AdS/QCD model which uses
the domain wall fermion method. The method may
allow a wider class of chiral theories to be explored in
the future.
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