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Mesons and baryons: Parity partners
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We calculate masses of light and heavy mesons as well as baryons of negative parity containing u, d, s, c,
and b quarks. It is an extension of our previous work where we had studied the positive parity baryons. We
adopt a quark-diquark picture of baryons where the diquarks are nonpointlike with a finite spatial
extension. The mathematical foundation for this analysis is implemented through a symmetry-preserving
Schwinger-Dyson equations treatment of a vector-vector contact interaction, which preserves key features
of quantum chromodynamics, such as confinement, chiral symmetry breaking, axial vector Ward-
Takahashi identity, and low-energy Goldberger-Treiman relations. This treatment simultaneously describes
mesons and provides attractive correlations for diquarks in the 3 representation. Employing this model, we
compute the spectrum and masses of all spin-1/2 and spin-3/2 baryons of negative parity, supplementing
our earlier evaluation of positive parity baryons, containing one, two, or three heavy quarks. In the process,
we calculate the masses of a multitude of mesons and corresponding diquarks. Wherever possible, we make
comparisons of our results with known experimental observations as well as theoretical predictions of
several models and approaches including lattice quantum chromodynamics, finding satisfactory agreement.

We also make predictions for heavier states not yet observed in the experiment.

DOI: 10.1103/PhysRevD.104.094013

I. INTRODUCTION

The heavy baryons are an immediate prediction of the
quark model and their spectroscopy has attracted a lot of
attention in recent years due to their ongoing and expected
observations in particle colliders such as LHCb and Belle
I1. However, as has so often been the case for quantum
chromodynamics (QCD) and hadron physics, what is
relatively easier to calculate theoretically is harder to
measure experimentally, and vice versa. For example,
QCD-based computation of the properties of triply heavy
baryons does not involve the complexities of the light-
quark dynamics but there exists no experimental signal for
any of them. Any realistic estimate of their production
shows that it is a wild goose chase in the foreseeable future.

A baryon containing two charm quarks ZEI;*
(3621.2 + 0.7 MeV) was detected in the LHCb experiment
at the Large Hadron Collider (LHC) at CERN in proton
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collisions in both the 7 and 13 TeV runs [1]. It has made its
entry into the Particle Data Group [2]. A controversial
double charm baryon . (3519 2 MeV) was reported
earlier by the SELEX Collaboration [3]. This state remains
unconfirmed by FOCUS [4], BABAR [5], Belle [6], and
LHCb experiments [7] which did not find evidence for a
state with the properties reported by SELEX. However,
these null results do not rule out the original observations
[8]. There are no doubly heavy baryons observed with two
bottom quarks or with one charm and one bottom quark.
Several singly heavy-quark baryons have been found (see
Ref. [2] for a detailed list). In this article, we set out to
calculate the masses of negative parity baryons of spin-1/2
and spin-3/2. These are parity partners of the baryons
we studied in Ref. [9]. We employ a coupled analysis of
the Schwinger-Dyson equation (SDE), the Bethe-Salpeter
equation (BSE) describing the two-body bound-state prob-
lem, and the Faddeev equations (FE) for a bound state of
three particles. The computations have been carried out
within a vector-vector contact interaction (CI) which
preserves essential features of QCD such as confinement,
dynamical chiral symmetry breaking (DCSB) and the low-
energy implications of the divergence of the weak axial-
vector current.

In relativistic quantum field theory, the parity partner of
any given state can be obtained via a simple chiral rotation
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of the original state. If it were a good symmetry, parity
partners would be of equal masses. However, the spectrum
of mesons and baryons explicitly violates this symmetry.
For example, in the light mesons sector, a mass of p;-
(770 MeV) and that of its parity partner a;+ (1260 MeV)
are not the same. The mass difference is of the order
of 500 MeV. In the baryon sector, a similar amount of
mass splitting is observed between the parity partners
Az/5+ (1232 MeV) and Ajz),- (1700 MeV), as well as the
nucleon N »+(939 MeV) and N7 - (1535). This splitting
is due to the effects of the DCSB-dictated repulsion
involving P-wave components of the bound-state wave
functions, incorporated in the kernels of the BSE and FE for
the negative-parity hadrons.

The chiral-partners structure of hadrons including one
heavy quark has been studied in Refs. [10—13]. In Ref. [14],
doubly heavy baryons with negative parity were inves-
tigated by regarding them as chiral partners of the positive-
parity heavy baryons. The techniques of the SDE were
employed in Ref. [15] to study the problem involving any
number of heavy quarks. In this article, we extend the work
reported in Ref. [9] to calculate the masses of negative-
parity baryons by employing solutions of the BSE and the
FE. It naturally requires the study of axial and scalar
mesons as well their corresponding diquarks. We use a
realistic description of baryons as bound states of quarks,
and nonpointlike and dynamical-diquark correlations
[16,17]. This reduces the problem to a simplified sub-
structure of several two-body correlations. The same
interaction which describes mesons also generates corre-
sponding diquark correlations in the color-antitriplet (3)
channel with half the attractive strength. The diquarks
being a colored correlation are confined within the baryons.
The baryon system is bound due to the interaction between
the quarks forming a diquark and the spectator quark which
continuously interchange their roles. The validity of the
quark-diquark picture was confirmed in Ref. [18] at the
level of 5% for the nucleon mass.

Our article has been organized as follows. In Sec. II we
summarize the main features of the CI along with the sets of
parameters we shall employ in our subsequent analysis.
Section III is devoted to a detailed study of the BSE for all
the relevant mesons and the corresponding diquarks. In
Sec. IV, we solve the FE and calculate the masses of all the
spin-1/2 and spin-3/2 baryon parity partners containing u,
d, s, ¢, b quarks. Section V concludes our work. The
mathematical details of our analysis have been presented in
Appendixes A, B, and C.

II. CONTACT INTERACTION: FEATURES

The gap equation for the quarks naturally requires
modelling the gluon propagator and the quark-gluon vertex.
In this section, we recall the main truncations and character-
istics which define the CI [19-22]:

(a) The gluon propagator is defined to be independent of
any running momentum scale

1

glew(k) = 4ﬂ&lR5;w = —
mg

5;!1/7 (1)

with ar = aIR/m?], m, =500 MeV is a gluon mass
scale generated dynamically in QCD [23-26], and ar
can be interpreted as the interaction strength in the
infrared [27-29].

(b) At leading order, the quark-gluon vertex is

L(p.q) =7, (2)

(c) With this kernel, the dressed-quark propagator for a
quark of flavor f becomes

_ . 167 d*q
Sfl(P) =1y-p+my +TC¥1R/(27)47,45f(61>}’,“
3)

where m; is the current quark mass. The integral
possesses quadratic and logarithmic divergences. We
choose to regularize them in a Poincaré covariant
manner. The solution of this equation is

SiH(p) =iy p+ My, (4)

where M in general is the mass function running with
a momentum scale. However, within the CI it is a
constant dressed mass.

