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We investigate the axial-vector nucleon-to-delta transition form factors in the framework of relativistic
baryon chiral perturbation theory at the one-loop order using the complex-mass renormalization scheme.
We determine the available six free parameters by fitting to an empirical parametrization of the form factors
obtained from the BNL neutrino bubble chamber experiments. A unique feature of our calculation is the
prediction of a nonvanishing form factor C4 (Q?). Moreover, our results show a surprising sensitivity to the

coupling constant g; of the leading-order Lagrangian EilA).
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I. INTRODUCTION

The A(1232) resonance is the first and best-established
excitation of the nucleon [1]. In the static quark model, it
consists of three constituent quarks, coupled to spin § = %
and isospin [ = % The dominant decay mode by far is the
strong decay into a pion and a nucleon, resulting in a lifetime
of the order of 10723 5. According to Ref. [1], the pole
position in the complex-energy plane is at 7, = mp — i% ~
(1210 — i 50) MeV.

While there is a substantial amount of empirical infor-
mation on the electromagnetic (vector) nucleon-to-delta
transition [2—-15] (see, e.g., Refs. [16,17] for a review), very
little is known about the axial-vector nucleon-to-delta
transition [18-22]. The reason is twofold: (a) the weak
probe couples only feebly to the nucleon-delta system and
(b) the delta is unstable." On the theoretical side, numerous
investigations exist for the electromagnetic case (see
Ref. [23] and references therein) which have been exten-
sively compared with data. Also, theoretical calculations of
the axial-vector nucleon-to-delta transition have been
performed in the framework of quark models [24-28],

'Of course, the second argument also applies to the electro-
magnetic transition. Therefore, our knowledge of the electro-
magnetic transition form factors is substantially less than for the
nucleon elastic form factors. Concerning the transition from an
unstable delta state to an unstable delta state, Ref. [1] quotes only
arough guess of the range, within which the magnetic moment is
expected to lie.
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chiral effective field theory [29-32], lattice QCD [33-35],
and light-cone QCD sum rules [36,37].

While traditional calculations treat the delta resonance
essentially as a stable particle, it was emphasized in
Ref. [38] that form factors of unstable particles should
be determined from the renormalized three-point function
at the complex pole. In fact, this idea was applied in
Ref. [23] to the electromagnetic nucleon-to-A resonance
transition to third chiral order in manifestly Lorentz-
invariant chiral effective field theory. At the pole position,
the magnetic dipole, electric dipole, and Coulomb quadru-
pole form factors Gy, Gg, and G, are complex quantities.
In particular, it was found that Gz and G have imaginary
parts which are of the same magnitude as the respective real
parts. In the present article, we extend the analysis to
the axial-vector transition at the one-loop level. For that
purpose, we combine a covariant description of the
A(1232) resonance [39,40] with the complex-mass scheme
(CMS) applied to the chiral effective field theory of the
strong interaction [41].2

This article is organized as follows. In Sec. II, we
introduce the axial-vector nucleon-to-delta transition proc-
ess and discuss how it is related to weak pion production. In
this context, we also define the pion-nucleon-delta form
factor in terms of the PCAC relation (partially conserved
axial-vector current). In Sec. III, we present the effective
Lagrangians we used. In Sec. IV, we calculate the transition
form factors and show our results. Section V contains a
comparison with other work. In Sec. VI, we give a short
summary.

*The CMS was originally developed for deriving properties
of W, Z, and Higgs bosons obtained from resonant processes
[42-46].
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II. AXTAL-VECTOR NUCLEON-TO-DELTA
TRANSITION FORM FACTORS

A. Weak pion production

The A(1232) is an unstable particle with a very short
lifetime of the order of 1072* s. Therefore, strictly speak-
ing, stable one-particle states |A(p)) with p> = m% do not
exist [47]. For this reason, direct measurements of tran-
sition form factors are impossible, because the A(1232) is
not an asymptotic state of the strong interactions.” On the
other hand, the existence of the delta is prominently seen in
pion-nucleon scattering or pion photoproduction on the
nucleon. In other words, the impact of an unstable A may
be investigated in terms of a complete scattering amplitude,
where it contributes as an intermediate “state.” In the
present case, we are interested in the axial-vector
nucleon-to-delta transition. This may be studied in the
weak production of a pion on the nucleon with hadronic
center-of-mass energies in the delta region [48]. For
kinematical conditions such that the square root of the
Mandelstam variable s is in the vicinity of the complex pole
position,

s
IA —Mp — 1 o

the process is dominated by the propagation of a A
resonance in the s channel (see Fig. 1). Since the W boson
induces the transition between the nucleon and the delta in
terms of the V — A structure of the coupling to the quarks,
this contribution is sensitive to both the nucleon-to-delta
vector and axial-vector transitions. One now parametrizes
the contribution of the unstable A(1232) and defines the
form factors in analogy to a stable particle. For an unstable
particle such as the A(1232), “on-shell kinematics” are
given by the complex pole position. The extraction of the
transition form factors from weak pion-production data in
the delta-resonance region could, in principle, be performed
in analogy to the determination of the electromagnetic
transition form factors from pion electroproduction data
using a partial wave analysis [15].

B. Definition of the axial-vector transition form factors

In the following, we provide a short definition of the
form factors. We stick to the notation of Ref. [32], where
more details can be found. In terms of the light-quark field
operators, g = (u,d)”, the Cartesian components of the
isovector axial-vector current operator are given by [49]

() = 20775 2 q(x). (1)

*From a theoretical point of view, it is possible to study a
hypothetical situation, where the sum of the nucleon and pion
masses is larger than the A mass, resulting in a stable A state.

=

w+ 7

.
D A D

FIG. 1. At s~ m3, the process is dominated by the s-channel
pole diagram due to the propagator of the A(1232). The nucleon,
electron, and neutrino are represented by single lines, the
A(1232) by a double line, the W boson by a wiggly line, and
the pion by a dashed line. The circles represent dressed vertices.

In general, the invariant amplitude” for a transition between
hadronic states |A(p;)) and |B(p;)), induced by a plane-
wave external field of the form a, ;(x) =€, ;(g)e™""*, is
defined as

M = i€, j(q)(B(py)|A}(0)|A(p:)). (2)

where four-momentum conservation p; = p; + ¢ due to
translational invariance is implied.
Introducing the spherical tensor notation [50],

1
Al = T (Al iaY) A = at,

and using isospin symmetry, we express the matrix element
of the spherical isospin components (@ = +1,0,—-1)
between a nucleon state and a A state as

(3/2.25l45"1/2.7)
= (1/2,7:1.al3/2,74)(3/2/|A*D]]1/2).  (3)
where (3/2||4#(V||1/2) denotes the reduced matrix element
and (1/2,7;1,a|3/2,74) is the relevant Clebsch-Gordan

coefficient. The reduced matrix element may, for example, be
obtained from the p to A" transition,

(37214 0][1/2) = \é<A+|A’5<”|p>.

