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We present a calculation of the cosð2ϕhÞ asymmetry in J=ψ production in electron-proton collisions at
the future electron-ion collider (EIC), a useful channel to probe the transverse momentum dependent gluon
distribution functions also known as gluon transverse momentum dependent parton distributions (TMDs).
The dominant subprocess for the J=ψ production is the virtual-photon-gluon fusion process
γ� þ g → J=ψ þ g. The production of J=ψ is calculated in the nonrelativistic quantum chromodynamics
framework with the inclusion of both color singlet and color octet contributions. Numerical estimates of the
cosð2ϕhÞ asymmetry are given in the kinematical region to be accessed by the future EIC. The asymmetry
depends on the parametrization of the gluon TMDs, as well as on the long distance matrix elements. We use
both Gaussian-type parametrization and the McLerran-Venugopalan model for the TMDs in the
kinematical region of small x, where the gluons play a dominant role. The asymmetry may be useful
to probe the ratio of the linearly-polarized and the unpolarized gluon distribution in the proton.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is an exceptionally
rich and complex theory of strong interactions between
quarks and gluons, the fundamental constituents of matter.
However, these quarks and gluons do not exist in nature as
free particles but are confined inside hadrons, and their
fundamental properties can be explored only with the help
of scattering processes. The hadron physics community has
expanded its inquiry beyond the ordinary one-dimensional
collinear parton distribution functions (PDFs) in the motion
of the parton and its spatial distribution in a direction
perpendicular to the momentum of the parent hadron.
To account for transverse motion, the collinear PDFs

were extended to transverse-momentum-dependent PDFs,
also referred to as transverse momentum dependent parton
distributions (TMDs)[1–3]. TMDs have attracted an enor-
mous amount of interest and are being investigated at the
current facilities including JLAB 12 GeV upgrade, RHIC,
and are planned to be investigated at the future electron-ion
collider (EIC). TMDs are considered as an extension of the
standard, one-dimensional PDFs to the three-dimensional
momentum space. Due to the gauge invariance, the
operator definition of TMDs requires the inclusion of
gauge links or Wilson lines. Unlike collinear PDFs, which
are universal, TMDs are process dependent due to their

initial and final state interactions [4,5], or the gauge links.
In other words, the TMDs extracted from semi-inclusive
deep inelastic scattering (SIDIS) are not the same as
extracted from Drell-Yan processes due to the difference
in gauge links. TMDs are sensitive to the soft gluon
exchanges and the color flow in the specific sub-processes
in which they are probed. SIDIS and Drell-Yan processes
provide the majority of experimental data for the extraction
of TMDs, where the observables of interest are the single-
spin asymmetries and azimuthal asymmetries, which have
been measured and are currently under direct experimental
scrutiny [6–8].
A lot of work has recently been done to extract quark

TMDs inside a proton from low-energy data from
HERMES, COMPASS, or JLab experiments. Contrarily,
little is experimentally known about the gluon TMDs [9], as
they typically require higher-energy scattering processes
and are harder to isolate in comparison to quark TMDs.
Each gluon TMD contains multiple gauge links while the
quark TMDs contain one, due to which the process
dependence of gluon TMDs is more involved than quark
TMDs [10]. Gluon TMDs parametrize the transverse
motion of gluons inside a proton. In the parton model,
the gluon correlator of the unpolarized spin-1=2 hadron
is parametrized in terms of leading twist distribution
functions [9] i:e:fg1ðx;k2⊥Þ and h⊥g

1 ðx;k2⊥Þ. The function
fg1ðx;k2⊥Þ represents the probability of finding an unpo-
larized gluon, within an unpolarized hadron, with a
longitudinal momentum fraction x and transverse momen-
tum k⊥, while h⊥g

1 ðx;k2⊥Þ represents the distribution of
linearly-polarized gluons within the unpolarized hadron
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and is also known as Boer-Mulders function. These are the
only two TMDs of the unpolarized proton that provide
essential knowledge on the transverse dynamics of the
gluon content of the proton. They are also important for the
proper explanation of gluon-fusion processes at all ener-
gies. At small x, it turns out that the linearly-polarized
distribution may reach its maximally allowed size, bounded
by the unpolarized gluon density [9]. Depending on the
gauge links, there are two types of gluon TMDs,
Weizsäcker-Williams (WW) type where both gauge links
are either future or past pointing [11,12], and dipole type
where one gauge link is future pointing and one past [13].
ep collision probes the WW type gluon distribution.
Various methods have been proposed to measure both
fg1ðx;k2⊥Þ and h⊥g

1 ðx;k2⊥Þ, as well as other gluon TMDs,
for example [10,14–34].
In the last few years, the distribution of linearly-

polarized gluons within an unpolarized proton has attracted
a lot of interest; as yet they have not been extracted
experimentally. A lot of theoretical investigations has been
put forward to probe h⊥g

1 ðx;k2⊥Þ, and a model-independent
theoretical upper bound can be found in Ref. [9,35]. They
are time-reversal even (T even) objects, affecting the
unpolarized cross section of scattering processes, as well
as an azimuthal asymmetry of the type cosð2ϕhÞ [36].
Processes like heavy quark pair or dijet production in
SIDIS [36], and diphoton pair [16] and ϒð1SÞ þ jet [37]
production in pp collision have been suggested for
extracting h⊥g

1 ðx;k2⊥Þ. It has been seen in these processes
that h⊥g

1 ðx;k2⊥Þ can be probed by measuring azimuthal
asymmetries. It can also be probed in heavy quark pair
production in lepton-proton and proton-proton collisions
[36,38,39],as well as associated production of dilepton and
J=ψ [25]. Quarkonium production is a useful tool to probe
the gluon TMDs (see [40] for a recent review). J=ψ
production in SIDIS is a good channel, as the effect of
the gauge links is simpler compared to pp collisions, and
one can assume the generalized factorization. Quite a lot of
theoretical work has been done recently in this direction.
TMDs can be accessed through this process when the
transverse momentum of the produced J=ψ (Ph⊥) is not
very large, jPh⊥j < M, where M is the mass of J=ψ . This
kinematical region is expected to be accessible at the
future EIC.
In Ref. [22] the authors proposed a method to probe h⊥g