(d) My is determined by

4agr iu (102

My =my+Mp—=C(Mp), (5)

where

C(6)/o = @i“(a) =TI(-1,072,) - T(-1, arizr), (6)

where I'(a, y) is the incomplete gamma function and
Ty are respectively, infrared and ultraviolet regula-
tors. A nonzero value for 7jg = 1/Ar implements
confinement [30]. Since the CI is a nonrenormalizable
theory, 7yy = 1/Ayy becomes part of the definition of
the our model and therefore sets the scale for all
dimensional quantities.
In this work we report results using the values in Tables I
and II, which correspond to what were dubbed as heavy
parameters in Ref. [9]. In this choice, the coupling constant
and the ultraviolet regulator vary as a function of the quark
mass. This behavior was first suggested in Ref. [31] and
later adopted in several subsequent works [9,32-35]. If one
wants to go beyond predicting the masses of the hadrons
and construct a model which can also predict charge radii
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TABLE 1. Ultraviolet regulator and m; (in GeV) as well as
dimensionless coupling constant for different combinations of
quarks in a hadron. oy = ary/Zy with ok, = 1.14, extracted
from a best fit to data, as explained in Ref. [33]. Fixed parameters

are the gluon mass m, = 500 MeV reported in Ref. [26] and

A]R - 0.24 GCV.

Quarks Zu Ayv [GeV] mg
u, d, s 1 0.905 0.165
c,d, s 3.034 1.322 0.287
c 13.122 2.305 0.598
b, u,s 16.473 2.522 0.669
b, c 59.056 4.131 1.268
b 165.848 6.559 2.125

and decay constants, then the study of the heavy sector
requires a change in the model parameters with respect
to those of the light sector; an increase in the ultra-
violet regulator, and a reduction in the coupling strength.
Following Ref. [33] and guided by Refs. [36,37], we define
a dimensionless coupling &

&(AUV) - &IRA%JV' (7)

In close analogy with the running coupling of QCD with
the momentum scale on which it is measured, an inverse
logarithmic curve can fit the functional dependence of
a(Ayy) reasonably well. The fit reads

a(Ayy) = aln™!(Ayy/Ay), (8)

where @ = 0.92 and Ay = 0.36 GeV (see Ref. [33]). With
this fit, we can estimate the value of the coupling strength
a(Ayy) once a value of Ayy is assigned. Note that

A = 0.24 GeV — Confinement scale
m, = 0.5 GeV — Infrared gluon mass scale

Ayv = 0.905 GeV — Hadronic scale for light hadrons

These reproduce the value of the chiral quark condensate
accurately. For increasing quark mass involved, Ayy would
change. The chosen strength of the coupling & and Agy,
which follow the logarithmic curve mentioned above,
(along with the current quark masses) are fitted to the
lightest pseudoscalar meson mass and its charge radius.
Table II presents current quark masses used herein and
dressed masses of u, s, ¢, and b computed from Eq. (5).

TABLE II. Current (m,_..) and dressed masses (M,..) for
quarks (GeV), required as input for the BSE and the FE.

m, = 0.007 my = 0.17 m. = 1.08 my, =3.92
M, =0.367 M; =053 M.=152 M, =4.68

The simplicity of the CI allows one to readily compute
hadronic observables, such as masses, decay constants,
charge radii, and form factors. The study of heavy, heavy-
light, and light meson masses provides a way to determine
the masses associated with diquark correlations and those
of heavy, heavy-light, and light baryons and their negative
parity partners. With this in mind, in the next section, we
describe and solve the BSE for mesons and diquarks.

III. BETHE-SALPETER EQUATION

The bound-state problem for hadrons characterized by
two valence fermions is studied using the homogeneous
BSE. This equation is [38]

4

P (k: P, = / éTQ)‘twq;P)JS,K:;(q,k;P), 9)

where I' is the bound-state’s Bethe-Salpeter amplitude
(BSA); x(g; P) = S(qg + P)I'S(q) is the BS wave function;
r, s, t, u represent color, flavor, and spinor indices; and K is
the relevant fermion-fermion scattering kernel. This equa-
tion possesses solutions on that discrete set of P? values for
which bound states exist. We use the notation introduced in
Ref. [39], [f1, f»] for scalar and pseudoscalar diquarks, and
({f1.f1}), {f1, f2}) for axial-vector and vector diquarks.
We describe the details of the meson mass calculation in the
following subsection.

A. Mesons

Mesons are classified into groups according to their total
angular momentum (J), parity (P), and the charge-parity (C),
employing the usual notation J”C. In Fig. 1, we show the
mesons we study in this work. In a symmetry-preserving
treatment using relativistic quantum field theory, pseudo-
scalar-scalar and vector-axial mesons are chiral partners.
Meson-chiral partners are the simplest bound states that are
addressed in this work. A general decomposition of the
bound state’s BSA for mesons in the CI has the form

JPC JPC
0+ - O++
Pseudo-

e Scalar

)

Mesons

Ry

4

Axial-

Vector aetan

1= 1+, 1+

FIG. 1. We study the scalar, pseudoscalar, vector, and axial-
vector mesons as well as their corresponding diquarks.
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TABLE III.  Here we list the BSA for mesons and the canonical
normalization N'. Kpg, Ky, K4y, Ks, are given in Egs. (11) and
(14), respectively. Mg = M My [[My + My, ].

BSA A B N
Ips 1ys ﬁ vsy - P 6 rs(0%.2)
dz 02=;
Ty, Vi P, 9mc B 4
Ly Ip m2E2 d/CdZ( 2)
Lavu Ysvh vs 2 Ou P _9 zG B2, axld)
U'y =ApEy + ByFy, (10)

where H = PS,V,AV, S denotes pseudoscalar (PS), vector
(V), axial-vector (AV), and scalar (§) mesons, respectively.
The explicit form of the BSA canonical normalization for
different types of mesons is displayed in Table III. We adopt
the notation

dICPS(QZ’ Z)
dz

— dKps(z)
Q2:Z dZ

Z

The BSE for a pseudoscalar meson comprised of a quark with
flavor f, and an antiquark with flavor f, is

4
Krst@.P) =t [ S 8Trs(-0) -5 (a + P)
< Ts(Q)5S7,(4). (1)

where P is the total momentum of the bound state. The
explicit matrix form of the BSE is

[EPS(P)] _ 4o {’C ’ng] [EPS(P)

FestP)) " 3x Ly kg FPS<P>}’ (12

. A _ 2
with AR — aIR/mg and

1 .
}Cgff—/ da{C" (o)
0

+ MMy —a(l - a)P?* — oMM (0"},
P2 1 .
KEi = ZMRA da[(1 - at)Mf2 + aMfl]Cllu(a)(l)),
2M2
Krx =

i
Kps = /) dalM; My, + (1 - a) M2 +abf3,]
x C(wM),

where a is a Feynman parameter and the new functions
o) = a)(M]%-Z,MJ%I,a, P?) and C¥(z) are

o) = M?—Z(l —a)+ (XMZI +a(l —a)P?
Ci'(z) = —z(d/dz)C"(z) = 2[[(0, M?z5,) = T(0, M?<}.)].