The Lorentz structure of the reduced matrix element may
be written as

(A(ps 54D O)IN(py. 5.)) = Wi Py sTK u(pi-50):
(4)
“Our convention for the invariant amplitude complies with

Ref. [47]. In particular, it contains the imaginary unit on the right-
hand side of Eq. (2).
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Here, the initial nucleon is described by the Dirac spinor
u(p;,s;) with a real mass my and p? = m3%, the final
A(1232) is described via the Rarita-Schwinger vector-
spinor w;(py,s;) [51,52] with a complex mass z, and
pj% = 7% [38.,53]. In the following, it is always understood

that the “tensor” F’l” is evaluated between on-shell spinors
u and w,, sat1sfy1ng

piu(p;.s;) = myu(p;.s;), (5)
Wi(PrsSp)Pr = 2aWa(Pyss 55)s W (ps.sp)rt =0,
W, (Pys Sf)P? =0. (6)

The expressions for a stable A resonance are obtained via

the replacement z, — m,. The “tensor” Iﬁ" contains a
superposition of four Lorentz tensors [48,54], which we
choose as [31,34]

ri = Lw(lfz) (9"d = q'r*) + L(ZQQ) (9"ps-a—4q'P})
(QZ)

+ CHOY) " + =524, ()
whereQ2:—qz.Notethatpf-q:%(pf—&—p,—i—pf pi)
'(Pf—l?i) :%(P%—Piz‘f'qz) (ZA _mN Qz) Our

sign convention for the form factors in Eq. (7) is such
that we parameterize the matrix element of +A’; and, thus,
our sign convention follows closely the convention of the
nucleon-to-nucleon axial-vector transition [55]. In particu-
lar, C2(Q?) and C2(Q?) correspond to the axial nucleon
form factor G,(Q?) and the induced pseudoscalar form
factor Gp(Q?), respectively.

C. Pion-nucleon-delta transition form factor
Assuming isospin symmetry, i.e., equal up-quark and
down-quark masses m, = m, = i, the divergence of the
axial-vector current is given by [55,56]

@,Af; (x) = thq,-(x), (8)
where

Pj(x) = ig(x)ys7;q(x) (9)

denotes the pseudoscalar density [49]. With the help of
the pion mass M, and the pion-decay constant F, the
isovector operator ®@;(x) = mP;(x)/(M%F,) serves as an
interpolating pion field [56] such that Eq. (8) amounts to
the standard PCAC relation (partially conserved axial-
vector current) [57]. By means of ®;(x) we define the
zN A transition form factor G,y (Q?) in analogy to the zN
form factor G,y (Q?) [55,58] as [34]

>The explicit form of W, can be found in Ref. [53].

(A(ps,spll@D(O)IN(pi, 5:))
1 . q
= lmGnNA(Q )WA<Pf7Sf)m_N”(Pi’Si)- (10)
From Eq. (8) we obtain

i, (A(ps. sp)I|A*D(0)]IN(pi.5,))

= m(A(py, s)|IPV(O)|IN(pis 5:)). (11)
which, using Egs. (7) and (10), results in
M2 2 2
Guns(09) =L i) - S ctied)|. (1)

In other words, once we know the form factors C2(Q?)
and C4(Q?), we can also extract the form factor Gy, (Q?).
The #NA coupling constant g,y is defined as

9rNA = GﬂNA(_Mzzz)' (13)

Since the form factor C4(Q?) has a pole at Q* = —M3, the

coupling constant g,y does not vanish despite the factor
(M2 + Q%) in Eq. (12).

III. EFFECTIVE LAGRANGIAN
AND POWER COUNTING

In this section, we provide the interaction Lagrangians
relevant for the calculation of the isovector axial-vector-
current form factors of the nucleon-to-delta transition in
covariant chiral EFT. The effective Lagrangian, L,
consists of a purely pionic, a pion-nucleon, a pion-delta,
and a pion-nucleon-delta Lagrangian, each of which is
organized in a combined derivative and quark-mass expan-
sion. The most general effective Lagrangian for the
calculation of the transition form factors up to and includ-
ing order ¢3 is given by

Log =LY + £+ )+ £l
1 2 3
N N N N S (14)

where the ellipsis denotes terms which are either of higher
order or irrelevant for our calculation.

The perturbative calculation of the transition matrix
element is organized by applying the “standard” power
counting to the renormalized diagrams (see, e.g., Ref. [59]),
i.e., an interaction vertex obtained from an O(g") Lagrangian
counts as order ¢, a pion propagator as order ¢g~2, a nucleon
propagator as order ¢!, and the integration of a loop as order
g*. We assign the order g~ to the A propagator if it appears in
loop integrals.6 Also the order ¢' is assigned to the leading

®In resonance generating channels, a A propagator which is not
involved in a loop integration has to be dressed. In this case,
one re-sums the self-energy insertions and considers the
dressed propagator as of order g3, because the self-energy starts
at O(q®) [39].
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order of the mass difference m, — my. In other words, we
apply the so-called small-scale expansion of Ref. [60]. When
calculating the form factors of Egs. (7) and (10) at the one-
loop level, we follow the strategy of keeping all Q-
dependent terms, even if they are of higher order when
applying an additional expansion with respect to a heavy
mass such as the nucleon mass or the delta mass.