1

by studying the cosð2ϕhÞ asymmetry in J=ψ production
through the leading-order (LO) process γ� þ g → J=ψ at
the future EIC. This receives contribution at LO at z ¼ 1,
where z is the fraction of photon energy transferred to J=ψ .
In Ref. [30] the cosð2ϕhÞ asymmetry was calculated in the
process eðlÞ þ pðPÞ → eðl0Þ þ J=ψðPhÞ þ XðPxÞ, in the
kinematical region z < 1, which includes contributions at
next-to-leading order (NLO). To simplify the calculation,
only color singlet (CS) contributions in the nonrelativistic
quantum chromodynamics (NRQCD) framework were

included, and the small-x region was explored. The
asymmetry was found to be rather small, and the contri-
bution to the asymmetry came mainly from one Feynman
diagram. Nevertheless, it was possible to disentangle h⊥g

1

and the unpolarized gluon TMD and the numerator of the
asymmetry was found to be dependent only on h⊥g

1 . As we
know, the color octet contributions are important in
NRQCD formulation in the production of J=ψ [27]. In
this work, we extend our study to investigate the cosð2ϕhÞ
asymmetry in the above process, but taking into account
also the color octet (CO) contributions in NRQCD;
which makes the calculation rather lengthy. We explore
the small-x region, where the gluon TMDs play an
important role.
NRQCD is an effective field theory approach, in which

the production cross section can be written in a factorized
form into a perturbative hard part where the quarks and
gluons form the heavy-quark and antiquark pair, which
may be in the CS or the CO state, and a nonperturbative soft
part where the heavy quark pair forms a bound state. All the
information of hadronization of the heavy quark pair is
encoded in the long-distance matrix elements (LDME),
which are usually extracted by fitting experimental data.
They describe the transition probability to form the
quarkonium state from the heavy quark pair. LDMEs are
expected to scale with a definite power of the heavy quark
velocity parameter v in the limit v ≪ 1. Thus NRQCD
introduces an expansion both in αs as well as in v, with
v2 ≈ 0.3 for charmonium and v2 ≈ 0.1 for bottomonium.
Thus, one has to consider all the Fock states of the heavy
quark pair,QQ̄, produced in the hard scattering. Each Fock

state is denoted by n ¼2Sþ1 L½a�
J , where J, L, and S are total

angular momentum, orbital angular momentum, and spin
quantum numbers, respectively, and a is the color multi-
plicity carrying a value of 1 for color singlet and 8 for color
octet state. For the J=ψ S-wave quarkonium state, the
dominant contribution in NRQCD in the limit v → 0
reduces to a color-singlet model (CSM), where the heavy
quark pair is directly produced in a CS state, having the
same quantum numbers as that of the J=ψ . A QQ̄ pair
produced in the color octet state with different quantum
numbers eventually evolves into the physical color singlet
quarkonia by the emission of soft gluons [40].
A good description of J=ψ by NRQCD is given at RHIC

energies [41]. Azimuthal asymmetries in J=ψ production in
these processes may also be used as a tool to get
information on the LDMEs in NRQCD [42]. In our study
of cosð2ϕhÞ azimuthal asymmetry in J=ψ , we will use the
NRQCD formalism. We will take the dominant γ� þ g →
J=ψ þ g partonic subprocess into consideration, and inves-
tigate mainly the small-x region, where the gluon TMDs
play a very important role.
The rest of this paper is organized as follows. The

analytical framework of our calculation is discussed in
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Sec. II. In Sec. III, we present our numerical results and
finally, in Sec. IV, we conclude.

II. AZIMUTHAL ASYMMETRY IN J=ψ
LEPTOPRODUCTION

A. Calculation of the cross section and asymmetry

We consider semi-inclusive production of J=ψ in unpo-
larized ep collision

eðlÞ þ pðPÞ → eðl0Þ þ J=ψðPhÞ þ XðPxÞ; ð1Þ

where the quantities within the brackets are the four-
momentum of corresponding particles and X represents
the proton remnant. We use the following invariants to
describe the kinematics of this process,

Q2ð¼ −q2Þ; W2 ¼ ðPþ qÞ2; z ¼ P · Ph

P · q
: ð2Þ

The other two dimensionless invariants are

y ¼ P · q
P · l

; xB ¼ Q2

2P · q
: ð3Þ

The quantity Q2 is the virtuality of the photon, W2 is the
invariant mass squared of the virtual photon-target system,
z is the fraction of energy transferred from the photon to
J=ψ in the frame where the initial proton is at rest, y is the
inelasticity variable and has a physical interpretation as
the fraction of the energy of the electron transferred to
the proton. The variable xBð¼ Q2=2P · qÞ is known as
Bjoken-x.
To study the azimuthal asymmetry, we use a frame in

which the incoming proton and thevirtual photon exchanged
in the processmove inþz and−z directions. The kinematics
here is defined in terms of two lightlike vectors with the help
of a Sudakov decomposition, chosen here to be the momen-
tum Pð¼ n−Þ of the incoming proton, and a second vector
nð¼ nþÞ, obeying the relations n · P ¼ 1 and n2þ ¼ n2− ¼ 0.
Thus one can have the following expressions for the
momenta of the incoming proton and virtual photon
ðq ¼ l − l0Þ

P ¼ n− þM2
p

2
nþ ≈ n−; ð4Þ

q ¼ −xBn− þ Q2

2xB
nþ ≈ −xBPþ ðP · qÞnþ; ð5Þ

whereMp is the mass of proton. Moreover, the momenta of
incoming and outgoing lepton can be written as

l ¼ 1 − y
y

xBPþ 1

y
Q2

2xB
nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − yÞp
y

Ql̂⊥

¼ 1 − y
y

xBPþ s
2
nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − yÞp
y

Ql̂⊥; ð6Þ

l0 ¼ 1

y
xBPþ 1 − y

y
Q2

2xB
nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − yÞp
y

Ql̂⊥

¼ 1

y
xBPþ ð1 − yÞ s

2
nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 − yÞp
y

Ql̂⊥: ð7Þ

Here s ¼ ðlþ PÞ2 ¼ 2P · l is the squared center of
mass energy of the electron-proton scattering and Q2; s; y,
and xB are related by the relation Q2 ¼ sxBy. At leading
order, J=ψ is produced by the virtual-photon gluon fusion
for which z ¼ 1 [22]. Since at small x the proton is rich in
gluons, the dominant subprocess for the J=ψ production
is the virtual-photon-gluon fusion process γ�ðqÞ þ gðkÞ →
J=ψðPhÞ þ gðpgÞ. In terms of the lightlike vectors defined
above the four-momentum of the initial state gluon, the final
state gluon, and J=ψ are expressed as

k ¼ xPþ k⊥ þ ðk · P − xM2
pÞn ≈ xPþ k⊥; ð8Þ

pg ¼ð1 − zÞðP · qÞnþ p2
g⊥

2ð1 − zÞP · q
Pþ pg⊥; ð9Þ

Ph ¼ zðP · qÞnþM2 þ P2
h⊥

2zP · q
Pþ Ph⊥: ð10Þ

Here x ¼ k · n is the light-cone momentum fraction
of the gluon, M is the mass of J=ψ and P2

h ¼ −P2
h⊥.

