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We investigate the axial-vector nucleon-to-delta transition form factors in the framework of relativistic
baryon chiral perturbation theory at the one-loop order using the complex-mass renormalization scheme.
We determine the available six free parameters by fitting to an empirical parametrization of the form factors
obtained from the BNL neutrino bubble chamber experiments. A unique feature of our calculation is the
prediction of a nonvanishing form factor CA

3 ðQ2Þ. Moreover, our results show a surprising sensitivity to the

coupling constant g1 of the leading-order Lagrangian Lð1Þ
πΔ.
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I. INTRODUCTION

The Δð1232Þ resonance is the first and best-established
excitation of the nucleon [1]. In the static quark model, it
consists of three constituent quarks, coupled to spin S ¼ 3

2

and isospin I ¼ 3
2
. The dominant decay mode by far is the

strong decay into a pion and a nucleon, resulting in a lifetime
of the order of 10−23 s. According to Ref. [1], the pole
position in the complex-energy plane is at zΔ ¼ mΔ − i ΓΔ

2
≈

ð1210 − i 50Þ MeV.
While there is a substantial amount of empirical infor-

mation on the electromagnetic (vector) nucleon-to-delta
transition [2–15] (see, e.g., Refs. [16,17] for a review), very
little is known about the axial-vector nucleon-to-delta
transition [18–22]. The reason is twofold: (a) the weak
probe couples only feebly to the nucleon-delta system and
(b) the delta is unstable.1 On the theoretical side, numerous
investigations exist for the electromagnetic case (see
Ref. [23] and references therein) which have been exten-
sively compared with data. Also, theoretical calculations of
the axial-vector nucleon-to-delta transition have been
performed in the framework of quark models [24–28],

chiral effective field theory [29–32], lattice QCD [33–35],
and light-cone QCD sum rules [36,37].
While traditional calculations treat the delta resonance

essentially as a stable particle, it was emphasized in
Ref. [38] that form factors of unstable particles should
be determined from the renormalized three-point function
at the complex pole. In fact, this idea was applied in
Ref. [23] to the electromagnetic nucleon-to-Δ resonance
transition to third chiral order in manifestly Lorentz-
invariant chiral effective field theory. At the pole position,
the magnetic dipole, electric dipole, and Coulomb quadru-
pole form factors GM, GE, and GC are complex quantities.
In particular, it was found that GE and GC have imaginary
parts which are of the same magnitude as the respective real
parts. In the present article, we extend the analysis to
the axial-vector transition at the one-loop level. For that
purpose, we combine a covariant description of the
Δð1232Þ resonance [39,40] with the complex-mass scheme
(CMS) applied to the chiral effective field theory of the
strong interaction [41].2

This article is organized as follows. In Sec. II, we
introduce the axial-vector nucleon-to-delta transition proc-
ess and discuss how it is related to weak pion production. In
this context, we also define the pion-nucleon-delta form
factor in terms of the PCAC relation (partially conserved
axial-vector current). In Sec. III, we present the effective
Lagrangians we used. In Sec. IV, we calculate the transition
form factors and show our results. Section V contains a
comparison with other work. In Sec. VI, we give a short
summary.
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1Of course, the second argument also applies to the electro-
magnetic transition. Therefore, our knowledge of the electro-
magnetic transition form factors is substantially less than for the
nucleon elastic form factors. Concerning the transition from an
unstable delta state to an unstable delta state, Ref. [1] quotes only
a rough guess of the range, within which the magnetic moment is
expected to lie.

2The CMS was originally developed for deriving properties
of W, Z, and Higgs bosons obtained from resonant processes
[42–46].
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II. AXIAL-VECTOR NUCLEON-TO-DELTA
TRANSITION FORM FACTORS

A. Weak pion production

The Δð1232Þ is an unstable particle with a very short
lifetime of the order of 10−23 s. Therefore, strictly speak-
ing, stable one-particle states jΔðpÞi with p2 ¼ m2

Δ do not
exist [47]. For this reason, direct measurements of tran-
sition form factors are impossible, because the Δð1232Þ is
not an asymptotic state of the strong interactions.3 On the
other hand, the existence of the delta is prominently seen in
pion-nucleon scattering or pion photoproduction on the
nucleon. In other words, the impact of an unstable Δ may
be investigated in terms of a complete scattering amplitude,
where it contributes as an intermediate “state.” In the
present case, we are interested in the axial-vector
nucleon-to-delta transition. This may be studied in the
weak production of a pion on the nucleon with hadronic
center-of-mass energies in the delta region [48]. For
kinematical conditions such that the square root of the
Mandelstam variable s is in the vicinity of the complex pole
position,

zΔ ¼ mΔ − i
ΓΔ

2
;

the process is dominated by the propagation of a Δ
resonance in the s channel (see Fig. 1). Since the W boson
induces the transition between the nucleon and the delta in
terms of the V − A structure of the coupling to the quarks,
this contribution is sensitive to both the nucleon-to-delta
vector and axial-vector transitions. One now parametrizes
the contribution of the unstable Δð1232Þ and defines the
form factors in analogy to a stable particle. For an unstable
particle such as the Δð1232Þ, “on-shell kinematics” are
given by the complex pole position. The extraction of the
transition form factors from weak pion-production data in
the delta-resonance region could, in principle, be performed
in analogy to the determination of the electromagnetic
transition form factors from pion electroproduction data
using a partial wave analysis [15].

B. Definition of the axial-vector transition form factors

In the following, we provide a short definition of the
form factors. We stick to the notation of Ref. [32], where
more details can be found. In terms of the light-quark field
operators, q ¼ ðu; dÞT , the Cartesian components of the
isovector axial-vector current operator are given by [49]

Aμ
j ðxÞ ¼ q̄ðxÞγμγ5

τj
2
qðxÞ: ð1Þ

In general, the invariant amplitude4 for a transition between
hadronic states jAðpiÞi and jBðpfÞi, induced by a plane-
wave external field of the form aμ;jðxÞ ¼ ϵμ;jðqÞe−iq·x, is
defined as

M ¼ iϵμ;jðqÞhBðpfÞjAμ
j ð0ÞjAðpiÞi; ð2Þ

where four-momentum conservation pf ¼ pi þ q due to
translational invariance is implied.
Introducing the spherical tensor notation [50],

Aμð1Þ
�1 ¼ ∓ 1ffiffiffi

2
p ðAμ

1 � iAμ
2Þ; Aμð1Þ

0 ¼ Aμ
3;

and using isospin symmetry, we express the matrix element
of the spherical isospin components (α ¼ þ1; 0;−1)
between a nucleon state and a Δ state as

h3=2; τΔjAμð1Þ
α j1=2; τi

¼ ð1=2; τ; 1; αj3=2; τΔÞh3=2jjAμð1Þjj1=2i; ð3Þ

where h3=2jjAμð1Þjj1=2i denotes the reduced matrix element
and ð1=2; τ; 1; αj3=2; τΔÞ is the relevant Clebsch-Gordan
coefficient. The reducedmatrix elementmay, for example, be
obtained from the p to Δþ transition,

h3=2jjAμð1Þjj1=2i ¼
ffiffiffi
3

2

r
hΔþjAμð1Þ

0 jpi:

The Lorentz structure of the reduced matrix element may
be written as

hΔðpf; sfÞjjAμð1Þð0ÞjjNðpi; siÞi ¼ w̄λðpf; sfÞΓλμ
A uðpi; siÞ:

ð4Þ

FIG. 1. At s ≈m2
Δ, the process is dominated by the s-channel

pole diagram due to the propagator of the Δð1232Þ. The nucleon,
electron, and neutrino are represented by single lines, the
Δð1232Þ by a double line, the W boson by a wiggly line, and
the pion by a dashed line. The circles represent dressed vertices.