The pionic Lagrangians at O(q?) and O(g*) are given
by [49,56]

F2
L7 = ZA{THD,U(DU)'] + Te(U" + Uz}
£ = 21D, U D) | + DADUY ]+ (15)

respectively, with y = 2B(s + ip), s and p denoting the
scalar and pseudoscalar external sources [49]. F is the pion-
decay constant in the chiral limit, F, = F[1 + O(i)] =
92.2 MeV, and B is associated with the scalar singlet quark
condensate (gq), in the chiral limit [49,56,61]. We employ
SU(2) isospin symmetry, m, = my, = 71, and the lowest-
order prediction for the pion mass squared is M? = 2B
[49,56], resulting from inserting the quark masses into the
external scalar field, s = m1. The triplet of pion fields is
contained in the unimodular, unitary, (2 x 2) matrix U,

) 0 2zt

where 7; are the Pauli matrices. Introducing external vector
fields v, and axial-vector fields a, as

T; T;

v, = Ejvﬂ,j’ a, = Ejam, (17)
and using
ry = v, +a, l,=v,—a,, (18)
the covariant derivative of U is defined as
D,U=9,U~ir,U+iUl,. (19)

The leading-order pion-nucleon Lagrangian reads [56,58]

cf},@—lil(ip—m%‘yﬂysuﬂ)lp, lP—(p), (20)

n

where W denotes the nucleon isospin doublet containing the
four-component Dirac fields for the proton and the neutron.
The covariant derivative D,'¥ is given by’

"We do not consider a coupling to an external isoscalar vector
field.

1

DY =(0,+TI,)Y,
Fﬂ — E

[u"(8, —ir,)u+u(d, —il,)u']. (21)
The chiral vielbein is defined as
= Uy, T = i[uT(aﬂ —ir,)u—u(0, — ilﬂ)uT]. (22)

The Lagrangian ES\), contains two free parameters, namely,
the nucleon mass in the chiral limit, m, and the axial-vector
coupling constant in the chiral limit, g,. Expanding u, ; as

0.¢:
Uj, =da, ;- %’5’ + O(v,®, a,®*,9,0D), (23)

Eq. (20) gives rise to the lowest-order zNVN vertex as well as
the axial-vector NN transition vertex which are both needed
for the one-loop corrections at O(g?).

The building blocks for constructing the Lagrangian of
the A resonance can be found in Refs. [39,59] and the
references therein. For our purposes, we only need the
leading-order contribution,®

Ly =-98 {(il) —ma)g" — i(y"D¥ + 7*D") + iy" Py
v g v v v
+ maytyt + 71(;47/59" —"uys — u'y'ys
- 7’”#7’57”)} &Y, (24)

from the #A Lagrangian, where ¥, denotes a vector-spinor
isovector-isospinor field. The isovector-isospinor transforms
under the 1 @ § = % @ 1 representation and, thus, contains
both isospin 3/2 and isospin 1/2 components. In order to
describe the A, it is necessary to project onto the isospin-3/2
subspace. The corresponding matrix representation of the
projection operator is denoted by 5%, and the entries of (f% are
given by [59]

1
= 51/ _ETI'TJ'.

L ol

Uy
<

Inserting the expansion of Eq. (23) into Eq. (24), we obtain
the leading-order 7 A A vertex which is proportional to g; and
which is needed for the one-loop corrections at O(g?).

The leading-order zNA chiral Lagrangian is given by
[see Eq. (4.200) of Ref. [59] with Z = —1 for consistency
with the choice A = —1]

— 3
ﬁ;(zlz\)/A =g¥,.:&; (g* - 7”1]’”)”;4,/"{' +He., (25)

where H.c. denotes the Hermitian conjugate. Expanding

u,; as above, Eq. (25) gives rise to the leading-order

*Note that the free Lagrangian contains an arbitrary real
parameter A # —% [62,63], for which we choose A = —1 such
that the propagator takes the simplest form.

094014-4



AXIAL-VECTOR NUCLEON-TO-DELTA TRANSITION FORM ...

PHYS. REV. D 104, 094014 (2021)

contribution to C4(Q?) as well as the leading-order zNA
vertex, which is needed for the calculation of the loop
contributions at O(g?).

At O(g?), the higher-order Lagrangians Eg\),  and ES\), A
can only contribute at the tree level. In principle, these
Lagrangians were derived in Ref. [64] (see also Ref. [65]).

Taking Eq. (66) of Ref. [64] for £%),. there would be no
contribution to the form factors at O(g?), because the first
two terms contain the chiral vielbein quadratically, and the
last term involves the “wrong” field strength tensor f*’.
However, as discussed in Appendix, there are independent
contributions at O(g?) and O(g?). In fact, this is to be
expected for the following reason. Counting the polariza-
tion vector as of O(q) and treating only the four-momen-
tum ¢ (but not ps) as a small quantity, we expect from
Egs. (4) and (7) two free parameters related to C4(0) and
cy (0).” For the sake of simplicity, we will denote these
two parameters by a and S, respectively (see Appendix),
and will refer to them as of beyond leading order. Similarly,
the O(q®) Lagrangian of Ref. [64] produces fewer con-
tributions to the form factors than is expected from the
counting of momenta (and the polarization vector). Since it
is not the purpose of this paper to construct the most general
Lagrangian at O(q?), we have decided to Taylor expand the
form factors and keep the expansion coefficients as free
parameters.

IV. RESULTS

Figure 2 shows those tree-level and one-loop Feynman
diagrams that generate a nonvanishing contribution to the
nucleon-to-delta transition matrix element of the isovector
axial-vector current. In principle, the renormalized vertex is
obtained by multiplying the contributions of Fig. 2 by the
square roots of the wave function renormalization constants
Zy and Z,. In practice, we evaluate the loop diagrams in
the framework of dimensional regularization at the renorm-
alization scale y = 1 GeV. We apply the modified minimal

subtraction scheme of ChPT (MS) [49,59] by dropping
infinite parts in terms of the combination 2/(n —4)—
[In(4z +1'(1) 4+ 1)], where n denotes the number of
space-time dimensions. We combine the remaining finite
pieces with the available renormalized free parameters.
When calculating the loop contributions involving a delta
line in the loop [diagrams (n), (p), (q), (1), (s), (t), and (u) of
Fig. 2], we neglect the width. This amounts to neglecting
terms of O(A?), which are beyond the accuracy of a one-
loop calculation.

’In an effective Lagrangian, the four-momentum p; of the
Lorentz structure multiplying C4 (Q?) would result from a (hard)
derivative, acting on the delta field. Using a total derivative, the
equations of motion, and the constraint equations for the delta
field [essentially Egs. (5) and (6)], such a term can be related to a
Lagrangian of O(g?) without a hard derivative.

In fact, for the actual calculation, we use a decompo-
sition of l'f‘” which differs from Eq. (7), namely,

Ty = kig' Py + ko’ + kg’ + kag. (26)

For each diagram, we extract the four coefficients k; and
determine their contributions to the form factors C#(Q?),
using the relations

C4 = —myks,

C = —m3k,,

Ot = 1 =8, = 0 + (2a = s + K
C4 = m3k,.