The Mandelstam variables for the partonic subprocess
γ�ðqÞ þ gðkÞ → J=ψðPhÞ þ gðpgÞ become

ŝ ¼ ðkþ qÞ2 ¼ q2 þ 2k · q ¼ xQ2

xB
−Q2;

t̂ ¼ ðt − PhÞ2 ¼ M2 − 2k · Ph

¼ M2 −
xzQ2

xB
þ 2k⊥Ph⊥ cosðϕ − ϕhÞ;

û ¼ ðq − PhÞ2 ¼ M2 þ q2 − 2q · Ph

¼ M2 − ð1 − zÞQ2 −
M2 þ P2

h⊥
z

;

where ϕ and ϕh represent the azimuthal angles of initial
gluon and the transverse momentum of J=ψ , respectively.
Due to the presence of the gauge links or initial/final state
interactions, factorization in many of such processes are
still not proven. However, ep collision processes are less
complicated than pp collisions in terms of color flow,
and factorization is expected to hold. In [43] the process
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ep → eþ J=ψ þ X is compared with the SIDIS, for which
TMD factorization has been proven. It is argued that the
additional scale, namely, the mass of J=ψ does not affect
the gauge link structure, and TMD factorization is expected
to be valid for this process as well. Following the approach
of Refs. [22,44], we assume the generalized factorization in
the kinematics considered. Also to be noted is that we have
considered only one subprocess in our calculation, which
is dominating in the kinematical region of our interest.
A complete NLO calculation in QCD needs to take into
account all partonic subprocesses, both for real emission as
well as virtual diagrams; the effect of the soft functions in
the correlators, and effect of soft gluon emission in the
LDMEs, or the shape functions [43] at this order. Only
then are the singularities expected to cancel systematically
and a finite result can be obtained. The aim of this work
is to explore the phenomenology related to probing
the TMDs in this process in a given kinematical region
accessible in experiments, for example at the future
EIC. As discussed later, we have imposed kinematical
cuts to exclude the region where such divergences occur;
the cuts that we have proposed can be realized in
experiments.
The differential scattering cross section can be written as

a convolution of leptonic tensor, a soft parton correlator for
the incoming hadron and a hard part,

dσ ¼ 1

2s
d3l0

ð2πÞ32E0
l

d3Ph

ð2πÞ32EPh

×
Z

d3pg

ð2πÞ32Eg

Z
dxd2k⊥ð2πÞ4δðqþ k − Ph − pgÞ

×
1

Q4
Lμμ0 ðl; qÞΦνν0 ðx;k⊥ÞMμνðMμ0ν0 Þ�: ð11Þ

The term Mμν represents the amplitude of J=ψ production
in the γ� þ g → J=ψ þ g partonic subprocess. The leptonic
tensor is given by

Lμμ0 ðl; qÞ ¼ e2ð−gμμ0Q2 þ 2ðlμl0μ0 þ lμ
0
l0μÞÞ; ð12Þ

where e is the electronic charge. At leading twist, the gluon
correlator of the unpolarized proton contains two TMD
gluon distribution functions

Φνν0
g ðx;k⊥Þ ¼ −

1

2x

�
gνν

0
⊥ fg1ðx;k2⊥Þ

−
�
kν⊥kν

0
⊥

M2
p

þ gνν
0

⊥
k2⊥
2M2

p

�
h⊥g
1 ðx;k2⊥Þ

�
; ð13Þ

where gνν
0

⊥ ¼ gνν
0 − Pνnν

0
=P · n − Pν0nν=P · n. The quan-

tities fg1ðx;k2⊥Þ and h⊥g
1 ðx;k2⊥Þ represent the unpolarized

and the linearly-polarized gluon distribution functions
respectively.

B. J=ψ production in NRQCD based color-octet model

The amplitude for the production of J=ψ can be written
as follows [44,45]:

Mðγ�g → QQ̄½2Sþ1Lð1;8Þ
J �ðPhÞ þ gÞ

¼
X
LzSz

Z
d3k0

ð2πÞ3ΨLLz
ðk0ÞhLLz; SSzjJJzi

Tr½Oðq; k; Ph; k0ÞPSSzðPh; k0Þ�: ð14Þ

We have suppressed the indices μ, ν in M and in
Oðq; k; Ph; k0Þ. Here ΨLLz

ðk0Þ is the nonrelativistic
bound-state wave function with orbital angular momentum
L;Lz and the relative momentum k0 of the heavy quark in
the quarkonium rest frame; k0 is assumed to be smaller than
Ph. hLLz; SSzjJJzi are the usual Clebsch-Gordan coeffi-
cients, Oðq; k; Ph; k0Þ represents the amplitude for the
production of the heavy quark pair QQ̄ and is calculated
from the Feynman diagrams. The Feynman diagrams
relevant for this process are given in Fig. 1. The polari-
zation vectors of the initial gluons and the heavy quark-
antiquark legs are absorbed into the definitions of the gluon
correlators and in the bound-state wave function, respec-
tively. The quantity

PSSzðPh; k0Þ ¼
X
s1;s2

�
1

2
s1;

1

2
s2jSSz

�
v

�
Ph

2
− k0; s1

�
ū

�
Ph

2
þ k0; s2

�

¼ 1

4M3=2 ð−=Ph þ 2=k0 þMÞΠSSzð=Ph þ 2=k0 þMÞ þOðk02Þ; ð15Þ

plays the role of spin projection operator [44,45] with

ΠSSz ¼
�
γ5; for singlet state ðS ¼ 0Þ
=εSzðPhÞ; for triplet state ðS ¼ 1Þ;

where εSzðPhÞ is the spin vector of the QQ̄ system. We
consider here γ� þ g → J=ψ þ g, which is the dominating
partonic subprocess.
By considering the contribution from all the above