3From a theoretical point of view, it is possible to study a
hypothetical situation, where the sum of the nucleon and pion
masses is larger than the Δ mass, resulting in a stable Δ state.

4Our convention for the invariant amplitude complies with
Ref. [47]. In particular, it contains the imaginary unit on the right-
hand side of Eq. (2).
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Here, the initial nucleon is described by the Dirac spinor
uðpi; siÞ with a real mass mN and p2

i ¼ m2
N , the final

Δð1232Þ is described via the Rarita-Schwinger vector-
spinor w̄λðpf; sfÞ [51,52] with a complex mass zΔ and
p2
f ¼ z2Δ [38,53]. In the following, it is always understood

that the “tensor” Γλμ
A is evaluated between on-shell spinors

u and w̄λ, satisfying
5

=piuðpi; siÞ ¼ mNuðpi; siÞ; ð5Þ
w̄λðpf; sfÞ=pf ¼ zΔw̄λðpf; sfÞ; w̄λðpf; sfÞγλ ¼ 0;

w̄λðpf; sfÞpλ
f ¼ 0: ð6Þ

The expressions for a stable Δ resonance are obtained via
the replacement zΔ → mΔ. The “tensor” Γλμ

A contains a
superposition of four Lorentz tensors [48,54], which we
choose as [31,34]

Γλμ
A ¼ CA

3 ðQ2Þ
mN

ðgλμ=q − qλγμÞ þ CA
4 ðQ2Þ
m2

N
ðgλμpf · q − qλpμ

fÞ

þ CA
5 ðQ2Þgλμ þ CA

6 ðQ2Þ
m2

N
qλqμ; ð7Þ

whereQ2 ¼ −q2. Note that pf · q ¼ 1
2
ðpf þ pi þ pf − piÞ

·ðpf − piÞ ¼ 1
2
ðp2

f − p2
i þ q2Þ ¼ 1

2
ðz2Δ −m2

N −Q2Þ. Our
sign convention for the form factors in Eq. (7) is such
that we parameterize the matrix element of þAμ

j and, thus,
our sign convention follows closely the convention of the
nucleon-to-nucleon axial-vector transition [55]. In particu-
lar, CA

5 ðQ2Þ and CA
6 ðQ2Þ correspond to the axial nucleon

form factor GAðQ2Þ and the induced pseudoscalar form
factor GPðQ2Þ, respectively.

C. Pion-nucleon-delta transition form factor

Assuming isospin symmetry, i.e., equal up-quark and
down-quark masses mu ¼ md ¼ m̂, the divergence of the
axial-vector current is given by [55,56]

∂μA
μ
j ðxÞ ¼ m̂PjðxÞ; ð8Þ

where

PjðxÞ ¼ iq̄ðxÞγ5τjqðxÞ ð9Þ
denotes the pseudoscalar density [49]. With the help of
the pion mass Mπ and the pion-decay constant Fπ , the
isovector operator ΦjðxÞ≡ m̂PjðxÞ=ðM2

πFπÞ serves as an
interpolating pion field [56] such that Eq. (8) amounts to
the standard PCAC relation (partially conserved axial-
vector current) [57]. By means of ΦjðxÞ we define the
πNΔ transition form factor GπNΔðQ2Þ in analogy to the πN
form factor GπNðQ2Þ [55,58] as [34]

hΔðpf; sfÞjjΦð1Þð0ÞjjNðpi; siÞi

¼ i
1

M2
π þQ2

GπNΔðQ2Þw̄λðpf; sfÞ
qλ

mN
uðpi; siÞ: ð10Þ

From Eq. (8) we obtain

iqμhΔðpf; sfÞjjAμð1Þð0ÞjjNðpi; siÞi
¼ m̂hΔðpf; sfÞjjPð1Þð0ÞjjNðpi; siÞi; ð11Þ

which, using Eqs. (7) and (10), results in

GπNΔðQ2Þ¼mN

Fπ

M2
πþQ2

M2
π

�
CA
5 ðQ2Þ−Q2

m2
N
CA
6 ðQ2Þ

�
: ð12Þ

In other words, once we know the form factors CA
5 ðQ2Þ

and CA
6 ðQ2Þ, we can also extract the form factor GπNΔðQ2Þ.

The πNΔ coupling constant gπNΔ is defined as

gπNΔ ¼ GπNΔð−M2
πÞ: ð13Þ

Since the form factor CA
6 ðQ2Þ has a pole at Q2 ¼ −M2

π, the
coupling constant gπNΔ does not vanish despite the factor
ðM2

π þQ2Þ in Eq. (12).

III. EFFECTIVE LAGRANGIAN
AND POWER COUNTING

In this section, we provide the interaction Lagrangians
relevant for the calculation of the isovector axial-vector-
current form factors of the nucleon-to-delta transition in
covariant chiral EFT. The effective Lagrangian, Leff ,
consists of a purely pionic, a pion-nucleon, a pion-delta,
and a pion-nucleon-delta Lagrangian, each of which is
organized in a combined derivative and quark-mass expan-
sion. The most general effective Lagrangian for the
calculation of the transition form factors up to and includ-
ing order q3 is given by

Leff ¼ Lð2Þ
π þ Lð4Þ

π þ Lð1Þ
πN þ Lð1Þ

πΔ

þ Lð1Þ
πNΔ þ Lð2Þ

πNΔ þ Lð3Þ
πNΔ þ…; ð14Þ

where the ellipsis denotes terms which are either of higher
order or irrelevant for our calculation.
The perturbative calculation of the transition matrix

element is organized by applying the “standard” power
counting to the renormalized diagrams (see, e.g., Ref. [59]),
i.e., an interactionvertex obtained fromanOðqnÞLagrangian
counts as order qn, a pion propagator as order q−2, a nucleon
propagator as orderq−1, and the integration of a loop as order
q4.We assign the orderq−1 to theΔ propagator if it appears in
loop integrals.6 Also the order q1 is assigned to the leading

5The explicit form of w̄λ can be found in Ref. [53].

6In resonance generating channels, aΔ propagator which is not
involved in a loop integration has to be dressed. In this case,
one re-sums the self-energy insertions and considers the
dressed propagator as of order q−3, because the self-energy starts
at Oðq3Þ [39].
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order of the mass difference mΔ −mN . In other words, we
apply the so-called small-scale expansion of Ref. [60].When
calculating the form factors of Eqs. (7) and (10) at the one-
loop level, we follow the strategy of keeping all Q2-
dependent terms, even if they are of higher order when
applying an additional expansion with respect to a heavy
mass such as the nucleon mass or the delta mass.
The pionic Lagrangians at Oðq2Þ and Oðq4Þ are given

by [49,56]

Lð2Þ
π ¼ F2

4
fTr½DμUðDμUÞ†� þ TrðχU† þ Uχ†Þg;