Using the strategy outlined in Sec. III, the tree-level
contributions to the form factors can be written as'®

C?tree(Qz) =a,
Cﬁtree(Qz) =P
C?Lree(Qz) =g+ 7M2 + 5Q2»

2 2
A n 29 +}’M + eM
C6tree(Q ) - mNW

We have explicitly shown the quark-mass dependence
in terms of the lowest-order squared pion mass M2
In addition, we made use of the analogy of the form
factors C4(Q?) and C4(Q?) to the nucleon form factors
GA(Q?) and Gp(Q?) (see Ref. [55]). At leading and next-
to-leading order, the form factors C4(Q?), C4(Q?), and
Cg‘(QZ) are constant. The parameters g, a, and f are
independent low-energy constants, i.e., they are not pre-
dicted by chiral symmetry. Using the relation from the
static quark model with SU(6) symmetry results in the
estimate g = 3\/5914/ 5 [32,60]. At this order, the form
factor C4(Q?) is predicted as

v @)

2
my

Cé(Qz) = mg-

Turning to O(g®), we will now have both tree-
level modifications as well as loop contributions. The
parameter y corresponds to a quark-mass correction to the

"For the sake of simplicity, we do not display the contribution
of diagrams (e) and (g) to the formula for C4..(Q?%). After
renormalization, the diagrams (d), (e), (g), (j), and (k) add up such
that a factor F/(Q* + M?) is replaced by F,/(Q> + M?2).

"1n Ref. [66], a different organization scheme—the so-called &
expansion—was proposed for the effective field theory including
the delta resonance. According to Ref. [30], the use of the &
expansion in the calculation of the axial-vector NA transition
form factors amounts to shifting explicit M2 corrections to higher
orders. Using footnote 4 of Ref. [30], these higher-order terms
correspond to our terms proportional to y and e.
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FIG. 2. Diagrams which, after renormalization, result in nonvanishing contributions to the axial-vector nucleon-to-delta transition
form factors up to and including O(g?). The double, solid, dashed, and wiggly lines correspond to the delta, nucleon, pion, and the

external axial-vector source, respectively.

nucleon-to-delta transition axial-vector coupling constant
gana = C2(0). Furthermore, § contributes to the mean-
square axial transition radius

6 dCi(Q)

10° (28)

<r/24NA> =

9ANA 02=0 '

The parameter ¢ enters into the calculation of the gener-
alized Goldberger-Treiman discrepancy [67—-69]

A= - Ndana (29)
F/tgﬂNA

where g,y 1s defined in Eq. (13). Finally, the parameter ¢
is related to the y-intercept of C4(Q?).

Unfortunately, there is very little empirical information
on the form factors C#(Q?). In order to obtain some
estimate about the parameters and shape of our theoretical
results, we perform a fit to the parametrization

094014-6



AXIAL-VECTOR NUCLEON-TO-DELTA TRANSITION FORM ...

PHYS. REV. D 104, 094014 (2021)

2
CHO)(1 +a;;25)

2,2
(1+%)

CHQ?) =

(i=3.4,5) (30)

(see Appendix D of Ref. [70]). The form factor C4(Q?) is
assumed to be dominated by the pion-pole contribution. In
particular, we make use of the axial-vector form factor
parameters of the Adler model (see Table D.1 of Ref. [70]),

C‘?(O) = 0, as = 0, b3 = O,
CA0)=-03, a;=-121, by=2.0GeV?
CA0)=12., as=-121, bs=20GeV2.  (31)

This parametrization was used by the authors of Ref. [21] to
extract the axial mass as M, = (1.2810%) GeV from their
analysis of the A** production reaction v, +d — u~+
ATt + ng, where n; refers to a spectator neutron. Note that
the parameters of Eq. (31) were used in Ref. [21] without
any uncertainty such that the only uncertainty in the
following input to out fits will be the uncertainty of M.

To emphasize the low-Q? region, we choose the Q2
values at which to evaluate the empirical form factors
according to Q2 = n* x 0.0004 GeV?> (n=0,1,...,28).
For the fits, we employ the Mathematica routine
NonlinearModelFit. Our loop diagrams contain the low-
energy constants (LECs) g,, g;, and g. In the loop
integrals, we approximate g4 by g4 = 1.28 (empirical
value g, = 1.2756 £ 0.0013 [1]), because the difference
between g, and g, is of order M? in the chiral expansion
and, therefore, using g, introduces an error of higher order
beyond the accuracy of our calculation. For the other two
coupling constants, we make use of an SU(6) spin-flavor
quark-model relation [59,60],

g1 :ggAa gzg\ﬁgA, (32)
resulting in g; =230 and g =1.08, respectively.12
Furthermore, we replace M?> by M2 and use M, =
0.135 GeV. From a fit to the form factors C4(Q?) and
C4(Q?), we obtain for the LECs f, 7, and § the values

B=0335"004, y=-847107 GeV~2,
5 =-3.20100 GeV~2. (33)

The value C2(0) is the analogue of g4. The individual
contributions to C4(0) are given by"

"2Using the leading-order term of Eq. (25) only to describe the
width, would result in g = 1.13 [71].

“In the following, we give our numerical results after rounding
with three significant digits.

C4(0) = 1.207099 = g + yM2 + loops
= 1.08 — 1.541007 + 1.66. (34)

The M2 term plus the loops amount to a 10% correction of
the leading-order term. The uncertainty of C2(0) in
Eq. (34) results entirely from the uncertainty of y, which
in turn results from the value of the axial mass M, used in
the empirical parametrization. This should not be confused
with an estimate of higher-order corrections to be expected
from applying effective field theory beyond O(g?). We will
come back to a qualitative estimate of the importance of
higher-order terms at the beginning of Sec. V.

Varying exclusively the parameter M, in the empirical
parametrization, we do not expect to obtain a reliable
estimate in the uncertainty of the empirical form factors.
Therefore, except for two illustrative examples (see below),
we will refrain from showing error bands, as they might
suggest a greater degree of accuracy than is actually
available. In Fig. 3(a), we display the individual contribu-
tions to C4(Q?) for g; = 2.30; the total result is given by
the red solid line, the loop contribution by the green dashed
line, and the tree-level contribution by the green dotted line.
The total result shows, as was to be expected from a
calculation at O(g?), essentially a linear behavior as a
function of Q2. The loop contribution rises with increasing
Q?, whereas the tree-level contribution decreases linearly
with Q2. A comparison with the empirical parametrization
of the Adler model is shown in Fig. 4. The pink error band
of our calculation overlaps the narrower gray error band of
the empirical parametrization. In the Q2 range considered,
the fit differs by less than 3% from the empirical
parametrization.