Feynman diagrams we can write the amplitude as
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Oðq; k; Ph; k0Þ ¼
X8
m¼1

CmOmðq; k; Ph; k0Þ; ð16Þ

where Cm represents the color factor of each diagram

C1 ¼ C6 ¼ C7 ¼
X
ij

h3i; 3̄jj8ciðtatbÞij;

C2 ¼ C3 ¼ C5 ¼
X
ij

h3i; 3̄jj8ciðtbtaÞij;

C4 ¼ C8 ¼
X
ij

h3i; 3̄jj8ciifabdðtdÞij;

where the summation runs over the colors of the outgoing
quark and antiquark. The SUð3Þ Clebsch-Gordan coeffi-
cients for color singlet and color octet states, respectively,
are given as

h3i; 3̄jj1i ¼ δijffiffiffiffiffiffi
Nc

p ; h3i; 3̄jj8ai ¼
ffiffiffi
2

p
ðtaÞij;

and they project out the color state of the QQ̄ pair either in
the color singlet or in the color octet state. Here, Nc
represents the number of colors. In the fundamental
representation the generators of the SUð3Þ group is
denoted by ta following which TrðtatbÞ ¼ δab=2 and
TrðtatbtcÞ ¼ 1=4ðdabc þ ifabcÞ. In case of the color octet
state, the color factors for the production of initial QQ̄ are

C1 ¼ C6 ¼ C7 ¼
ffiffiffi
2

p

4
ðdabc þ ifabcÞ;

C2 ¼ C3 ¼ C5 ¼
ffiffiffi
2

p

4
ðdabc − ifabcÞ;

C4 ¼ C8 ¼
ffiffiffi
2

p

2
ifabc:

The amplitudes Omðq; k; Ph; k0Þ for the above Feynman
diagrams are written as

O1 ¼ 4g2sðeecÞερ�λg ðpgÞγν
=Ph þ 2=k0 − 2=qþM

ðPh þ 2k0 − 2qÞ2 −M2
γμ

−=Ph þ 2=k0 − 2=pg þM

ðPh − 2k0 þ 2pgÞ2 −M2
γρ; ð17Þ

O2 ¼ 4g2sðeecÞερ�λg ðpgÞγρ
=Ph þ 2=k0 þ 2pg þM

ðPh þ 2k0 þ 2pgÞ2 −M2
γν

−=Ph þ 2=k0 þ 2=kþM
ðPh − 2k0 − 2kÞ2 −M2

γμ; ð18Þ

O3 ¼ 4g2sðeecÞερ�λg ðpgÞγν
=Ph þ 2=k0 − 2qþM

ðPh þ 2k0 − 2qÞ2 −M2
γρ

−=Ph þ 2=k0 þ 2=kþM
ðPh − 2k0 − 2kÞ2 −M2

γμ; ð19Þ

O4 ¼ 2g2sðeecÞερ�λg ðpgÞγν
=Ph þ 2=k0 − 2qþM

ðPh þ 2k0 − 2qÞ2 −M2
γσ

1

ðk − pgÞ2
T μρσðk; pgÞ; ð20Þ

FIG. 1. Feynman diagrams for the partonic subprocess γ� þ g → J=ψ þ g.
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where M ¼ 2mc, with mc representing the charm quark
mass, and the tensor T μρσðk; pgÞ ¼ gμρðkþ pgÞσ þ
gρσðk − 2pgÞμ þ gσμðpg − 2kÞρ is the three gluon vertex.
As all the Feynman diagrams are symmetric we can obtain
the remaining four amplitudes O5, O6, O7, and O8 by
reversing the fermion flow and replacing k0 by −k0. In the
rest frame of the bound state, the relative momentum of k0 is
very small as compared to Ph, thus Taylor expansion can be
performed in powers of k0 around k0 ¼ 0 in Eq. (14). So it
becomes convenient to split the radial and angular parts of
the Fourier transformation of the wave function ΨLLz

ðk0Þ,
Z

d3k0

ð2πÞ3 e
ik0:rΨLLz

ðk0Þ ¼ Ψ̃LLz
ðrÞ ¼ RLðjrjÞYLLz

ðθ;φÞ;

where r ¼ ðjrj; θ;φÞ in spherical coordinates, and RLðjrjÞ
and YLLz

ðθ;φÞ are the radial wave function and spherical
harmonic, respectively. In particular this means,

Z
d3k0

ð2πÞ3Ψ00ðk0Þ ¼ 1ffiffiffiffiffiffi
4π

p R0ð0Þ: ð21Þ

As the first term of the Taylor expansion at k0 ¼ 0 does not
depend on k0 anymore, it gives the contribution from S
waves ðL ¼ 0; J ¼ 0; 1Þ,

M½2Sþ1Sð8ÞJ �ðPh; kÞ ¼
1ffiffiffiffiffiffi
4π

p R0ð0ÞTr½Oðq; k; Ph; k0ÞPSSzðPh; k0Þ�jk0¼0 ¼
1ffiffiffiffiffiffi
4π

p R0ð0ÞTr½Oð0ÞPSSzð0Þ�; ð22Þ

where Oð0Þ ¼ ðq; k; Ph; 0Þ and PSSzð0Þ ¼ PSSzðPh; 0Þ. For P waves ðL ¼ 1; J ¼ 0; 1; 2Þ, R1ð0Þ ¼ 0, so in the Taylor
expansion the terms linear in kα are considered in Eq. (14). Thus,

Z
d3k0

ð2πÞ3 k
αΨ1Lz

ðkÞ ¼ −iεαLz
ðPhÞ

ffiffiffiffiffiffi
3

4π

r
R0
1ð0Þ; ð23Þ

where εαLz
ðPhÞ is a polarization vector for L ¼ 1 bound state, and R0

1ð0Þ represents the derivative of the P-wave (radial)
wave function evaluated at origin. Thus