The eigenvalue equations for vector, axial-vector, and scalar
mesons are

1= Ky(=my) = 1+ Kyy(-=m3y) =1+ Kg(=m3) =0,
(13)

where we have defined

Ly(P?)=MsM; —(1- (Z)szc—z - (JcM}1 —2a(1 —a)P?
‘CG(P2> = Mfle’2 + (X(l - C{)PZ,
and
2 2o (! 2\ i 1
o) =228 [* da, ()2 (0),
0
oy 20w [T 2\ Fiug, (1
Kar(P) = 2% [ dglep(V) + Lo(P)CH V)],
0
40 1 .
fes(P?) = =52 [ daf-£ 0l 0l)
3z 0
+ (CU () = C (™M), (14)

The Egs. (12) and (13) have a solution when P? = —m?,; then
the eigenvector corresponds to the BSA of the meson. We
consider mesons with five flavors (u, d, s, ¢, b). It has long
been known that the rainbow-ladder truncation describes
vector meson and flavor-nonsinglet pseudoscalar meson
ground states very well, but fails for their parity partners
[39-43]. It was found that DCSB generates a large dressed-
quark anomalous chromomagnetic moment and conse-
quently the spin-orbit splitting between ground-state mesons
and their parity partners is dramatically enhanced [44—48].
This is the mechanism responsible for a magnified splitting
between parity partners; namely, there are essentially non-
perturbative DCSB corrections to the rainbow-ladder ker-
nels, which largely cancel in the pseudoscalar and vector
channels but add constructively in the scalar and axial-vector
channels. In this connection, we follow Ref. [22] and
introduce spin-orbit repulsion into the scalar- and pseudo-
vector meson channels through the artifice of a phenomeno-
logical coupling, gso < 1, introduced as a single, common
factor multiplying the kernels defined in Egs. (12) and (13).
gso mimics the dressed-quark chromomagnetic moment in
full QCD. The first numerical value of ggp = 0.24 was
introduced in Ref. [22] and later refined in Refs. [9,35,49].
For mesons with J© = 01, 1T we use

$Bo =032, gy, =025 (15)
The value g{o = 0.25 in the axial-vector channel guarantees
the effect of spin-orbit repulsion and reproduces the desirable
experimental value for the a; — p mass splitting [9,35,49].
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TABLE IV. Computed masses for pseudoscalar mesons (GeV)
and BSAs with the parameters of Tables I and II.

TABLE VI. Vector meson masses (GeV) and BSA computed
with the parameters listed in Tables I and II.

Mesons Expt. CI E F Charge Mesons Expt. CI E

w(ud) 0.139 0.14 3.60 0.47 1 p(ud) 0.78 0.93 1.53
K(us3) 0.493 0.49 3.81 0.59 1 K, (us) 0.89 1.03 1.62
hy(s5) e 0.69 4.04 0.74 0 ¢ (s5) 1.02 1.12 1.73
D°(cit) 1.86 1.87 3.03 0.37 0 D*(cit) 2.01 2.06 1.23
Dy (c5) 1.97 1.96 3.24 0.51 1 D (c5) 2.11 2.14 1.32
B*(ub) 5.28 5.28 1.50 0.09 1 B**(ub) 5.33 5.33 0.65
BY(sb) 5.37 5.37 1.59 0.13 0 BY*(sb) 5.42 5.41 0.67
B{ (cb) 6.27 6.29 0.73 0.11 1 B:(ch) o 6.32 0.27
ne(ct) 2.98 2.98 2.16 0.41 0 J/¥ (ce) 3.10 3.15 0.61
ny(bb) 9.40 9.40 0.48 0.10 0 Y(bb) 9.46 9.42 0.15

On the other hand, g% = (.32 is chosen to produce a mass
difference of approximately 0.3 GeV between the quark
core of the 0% (ud) [which we call 6(ud)] and that of the
p-meson (as obtained with beyond-Rainbow-Ladder ker-
nels). The choice of gg, = 1 indicates no repulsion and no
additional interaction beyond that generated by the rainbow-
ladder kernel. The numerical results for the pseudoscalar and
scalar mesons are reported in Tables IV and V. For pseudo-
scalar mesons, the computed masses in Table IV are also
compared with experimental values and the largest percent-
age difference is for a pion (about 0.7%), which becomes
smaller for heavy-light mesons and is zero for 7. and #,,.
Table V depicts the scalar mesons. In the scalar channel, the
highest percentage difference is for K; and has a value of 7%.
The analysis of 7(ud) and ¢(ud) masses indicates a differ-
ence of approximately 1.061 GeV. However, this difference
is less pronounced for mesons composed of two heavy
quarks [for example 77, (bb) and y,,(bb)] which have very
close masses in our model. Pseudoscalar and scalar mesons
must satisfy the following mass relation

Mpe(es) — Mpo(ea) + Mp+(up) — Mpo(sp) = 0,

Mp: (c5) = Mpy(ca) T Mg ub) = M y(sp) = 0- (16)

TABLE V. Computed masses for scalar mesons (GeV) and
BSA with the parameters listed in Tables I and II and g5, = 0.32.

In our model, these equations are exactly satisfied for
pseudoscalar mesons and deviate only up to 2% for scalars.
Vector and axial-vector mesons are reported in Tables VI
and VIL It is straightforward to observe that the p-meson
has the greatest difference as compared to the empirical
value (approximately 19%). Note that this value had already
been used in several previous works using this model
[9,21,22,34,35,39]. Although this value is larger than
expected, using the corresponding parameters we can cal-
culate decay constants which lie very close to the exper-
imental ones. Furthermore, when the masses of the
corresponding diquarks are calculated to predict the masses
of baryons, they closely resemble the experimental value. As
in the previous cases, the percentage differences between our
results and the experimental ones are smaller when heavy
quarks are included which constitute the gist of our study.

For the case of the axial-vector channel, the mean
absolute relative difference between the entries in columns
three and four of Table VII does not exceed 12%, and for
X1 and yy,; it is between 3% and 4% The mass splitting
between the opposite parity partners p(ud) — a, (ud) is 440
and 100 MeV for Y(bb) — y;(bb) (less than 5% error
in both cases). All computed values for ground-state

TABLE VII. Axial-vector meson masses (GeV) and BSA,
computed with the parameters listed in Tables I and II and
gso = 0.25.

Mesons Expt. CI E Mesons Expt. CI E

o(ud) 1.2 1.22 0.66  4,(ud) 1.260 1.37 0.32
K} (u5) 1.430 1.33 0.65  K,(u5) 1.34 1.48 0.32
fo(s3) e 1.34 0.64  f,(s3) 1.43 1.58 0.32
Dj(cit) 2.300 232 039  D(ci) 2.420 2.41 0.20
D¥(c5) 2.317 2.43 037 Dy (c5) 2.460 2.51 0.19
B (ub) e 5.50 021  B,(ub) 5.721 5.55 0.11
B,o(sh) e 5.59 020 B, (sh) 5.830 5.64 0.10
B.o(ch) e 6.45 0.08  B(ch) e 6.48 0.04
Zeo(cT) 3.414 3.35 0.16  xe(cc) 3.510 3.40 0.08
Zp0(bb) 9.859 9.50 0.04  y,,(bb) 9.892 9.52 0.02
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Heavier Mesons

Lighter Mesons

Meson masses (GeV)