Lð4Þ
π ¼ l4

4
Tr½DμUðDμχÞ†� þDμχðDμUÞ†� þ…; ð15Þ

respectively, with χ ¼ 2Bðsþ ipÞ, s and p denoting the
scalar and pseudoscalar external sources [49]. F is the pion-
decay constant in the chiral limit, Fπ ¼ F½1þOðm̂Þ� ¼
92.2 MeV, and B is associated with the scalar singlet quark
condensate hq̄qi0 in the chiral limit [49,56,61]. We employ
SU(2) isospin symmetry, mu ¼ md ¼ m̂, and the lowest-
order prediction for the pion mass squared is M2 ¼ 2Bm̂
[49,56], resulting from inserting the quark masses into the
external scalar field, s ¼ m̂1. The triplet of pion fields is
contained in the unimodular, unitary, ð2 × 2Þ matrix U,

U¼u2¼ exp

�
i
Φ
F

�
; Φ¼ τjϕj¼

�
π0

ffiffiffi
2

p
πþffiffiffi

2
p

π− −π0

�
; ð16Þ

where τj are the Pauli matrices. Introducing external vector
fields vμ and axial-vector fields aμ as

vμ ¼
τj
2
vμ;j; aμ ¼

τj
2
aμ;j; ð17Þ

and using

rμ ¼ vμ þ aμ; lμ ¼ vμ − aμ; ð18Þ

the covariant derivative of U is defined as

DμU ¼ ∂μU − irμU þ iUlμ: ð19Þ

The leading-order pion-nucleon Lagrangian reads [56,58]

Lð1Þ
πN ¼ Ψ̄

�
i=D−mþgA

2
γμγ5uμ

�
Ψ; Ψ¼

�
p

n

�
; ð20Þ

where Ψ denotes the nucleon isospin doublet containing the
four-component Dirac fields for the proton and the neutron.
The covariant derivative DμΨ is given by7

DμΨ ¼ ð∂μ þ ΓμÞΨ;

Γμ ¼
1

2
½u†ð∂μ − irμÞuþ uð∂μ − ilμÞu†�: ð21Þ

The chiral vielbein is defined as

uμ ¼ uμ;jτj ¼ i½u†ð∂μ − irμÞu − uð∂μ − ilμÞu†�: ð22Þ

The Lagrangian Lð1Þ
πN contains two free parameters, namely,

the nucleon mass in the chiral limit, m, and the axial-vector
coupling constant in the chiral limit, gA. Expanding uμ;j as

uj;μ ¼ aμ;j −
∂μϕj

F
þOðvμΦ; aμΦ2; ∂μΦΦ2Þ; ð23Þ

Eq. (20) gives rise to the lowest-order πNN vertex as well as
the axial-vector NN transition vertex which are both needed
for the one-loop corrections at Oðq3Þ.
The building blocks for constructing the Lagrangian of

the Δ resonance can be found in Refs. [39,59] and the
references therein. For our purposes, we only need the
leading-order contribution,8

Lð1Þ
πΔ ¼ −Ψ̄μξ

3
2

�
ði=D −mΔÞgμν − iðγμDν þ γνDμÞ þ iγμ=Dγν

þmΔγ
μγν þ g1

2
ð=uγ5gμν − γμuνγ5 − uμγνγ5

− γμ=uγ5γνÞ
�
ξ
3
2Ψν; ð24Þ

from the πΔ Lagrangian, where Ψν denotes a vector-spinor
isovector-isospinor field. The isovector-isospinor transforms
under the 1 ⊗ 1

2
¼ 3

2
⊕ 1

2
representation and, thus, contains

both isospin 3=2 and isospin 1=2 components. In order to
describe theΔ, it is necessary to project onto the isospin-3=2
subspace. The corresponding matrix representation of the
projection operator is denoted by ξ

3
2, and the entries of ξ

3
2 are

given by [59]

ξ
3
2

ij ¼ δij −
1

3
τiτj:

Inserting the expansion of Eq. (23) into Eq. (24), we obtain
the leading-order πΔΔ vertexwhich is proportional tog1 and
which is needed for the one-loop corrections at Oðq3Þ.
The leading-order πNΔ chiral Lagrangian is given by

[see Eq. (4.200) of Ref. [59] with z̃ ¼ −1 for consistency
with the choice A ¼ −1]

Lð1Þ
πNΔ ¼ gΨ̄λ;iξ

3
2

ijðgλμ − γλγμÞuμ;jΨþ H:c:; ð25Þ
where H.c. denotes the Hermitian conjugate. Expanding
uμ;j as above, Eq. (25) gives rise to the leading-order

7We do not consider a coupling to an external isoscalar vector
field.

8Note that the free Lagrangian contains an arbitrary real
parameter A ≠ − 1

2
[62,63], for which we choose A ¼ −1 such

that the propagator takes the simplest form.
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contribution to CA
5 ðQ2Þ as well as the leading-order πNΔ

vertex, which is needed for the calculation of the loop
contributions at Oðq3Þ.
At Oðq3Þ, the higher-order Lagrangians Lð2Þ

πNΔ and Lð3Þ
πNΔ

can only contribute at the tree level. In principle, these
Lagrangians were derived in Ref. [64] (see also Ref. [65]).

Taking Eq. (66) of Ref. [64] for Lð2Þ
πNΔ, there would be no

contribution to the form factors at Oðq2Þ, because the first
two terms contain the chiral vielbein quadratically, and the
last term involves the “wrong” field strength tensor fμνþ .
However, as discussed in Appendix, there are independent
contributions at Oðq2Þ and Oðq3Þ. In fact, this is to be
expected for the following reason. Counting the polariza-
tion vector as of OðqÞ and treating only the four-momen-
tum q (but not pf) as a small quantity, we expect from
Eqs. (4) and (7) two free parameters related to CA

3 ð0Þ and
CA
4 ð0Þ.9 For the sake of simplicity, we will denote these

two parameters by α and β, respectively (see Appendix),
and will refer to them as of beyond leading order. Similarly,
the Oðq3Þ Lagrangian of Ref. [64] produces fewer con-
tributions to the form factors than is expected from the
counting of momenta (and the polarization vector). Since it
is not the purpose of this paper to construct the most general
Lagrangian atOðq3Þ, we have decided to Taylor expand the
form factors and keep the expansion coefficients as free
parameters.

IV. RESULTS

Figure 2 shows those tree-level and one-loop Feynman
diagrams that generate a nonvanishing contribution to the
nucleon-to-delta transition matrix element of the isovector
axial-vector current. In principle, the renormalized vertex is
obtained by multiplying the contributions of Fig. 2 by the
square roots of the wave function renormalization constants
ZN and ZΔ. In practice, we evaluate the loop diagrams in
the framework of dimensional regularization at the renorm-
alization scale μ ¼ 1 GeV. We apply the modified minimal
subtraction scheme of ChPT (gMS) [49,59] by dropping
infinite parts in terms of the combination 2=ðn − 4Þ−
½lnð4π þ Γ0ð1Þ þ 1Þ�, where n denotes the number of
space-time dimensions. We combine the remaining finite
pieces with the available renormalized free parameters.
When calculating the loop contributions involving a delta
line in the loop [diagrams (n), (p), (q), (r), (s), (t), and (u) of
Fig. 2], we neglect the width. This amounts to neglecting
terms of Oðℏ2Þ, which are beyond the accuracy of a one-
loop calculation.