Using Eq. (28), we obtain for the mean-square axial
transition radius

_ 2
(riya) = 0.345 fm?, (9)
@ -] ®
—_——— 91=2.30 e
L \ | \
5 LT LTI,
<n I
O 04 |
| —— Total
.......... == Loop
T i = Tree —level

T T T T
0300 01 02 03
Q? [GeV?]

T T
00 01 02
Q2 [GeV?]

FIG. 3. Individual contributions to C2(Q?). The red solid,
green dotted, and green dashed lines correspond to the total
result, the loop contribution, and the tree-level contribution,
respectively. The left and right panels show the fits for g; = 2.30
and g; = —1.21, respectively.
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5 — Re[C4(Q?)]
—— ==+« Empirical
& 17
24
<un
O 0] s e e e e
_1 -

T T T T T T T
0.00 0.05 0.10 015 0.20 0.25 0.30
Q? [GeV?]

FIG. 4. Fit of the form factor C4(Q?) for g; = 2.30. The red
solid and blue dashed lines correspond to the real part and the
imaginary part, respectively. The black dotted line is the empirical
parametrization of the Adler model. The pink error band of the
red solid line overlaps the narrower gray error band of dotted line.

which has to be compared with (r4y,) = 0.427 fm? of the
empirical parametrization. A smaller axial radius for the fit
was to be expected, because the empirical parametrization
contains more curvature while the fit behaves essentially
linearly. Therefore, as can be seen from Fig. 4, the fit
generates a slightly flatter behavior as a function of Q2.

As no reliable experimental data exist for (r3y,), we
also quote for comparison the empirical values for the
mean-square axial radius for the nucleon: (r5) = (0.444 +
0.018) fm? [72] and (r%) = (0.453 4 0.023) fm? [73]. In
fact, based again on the quark-model relation of Eq. (32),
the simplest assumption would be C4(Q?) = $v2G,(0?)
[32], resulting in (riy,) = (r3)-

Instead of using the quark-model estimate for g;, we also
made use of the value g; = —1.21 which was obtained in
Ref. [74] from a fit to the zN phase shifts of the S and P
waves. As stated in Ref. [74], since g; appears only in the
loop contribution of their calculation, a precise determi-
nation of its value is not to be expected. Note, in particular,
that g, comes out with an opposite sign relative to the
quark-model estimate. Using g; = —1.21, we obtain for the
LECs f, v, and o the values

B=-00691, y=-19.8 GeV~2,
§=—-122 GeV~2. (36)

Here, the individual contributions to C4(0) are given by

C2(0) = 1.19 = g + yM3 + loops
= 1.08 —0.36 + 0.47. (37)

The individual contributions to C4(Q?) for g; = —1.21 are
shown in Fig. 3(b). In the range 0 < Q? < 0.3 GeV?, the
total result for g; = —1.21 deviates from that for g; = 2.30
by less than 1%. However, the loop contribution behaves

(@)

bl — Re[CA(Q?)]
o4 — = Im[CA(Q2)]
f}c’ 20 ««»s Empirical |

T T T T
0300 01 02 03
Q2 [GeV?]

T T
00 01 02
Q2 [GeV?]

FIG. 5. Fit of the form factor C4(Q?) for g; = 2.30 (left panel)
and g; = —1.21 (right panel), respectively. The red solid and blue
dashed lines correspond to the real part and the imaginary part,
respectively. The black dotted line is the pion-pole-dominated
empirical parametrization with C4(Q?) of the Adler model.

very differently, namely, at Q%> = 0 it starts at a much lower
value and it decreases with increasing Q2 as opposed to a
(stronger) increase with Q2 for g; = 2.30. In the end, this
behavior is compensated by the rather different values of y
and 0.

The results for C4(Q?) were obtained by fitting to the
pion-pole-dominated expression,

C4(0%)
C(0%) = mzzvm

where C%(Q?) is taken from Eq. (30). Such a fit
contains two free parameters, namely, € and ¢, which were
obtained as

€=593GeV? and ¢=-11.5 forg; =2.30,
€=134GeV? and ¢{=-340 forg, =-1.21. (38)

The corresponding results for C4(Q?) are shown in Fig. 5.
For 0% 50.16 GeV?, the fit for g; = 2.30 is below the
empirical form factor and deviates by less than 2.6% from the
empirical C4(0Q?). Beyond Q% ~ 0.16 GeV?, the fitis above
the empirical result with a continuously increasing deviation
reaching —23% at Q> = 0.3 GeV?2.Forg, = —1.21, thefitis
generally closer to the empirical result than for g; = 2.30.
For 0% 5 0.06 GeV?, the fit is below the empirical form
factor, beyond Q> = 0.06 GeV? it is above. Again, the
maximal deviation happens at 0> = 0.3 GeV? and amounts
to —3.2%.

Given the results for the form factors C4(Q?) and
C4(Q?), we are now also in the position to discuss the
aNA transition form factor G,ya(Q?) of Eq. (12) (see
Fig. 6). For g; = 2.30, our result deviates very quickly with
increasing Q? from the pion-pole-dominated empirical
result,
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FIG. 6. Results for the transition form factor G,ya(Q?) of
Eq. (12) for g; = 2.30 (left panel) and g; = —1.21 (right panel),
respectively. The red solid and blue dashed lines correspond to
the real part and the imaginary part, respectively. The black dotted
line is the empirical result using C4 (Q?) and C4(Q?) of the Adler
model.

Gava(0%) = 2 CH(Q?).

In fact, the linear combination of Eq. (12) involves a
delicate interplay between the terms

2
" a0 and

y my QF Mz + Q°
Fﬂ' M% Fﬂ

- 2 2
my Mz

Ca(0?).

The strong downward trend for increasing 0>20.15 GeV?
is due to a relatively large negative contribution propor-
tional to (Q?)3, originating from the second term. The
situation is somewhat better for g; = —1.21, where the
deviation starts at QO ~ 0.2 GeV?. This does not come as a
surprise, because both C4(Q?) and, in particular, C4(Q?)
are better described for g; = —1.21. For the zNA coupling
constant, we obtain

(b)

[91 = - 1.21]
1 —— RelC5(Q2)]
- = Im[C5(Q2)]

+ Empirical

T T T T
0300 01 02 03
Q2 [GeV?]