0.1

7777227772777 777
7277777272777

7777727777777 7777

N,
7722777722777,

17/
7

0.01¢

sS C c bb

=l
<l
(e}

FIG. 2. The light and heavy meson masses (GeV): the red
vertical lines represent the pseudoscalar mesons, the green
diagonal lines represent the vector mesons, the blue solid filled
rectangles represent the scalar mesons, and the black horizontal
lines represent the axial-vector mesons.

heavy-light mesons exhibit a similar mass difference
compared to their chiral partners, which decreases with
increasing meson mass. Moreover, one can immediately
see that in all cases the pseudoscalars are the lightest
mesons and the axial-vector are the heaviest mesons. This
information is represented pictorially in Figs. 2 and 3. The
same behavior is observed for light, heavy, and heavy-light
mesons. However, it is more conspicuous for those that are
composed of two light quarks. The calculation of baryons
with negative parity requires the masses and amplitudes of
the diquarks J©* = 0%,17,0™ and 17. It is for this reason
that in this section we have included the axial and scalar
mesons. The equal spacing rules for vector and axial-vector
mesons are

101 ]
2 [ \ N\ \ \
EOFINRE NS [INE [INPE (I
C (RS e EE
=] B \ \ \ \ \
2 oL [INPE [INPE (NS [INRE IR
2 011 I\ \ N\ \ \
= EINE N N NTE [
N INE INE NTE TN
1 A A A A
NS INE NS [N [N
gl =l =l =l =R
0.01 § § § _ _
us cu cs u S

FIG. 3. The heavy-light meson masses (GeV): the red vertical

lines represent the pseudoscalar mesons, the green diagonal lines
represent the vector mesons, the blue solid filled rectangles
represent the scalar mesons, and the black horizontal lines
represent the axial-vector mesons.

Mpy(cs5) = Mpos(ca) + Mp+(uh) = Mpo-(sp) = 0,
0. (17)

Using the results obtained in Tables VI and VII we instantly
infer that Eq. (17) are satisfied identically for vector mesons
while the deviation for axial-vector mesons is less than 1%.
With these results it is immediate to verify the following
equations

Mp,(c5) =MD, (ca) T MB, (ub) ~ M, (sb) =

Mg (o) — Mo (sh) — Mp*(ch) T Mpo(sp) &0, (18)

Mgo: (s5) = Mg (upy = Mpo(sh) + Mpupy = 0, (19)

Mgo- (s5) = Mg (up) = Mpt(c5) T Mpo(eay = 0, (20)

My, (b5) = My (c2) = 2M (55 + 2mpy(e5) 2 0. (21)

My, (5B) = My, (c2) = 2Mgo(shy + 2y (es) = 0. (22)

Mg (sB) = M3 (c5) = Mpd(sh) + Mpy(es) = 0, (23)

Moy (pp) = Mypw(ce) = 2Mpo(sp) + 2Mpr(s) = 0, (24)

Moy by = My pw(ce) = My, (bb) + My (ce) 0, (25)

Mey(ph) = My pw(ce) = 2Mpo- 55y + 2Mpy(es) 0. (26)

We test these mass relations, Eqs. (18)—(26), against the

experiments. The deviation from these mass relations is
listed in Table VIII.

B. Diquarks

Once we have studied the masses of the mesons, the
calculation of the diquarks is immediate. In the notation
for diquarks, H = DS, DAV,DPS,DV, correspond to
scalar, axial-vector, pseudoscalar and vector diquarks,
respectively. The BSA for diquarks has the same form
as Eq. (10). The explicit coefficients and the normalization

TABLE VIII. The deviation from equal spacing rules for the
meson masses, Eqgs. (18)—(26) is given in GeV, both for the
experimental results and the computed masses from the CI.

(CL+) (Expt.,+) (CL,-) (Expt.,—)
Eq. (18) -0.01 0.02
Eq. (19) -0.01 0.0 0
Eq. (20) -0.01 -0.02 -0.02 0.092
Eq. (21) -0.12 -0.2 —0.11 -0.295
Eq. (22) -0.4 -0.38 -0.17
Eq. (23) -0.14 -0.09 -0.03
Eq. (24) -0.55 —-0.44 -0.2
Eq. (25) -0.15 —0.06 -0.03 —0.063
Eq. (26) -0.27 -0.26 -0.14 —0.358
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conditions are shown in Table IX. The color factor for
mesons and diquarks is different owing to the fact that
diquarks are color antitriplets, not singlets. The canonical
normalization condition for diquarks and mesons is almost
identical, with the only difference being the replacement
N =3 - 2. The eigenvalue equations in the case of
diquarks are

{Eps(P)} _ 4o {’CZS;

e [ K]t
FDS(P) 6ﬂ' ICIP;%

. (27
KpE 1L Fps(P )]

The equations that will give us the masses of the axial-
vector, vector, and pseudoscalar diquarks are

1
0=1- EICV<_m%)AV)’

1
0= 143Ky (-mby).

1
0=1+ EICS(—’"%)PS)' (28)

From Egs. (27) and (28) it follows that one may obtain the
mass and BSA for a diquark with spin parity J? from the
equation for a J=F meson in which the only change is
halving the interaction strength. The flipping of the sign
in parity occurs because fermions and antifermions have
opposite parity. In this truncation, the diquark masses again
correspond to P> = —m?%. We therefore present results for
the masses of diquark correlations in Tables X, XI, XII, and
XIII. In the case of pseudoscalar and vector diquarks we
have multiplied g5, by a factor of 1.8 as in Ref. [49].
This modification generates less repulsion. Physically, this
might be understood by acknowledging that valence-quarks
within a diquark are more loosely correlated than the
valence-quark and -antiquark pair in a bound-state meson.
Consequently, spin-orbit repulsion in diquarks should be
less pronounced than it is in the corresponding mesons.
With the diquark masses and amplitudes described herein
one can construct all the Faddeev kernels associated with
ground-state octet and decouplet baryons, and their chiral
partners.

IV. NEGATIVE PARITY BARYONS

In this section we extend the CI model to the heavy-
baryon sector of negative parity. We compute the masses of
negative parity spin-1/2 and spin-3/2 baryons composed
of u, d, s, ¢, and b quarks in a quark-diaquark picture. We
base our description of baryon bound states on FE, which is
illustrated in Fig. 4.