In fact, for the actual calculation, we use a decompo-
sition of Γλμ

A which differs from Eq. (7), namely,

Γλμ
A ¼ k1qλp

μ
f þ k2qλqμ þ k3qλγμ þ k4gλμ: ð26Þ

For each diagram, we extract the four coefficients ki and
determine their contributions to the form factors CA

i ðQ2Þ,
using the relations

CA
3 ¼ −mNk3;

CA
4 ¼ −m2

Nk1;

CA
5 ¼ 1

2
ðz2Δ −m2

N −Q2Þk1 þ ðzΔ −mNÞk3 þ k4;

CA
6 ¼ m2

Nk2:

Using the strategy outlined in Sec. III, the tree-level
contributions to the form factors can be written as10

CA
3treeðQ2Þ ¼ α;

CA
4treeðQ2Þ ¼ β;

CA
5treeðQ2Þ ¼ gþ γM2 þ δQ2;

CA
6treeðQ2Þ ¼ m2

N
gþ γM2 þ ϵM2

M2 þQ2
þ ζ: ð27Þ

We have explicitly shown the quark-mass dependence
in terms of the lowest-order squared pion mass M2.11

In addition, we made use of the analogy of the form
factors CA

5 ðQ2Þ and CA
6 ðQ2Þ to the nucleon form factors

GAðQ2Þ and GPðQ2Þ (see Ref. [55]). At leading and next-
to-leading order, the form factors CA

3 ðQ2Þ, CA
4 ðQ2Þ, and

CA
5 ðQ2Þ are constant. The parameters g, α, and β are

independent low-energy constants, i.e., they are not pre-
dicted by chiral symmetry. Using the relation from the
static quark model with SU(6) symmetry results in the
estimate g ¼ 3

ffiffiffi
2

p
gA=5 [32,60]. At this order, the form

factor CA
6 ðQ2Þ is predicted as

CA
6 ðQ2Þ ¼ m2

N

M2 þQ2
g:

Turning to Oðq3Þ, we will now have both tree-
level modifications as well as loop contributions. The
parameter γ corresponds to a quark-mass correction to the

9In an effective Lagrangian, the four-momentum pf of the
Lorentz structure multiplying CA

4 ðQ2Þ would result from a (hard)
derivative, acting on the delta field. Using a total derivative, the
equations of motion, and the constraint equations for the delta
field [essentially Eqs. (5) and (6)], such a term can be related to a
Lagrangian of Oðq3Þ without a hard derivative.

10For the sake of simplicity, we do not display the contribution
of diagrams (e) and (g) to the formula for CA

6treeðQ2Þ. After
renormalization, the diagrams (d), (e), (g), (j), and (k) add up such
that a factor F=ðQ2 þM2Þ is replaced by Fπ=ðQ2 þM2

πÞ.11In Ref. [66], a different organization scheme—the so-called δ
expansion—was proposed for the effective field theory including
the delta resonance. According to Ref. [30], the use of the δ
expansion in the calculation of the axial-vector NΔ transition
form factors amounts to shifting explicitM2

π corrections to higher
orders. Using footnote 4 of Ref. [30], these higher-order terms
correspond to our terms proportional to γ and ϵ.
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nucleon-to-delta transition axial-vector coupling constant
gANΔ ≡ CA

5 ð0Þ. Furthermore, δ contributes to the mean-
square axial transition radius

hr2ANΔi≡ −
6

gANΔ

dCA
5 ðQ2Þ
dQ2

����
Q2¼0

: ð28Þ

The parameter ϵ enters into the calculation of the gener-
alized Goldberger-Treiman discrepancy [67–69]

Δ≡ 1 −
mNgANΔ

FπgπNΔ
; ð29Þ

where gπNΔ is defined in Eq. (13). Finally, the parameter ζ
is related to the y-intercept of CA

6 ðQ2Þ.
Unfortunately, there is very little empirical information

on the form factors CA
i ðQ2Þ. In order to obtain some

estimate about the parameters and shape of our theoretical
results, we perform a fit to the parametrization

(a) (b) (c) (d) (e)

(f)

(k)

(l)

(o)

(s) (t) (u)

(p) (q) (r)

(m) (n)

(g) (h) (i) (j)

FIG. 2. Diagrams which, after renormalization, result in nonvanishing contributions to the axial-vector nucleon-to-delta transition
form factors up to and including Oðq3Þ. The double, solid, dashed, and wiggly lines correspond to the delta, nucleon, pion, and the
external axial-vector source, respectively.
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CA
i ðQ2Þ ¼

CA
i ð0Þð1þ ai

Q2

biþQ2Þ
ð1þ Q2

M2
A
Þ2

ði ¼ 3; 4; 5Þ ð30Þ

(see Appendix D of Ref. [70]). The form factor CA
6 ðQ2Þ is

assumed to be dominated by the pion-pole contribution. In
particular, we make use of the axial-vector form factor
parameters of the Adler model (see Table D.1 of Ref. [70]),

CA
3 ð0Þ ¼ 0; a3 ¼ 0; b3 ¼ 0;

CA
4 ð0Þ ¼ −0.3; a4 ¼ −1.21; b4 ¼ 2.0 GeV2;

CA
5 ð0Þ ¼ 1.2; a5 ¼ −1.21; b5 ¼ 2.0 GeV2: ð31Þ

This parametrization was used by the authors of Ref. [21] to
extract the axial mass as MA ¼ ð1.28þ0.08

−0.10Þ GeV from their
analysis of the Δþþ production reaction νμ þ d → μ−þ
Δþþ þ ns, where ns refers to a spectator neutron. Note that
the parameters of Eq. (31) were used in Ref. [21] without
any uncertainty such that the only uncertainty in the
following input to out fits will be the uncertainty of MA.
To emphasize the low-Q2 region, we choose the Q2

values at which to evaluate the empirical form factors
according to Q2

n ¼ n2 × 0.0004 GeV2 (n ¼ 0; 1;…; 28).
For the fits, we employ the Mathematica routine
NonlinearModelFit. Our loop diagrams contain the low-
energy constants (LECs) gA, g1, and g. In the loop
integrals, we approximate gA by gA ¼ 1.28 (empirical
value gA ¼ 1.2756� 0.0013 [1]), because the difference
between gA and gA is of order M2 in the chiral expansion
and, therefore, using gA introduces an error of higher order
beyond the accuracy of our calculation. For the other two
coupling constants, we make use of an SU(6) spin-flavor
quark-model relation [59,60],

g1 ¼
9

5
gA; g ¼ 3

5

ffiffiffi
2

p
gA; ð32Þ

resulting in g1 ¼ 2.30 and g ¼ 1.08, respectively.12

Furthermore, we replace M2 by M2
π and use Mπ ¼

0.135 GeV. From a fit to the form factors CA
4 ðQ2Þ and

CA
5 ðQ2Þ, we obtain for the LECs β, γ, and δ the values

β ¼ 0.335þ0.004
−0.003 ; γ ¼ −84.7þ0.2

−0.1 GeV−2;

δ ¼ −3.20þ0.14
−0.09 GeV−2: ð33Þ

The value CA
5 ð0Þ is the analogue of gA. The individual

contributions to CA
5 ð0Þ are given by13

CA
5 ð0Þ ¼ 1.20þ0.00

−0.01 ¼ gþ γM2
π þ loops

¼ 1.08 − 1.54þ0.00
−0.01 þ 1.66: ð34Þ

The M2
π term plus the loops amount to a 10% correction of

the leading-order term. The uncertainty of CA
5 ð0Þ in

Eq. (34) results entirely from the uncertainty of γ, which
in turn results from the value of the axial mass MA used in
the empirical parametrization. This should not be confused
with an estimate of higher-order corrections to be expected
from applying effective field theory beyondOðq3Þ. We will
come back to a qualitative estimate of the importance of
higher-order terms at the beginning of Sec. V.
Varying exclusively the parameter MA in the empirical

parametrization, we do not expect to obtain a reliable
estimate in the uncertainty of the empirical form factors.
Therefore, except for two illustrative examples (see below),
we will refrain from showing error bands, as they might
suggest a greater degree of accuracy than is actually
available. In Fig. 3(a), we display the individual contribu-
tions to CA