M½2Sþ1Pð8Þ
J � ¼ −i

ffiffiffiffiffiffi
3

4π

r
R0
1ð0Þ

X
LzSz

εαLz
ðPhÞhLLz;SSzjJJzi

∂
∂k0α Tr½Oðq; k; Ph; k0ÞPSSzðPh; k0Þ�jk0¼0

¼ −i
ffiffiffiffiffiffi
3

4π

r
R0
1ð0Þ

X
LzSz

εαLz
ðPhÞhLLz;SSzjJJziTr½Oαð0ÞPSSzð0Þ þOð0ÞPSSzαð0Þ�; ð24Þ

where

Oαð0Þ ¼
∂

∂k0αOðq; k; Ph; k0Þjk0¼0;

PSSzαð0Þ ¼
∂

∂k0α PSSzðPh; k0Þjk0¼0:

For P-waves we could utilize the following relations for
Clebsch-Gordan coefficients and various polarisation vec-
tors [46,47]

X
LzSz

h1Lz; SSzj00iεαszðPhÞεβLz
ðPhÞ ¼

ffiffiffi
1

3

r �
gαβ −

1

M2
Pα
hP

β
h

�
;

ð25Þ

X
LzSz

h1Lz; 1Szj1JziεαszðPhÞεβLz
ðPhÞ

¼ −
i
M

ffiffiffi
1

2

r
ϵδλρσgραgσβPδ

hε
λ
Jz
ðPhÞ; ð26Þ

X
LzSz

h1Lz; 1Szj2JziεαszðPhÞεβLz
ðPhÞ ¼ εαβJz ðPhÞ; ð27Þ

where the term εαJzðPhÞ represents the polarization vector of
bound state with J ¼ 1, obeying the following relations

εαJzðPhÞPhα ¼ 0;

X
Lz

εαJzðPhÞε�βJz ðPhÞ ¼ −gαβ þ Pα
hP

β
h

M2
≡Qαβ; ð28Þ
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and εαβJz ðPhÞ is the polarization tensor for J ¼ 2 bound state
and obeys the following set of relations [46,47]

εαβJz ðPhÞ¼ εβαJz ðPhÞ; εαJzαðPhÞ¼0; Phαε
α
Jz
ðPhÞ¼0;

εμνJz ðPhÞε�αβJz
ðPhÞ¼

1

2
½QμαQνβþQμβQνα�−1

3
QμνQαβ: ð29Þ

The radial wave function R0ð0Þ and its derivative at origin
R0
1ð0Þ are obtained from the LDMEs, and the relations can

be found in the Eqs. (36 − 38) within Ref. [27].
The numerical values of LDMEs for these color octet

states are extracted from Ref. [48]. Now using the
above formalism together with the symmetry relations
and sum over the color factors from Ref. [27] in the

Eqs. (39,40,43,44,47), we could write the amplitude for
color octet states ð3S1; 1S0; 3PJð0;1;2ÞÞ.

1. 3S1 amplitude

The final expression for the 3S1 scattering amplitude is

M½3Sð8Þ1 �ðPh; kÞ ¼
1

4
ffiffiffiffiffiffiffi
πM

p R0ð0Þ
ffiffiffi
2

p

2
dabc

× Tr

	X3
m¼1

Omð0Þð−=Ph þMÞ=εsz


; ð30Þ

where

X3
m¼1

Omð0Þ ¼ g2sðeecÞερ�λg ðpgÞ
	
γνð=Ph − 2=qþMÞγμð−=Ph − 2=pg þMÞγρ

ðŝ −M2Þðû −M2Þ þ γρð=Phþ 2=pg þMÞγνð−=Phþ 2=kþMÞγμ
ðŝ −M2Þðt̂ −M2Þ

þ γνð=Ph − 2=qþMÞγρð−=Phþ 2=kþMÞγμ
ðt̂ −M2Þðû −M2Þ



: ð31Þ

Due to the symmetry relations [27] Feynman diagrams 4
and 8 cancel and do not contribute to 3S1 state.

2. 1S0 amplitude

For the 1S0 scattering amplitude the expression reads as

M½1Sð8Þ0 �ðPh;kÞ¼
R0ð0Þ
4

ffiffiffiffiffiffiffi
πM

p
ffiffiffi
2

p

2
ifabcTr½ðO1ð0Þ−O2ð0Þ

−O3ð0Þþ2O4ð0ÞÞð−=PhþMÞγ5�; ð32Þ

where O1ð0Þ, O2ð0Þ, and O3ð0Þ are given in Eq. (31)
and

O4ð0Þ ¼ g2sðeecÞερ�λg ðpgÞ
γνð=P − 2qþMÞγσ

ûðû −M2Þ T μρσðk; pgÞ:

ð33Þ
3. 3PJ amplitude

The amplitude for 3PJ can be written as

M½3Pð8Þ
J �ðPh; kÞ ¼

ffiffiffi
2

p

2
fabc

ffiffiffiffiffiffi
3

4π

r
R0
1ð0Þ

X
LzSz

εαLz
ðPhÞh1Lz; 1SzjJJziTr½ðO1αð0Þ −O2αð0Þ −O3αð0Þ þ 2O4αð0ÞÞPSSzð0Þ

þ ðO1ð0Þ −O2ð0Þ −O3ð0Þ þ 2O4ð0ÞÞPSSzαð0Þ�: ð34Þ

C. cosð2ϕhÞ azimuthal asymmetry

To probe the TMDs in this process, one needs two well-
separated scales. While Q2 gives the hard scale, the other
scale is given by Ph⊥, and we consider a kinematical region
where the transverse momentum of J=ψ is small compared
to the mass of J=ψ ,M i.e., Ph⊥ < M. For a large transverse
momentum of J=ψ collinear factorization is expected to
hold. The generic structure of the TMD cross section
defined by Eq. (11) is easily obtained from the contraction
of the four tensors which are

Lμμ0 ðl; qÞΦνν0 ðx; k⊥ÞMγ�þg→J=ψþg
μν M�γ�þg→J=ψþg

μ0ν0 : ð35Þ

We get a contribution for the amplitude and their corre-
sponding complex conjugate amplitude from all the six

states 1Sð8Þ0 ; 3Sð1;8Þ1 , and 3Pð8Þ
Jð¼0;1;2Þ in the cross section. The

summation over the transverse polarization of the final
on-shell gluon is given by

X2
λa¼1

ελaμ ðpgÞε�λaμ0 ðpgÞ¼−gμμ0 þ
pgμngμ0 þpgμ0ngμ

pg ·ng
−

pgμpgμ0

ðpg ·ngÞ2
;