T T
00 01 02
Q2 [GeV?]

FIG.7. Form factor C5(Q?) for g; = 2.30 (left panel) and g, =
—1.21 (right panel), respectively. The red solid and blue dashed
lines correspond to the real part and the imaginary part,
respectively. In the Adler model, the form factor is set to zero
(black dotted lines).

-
c
ﬁr | /
— Re[CH(Q?)]
— = Im[CR(Q)]
B «««s Empirical

T T
00 01 02
Q2 [GeV?]

T T T T
0300 01 02 03
Q? [GeV?]

FIG.8. Form factor C4(Q?) for g; = 2.30 (left panel, including
error bands) and g; = —1.21 (right panel), respectively. The red
solid and blue dashed lines correspond to the real part and the
imaginary part, respectively. The black dotted line is the empirical
parametrization of the Adler model.

Gonva(=M2%) = g.ya = 12.8  for g, = 2.30,
gaNA = 12.5 for g = —1.21.

These values result in a generalized Goldberger-Treiman
discrepancy of

A =0.0533 and A = 0.0305, (39)

for g = 2.30 and g; = —1.21, respectively. Even though
the imaginary parts of C4(Q?) and C£(Q?) are small, we
obtain a noticeable imaginary part for G,ya(Q?). In the
present case, the imaginary part originates entirely from the
loop contributions. In this context, one should keep in mind
that, in the complex-mass scheme, the low-energy con-
stants can also be complex numbers. Therefore, in princi-
ple, they could generate additional imaginary contributions.
As our empirical ansatz for the form factors is real, we only
fitted the real part of the form factors and left the imaginary
tree-level contributions unspecified.

Finally, we turn to the form factors C4 (Q?) and C4(Q?).
These form factors have no analogue in the nucleon case. In
Fig. 7, we show the loop contribution to C4(Q?). The
parameter « of Eq. (27) serves to shift the whole curve up or
down and has been set to zero in the figure. No matter what
the value for « is, our result is incompatible with the
empirical ansatz C;(Q?) = 0. By far the largest contribu-
tion to C4(Q?) originates from diagram (t) of Fig. 2 and is
proportional to gg?. Therefore, the case g; = 2.30 pro-
duces a much stronger (negative) slope than g; = —1.21.
The result for C{ (Q?) is shown in Fig. 8. Here, we obtain a
good description of the empirical form factor for
gy = —1.21, while the case g; = 2.30 again produces a
much stronger (positive) slope.
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V. COMPARISON WITH OTHER WORK

Before we compare our calculation of the axial-vector
current nucleon-to-delta transition form factors with other
work, let us make a few general comments about the
limitations of our results. Our calculation is a one-loop
approximation at O(g?®). A complete one-loop calculation
at O(g*) would involve loop diagrams with a vertex from

Eg& A and, possibly, additional tree-level terms. As in the
calculation of the nucleon axial-vector form factors, we
expect from the loop diagrams nonanalytical corrections of
M3 to C4(Q?) at Q* = 0 and also to g,ya [see Egs. (23),
(24) and (37), (38) of Ref. [55] ], but no modification of the
Q? behavior. Regarding the pion-mass dependence, we
expect a reasonable convergence along the line of the two-
loop analysis of g4 in Ref. [75]. Since we cannot predict the
values of the form factors at Q> = 0 anyway, the additional
terms do not matter to our analysis. Of course, the
knowledge of such terms would be of interest for extrap-
olations in the context of lattice QCD. In the case of the Q>
behavior, the situation is more complex. Here, we expect
that curvature terms might become important beyond
approximately Q2 = 0.1 GeV? [55,76,77]. Such terms
arise at the two-loop level in terms of loop contributions
and new contact terms. However, from a phenomenological
point of view, combining a one-loop calculation with
meson exchange contributions such as in Ref. [55] might
be a more efficient approach. For example, let us assume
that the exchange of an a; axial-vector meson with mass
M, =126 GeV is the dominant mechanism contributing
to C4(Q?). From expanding the propagator 1/(M3 + Q%)
asM;*(1 — Q*/M% + (Q*/M3 )* + - - -), we would expect
a relative factor of the order of Q?/M7 multiplying
C4(Q%) — C4(0). At Q% =0.3 GeV?, this amounts to
approximately 20%, or about 0.09 in absolute terms for
the magnitude of C%.

Let us now turn to the comparison with other work. First,
we compare our calculation with another calculation in the
framework of covariant chiral perturbation theory [30]. Our
starting point is different in that we are using the isovector-
isospinor representation for the A involving the projection
operator £ whereas Ref. [30] directly uses an isospin
quadruplet. Furthermore, we have one more effective
parameter than Ref. [30], which affects the tree-level result
of C4(Q?). The parameters entering the loop diagrams are
essentially the same, in particular, Ref. [30] also uses the
quark-model prediction Hy, = g; = % g4 Nevertheless, our
loop contributions are, in general, substantially larger in
magnitude; this is particularly true for C4(Q?). On the other
hand, for both g; = 2.30 and g; = —1.21, our total result
for C4(Q?) is closer to the empirical parametrization than
the result of Ref. [30], in particular for 0?30.1 GeV?,
whereas C4(Q?) turns out to be very similar. For C4(Q?)
we obtain an opposite sign in comparison to Ref. [30].

Finally, for C4(Q?), an ambiguous situation arises. For
g; = —1.21 there is a very good correspondence with the
empirical form factor, whereas the result of Ref. [30] is
substantially below the empirical form factor. However, for
g; = 2.30, our result increases too quickly, yielding too
large a slope.

In the framework of nonrelativistic chiral effective field
theory to leading one-loop order [31], the Q? dependence
of the form factor C2(Q?) to order three is entirely
generated by an LEC. The Q? dependence of the form
factor C4(Q?) is given by the pion-pole contribution and
the same LEC as in C4(Q?). Finally, C4(Q?) and C4(Q?)
gain Q? and M, dependence only at higher orders. In
particular, the prediction C4(0) = 0 (no LEC available in
Ref. [31]) does not agree with our findings. However,
based on the discussion in Appendix, the heavy-baryon

Lagrangian ES& 1 at O(¢?) should also make a contribution
to C4(0) [see Eq. (A4)]. Moreover, we find for all form
factors a numerically significant loop contribution, in
particular also from diagram (t) leading to the sensitivity
on the sign of g;. In the case of C4(Q?) and C4(Q?), the
Q?-dependent loop contributions are combined with con-
tact terms, whereas for C4(Q?) and C4(Q?) the Q2
dependence originates entirely from the loop diagrams.
The different behavior of the loop contributions is not in
conflict with the heavy-baryon calculation, where they
should show up at a higher order in the combined chiral and
inverse (large) mass expansion. Similar to the case of the
determination of the nucleon electromagnetic form factors
[76,77], a covariant calculation leads to the fact that higher-
order terms are retained that do not (yet) occur in the
inverse mass expansion. Our values for the generalized
Goldberger-Treiman discrepancy are slightly larger than
the ~2% predicted in the framework of heavy-baryon chiral
perturbation theory [29].