5 ðQ2Þ for g1 ¼ 2.30; the total result is given by
the red solid line, the loop contribution by the green dashed
line, and the tree-level contribution by the green dotted line.
The total result shows, as was to be expected from a
calculation at Oðq3Þ, essentially a linear behavior as a
function of Q2. The loop contribution rises with increasing
Q2, whereas the tree-level contribution decreases linearly
with Q2. A comparison with the empirical parametrization
of the Adler model is shown in Fig. 4. The pink error band
of our calculation overlaps the narrower gray error band of
the empirical parametrization. In the Q2 range considered,
the fit differs by less than 3% from the empirical
parametrization.
Using Eq. (28), we obtain for the mean-square axial

transition radius

hr2ANΔi ¼ 0.345 fm2; ð35Þ

(a) (b)

FIG. 3. Individual contributions to CA
5 ðQ2Þ. The red solid,

green dotted, and green dashed lines correspond to the total
result, the loop contribution, and the tree-level contribution,
respectively. The left and right panels show the fits for g1 ¼ 2.30
and g1 ¼ −1.21, respectively.

12Using the leading-order term of Eq. (25) only to describe the
width, would result in g ¼ 1.13 [71].

13In the following, we give our numerical results after rounding
with three significant digits.
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which has to be compared with hr2ANΔi ¼ 0.427 fm2 of the
empirical parametrization. A smaller axial radius for the fit
was to be expected, because the empirical parametrization
contains more curvature while the fit behaves essentially
linearly. Therefore, as can be seen from Fig. 4, the fit
generates a slightly flatter behavior as a function of Q2.
As no reliable experimental data exist for hr2ANΔi, we

also quote for comparison the empirical values for the
mean-square axial radius for the nucleon: hr2Ai ¼ ð0.444�
0.018Þ fm2 [72] and hr2Ai ¼ ð0.453� 0.023Þ fm2 [73]. In
fact, based again on the quark-model relation of Eq. (32),
the simplest assumption would be CA

5 ðQ2Þ ¼ 3
5

ffiffiffi
2

p
GAðQ2Þ

[32], resulting in hr2ANΔi ¼ hr2Ai.
Instead of using the quark-model estimate for g1, we also

made use of the value g1 ¼ −1.21 which was obtained in
Ref. [74] from a fit to the πN phase shifts of the S and P
waves. As stated in Ref. [74], since g1 appears only in the
loop contribution of their calculation, a precise determi-
nation of its value is not to be expected. Note, in particular,
that g1 comes out with an opposite sign relative to the
quark-model estimate. Using g1 ¼ −1.21, we obtain for the
LECs β, γ, and δ the values

β ¼ −0.0691; γ ¼ −19.8 GeV−2;

δ ¼ −1.22 GeV−2: ð36Þ

Here, the individual contributions to CA
5 ð0Þ are given by

CA
5 ð0Þ ¼ 1.19 ¼ gþ γM2

π þ loops

¼ 1.08 − 0.36þ 0.47: ð37Þ

The individual contributions to CA
5 ðQ2Þ for g1 ¼ −1.21 are

shown in Fig. 3(b). In the range 0 ≤ Q2 ≤ 0.3 GeV2, the
total result for g1 ¼ −1.21 deviates from that for g1 ¼ 2.30
by less than 1%. However, the loop contribution behaves

very differently, namely, atQ2 ¼ 0 it starts at a much lower
value and it decreases with increasing Q2 as opposed to a
(stronger) increase with Q2 for g1 ¼ 2.30. In the end, this
behavior is compensated by the rather different values of γ
and δ.
The results for CA

6 ðQ2Þ were obtained by fitting to the
pion-pole-dominated expression,

CA
6 ðQ2Þ ¼ m2

N
CA
5 ðQ2Þ

M2
π þQ2

;

where CA
5 ðQ2Þ is taken from Eq. (30). Such a fit

contains two free parameters, namely, ϵ and ζ, which were
obtained as

ϵ¼ 59.3 GeV−2 and ζ ¼ −11.5 for g1 ¼ 2.30;

ϵ¼ 13.4 GeV−2 and ζ ¼ −3.40 for g1 ¼ −1.21: ð38Þ

The corresponding results for CA
6 ðQ2Þ are shown in Fig. 5.

For Q2 ⪅ 0.16 GeV2, the fit for g1 ¼ 2.30 is below the
empirical form factor and deviates by less than 2.6% from the
empiricalCA

6 ðQ2Þ. BeyondQ2 ≈ 0.16 GeV2, the fit is above
the empirical result with a continuously increasing deviation
reaching−23% atQ2 ¼ 0.3 GeV2. Forg1 ¼ −1.21, the fit is
generally closer to the empirical result than for g1 ¼ 2.30.
For Q2 ⪅ 0.06 GeV2, the fit is below the empirical form
factor, beyond Q2 ¼ 0.06 GeV2 it is above. Again, the
maximal deviation happens atQ2 ¼ 0.3 GeV2 and amounts
to −3.2%.
Given the results for the form factors CA

5 ðQ2Þ and
CA
6 ðQ2Þ, we are now also in the position to discuss the

πNΔ transition form factor GπNΔðQ2Þ of Eq. (12) (see
Fig. 6). For g1 ¼ 2.30, our result deviates very quickly with
increasing Q2 from the pion-pole-dominated empirical
result,

FIG. 4. Fit of the form factor CA
5 ðQ2Þ for g1 ¼ 2.30. The red

solid and blue dashed lines correspond to the real part and the
imaginary part, respectively. The black dotted line is the empirical
parametrization of the Adler model. The pink error band of the
red solid line overlaps the narrower gray error band of dotted line.

(a) (b)

FIG. 5. Fit of the form factor CA
6 ðQ2Þ for g1 ¼ 2.30 (left panel)

and g1 ¼ −1.21 (right panel), respectively. The red solid and blue
dashed lines correspond to the real part and the imaginary part,
respectively. The black dotted line is the pion-pole-dominated
empirical parametrization with CA

5 ðQ2Þ of the Adler model.
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GπNΔðQ2Þ ¼ mN

Fπ
CA
5 ðQ2Þ:

In fact, the linear combination of Eq. (12) involves a
delicate interplay between the terms

mN

Fπ

Q2

M2
π
CA
5 ðQ2Þ and −

mN

Fπ

Q2

m2
N

M2
π þQ2

M2
π

CA
6 ðQ2Þ:

The strong downward trend for increasing Q2⪆0.15 GeV2

is due to a relatively large negative contribution propor-
tional to ðQ2Þ3, originating from the second term. The
situation is somewhat better for g1 ¼ −1.21, where the
deviation starts at Q2 ≈ 0.2 GeV2. This does not come as a
surprise, because both CA

5 ðQ2Þ and, in particular, CA
6 ðQ2Þ

are better described for g1 ¼ −1.21. For the πNΔ coupling
constant, we obtain

GπNΔð−M2
πÞ ¼ gπNΔ ¼ 12.8 for g1 ¼ 2.30;

gπNΔ ¼ 12.5 for g1 ¼ −1.21:

These values result in a generalized Goldberger-Treiman
discrepancy of

Δ ¼ 0.0533 and Δ ¼ 0.0305; ð39Þ

for g1 ¼ 2.30 and g1 ¼ −1.21, respectively. Even though
the imaginary parts of CA

5 ðQ2Þ and CA
6 ðQ2Þ are small, we

obtain a noticeable imaginary part for GπNΔðQ2Þ. In the
present case, the imaginary part originates entirely from the
loop contributions. In this context, one should keep in mind
that, in the complex-mass scheme, the low-energy con-
stants can also be complex numbers. Therefore, in princi-
ple, they could generate additional imaginary contributions.
As our empirical ansatz for the form factors is real, we only
fitted the real part of the form factors and left the imaginary
tree-level contributions unspecified.
Finally, we turn to the form factors CA

3 ðQ2Þ and CA
4 ðQ2Þ.