A. Baryons with spin-1/2

The nucleons parity partner is composed of pseudosca-
lar, vector, scalar, and axial-vector diquark correlations and
its Faddeev amplitude must change sign under a parity

FIG. 4. Poincaré covariant FE to calculate baryon masses. The
square represents the quark-diquark interaction kernel. The single
line denotes the dressed-quark propagator, the double line is the
diquark propagator while I' and ¥ are the BSA and Faddeev
amplitudes, respectively. Configuration of momenta is

lgg=—C+P kyy=—k+P, P=P,+P,

transformation. These alterations lead to changes in the
locations of the ys matrices in the FE. The Faddeev
amplitude of the nucleon parity partner with the interaction
employed in this article can be written in terms of

S(P) = s(P)yslp,
Sp(P) = —ip(P)Ip,

Al (P) = id}(P)y, — a5(P)P,.
Vi(P) = ivi(P)ysy, + vi(P)ysP,.

where i = 0, + and P?> = —1. The mass of the ground-state
baryon with spin-1/2 and negative parity comprised by the
quarks [ggq,] is determined by a 10 x 10 matrix FE. In the
explicit matrix representation, one can write it as follows:

S(P)u(P) S(P)u(P)
APy | rae | A
Sp(P)u(P) =4 (271)4M(f’ P) Sp(P)u(P) '
V,(P)u(P) Vi(P)u(P)

(29)

where u(P) is a Dirac spinor; The kernel in Eq. (29) is
detailed in Appendix B. The general matrices S(P), Al (P),
Sy(P), and V,(P) which describe the momentum-space
correlation between the quark and diquark in the nucleon
and the Roper, are described in Refs. [43,50]. The Faddeev
amplitude is thus represented by the eigenvector

Y(P) = (s,a% af,ad, af ,p, 9, o1, 09, v3)T.  (30)

We use static approximation for the exchanged quark with
flavor f. It was introduced for the first time a long time ago
in Ref. [51]

o
iy-p+My My

S(p) (31)

A variation of it was implemented in Ref. [52], representing
the quark propagator as

2
L, I (32)

S(p) = )
(p) iy p+ M, iy-p+M;
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We follow Refs. [22,39,49] and represent the quark
(propagator) exchanged between the diquarks as a simple
modification of the static approximation

ST(k) — A“;—‘i. (33)

The superscript “T” indicates the matrix transpose. In the
implementation of this treatment for heavy baryons with
spin-1/2 we use g = 1. Explicit expressions for the
flavor matrices ¢ for the diquark pieces can be found in
Appendix C. The spin-1/2 heavy baryons are represented
by the following column matrices,

[ [uclyic | [ [scloic ]
{cc}yru {cc}y+s
{uc}+c {sc},+c
Uz (ucc) [uc]y-c ’ UQ (sec) = [scly-c ’
{cc}-u {cc}y-s
_{uc}l_c_ _{sc}l_c_
[ [sclys | [ [uc)yiu ]
{ss}+c {uu},+c
{sc}+s {uc}+u
Ha(sse) = [sclo-s | et (we) = [uclp-u |’
{ss}-¢ {uu},-c
| {schy-s | | {uch-u |
[ [ub)y:b ] [ [sb]y:b ]
{bb},+u {bb}+s
{ub}+b {sb},+b
) = p [ R T b |
{bb}-u {bb},-s
_{ub}rb_ _{sb}rb_
[ [sbgs ] [ [ublyiu ]
{ss};+b {uu}+b
{sb}+s {ub}+u
UQ (ssb) = [sb]ys ) Us (uub) = (ubly-u ,
{ss}-b {uu},-b
| {sb};-s | | {ub}-u |
[ [cb]yic ] [ [cb]y:b ]
{cc}+b {bb},:+c
{cb},+c {cb},+b
UQ(cch) = [eb]y.c ) UQ(chb) = [eby b
{cc}-b {bb},-c
_{cb}lfc_ i {cb}rb_

Experimental and calculated masses of spin-1/2 baryons
with charm and bottom quarks are listed in Table XIV. Our
results for light baryons give masses larger than the
expected values since our calculations for these states do
not contain contributions associated with the meson cloud
effect [53] which works to reduce baryon masses. The size
of such corrections has been estimated; for the nucleon, the
reduction is roughly 0.2 GeV and for the A it is 0.16 GeV.
Our deliberately inflated masses allow us to achieve the
correct results after incorporating the meson cloud effects.
If our calculations are included these effects, our results
would be modified to my = 0.98 GeV, my = 1.20 GeV,
and mz = 1.27 GeV. This can effectively be achieved if we
change our set of parameters as suggested in Ref. [35]. This
is what we precisely do for the case of heavy and heavy-
light baryons 1/27. These are less than 9% different from
the predicted value in Ref. [15] which already include the
effects of the meson cloud. The values in column four of
Table XIV may vary slightly with the change of gp.

The masses of spin-1/2 baryons with only one heavy
quark obey an equal-spacing rule [54-56]

my, +mg =2mg, . qg=c,b. (34)

With this equation we can predict the mass of the baryons
E(usc) and E(usb) in Table XV.

B. Baryons with spin-3/2

Baryons with spin-3/2 are especially important because
they can involve states with three c-quarks and three
b-quarks. In order to calculate the masses we note that it
is not possible to combine a spin-zero diquark with a
spin-1/2 quark to obtain spin-3/2 baryon. Hence such a
baryon is comprised solely of vector correlations.
Understanding the structure of these states is thus simpler
in some sense than the nucleon. The Faddeev amplitude for
the positive-energy baryon is

lI’ﬂ = l///w(P)uy(P),

where P is the baryon’s total momentum and u,(P) is a
Rarita-Schwinger spinor,

Wi (P, = Tyg uB, (£4g)Dup(Pu,(P) - (35)
and
’Dup(f; P) = S<f’ P)évp + }/5“41/({; P)f/J)_ (36)

We give more details of this equation in the Appendix A.
We assume that the parity partner of a given baryon is
obtained by replacing the diquark correlation(s) involved
by its (their) parity partners. We consider the baryons with
two possible structures: gqq and ¢,¢qq.
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1. Baryons(qqq)

There exists only a single possible combination of
diquarks for a baryon composed of the same three quarks
(¢qq). The Faddeev amplitude for this case is

D,,(¢: P)uy (P)

Employing Feynman rules for Fig. 4 and using the
expression for the Faddeev amplitude, Eq. (37), we can
write

= fE(P)ysu; (P). (37)

[ d4£
4 4
M, ) (2x)

fP(P)ysuj(P) = MfE(P)ysui(P).,  (38)

where we have suppressed the functional dependence of M
on momenta for the simplicity of notation. We now
multiply both sides by ﬁg (P)ys from the left and sum
over the polarization (not explicitly shown here) to obtain

rsAL(P)R,5(P)ys = 4M (6214> MysA (P)R,ys.
(39)
Finally we contract with 6,4
1 Efpy. [ _
zﬂz_M m{qq}l / dalLBCY (w(a, M2 {qq} ,m)),

{aq}1-

where we have defined

LB = + (1 — a)’myllamp — M ). (40)

2
[m{‘I‘I}r

From the last two expressions, it is straightforward to
compute the mass of the baryon constituted by three
equally heavy quarks.