The inclusion of the @; meson as an explicit dynamical
degree of freedom was discussed in Ref. [32]. Besides the
a;-meson mass, this introduces one additional effective
parameter. The a; meson effects the shape of the form
factors C2(Q?) and C4(Q?); the form factor C2(Q?)
develops more curvature and C4(Q?%) lies above the
pion-pole dominance prediction for 0>20.1 GeV>.

Results from lattice QCD for C4(Q?) and C4(Q?) were
reported in Refs. [34,35]. In general, the values of Cg‘ (0) in
their calculations come out as smaller than one, i.e., they
are also smaller than our results. At the same time, the axial
mass turns out to be larger than M, = 1.28 GeV, corre-
sponding to a smaller mean-square axial transition radius.
This corresponds to our findings. At low Q2, the lattice
results for C4(Q?) turn out to be smaller than our results.
Finally, Ref. [35] contains two fits to Gy, (Q?). For the
coupling constant g,y,, which Ref. [35] defines at Q> = 0
rather than Q% = —M2, values between 8.44 and 16.3 are
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obtained, which have to be compared with our values
12.8 and 12.5.

As a representative example for studies in the framework
of nonrelativistic (chiral) quark models, we take the results
of Ref. [28]. First, we observe that the predictions of the
form factors in the quark model are real quantities instead
of complex functions in our calculation. The dominant
form factor C2(Q?) starts with C2(0) = 0.93 and produces
curvature according to an axial-vector meson dominance
coupling (at the quark level) similar to Ref. [32]. The axial
radius is predicted as (r3y,) = 0.59 fm?. They also predict
a nonzero form factor C4(Q?) in the low-Q? region, but of
significantly smaller magnitude.

Besides Ref. [21], from which we took the empirical
parametrization of the form factors, some more recent
experimental information is available for the linear
combination Gya(0%) =1 [m3, — m3 + Q*CH(0)-
m3,C4(Q?), which was extracted from the parity-
violating asymmetry in inelastic electron-nucleon
scattering near the A resonance. Reference [22] reports14
GHA (0% =034 GeV?) = —0.05 £ (0.35), £ (0.34) s+
(0.06)e0ry> Whereas we obtained —0.584 GeV? for g =
2.30 and —0.544 GeV? for g; = —1.21.

VI. SUMMARY

We analyzed the low-Q? behavior of the axial-vector
nucleon-to-delta transition form factors C4(Q?), C{(Q?),
C2(Q?), and C2(Q?) at the one-loop level of relativistic
baryon chiral perturbation theory. In total, the calculation
involves six free parameters a, f, y, 6, €, and { [see
Eqgs. (27)]. The constants g4, F,, M,, my, and z, were
fixed in terms of their empirical values. For the coupling
constant g we made use of the quark-model prediction
g= %\/ng. Finally, for the coupling constant g;, appear-
ing in certain loop diagrams only, we considered two
scenarios: we either made use of the quark-model pre-
diction g :%gA =2.30 or of g; =—1.21 as obtained
from an analysis of the zN phase shifts of the S and P
waves. Since there is essentially no direct experimental
information on the form factors available, we took the
empirical parametrizations used in the analysis of Ref. [21]
to determine our parameters. For our fits, we chose the
interval 0 < Q% < 0.3136 GeV?, where the upper end of
the interval is likely to be at the verge of the applicability
of a one-loop calculation. For the form factor C4(Q?) we
obtain good descriptions for both g; =2.30 and
g; = —1.21, deviating from the empirical form by less
than 3% and 1%, respectively. As can be seen from Fig. 3,
the loop corrections are sizable and their slope depends on

"“Reference [22] does not quote any units, even though in
natural units the linear combination has dimension energy
squared.

the sign of g;. As a consequence, the total result involves a
delicate interplay between the loop contributions and the
parameters y and 6 [see Egs. (33) and (36)]. The parameters
e and { were determined from the fit to C4(Q?), where,
again, for g; = —1.21 our result is closer to the empirical
form factor than for g; = 2.30 (see Fig. 5). As a result, the
aNA transition form factor G,ya(Q?) deviates from the
simple expectation Gya(Q%) =7 C4§(Q?), again, more
so for g; = 2.30 than for g; = —1.21 (see Fig. 6). For the
N A coupling constant we obtained g,y, = 12.8 for g; =
2.30 and g,yp = 12.5 for g; = —1.21, resulting in the
Goldberger-Treiman  discrepancies A = 0.0533 and
A = 0.0305, respectively. The parameters a and S are
responsible for vertically shifting the curves of the form
factors C4(Q?%) and C{(Q?), respectively, they cannot,
however, modify their shapes. Therefore, the loop contri-
butions are, to some extent, a unique feature of the
predictions for C4(Q?) and C4(Q?). In particular, our
calculation predicts C4(Q?) to be different from zero in
contrast to the empirical parametrization C4 (Q?) = 0 (see
Fig. 7). Moreover, for g, = —1.21 we obtain a very good
agreement between our result for C4 (Q?) and the empirical
form factor (see Fig. 8). A somewhat surprising feature is
the fact that the negative value of g, in all cases gives a
better agreement with the empirical form factors than the
quark-model result which uniquely predicts a positive sign.
Unfortunately, as in the case of zN scattering, g; does not
enter the calculation at leading order but only at the loop
level. More about the sign of g; could possibly be learned
from radiative pion-nucleon scattering zN — zyN or radi-
ative pion photoproduction yN — yzN in the A-resonance
region, where the 7AA vertex contributes at tree level and
thus at leading order. Finally, our results at the one-loop
level suggest that the imaginary parts of the axial-vector
nucleon-to-delta transition form factors are, in general,
rather small. This is a striking difference to the electro-
magnetic transition form factors, where only in the case of
the magnetic dipole form factor G, (Q?) the imaginary part
is negligibly small compared to the real part, whereas for
the electric dipole and charge quadrupole form factors
Gr(0?) and G(Q?) the real and imaginary parts are of the
same order of magnitude [23].
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APPENDIX: O(¢*) LAGRANGIAN

For our calculation, we need the pion-nucleon-delta
interaction vertex and the axial-vector-nucleon-delta inter-
action vertex. The building blocks that potentially contrib-
ute are the chiral vielbein [see Eqgs. (22) and (23)] and
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7,
F 9’

yo=uyu' —uyu—M*(UT=U) - -2iM? (Al)

f—pw = qu;qu - quR;wu _’fL;w _me/ - _Z(aﬂav - avaﬂ)

= _Ti(aﬂav,i - auay,i)' (AZ)

One also has to consider covariant derivatives of these
building blocks.