These form factors have no analogue in the nucleon case. In
Fig. 7, we show the loop contribution to CA

3 ðQ2Þ. The
parameter α of Eq. (27) serves to shift the whole curve up or
down and has been set to zero in the figure. No matter what
the value for α is, our result is incompatible with the
empirical ansatz CA

3 ðQ2Þ ¼ 0. By far the largest contribu-
tion to CA

3 ðQ2Þ originates from diagram (t) of Fig. 2 and is
proportional to gg2

1. Therefore, the case g1 ¼ 2.30 pro-
duces a much stronger (negative) slope than g1 ¼ −1.21.
The result for CA

4 ðQ2Þ is shown in Fig. 8. Here, we obtain a
good description of the empirical form factor for
g1 ¼ −1.21, while the case g1 ¼ 2.30 again produces a
much stronger (positive) slope.

(a) (b)

FIG. 7. Form factor CA
3 ðQ2Þ for g1 ¼ 2.30 (left panel) and g1 ¼

−1.21 (right panel), respectively. The red solid and blue dashed
lines correspond to the real part and the imaginary part,
respectively. In the Adler model, the form factor is set to zero
(black dotted lines).

(a) (b)

FIG. 8. Form factor CA
4 ðQ2Þ for g1 ¼ 2.30 (left panel, including

error bands) and g1 ¼ −1.21 (right panel), respectively. The red
solid and blue dashed lines correspond to the real part and the
imaginary part, respectively. The black dotted line is the empirical
parametrization of the Adler model.

(a) (b)

FIG. 6. Results for the transition form factor GπNΔðQ2Þ of
Eq. (12) for g1 ¼ 2.30 (left panel) and g1 ¼ −1.21 (right panel),
respectively. The red solid and blue dashed lines correspond to
the real part and the imaginary part, respectively. The black dotted
line is the empirical result using CA

5 ðQ2Þ and CA
6 ðQ2Þ of the Adler

model.
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V. COMPARISON WITH OTHER WORK

Before we compare our calculation of the axial-vector
current nucleon-to-delta transition form factors with other
work, let us make a few general comments about the
limitations of our results. Our calculation is a one-loop
approximation at Oðq3Þ. A complete one-loop calculation
at Oðq4Þ would involve loop diagrams with a vertex from

Lð2Þ
πNΔ and, possibly, additional tree-level terms. As in the

calculation of the nucleon axial-vector form factors, we
expect from the loop diagrams nonanalytical corrections of
M3

π to CA
5 ðQ2Þ at Q2 ¼ 0 and also to gπNΔ [see Eqs. (23),

(24) and (37), (38) of Ref. [55] ], but no modification of the
Q2 behavior. Regarding the pion-mass dependence, we
expect a reasonable convergence along the line of the two-
loop analysis of gA in Ref. [75]. Since we cannot predict the
values of the form factors at Q2 ¼ 0 anyway, the additional
terms do not matter to our analysis. Of course, the
knowledge of such terms would be of interest for extrap-
olations in the context of lattice QCD. In the case of the Q2

behavior, the situation is more complex. Here, we expect
that curvature terms might become important beyond
approximately Q2 ¼ 0.1 GeV2 [55,76,77]. Such terms
arise at the two-loop level in terms of loop contributions
and new contact terms. However, from a phenomenological
point of view, combining a one-loop calculation with
meson exchange contributions such as in Ref. [55] might
be a more efficient approach. For example, let us assume
that the exchange of an a1 axial-vector meson with mass
Ma1 ¼ 1.26 GeV is the dominant mechanism contributing
to CA

5 ðQ2Þ. From expanding the propagator 1=ðM2
a1 þQ2Þ

asM−2
a1 ð1 −Q2=M2

a1 þ ðQ2=M2
a1Þ2 þ � � �Þ, wewould expect

a relative factor of the order of Q2=M2
a1 multiplying

CA
5 ðQ2Þ − CA

5 ð0Þ. At Q2 ¼ 0.3 GeV2, this amounts to
approximately 20%, or about 0.09 in absolute terms for
the magnitude of CA

5 .
Let us now turn to the comparison with other work. First,

we compare our calculation with another calculation in the
framework of covariant chiral perturbation theory [30]. Our
starting point is different in that we are using the isovector-
isospinor representation for the Δ involving the projection
operator ξ, whereas Ref. [30] directly uses an isospin
quadruplet. Furthermore, we have one more effective
parameter than Ref. [30], which affects the tree-level result
of CA

6 ðQ2Þ. The parameters entering the loop diagrams are
essentially the same, in particular, Ref. [30] also uses the
quark-model prediction HA ¼ g1 ¼ 9

5
gA. Nevertheless, our

loop contributions are, in general, substantially larger in
magnitude; this is particularly true forCA

3 ðQ2Þ. On the other
hand, for both g1 ¼ 2.30 and g1 ¼ −1.21, our total result
for CA

5 ðQ2Þ is closer to the empirical parametrization than
the result of Ref. [30], in particular for Q2⪆0.1 GeV2,
whereas CA

6 ðQ2Þ turns out to be very similar. For CA
3 ðQ2Þ

we obtain an opposite sign in comparison to Ref. [30].

Finally, for CA
4 ðQ2Þ, an ambiguous situation arises. For

g1 ¼ −1.21 there is a very good correspondence with the
empirical form factor, whereas the result of Ref. [30] is
substantially below the empirical form factor. However, for
g1 ¼ 2.30, our result increases too quickly, yielding too
large a slope.
In the framework of nonrelativistic chiral effective field

theory to leading one-loop order [31], the Q2 dependence
of the form factor CA

5 ðQ2Þ to order three is entirely
generated by an LEC. The Q2 dependence of the form
factor CA

6 ðQ2Þ is given by the pion-pole contribution and
the same LEC as in CA

5 ðQ2Þ. Finally, CA
3 ðQ2Þ and CA

4 ðQ2Þ
gain Q2 and Mπ dependence only at higher orders. In
particular, the prediction CA

4 ð0Þ ¼ 0 (no LEC available in
Ref. [31]) does not agree with our findings. However,
based on the discussion in Appendix, the heavy-baryon

Lagrangian Lð3Þ
πNΔ atOðq3Þ should also make a contribution

to CA
4 ð0Þ [see Eq. (A4)]. Moreover, we find for all form

factors a numerically significant loop contribution, in
particular also from diagram (t) leading to the sensitivity
on the sign of g1. In the case of CA