ð36Þ
with nμg ¼ Pμ

h
M . In a frame where the virtual photon and target

proton move along the z-axis, and the lepton scattering plane
defines the azimuthal angles ϕl ¼ ϕl0 ¼ 0, we can write
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d3l0

ð2πÞ32El0
¼ 1

16π2
sydxBdy;

d3Ph

ð2πÞ32Eh
¼ 1

ð2πÞ3
1

2z
dzd2Ph⊥;

d3pg

ð2πÞ32Eg
¼ 1

ð2πÞ3
1

2z2
dz2d2pg⊥; ð37Þ

and the delta function can be written as

δ4ðqþ k − Ph − pgÞ

¼ δ

�
x −

1

ys

�
xBysþ

M2 þ P2
h⊥

z
þ ðk⊥ − Ph⊥Þ2

ð1 − zÞ
��

×
2

ys
δð1 − z − z2Þ × δ2ðk⊥ − Ph⊥ − pg⊥Þ; ð38Þ

where the delta function sets z2 ¼ ð1 − zÞ. After integration
over x, z2, and pg⊥, the final form of the differential cross
section can be written as

dσ
dydxBdzd2Ph⊥

¼ 1

256π4
1

x2Bs
3y2zð1 − zÞ

Z
k⊥dk⊥jM0j2;

ð39Þ

where jM0j2 ¼ R
dϕjMj2, and k⊥ is the magnitude of k⊥.

We only keep the transverse momentum of the initial
gluon up to Oðk2⊥=M2

pÞ. We expand in Ph⊥=M and keep
the terms up to OðP2

h⊥=M2Þ. As we are interested in the
small-x domain, we have expanded the amplitudes in xB
and did not consider higher-order terms in xB. In [30]
where only the CS contributions were considered, the
contribution to the asymmetry came from the first
Feynman diagram in the numerator and the overlap of
the first, second, and third Feynman diagrams in the
denominator. Here with the CO contributions included, all
the Feynman diagrams contribute.
Thus we could write the final expression for differential

scattering cross section as

dσ
dydxBdzd2PhT

¼ dσUðϕhÞ þ dσTðϕhÞ; ð40Þ

where

dσUðϕhÞ ¼
1

256π4
1

x2Bs
3y2zð1 − zÞ

Z
k⊥dk⊥fðA0 þ A1 cosðϕhÞ þ A2 cosð2ϕhÞÞfg1ðx;k2⊥Þg;

and

dσTðϕhÞ ¼
1

256π4
1

x2Bs
3y2zð1 − zÞ

Z
dk⊥

k3⊥
M2

p
fðB0 þ B1 cosðϕhÞ þ B2 cosð2ϕhÞÞh⊥g

1 ðx;k2⊥Þg:

The analytic expressions of the coefficients A0, A1, A2,
B0, B1, and B2 are too lengthy to be given here, so we have
not included them in this paper; they are available upon
request. The cosð2ϕhÞ asymmetry measured in experiments
is defined as

hcosð2ϕhÞi ¼
R
dϕh cosð2ϕhÞdσR

dϕhdσ
; ð41Þ

where ϕh is the azimuthal angle of J=ψ production plane
with the lepton plane. The cosð2ϕhÞ asymmetry as a
function of Ph⊥; xB; z and y can be written as

hcosð2ϕhÞi ∝
R
k⊥dk⊥ðA2f

g
1ðx;k2⊥Þ þ k2⊥

M2
p
B2h

⊥g
1 ðx;k2⊥ÞÞR

k⊥dk⊥ðA0f
g
1ðx;k2⊥Þ þ k2⊥

M2
p
B0h

⊥g
1 ðx;k2⊥ÞÞ

:

ð42Þ
In [30] it was seen that with only the CS contributions in the
small-x limit the numerator of the cos 2ϕh asymmetry only
receives a contribution from the linearly-polarized gluon
distributions. Here it is seen that as the CO contributions are

included, both the numerator and the denominator of the
above asymmetry contain contributions from the unpolar-
ized gluon TMD and the linearly-polarized gluon TMD.
Thus in this case, the unpolarized gluon distribution and the
linearly-polarized distributions are not disentangled in this
process in the kinematics considered. The above asymme-
try depends on the ratio of the two and can be used to
extract this ratio.
One thing to be noted here is that the J=ψ production in

electron-proton collision for a large transverse momentum
can be calculated in the collinear factorization approach.
For small Ph⊥, the TMD framework is expected to hold. In
the intermediate region, these two results should match.
This matching has been shown in [43]. In order to do the
matching, one has to evolve the TMDs using TMD
evolution [49]. Here, it is necessary to take into account
the soft factor that resums the emitted soft gluons. In the
final state, the LDMEs need to be modified with the
inclusion of the shape function or the smearing functions
[50–52]. In [43] one can see that the leading-order con-
tribution in the TMD region, that contributes at z ¼ 1 [22],
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is matched with the collinear factorized result at large Ph⊥
with one extra gluon. Here we have extended the calcu-
lation in the kinematical region z < 1 and small Ph⊥, where
the TMD framework is expected to be valid, and take
into account both the CS and CO contributions in the
asymmetry.

III. RESULTS AND DISCUSSION

In this section, we present numerical estimates of the
cosð2ϕhÞ asymmetry in the kinematical region to be
accessed at the EIC. As gluon TMDs are particularly
important in the small-x domain, we are considering the
small-x kinematics. At z ¼ 1, one gets contribution from
the leading order as well as diffractive contributions. Here
the momentum fraction of the final gluon is (1 − z). This
means as z → 1, the final gluon becomes soft. To keep the
final gluon hard, we have imposed a cutoff z < 0.9. Also, to
avoid the gluon fragmentation contribution to J=ψ , we
have used a lower cutoff z > 0.1. We have checked that
changing the lower cutoff does not affect the asymmetry
much. We took the mass of the proton to be Mp ¼ 1 GeV.
The contraction in the calculation above for the different

states i.e., 1Sð8Þ0 ; 3Sð1;8Þ1 , and 3Pð8Þ
Jð¼0;1;2Þ is calculated using

FeynCalc [53,54]. In all the plots of the asymmetry, the long
distance matrix elements are taken from Ref. [48] except for
the right panel of Fig. 3 and for the plots in Fig. 4, where we
have used different sets of LDMEs. The asymmetry depends
on the parametrization/model used for the gluon TMDs. In
our estimate, we have used two sets of parametrization to
calculate the cosð2ϕhÞ asymmetry: 1) Gaussian-type para-
metrization [20,23,44] for both the unpolarized as well as the
linearly-polarized TMDs, and 2) McLerran-Venugopalan
(MV) model [55–57] at small-x region.