According to Jiang et al. [64], the Lagrangian at O(g?),

£,(3\3 A» contains three structures [see Eq. (66) of Ref. [64] ].
The first two structures are proportional to the product
u,;u, ; and thus contribute neither to the zNA interaction
vertex nor to the aN A interaction vertex. The third structure
is proportional to f,,, which contributes to the vNA
interaction vertex but not to the aNA interaction vertex.
In other words, according to Jiang et al., there are no
contact interaction contributions to the transition form
factors at O(q?).

Jiang et al. compare their results with Ref. [60], which
they quote as their Eq. (67). However, Hemmert et al. [60]
did not construct the covariant version but rather the heavy-
baryon version of the Lagrangian. According to Eq. (82) of
Ref. [60], they factor out exp(—iMyv - x) with a common
mass M, for both the nucleon field and the A field.
The relevant heavy-baryon Lagrangian is then given in
Eq. (112), where N and T are heavy-baryon fields. Note
that there is no covariant Lagrangian in Ref. [60]. In other
words, Jiang et al. must have reconstructed their Eq. (67)
from the heavy-baryon Lagrangian. We make use of the
results of section 5.5. of Ref. [56] to establish the
connection. Using Eq. (5.122) of Ref. [56], a single term
v* originates from y#* and 2S* from y*ys, respectively.

Let us have a look at the first term of Eq. (112) of
Hemmert et al. This should result from

1 - . 1
Z—M)lp'?bllfﬂw,i 57"75‘1’ + H.c.

1 | 1
~ oM, (‘Ebl"l”ff i 557 + H.c.) ,

which, apart from a factor 1/(2M,), agrees with the first

term of Eq. (67) of Jiang et al."> Now let us turn to the
second term of Hemmert ef al. which should originate from

-
2_1‘4011}/1{‘1172‘]('_”141,},1/\1} —+ H.c.

Comparing with Eq. (67) of Jiang et al., we see that they
took the wrong operator D" instead of y” and then argue
that such a term can be eliminated using arguments given in

PWe left out the projector O%,(z,) = ¢" + (z, +1(1 +
3
4z,)A)y"y" as well as the projector &;.

a previous section of Ref. [64]. In fact, Holmberg and
Leupold [65] also obtain a structure analogous to the b,
term in their construction for the decuplet-to-octet tran-
sition Lagrangian at next-to-leading order.

We will now show that the b, term gives an explicit
contribution to the form factor C5(Q?) at O(¢?). Using
Eq. (A2) and after dropping the factor 1/(2M,), from the
b, term we obtain the Lagrangian

_ 3
ib,¥) &, (=0"a + *al)y, ¥ +Hee.,
resulting in the form factor contribution

ibyw,((=(=ig"))e" + (=ig")e* )y u
= ibyw,(ig*y" — igg™* )ue,
= —byw,(q*1* — dg* )ue,
d49* — q*r* y
my

= mszwl €

W

from which we obtain the contribution myb, = a to the
form factor C§(Q?).

Furthermore, we can relate the contribution to the form
factor C4(Q?) to the Lagrangian

p

2
My

— 3
D,®,.&, /"% + He., (A3)

resulting in the invariant matrix element

B
M= lm—QGﬂWA(QA”Pf g qlP;)“
N

and, thus, the constant contribution 3 to C4(Q?). In fact,
Holmberg and Leupold [65] showed how to make use of a
total-derivative argument and the lowest-order equation of
motion such that the Lagrangian of Eq. (A3) can be re-
expressed in terms of the b, Lagrangian and terms of the
O(q?) Lagrangian. For the purpose of simplicity, we omit
the projector &, the Cartesian isospin indices and the term
H.c., because they are not relevant for the argument. The
reduction proceeds as follows:

D, W, f4% = 9,(¥,f4¥) — B,D, /4% — ¥,f4D,¥.

The first term is a total derivative and, thus, does not
contribute to the dynamics, the second term contributes to
the & term proportional to Q2 in Eq. (27). Therefore, we
continue with only the third term,

094014-12



AXIAL-VECTOR NUCLEON-TO-DELTA TRANSITION FORM ...

PHYS. REV. D 104, 094014 (2021)

—li’lfiﬂDﬂ\P = _lil/lfiﬂglel/lP
1 -
= _E‘Pﬂfiﬂ (y;ﬂ/y + yyyu)DDlP
ls . ls
= —E‘PU[—”}’J)‘P - Ely/lf—”h?ﬂl)“y-
Using the lowest-order equation of motion (or an appro-
priate field redefinition, see Ref. [78]), the first term is

proportional to the b, term plus higher-order terms, and we
continue with the second term:

1- 1. -
=5 Vi DY = =30 (¥ 27,1, ¥)
1 _ 1-
+ ED”‘I‘if{”yyyﬂ‘P + E‘PAD"f’l"y,,yﬂ‘I‘.

The first term is again a total derivative and the second term
can be reduced to a b, term, using the delta equation of
motion. Finally, we reexpress the third term as

1. 1. i
5D Y = 5D, Y — 5D f*ec,,¥.

The first term is again a ¢ term and the second term is,
last but not least, the independent structure without hard
derivatives. Using, again, the results of Ref. [56], the
heavy-baryon reduction of this term would look like
v*T,D*f#S°N. (A4)

— €0

As a matter of convenience, we will stick to the
Lagrangian of Eq. (A3), because, for our purposes, it is
only relevant to know that we have a free parameter at our
disposal, even if it originates from the O(¢*) and which,
only after rewriting, contributes to the transition matrix
element in terms of C4(Q?). Finally, it was shown in
Ref. [65] that at O(q?) there is no “new” contribution to the
aNA vertex.
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