5 ðQ2Þ and CA
6 ðQ2Þ, the

Q2-dependent loop contributions are combined with con-
tact terms, whereas for CA

3 ðQ2Þ and CA
4 ðQ2Þ the Q2

dependence originates entirely from the loop diagrams.
The different behavior of the loop contributions is not in
conflict with the heavy-baryon calculation, where they
should show up at a higher order in the combined chiral and
inverse (large) mass expansion. Similar to the case of the
determination of the nucleon electromagnetic form factors
[76,77], a covariant calculation leads to the fact that higher-
order terms are retained that do not (yet) occur in the
inverse mass expansion. Our values for the generalized
Goldberger-Treiman discrepancy are slightly larger than
the ∼2% predicted in the framework of heavy-baryon chiral
perturbation theory [29].
The inclusion of the a1 meson as an explicit dynamical

degree of freedom was discussed in Ref. [32]. Besides the
a1-meson mass, this introduces one additional effective
parameter. The a1 meson effects the shape of the form
factors CA

5 ðQ2Þ and CA
6 ðQ2Þ; the form factor CA

5 ðQ2Þ
develops more curvature and CA

6 ðQ2Þ lies above the
pion-pole dominance prediction for Q2⪆0.1 GeV2.
Results from lattice QCD for CA

5 ðQ2Þ and CA
6 ðQ2Þ were

reported in Refs. [34,35]. In general, the values of CA
5 ð0Þ in

their calculations come out as smaller than one, i.e., they
are also smaller than our results. At the same time, the axial
mass turns out to be larger than MA ¼ 1.28 GeV, corre-
sponding to a smaller mean-square axial transition radius.
This corresponds to our findings. At low Q2, the lattice
results for CA

6 ðQ2Þ turn out to be smaller than our results.
Finally, Ref. [35] contains two fits to GπNΔðQ2Þ. For the
coupling constant gπNΔ, which Ref. [35] defines at Q2 ¼ 0

rather than Q2 ¼ −M2
π , values between 8.44 and 16.3 are
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obtained, which have to be compared with our values
12.8 and 12.5.
As a representative example for studies in the framework

of nonrelativistic (chiral) quark models, we take the results
of Ref. [28]. First, we observe that the predictions of the
form factors in the quark model are real quantities instead
of complex functions in our calculation. The dominant
form factor CA

5 ðQ2Þ starts with CA
5 ð0Þ ¼ 0.93 and produces

curvature according to an axial-vector meson dominance
coupling (at the quark level) similar to Ref. [32]. The axial
radius is predicted as hr2ANΔi ¼ 0.59 fm2. They also predict
a nonzero form factor CA

3 ðQ2Þ in the low-Q2 region, but of
significantly smaller magnitude.
Besides Ref. [21], from which we took the empirical

parametrization of the form factors, some more recent
experimental information is available for the linear
combination GA

NΔðQ2Þ ¼ 1
2
½m2

N −m2
Δ þQ2�CA

4 ðQ2Þ−
m2

NC
A
5 ðQ2Þ, which was extracted from the parity-

violating asymmetry in inelastic electron-nucleon
scattering near the Δ resonance. Reference [22] reports14

GA
NΔðQ2 ¼ 0.34 GeV2Þ ¼ −0.05� ð0.35Þstat � ð0.34Þsys�

ð0.06Þtheory, whereas we obtained −0.584 GeV2 for g1 ¼
2.30 and −0.544 GeV2 for g1 ¼ −1.21.

VI. SUMMARY

We analyzed the low-Q2 behavior of the axial-vector
nucleon-to-delta transition form factors CA

3 ðQ2Þ, CA
4 ðQ2Þ,

CA
5 ðQ2Þ, and CA

6 ðQ2Þ at the one-loop level of relativistic
baryon chiral perturbation theory. In total, the calculation
involves six free parameters α, β, γ, δ, ϵ, and ζ [see
Eqs. (27)]. The constants gA, Fπ , Mπ , mN , and zΔ were
fixed in terms of their empirical values. For the coupling
constant g we made use of the quark-model prediction
g ¼ 3

5

ffiffiffi
2

p
gA. Finally, for the coupling constant g1, appear-

ing in certain loop diagrams only, we considered two
scenarios: we either made use of the quark-model pre-
diction g1 ¼ 9

5
gA ¼ 2.30 or of g1 ¼ −1.21 as obtained

from an analysis of the πN phase shifts of the S and P
waves. Since there is essentially no direct experimental
information on the form factors available, we took the
empirical parametrizations used in the analysis of Ref. [21]
to determine our parameters. For our fits, we chose the
interval 0 ≤ Q2 ≤ 0.3136 GeV2, where the upper end of
the interval is likely to be at the verge of the applicability
of a one-loop calculation. For the form factor CA

5 ðQ2Þ we
obtain good descriptions for both g1 ¼ 2.30 and
g1 ¼ −1.21, deviating from the empirical form by less
than 3% and 1%, respectively. As can be seen from Fig. 3,
the loop corrections are sizable and their slope depends on

the sign of g1. As a consequence, the total result involves a
delicate interplay between the loop contributions and the
parameters γ and δ [see Eqs. (33) and (36)]. The parameters
ϵ and ζ were determined from the fit to CA

6 ðQ2Þ, where,
again, for g1 ¼ −1.21 our result is closer to the empirical
form factor than for g1 ¼ 2.30 (see Fig. 5). As a result, the
πNΔ transition form factor GπNΔðQ2Þ deviates from the
simple expectation GπNΔðQ2Þ ¼ mN

Fπ
CA
5 ðQ2Þ, again, more

so for g1 ¼ 2.30 than for g1 ¼ −1.21 (see Fig. 6). For the
πNΔ coupling constant we obtained gπNΔ ¼ 12.8 for g1 ¼
2.30 and gπNΔ ¼ 12.5 for g1 ¼ −1.21, resulting in the
Goldberger-Treiman discrepancies Δ ¼ 0.0533 and
Δ ¼ 0.0305, respectively. The parameters α and β are
responsible for vertically shifting the curves of the form
factors CA

3 ðQ2Þ and CA
4 ðQ2Þ, respectively, they cannot,

however, modify their shapes. Therefore, the loop contri-
butions are, to some extent, a unique feature of the
predictions for CA

3 ðQ2Þ and CA
4 ðQ2Þ. In particular, our

calculation predicts CA
3 ðQ2Þ to be different from zero in

contrast to the empirical parametrization CA
3 ðQ2Þ ¼ 0 (see

Fig. 7). Moreover, for g2 ¼ −1.21 we obtain a very good
agreement between our result for CA

3 ðQ2Þ and the empirical
form factor (see Fig. 8). A somewhat surprising feature is
the fact that the negative value of g1 in all cases gives a
better agreement with the empirical form factors than the
quark-model result which uniquely predicts a positive sign.
Unfortunately, as in the case of πN scattering, g1 does not
enter the calculation at leading order but only at the loop
level. More about the sign of g1 could possibly be learned
from radiative pion-nucleon scattering πN → πγN or radi-
ative pion photoproduction γN → γπN in the Δ-resonance
region, where the πΔΔ vertex contributes at tree level and
thus at leading order. Finally, our results at the one-loop
level suggest that the imaginary parts of the axial-vector
nucleon-to-delta transition form factors are, in general,
rather small. This is a striking difference to the electro-
magnetic transition form factors, where only in the case of
the magnetic dipole form factorGMðQ2Þ the imaginary part
is negligibly small compared to the real part, whereas for
the electric dipole and charge quadrupole form factors
GEðQ2Þ and GCðQ2Þ the real and imaginary parts are of the
same order of magnitude [23].
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APPENDIX: Oðq2Þ LAGRANGIAN