A. cosð2ϕhÞ asymmetry in the Gaussian
parametrization

In Gaussian type of parametrization, both the TMDs, fg1
and h⊥g

1 are factorized into a product of collinear PDFs
times exponential factor which is a function of the trans-
verse momentum

fg1ðx;k2⊥Þ ¼ fg1ðx; μÞ
1

πhk2⊥i
e−k

2⊥=hk2⊥i; ð43Þ

h⊥g
1 ðx;k2⊥Þ ¼

M2
pf

g
1ðx; μÞ

πhk2⊥i2
2ð1 − rÞ

r
e
1−

k2⊥
rhk2⊥i; ð44Þ

rð0 < r < 1Þ is a parameter. We took the Gaussian width
hk2⊥i ¼ 0.25 GeV2 and r ¼ 1=3 in all plots except Fig. 5.
The term fg1ðx; μÞ is the collinear PDF, for which
MSTW2008 [58] is used and is probed at the scale
μ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ P2

h⊥
p

, where Mð¼ 3.096 GeV) is the mass
of J=ψ . The linearly-polarized gluon distribution in the
parametrization above satisfies the positivity bound [9], but
does not saturate it.
In Figs. 2–5, we have used the Gaussian parametrization

of the TMDs. In Figs. 2 and 5 we calculated the total
asymmetry by including the contribution from both
the color singlet and color octet states in the framework
of NRQCD.
In left panel of Fig. 2 we showed the asymmetry as a

function of Ph⊥ at center of mass energy
ffiffiffi
s

p ¼ 100 GeV
and at a fixed value of Q2 ¼ 15 GeV2. The integration
ranges are 0.0015 < xB < 0.1, 0.1 < z < 0.9 and y is set
by the values of Q2, s, and xB. In the right panel of Fig. 2,
we showed the asymmetry as a function of y at

ffiffiffi
s

p ¼
120 GeV and at fixed xB. The asymmetry is larger for
smaller values of xB and approaches to zero as y tends to 1.
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FIG. 2. cosð2ϕhÞ asymmetry in eþ p → eþ J=ψ þ X process. Left: As a function of Ph⊥ at
ffiffiffi
s

p ¼ 100 GeV and Q2 ¼ 15 GeV2.
The integration ranges are 0.0015 < xB < 0.1, 0.1 < z < 0.9 and y is set by the values of Q2, s, and xB. Right: As a function of y atffiffiffi
s

p ¼ 120 GeV and at fixed xB. The integration ranges are 0 < Ph⊥ < 2, 0.1 < z < 0.9. For both plots CMSWZ set of LDMEs [48]
is used.

COSð2ϕhÞ ASYMMETRY IN J=ψ PRODUCTION … PHYS. REV. D 104, 094015 (2021)

094015-9



0 0.5 1 1.5 2
Ph  (GeV)

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

A
co

s(
2

h)

Gaussian(CO)
Gaussian(CS)

0 0.5 1 1.5 2
Ph  (GeV)

-0.04

-0.03

-0.02

-0.01

0

0.01

A
co

s(
2

h)

CMSWZ
SV
ZSSL
BK

FIG. 3. cosð2ϕhÞ asymmetry in eþ p → eþ J=ψ þ X process as function of Ph⊥ at
ffiffiffi
s

p ¼ 100 GeV and Q2 ¼ 15 GeV2. The
integration ranges are 0.0015 < xB < 0.1, 0.1 < z < 0.9 and y is set by the values ofQ2, s and xB. Left: contributions from color singlet
and color octet states using the LDMEs set CMSWZ [48]. Right: comparing the asymmetry for different LDMEs sets: CMSWZ [48], SV
[59], ZSSL [60], BK [61].

0 0.5 1 1.5 2
Ph  (GeV)

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

A
co

s(
2

h)

3
S

1
(1)

1
S

0
(8)

3
P

J
(8)

3
S

1
(8)

0 0.5 1 1.5 2
Ph  (GeV)

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

A
co

s(
2

h)

3
S

1
(8)

1
S

0
(8)

3
P

J
(8)

3
S

1
(1)

FIG. 4. cosð2ϕhÞ asymmetry in eþ p → eþ J=ψ þ X process as function of Ph⊥ at
ffiffiffi
s

p ¼ 100 GeV and Q2 ¼ 15 GeV2. The
integration ranges are 0.0015 < xB < 0.1, 0.1 < z < 0.9 and y is set by the values of Q2, s and xB. Left: asymmetry for the set of
LDMEs, CMSWZ [48]. Right: asymmetry for the set of LDMEs SV [59].
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FIG. 5. cosð2ϕhÞ asymmetry in eþ p → eþ J=ψ þ X process as function of Ph⊥ at
ffiffiffi
s

p ¼ 100 GeV and Q2 ¼ 15 GeV2. The
integration ranges are 0.0015 < xB < 0.1, 0.1 < z < 0.9 and y is set by the values of Q2, s and xB. Left: asymmetry for three different
values of r. Right: asymmetry for two different values of Gaussian width parameter. For both plots CMSWZ set of LDMEs [48] is used.
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We obtained negative asymmetry which is consistent with
the LO calculations shown in [22]. However, the magnitude
of the asymmetry is small (only a few percent) even after
the CO contributions are included. This could be due to the
fact that we have calculated the asymmetry in a particular
kinematical region.
In the left panel of Fig. 3, we present the contribution to

the asymmetry from the CS and the CO states. From the
plot, we see that the color octet states are giving a
significant contribution to the asymmetry, whereas the
contribution from the CS is almost zero and slightly
positive in the higher Ph⊥ region. In the right panel of
Fig. 3, we show the asymmetry for different sets of
LDMEs. We see that the magnitude and the sign of the
asymmetry depend on the set of LDMEs used. The
asymmetry is negative if one uses CMSWZ [48] and BK
[61] sets of LDMEs whereas it is smaller and positive for
the SV [59] and ZSSL [60] sets. This is because, different
states contribute differently depending on the choice of
the LDME sets. In the left panel of Fig. 4 we show the
contribution coming from all the individual states to the
asymmetry for the LDMEs set CMSWZ [48]. For this set

of LDMEs, there is a dominance of one single state, 1Sð8Þ0 ,
to the asymmetry, whereas for the LDMEs set SV [59],
which is shown in the right panel of the same figure, we

have major contributions from two states 1Sð8Þ0 and 3Pð8Þ
J .