2. Baryons(q,199)

For a baryon with quark structure (g, gq), there are two
possible diquarks, {gq},- and {g;q},-. The Faddeev
amplitude for such a baryon is

2_(P)
where i = {q;9},-,{qq},-- The FE has the form
dlaat- 44l dlaah-

B _ _ B
{ dlaah- ]ysuﬂ N 4/ (27:)4M { dlaah- }ysuy, (42)

where

Dy, (P)ug (P s) = 8,vsuj (Pis).  (41)

M}{lglfl}l-a{qw}r MI{431‘I}1--{‘M}1-

M:[ ] (43)

M/{lzq}l_v{‘hq}l_ M;Z‘]}l_’{qq}]_

with the elements of the matrix M given by

1
MY = tfo —T1" (¢
HY qul P

qlq) _/14_ (_kqlq)S(l )A/IJZ (f‘il’l)’

1 _ _
My, =t ﬁrﬁl’ (Z4q)T (_kQIQ)S(ZQI)A:):.{qq} (Z4q)-
q
1 - +
M = 10T (4 T (k) S )AL (€4,
q
1 _ _ N
M/lu]/ =t M—F,l, (qu)rfll (_qu)S(ZQI)AF])V(qu)’ (44)
q

where #/ are the flavor matrices and can be found in
Appendix C. The color-singlet bound states constructed
from three heavy charm/bottom quarks are

ug: i = [{ect-cl, Uy = [{bb},-b].

ol HZZ;IZ] gy, = EZ’];C

The column vectors representing singly and doubly heavy

] . (45)

baryons are
Ust+ (yue) = {Mu}lci| > Uz (uee) = |:{uc}lc:| s
L{uct-u fechi-u
- =[]
QY (ssc) _{SC}I—S ’ Qi (sce) {CC}I—S ’
=[] = [0
Z,) " (uub) _{ub}l-u ’ ) (ubb) {bb}l-u ’
[ {ss}-b _ [{sb}-b
uQ;*(ssb) - {sb}rs s Q,(sbb) — {bb}rs .

We have solved FE (35) and obtained masses and eigen-
vectors of the ground-state baryons of spin-3/2 using
gg = 1. The results are listed in Table XVI below.

For baryons of spin-3/2 with three distinct flavors of
quarks we can again use Eq. (34). The results are depicted
in Table XVII. As in the case of baryons with spin-1/2, the
masses of light baryons with spin-3/2 are deliberately
inflated to leave room for the contributions of the meson
cloud.

TABLE IX. Here we list BSA for diquarks and the canonical
normalization N

BSA A B N
[ps iys w157 P 4 des(Qz-z> s
Tpavy Yh 50,,P, 6m2 E%) oy 2t
Ipps Ip —3mZE} pg d/CdsZ(Z)
Covy Y5t WP, —6m2, B3, Parld)
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TABLE X. Computed masses for scalar diquarks (GeV) and
BSA with the parameters in Tables I and II.

Diquarks Mass E F

[ud]y+ 0.77 2.74 0.31
[us]g+ 0.92 2.88 0.39
[s8]o+ 1.06 3.03 0.50
[cu] o+ 2.08 2.00 0.23
[es]o+ 2.17 2.11 0.32
[uby- 5.37 0.99 0.06
[sb]y+ 5.46 1.00 0.08
[eD]y+ 6.35 0.42 0.07
[ec]yr 3.17 0.96 0.19
[bb]y: 9.43 0.23 0.05
TABLE XI. Computed masses for pseudoscalar diquarks (in

GeV) with the parameters in Tables I and II. The expressions with
superscript * are obtained with ggo = 0.32 % 1.8.

Diquark Mass E Mass* E*
[ud),- 1.30 0.54 1.15 1.06
[us]o- 1.41 0.54 1.27 1.05
[55]o- 1.52 0.53 1.40 1.03
[cu]y- 2.37 0.32 2.28 0.64
[es]o- 2.47 0.31 2.40 0.61
[ub],- 5.53 0.18 5.47 0.34
[sb]o- 5.62 0.14 5.57 0.32
[¢D]y- 6.47 0.07 6.44 0.13
[ec]o- 3.38 0.14 3.33 0.25
[bb]y- 9.51 0.04 9.50 0.07
TABLE XII. Axial-vector diquark masses (in GeV), computed
with the parameters listed in Tables I and II.

Diquark Mass E
{ud}+ 1.06 1.30
{us}+ 1.16 1.36
{ss}+ 1.25 1.42
{cu}y 2.16 0.93
{es}t+ 2.25 0.95
{ub}+ 5.39 0.48
{sb}+ 5.47 0.48
{cb},+ 6.35 0.20
{cc}+ 322 0.41
{bb},+ 9.44 0.11

TABLE XIII.  Vector-diquark masses (in GeV), computed with
the parameters listed in Tables I and II. The expressions with the
superscript * are obtained with ggo = 0.25 % 1.8.

Diquark Mass E Mass* E*

{ud},- 1.44 0.28 1.33 0.50
{us}- 1.54 0.28 1.43 0.50
{ss}- 1.64 0.27 1.54 0.50
{cu},- 2.45 0.17 2.38 0.31
{es}- 2.54 0.16 2.48 0.30
{ub},- 5.59 0.09 5.53 0.17
{sb},- 5.67 0.09 5.62 0.16
{cb},- 6.50 0.04 6.47 0.07
{cc}- 3.42 0.07 3.38 0.13
{bb},- 9.53 0.02 9.51 0.04

TABLE XIV. Spin-1/2 baryons. The results abbreviated by
QRS are taken from Ref. [15]. In the fifth column the upper and
lower limits indicate a change in mass due to a variation of gz =
1 £ 0.5 for heavy baryons. The mass is greater when g is smaller
and decreases as gp increases. In the case of light baryons we use
gp = 1.18. For the case of baryons with negative parity we have
only considered the contribution of dominant diquarks with the
same parity. We compare our results with those obtained in
Ref. [15], abbreviated as QRS for the initials of the authors.

Baryon (Expt.,+) (CI,+) (Expt.,—) (CI,—) (QRS,—-)
N(uud) 0.94 1.14 1.54 1.82 1.542
X (uus) 1.19 1.36 1.75 1.96 1.581
E(sus) 1.31 1.43 e 2.04 1.620
Elf(uce) 362 3.64 o 380707 3.790
Q/(scc) - 3.76 e 395803 3.829
Qssc) 269 2.82 29905 2744
5 (uue)  2.45 2.58 264107 2.666
£, (ubb) . 10.06 10.17193  10.289
€, (sbb) 1014 1032493 10.328
Q; (ssb) 6.04 6.0l 6.47103  5.994
2 (uub)  5.81 5.78 6.36157 5916
Q(cbb) 11.09 1122704 11.413
Q(ccb) b 8.01 8.1797  8.164

TABLE XV. Masses of spin-1/2 baryons predicted by CL The
results abbreviated by QRS are taken from Ref. [15].

(CL,+) (Expt., +) (CL-) (QRS,-)
M} (usc) 2.70 247 2.81 2.70
M ush) 5.89 5.80 6.42 5.96
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TABLE XVI. Masses of baryons with spin-3/2 in GeV. The
results denoted by QRS have been taken from [15]. Experimental
results have been labelled with an asterisk. The last table is listed
in units of mgq_ .

Baryon (Lat.,+) (CL,+) (Expt.,—) (CI,—) (QRS,-)
A(uuu) 123% 139 165 2.07 1.726
= (uus) 1.39% 151 167 2.16 1.785
E* (sus) 1.53% 163 1.82 226 1.843
Q(sss) L.67%  1.76 o 2.36 1.902
Qft 480 493 5287004 5027
Qi 1437 14.23 14.39503, 14771
Ql, 801 803 8287003 8275
Q0 11.20  11.12 11.355000 11.523
=5 (uue)  0.53% 057 0.67%50 059
E&(uee) 075 079 0.89701  0.83
Q¥ (ssc)  058%  0.61 0.7250%2  0.63
Qff(scc) 078 0.82 0927004 0.84
Sy (uub)  1.21% 1.23 1.325007 128

E) (ubb) 211 2.12
Q" (ssb)  1.26 1.28
Q,;(sbb)  2.14 2.10

210709 2.19
1.5275:9 1.30
210109 220

TABLE XVII. Mass Predicted by our model for baryons with
spin-3/2. The results abbreviated by QRS are taken from
Ref. [15].