For our calculation, we need the pion-nucleon-delta
interaction vertex and the axial-vector-nucleon-delta inter-
action vertex. The building blocks that potentially contrib-
ute are the chiral vielbein [see Eqs. (22) and (23)] and

14Reference [22] does not quote any units, even though in
natural units the linear combination has dimension energy
squared.
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χ−¼u†χu†−uχ†u→M2ðU†−UÞ→−2iM2
τiϕi

F
; ðA1Þ

f−μν¼ufLμνu†−u†fRμνu→fLμν−fRμν→−2ð∂μaν−∂νaμÞ
¼−τið∂μaν;i−∂νaμ;iÞ: ðA2Þ

One also has to consider covariant derivatives of these
building blocks.
According to Jiang et al. [64], the Lagrangian at Oðq2Þ,

Lð2Þ
πNΔ, contains three structures [see Eq. (66) of Ref. [64] ].

The first two structures are proportional to the product
uμ;iuν;j and thus contribute neither to the πNΔ interaction
vertex nor to the aNΔ interaction vertex. The third structure
is proportional to fþμν which contributes to the vNΔ
interaction vertex but not to the aNΔ interaction vertex.
In other words, according to Jiang et al., there are no
contact interaction contributions to the transition form
factors at Oðq2Þ.
Jiang et al. compare their results with Ref. [60], which

they quote as their Eq. (67). However, Hemmert et al. [60]
did not construct the covariant version but rather the heavy-
baryon version of the Lagrangian. According to Eq. (82) of
Ref. [60], they factor out expð−iM0v · xÞ with a common
mass M0 for both the nucleon field and the Δ field.
The relevant heavy-baryon Lagrangian is then given in
Eq. (112), where N and T are heavy-baryon fields. Note
that there is no covariant Lagrangian in Ref. [60]. In other
words, Jiang et al. must have reconstructed their Eq. (67)
from the heavy-baryon Lagrangian. We make use of the
results of section 5.5. of Ref. [56] to establish the
connection. Using Eq. (5.122) of Ref. [56], a single term
vμ originates from γμ and 2Sμ from γμγ5, respectively.
Let us have a look at the first term of Eq. (112) of

Hemmert et al. This should result from

1

2M0

Ψ̄μ
i b1ifþμν;i

1

2
γνγ5Ψþ H:c:

¼ 1

2M0

�
−
1

2
b1iΨ̄

μ
i fþμν;i

1

2
γ5γ

νΨþ H:c:

�
;

which, apart from a factor 1=ð2M0Þ, agrees with the first
term of Eq. (67) of Jiang et al.15 Now let us turn to the
second term of Hemmert et al. which should originate from

1

2M0

Ψ̄μ
i ib2f−μν;iγ

νΨþ H:c:

Comparing with Eq. (67) of Jiang et al., we see that they
took the wrong operator Dν instead of γν and then argue
that such a term can be eliminated using arguments given in

a previous section of Ref. [64]. In fact, Holmberg and
Leupold [65] also obtain a structure analogous to the b2
term in their construction for the decuplet-to-octet tran-
sition Lagrangian at next-to-leading order.
We will now show that the b2 term gives an explicit

contribution to the form factor CA
3 ðQ2Þ at Oðq2Þ. Using

Eq. (A2) and after dropping the factor 1=ð2M0Þ, from the
b2 term we obtain the Lagrangian

ib2Ψ̄λ;iξ
3
2

ijð−∂λaμj þ ∂μaλjÞγμΨþ H:c:;

resulting in the form factor contribution

ib2w̄λðð−ð−iqλÞÞϵμ þ ð−iqμÞϵλÞγμu
¼ ib2w̄λðiqλγμ − i=qgλμÞuϵμ
¼ −b2w̄λðqλγμ − =qgλμÞuϵμ
¼ mNb2w̄λ

=qgλμ − qλγμ

mN
uϵμ;

from which we obtain the contribution mNb2 ≡ α to the
form factor CA

3 ðQ2Þ.
Furthermore, we can relate the contribution to the form

factor CA
4 ðQ2Þ to the Lagrangian

β

m2
N
DμΨ̄λ;iξ

3
2

ijf
λμ
−jΨþ H:c:; ðA3Þ

resulting in the invariant matrix element

M ¼ i
β

m2
N
ϵμw̄λðgλμpf · q − qλpμ

fÞu

and, thus, the constant contribution β to CA
4 ðQ2Þ. In fact,

Holmberg and Leupold [65] showed how to make use of a
total-derivative argument and the lowest-order equation of
motion such that the Lagrangian of Eq. (A3) can be re-
expressed in terms of the b2 Lagrangian and terms of the
Oðq3Þ Lagrangian. For the purpose of simplicity, we omit
the projector ξ, the Cartesian isospin indices and the term
H.c., because they are not relevant for the argument. The
reduction proceeds as follows:

DμΨ̄λfλμ− Ψ ¼ ∂μðΨ̄λfλμ− ΨÞ − Ψ̄λDμfλμ− Ψ − Ψ̄λfλμ− DμΨ:

The first term is a total derivative and, thus, does not
contribute to the dynamics, the second term contributes to
the δ term proportional to Q2 in Eq. (27). Therefore, we
continue with only the third term,

15We left out the projector Oμν
A;nðznÞ ¼ gμν þ ðzn þ 1

2
ð1þ

4znÞAÞγμγν as well as the projector ξ
3
2

ij.
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−Ψ̄λfλμ− DμΨ ¼ −Ψ̄λfλμ− gμνDνΨ

¼ −
1

2
Ψ̄λfλμ− ðγμγν þ γνγμÞDνΨ

¼ −
1

2
Ψ̄λfλμ− γμ=DΨ −

1

2
Ψ̄λfλμ− γνγμDνΨ:

Using the lowest-order equation of motion (or an appro-
priate field redefinition, see Ref. [78]), the first term is
proportional to the b2 term plus higher-order terms, and we
continue with the second term:

−
1

2
Ψ̄λfλμ− γνγμDνΨ¼−

1

2
∂νðΨ̄λfλμ− γνγμΨÞ

þ1

2
DνΨ̄λfλμ− γνγμΨþ1

2
Ψ̄λDνfλμ− γνγμΨ:

The first term is again a total derivative and the second term
can be reduced to a b2 term, using the delta equation of
motion. Finally, we reexpress the third term as

1

2
Ψ̄λDνfλμ− γνγμΨ ¼ 1

2
Ψ̄λDμfλμ− Ψ −

i
2
Ψ̄λDνfλμ− σνμΨ:

The first term is again a δ term and the second term is,
last but not least, the independent structure without hard
derivatives. Using, again, the results of Ref. [56], the
heavy-baryon reduction of this term would look like

−iϵμνρσvρT̄λDμfλν− SσN: ðA4Þ

As a matter of convenience, we will stick to the
Lagrangian of Eq. (A3), because, for our purposes, it is
only relevant to know that we have a free parameter at our
disposal, even if it originates from the Oðq3Þ and which,
only after rewriting, contributes to the transition matrix
element in terms of CA

4 ðQ2Þ. Finally, it was shown in
Ref. [65] that atOðq2Þ there is no ”new” contribution to the
πNΔ vertex.
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