The strong dependence on the magnitude and sign of the
asymmetry on the set of LDMEs opens up another
interesting possibility of determining these LDMEs using
the data from this asymmetry. This could be done by taking
ratios of different azimuthal asymmetries or a combination
of them, where the dependence on the gluon TMDs cancel
out. An investigation in this direction, of determining the
LDMEs from azimuthal asymmetries in J=ψ production,
has already been reported in [42,28]. We plan to investigate
this further in a future publication.

In Fig. 5 we plotted the asymmetry as a function of Ph⊥
for different values of the parameter r (left) and Gaussian
width hk2⊥i (right). We do not see any significant change in
the asymmetry over different values of Gaussian width and
the parameter r.
Also, we have checked that there is no significant change

in the asymmetry if the value of the center of mass energy is
changed for a fixed value of Q2; but the asymmetry
decreases with the increase of the Q2 for a fixed value of s.

B. cosð2ϕhÞ asymmetry in the
McLerran-Venugopalan model

The McLerran-Venugopalan model [55–57], a classical
model, helps us to calculate the gluon distribution in a large
nucleus at small x. In this model, the Gaussian distribution
of color charges is assumed to act like a static source,
producing the soft gluons by the Yang-Mills equations.
Although originally proposed for a large nucleus, this
model has been found to give reasonable phenomenologi-
cal results in azimuthal asymmetries for a proton in small-x
domain [30,36,62]. The analytical expressions for unpo-
larized and linearly-polarized Weizsäcker-Williams gluon
distribution can be written as [63,64]

fg1ðx;k2⊥Þ ¼
S⊥CF

αsπ
3

Z
dρ

J0ðk⊥ρÞ
ρ

ð1 − exp
−ρ2
4
Q2

sgðρÞÞ; ð45Þ

h⊥g
1 ðx;k2⊥Þ¼

2S⊥CF

αsπ
3

M2
P

k2⊥

Z
dρ

J2ðk⊥ρÞ
ρlogð 1

ρ2λ2QCD
Þð1−exp

−ρ2
4
Q2

sgðρÞÞ;

ð46Þ

where S⊥ is the transverse size of the proton, QsgðρÞ is
the saturation scale for gluons, which in general is a
function of x but in the MV model depends on dipole
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FIG. 6. cosð2ϕhÞ asymmetry in eþ p → eþ J=ψ þ X process as function of Ph⊥ at
ffiffiffi
s

p ¼ 150 GeV, x ¼ 0.01 and z ¼ 0.7. Left:
contribution to the cosð2ϕÞ asymmetry coming from the individual states, as a function of Ph⊥ in the NRQCD framework using the color
octet model. Right: comparison of the Gaussian and MV model (with two different values of Qsg0). For both plots, CMSWZ set of
LDMEs [48] is used.
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size ρ logarithmically. HereQ2
sgðρÞ ¼ Q2

sg0 ln ð1=ρ2λ2 þ ϵÞ,
where Q2

sg0 ¼ ðNc=CFÞQ2
s0 with Q2

s0 ¼ 0.35 GeV2 at x ¼
x0 ¼ 10−2 and λQCD ¼ 0.2 GeV from the HERA data [65]
fitting. Following the approach of [62], a regulator ϵ
is added for numerical convergence. The results for
the MV parametrization are obtained in the kinematic
region defined by

ffiffiffi
s

p ¼ 150 GeV, x ¼ 0.01 and z ¼ 0.7.
The integration ranges are y ∈ ½0.2; 0.9� and xB ∈
½0.005; 0.009�. The value of Q is set according to y; xB,
and s. In Fig. 6 (left), we present the contribution to the
cosð2ϕhÞ asymmetry for the J=ψ coming from the indi-
vidual states, as a function of Ph⊥. The maximum con-

tribution to the asymmetry comes from the 1Sð8Þ0 state. In the
same Fig. 6 (right) we show the comparison of the
asymmetry in the Gaussian and the MVmodel, respectively
(with two different values of Qsg0 [65,66]) within the same
kinematical region as discussed above. The asymmetry in
theMVmodel depends on the saturation scale. We note that

the Gaussian parametrization of the TMDs gives larger
cosð2ϕhÞ asymmetry. In Fig. 7 we compare the contribution
to the asymmetry from color singlet and color octet states.
We find that a larger contribution to the cosð2ϕhÞ asym-
metry comes from color octet states, which is negative.
Color singlet states give a small positive contribution to the
asymmetry.

IV. CONCLUSION

In this article, we have studied the cosð2ϕhÞ asymmetry
in J=ψ production in an electron-proton collision in the
kinematics of the future electron-ion collider. We calculated
them in the small-x domain, where the gluon TMDs,
namely the unpolarized and linearly-polarized gluon
TMDs are important in unpolarized scattering. The dom-
inant subprocess in this kinematical region for J=ψ
production is the virtual-photon-gluon fusion process
γ� þ g → J=ψ þ g. We used the NRQCD based color
octet formalism for calculating the J=ψ production rate.
The cosð2ϕhÞ asymmetry within the considered kinematic
region is small but it can be detected at the planned EIC.
The asymmetry depends on the parametrization of the
gluon TMDs used. We used both the Gaussian as well as
the MV model for the parametrization. The magnitude of
the asymmetry is found to be larger for Gaussian para-
metrization. We have included contributions both from CO
as well as CS states. Overall, our calculation shows that the
cosð2ϕhÞ asymmetry in J=ψ production could be a useful
tool to probe the ratio of the linearly-polarized gluon TMD
and the unpolarized gluon TMD in the small-x region at the
EIC. The magnitude and the sign of the asymmetry depends
on the LDMEs used, in fact this gives the possibility to shed
light on the LDMEs using data from this asymmetry; for
example by taking combinations of azimuthal asymmetries
where the dependence on the TMDs cancel out. We plan to
investigate this issue more in another publication. In
particular, contributions from individual states are found
to depend substantially on the set of LDMEs used.
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