(CL+) (Expt., +) (CL-) (QRS, )
Mz () 2.83 2.65 3.34 2.93
MY ush) 6.02 5.95 6.82 6.20

Our percentage difference with the values obtained in
Ref. [15] for baryons with 3/2~ are less than 6% for the
majority.

V. CONCLUSIONS

The CI model was first introduced in Ref. [19]. It adapts
itself well to the infrared behavior of QCD. It incorporates a
mass scale of about 500 MeV for the gluon, mimics
confinement through the absence of quark-production
thresholds, respects the axial-vector Ward-Takahashi iden-
tity and preserves low-energy Golberger-Treiman relations.
Therefore, it is able to reproduce hadron spectrum and
masses to a desirable accuracy. Most of the meson and
baryon masses containing light and heavy quarks have
already been reported in literature using the CI. In this
article, we compute the masses of the remaining negative
parity baryons containing heavy quarks. The set of param-
eters we adopt is inspired by a quark-mass fit studied in our
previous work [33]. In the quark-diquark picture of
baryons, we need to evaluate several meson and diquark
masses through the BSE before embarking upon the
evaluation of baryon masses through the FE. Tables I

and II show the parameters used in the entirety of the
article. Tables IV, V, VI, and VII depict all the meson
masses. The diquark masses are detailed in Tables X, XI,
XII, and XIII. For bound states of two particles, we have
calculated the masses of about 80 particles.

The spin-1/2 and spin-3/2 heavy baryon masses are
listed in Table XIV and Table X VI, respectively. Motivated
by our earlier satisfactory computation of the singly and
doubly heavy positive-parity baryons, and our comparisons
of the negative-parity baryon masses in the present work
with other established models whenever possible, we are
confident our predictions will lie in close proximity to the
future experimental observations. The computed masses in
this article include 58 baryons, 29 with positive parity and
29 with negative parity. In total, we present the computation
of approximately 138 states. Our planned next steps of
research will involve computation of excited states, tetra,
and pentaquarks, as well as form factors of mesons and
baryons containing heavy quarks.
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APPENDIX A: EUCLIDEAN SPACE
CONVENTIONS

In our Euclidean space formulation

4
P‘qzzpi% (A1)
i=1
where
. i
(ren}y =28 V=1 ow= gt
tr[}/S}/ﬂyvypya} = _4€/4vpm €1234 = L. (A2)
A positive-energy spinor satisfies
u(P,s)(iy-P+M)=0=(iy- P+ M) u(P,s), (A3)

where s = £ is the spin label. It is conventionally nor-
malized as
a(P,s)u(P,s) =2M, (A4)

and may be expressed explicitly as

094013-11



L. X. GUTIERREZ-GUERRERO er al.

PHYS. REV. D 104, 094013 (2021)

Xs
u(P,s) =vM - ié’( 5P ), (AS)
M—ieXs
with & = iV P* + M2,
1 0
= , _ = . A6
rv=(y) ==(}) (A6)

For the free-particle spinor, it(P, s) = u(P, s)'y4, it can be
used to construct a positive energy projection operator

1 1
A (P) = — P,s)a(P,s) =~ (=iy- P+ M).
HP) = 5y (P (P.) = (i P+ M)
(A7)
A negative-energy spinor satisfies

o(P,s)(iy-P-M)=0=(iy-P—M)v(P,s), (AS8)
and possesses properties and satisfies constraints obtained
through obvious analogy with u(P, s). A charge-conjugated
BSA is obtained via
[(k; P) = C'T(=k; P)TC, (A9)
where “T” denotes transposing all matrix indices and C =
Y274 is the charge-conjugation matrix, C' = —C. Moreover,

we note that
|

CuC=~yr,,  [Coys]=0. (A10)

We employ a Rarita-Schwinger spinor to represent a covar-
iant spin-3/2 field. The positive-energy spinor is defined by
the following equations

(iy - P+ M)u,(P;r) =0,
Pﬂuﬂ(P;r) =0,

Yutt,(Pir) =0,

(A1)

where r = =3/2,-1/2,1/2,3/2. It is normalized as

i, (P 1 )u,(Pyr) = 2M, (A12)
and satisfies a completeness relation
| 3
5 > u,(P:ir) @, (Pir) = AL(P)R,,, (A13)
r=-3/2
where
1 1 - .
R;w = 5ﬂvl 3 S ulv +3 3 P Ap — 3 [Pyyv - Pv]’ﬂ]?
(A14)

with P> = —1. It is very useful in simplifying the FE for a
positive-energy decouplet state.

APPENDIX B: KERNEL IN FE

M = 4T flaailes flaalor T pa

x {1

l991] ( 9 )ST o

lg41]
M2 = 1T faah+ flaailo Tgan
1t
X {F{qq}u( /) lg
M3 = 19T faan} i+ flaailo+ T pa
x {F{qq }ﬂ(qul)ST I
M6 — T flaalo- glaa)o+ T pa
x T [

M7 = 1T adh-flaalo: T

[991] ( q‘ll)

X {F{qq}u( a)
M3 = T flaaidi-glaale-Tra
T 70*
X {F{qq }M(qul)s F[qqll
Mﬁl = 01T ¢laalo+ fagh+Tya

(=k
S (“kaq)Sq, (U

[991]

4991 )S (l )A([),;q]] (qul )}’

) gfI}WU >}’

( k‘M] )Sq(lq)A;;q]},/qu‘h )}’

Sglfoqql](_qul)s (U )A([);ql](qul)}’

ng?+ ( qql)S ( )A%qq}’ﬂy(qu>}’

( kl[‘ll )Sq(lq)Aiqql},yy(qul )}’

< {00 (g )STTY =k ) S, (L) A (L)}
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M2 = 10T adhs fladhe T

1t 1"

X{F{qq}p( )S‘ir{qq}ﬂ( kaq)Sq(l )A{qq}ﬂv(l )}
M/%Z — T faai}+ aah+Ta

x {F{CM }ﬂ(qul)sgr*l{qq}ﬂ( qu)Sq(lq)A‘l{qCIl}a/)U(qul)}’
M3E = Tdlaalo- Haah+ Ty

X {F([)q_ql](llI%)SgF%qq}ﬂ( ) ( q)AOq_ql ( qql)}’
Miz — T faah- flaat+ Ty

x {F{qq}p( )Sgr{QQ}ﬂ( kq‘l)S‘I(lq)qu},pu(qu)}’

M;%g — T aati- faak i+ Tya

{qq|}p(qu|)sgr~l{;q}ﬂ( kq‘l)S‘l(lq)A%qql},pv(lWl)}’
M/34] — T aalor Haa}+Tpa

x {F([)qq (4q))S4, {qql}u( qul)Sq(lq)A([)qql (lgq )} = Kl
Mi% — T faat daa )+ T pn

v +
X {F{qq}p( )Sgriqql}A kgq,)S4, (lm)A}qu},pv(l‘/q)}’
M3 = T flaah flaaki Ty

+ +
X {F{qql}/’(lqm)sg LIQI}/‘( qul)Sq(lq)A%qql},va‘”l)}’
M;(’ — T flaalo- Haa}+Tya

)Sgriqq }u( kgq1)Sq (lql)A([)c;m](l‘f’il)}’
M;3u7/ — 14T faadi- Haai}+ T yan

N .
X{F{qq}p( )SZ;FLILII}/‘( k‘lql)Sql(l‘ll)A}qu},pv(l‘f‘l)}’
M3 = 1T faaih- Haa b+ Tpa

N _
{qq}p(lq‘il)sgriqql}ﬂ( qul)Sq(l) %qql}pv(qul)}’
MO = 4T flaaly+ flagilo-T sa

AT (Lyq ST (k) Sy() AL (g}
MS? = 14T Aaati+ ¢laailo-T g4

X {F{qq}p( )Sllr{[)qql ( qql)Sql (lql)A%qq},py<qu>}’
M = 14T daai b+ faalo-T pa

x {I'

X {F([)c;q (g,

x {I'

ST re

X {F {q‘h}(_k‘ﬂil)Sq(lq)A541}-lll/(qul)}’

{qql}p(l’l‘il)
MSS = 147 flaailo- gladlo-Ta

X {F([)c;q (qql)STF()i (- Kaq,)Sq, (I )A?an](l‘”')}’
ME = 147 flaahi- flaglo-T g

X {F{qq}p( )Sqr‘{[)qq] ( CMI)SQI (IQI)A{li;q},py<lqﬁl>}’
MO = 1T flaaihi-lanlo-Tra

x {F{qq }p(qul)SZ;I F[qql]( qul)Sq(lq)A%qql},Pv(l‘”')}’
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MZI — T flaalyr laah-Tsa

x {F lga: ]( qql)Sgriqq}ﬂ( k’l‘i)S‘i(lq)A([)qql](l‘Iql)}’

M2 = 10T dadhis fladh-Tya
N

X{F{qq}p( )S‘ITF{qq}ﬂ< qu)S‘i(lq)Aiqq}.ﬂv(1‘7‘1)}’

Ml7413/ = T daait+ Haah-Tpa
N +
{F}qq }p( ‘I‘il)Sg {‘M}ﬂ< qu)Sq(l‘i)Aiqql}.ﬂv(qul)}’

MZG — 1T flaailo- flaah-Tga

X A0 Uag )T ggp (~Raa)Sq (1) Ay 1 (ag, )}
MZZ — T fadat- faah-T

x {F{qq}p( )SqTF{qq}ﬂ( qu)Sq(l )A ‘l{;q}/w(l )}
M3 =19 Taah- fagh-Tra

x {F{qq }p(qul)sgrgq}ﬂ( k‘M)Sq(l )A ’%;ql}ﬂ’/(qul)}7
MBI — T flaarly+ flaanh-Tya

x {qu]( qql)ST {qql}ﬂ( qul)sq(lfi)A([)qql](l‘i‘h)}’
MSE = 14T dadathi+ faaihh-Ta

4
X {F{qq}p( )Sgr{qql}ﬂ< k‘iql)S‘h(l‘h)A%qq}»ﬂv(lq‘f)}’
M3 = 1T faait i flaah-Ta

1+

X{F{qql}p(qul)sz; {qql}ﬂ< qul>Sq<lq)A{qq]},py(qu])}7
ijf’ — T flaalo- aa h-Tpa

x {F lga: ]( qql)S‘IF{qql}ﬂ( qul)Sql (lql)A([)q_ql](qul)}’
MEZ — 1T faah- faa =T pan

x {F{qq}p( )Sqrfi;ql},u(‘kqm)Sm(l JA ‘l{;q} pv(l )}
Mzg — T aah- faa h-Tyg

x {rt

{a9q, }p(lq‘il)S‘ITF{qql}ﬂ< k‘l‘il>S‘?<l‘i)Aiqql}.ﬂv(l‘1‘h)}'

Note that

M14 M12 M15 — M13 M19 M17 Mll() — M18

v v v v
M24 M22 M/%ISI — M/Zﬂ% M29 M27 M/2ul/0 — M,%E
M34 M32 M;3415/ — M;,% M39 M37 Mii() — Mf,,%

where /' are the flavor matrices and can be found in Appendix C. We observe that the following rows are equal; row
4 = row?2, row5 = row 3, row9 = row 7, and row 10 = row 8.
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APPENDIX C: FLAVOR DIQUARKS

We define the following set of flavor column matrices,

1 0 0
0 1 0
m=10[, “=10[, =111,
0 0 0
0 0 0
0 0
0 0
=101, =101,
1 0
0 1

and
T faay fdaradTea paT (faa {1 a3 T gan |
nTdaat faatTea  panT {ag} {aa}T gan

The flavor matrices for the diquarks are

01000 0 01
-1 0000 0 00
td= 0 0000, tsl=]-100
0 0000 0 00
0 0000 0 00
00 000 0 00
00 100 0 00
tisl—=10 -1000], thd=] 0 00
00 000 -1 00
0 000 0 00
V20000 010
0 0000 100
thi=1 0 o000, thy=[00 0
0 0000 000
0 0000 000
00100 0001
00000 0000
tsl=f1 0000, ff“}=[0000
00000 1000
00000 0000
00 000 000
0v2000 001
tddb =10 0 000, tdss=10 1 0
0 0 000 000
0 0 000 000

O 0O 0 0O 0 90 0 OO0 o0 oo —~=0 0o o0

o O O O O

O O C 0O cco0 o000 o o oo

c o coc oo ~~—MM—

tlsst =

-
v
£

\

tlbe] —

¢{bb} —

g{bd} —

g{bs} —

094013-15

SO O O O OO0 o o o o o0 o o oo

SO O O O O O O OO O o0 o0 o0 oo o oo oo oo~ 0 o0 o oo
SO O O O O = O O O O O O O O oo oo oo oo o o oo
—_ O O O O O O O O O O O O O o o o o o oo o o oo
S O O O OO O O O OO O o0 o o~ 00 o0 o oo o o oo

o O O o O

)

L
S O O o O
OOOOOOOEOO

S O O = O

=)

o = O O O

00 000 0 O
00 000 0 O
00|, tled=1000 0 0
00 000 +v20
00 000 0 O
00 00 0 00
10 00 0 00
00|, tkd=l00 0 10
00 00 -100
00 00 0 00
0 00000
0 00000
of, thy)=]1000 1 0,
0 00100
0 00000
-1 0000 0
0 0000 -1
0 thkd=10000 0
0 0000 0
0 0100 0
0 0000 0
0 0000 0
0|, thssl=]1000 0 -1
-1 0000 0
0 0010 0
0 000011
0 00000
o th=10000 0],
0 00000
V2 10000
0 00000
1 00000
of th*=10000 0],
0 00001
0 00010
0

0

1.

0

0

El
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