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We simultaneously incorporate two common extensions of the hadron resonance gas model, namely
the addition of extra, unconfirmed resonances to the particle list, and the excluded volume repulsive
interactions. We emphasize the complementary nature of these two extensions and identify combinations of
conserved charge susceptibilities that allow us to constrain them separately. In particular, ratios of second-

order susceptibilities like χBQ11 =χ
B
2 and χBS11 =χ

B
2 are sensitive only to the baryon spectrum, while fourth-to-

second order ratios like χB4 =χ
B
2 , χ

BS
31 =χ

BS
11 , or χ

BQ
31 =χ

BQ
11 are mainly determined by repulsive interactions.

Analysis of the available lattice results suggests the presence of both the extra states in the baryon-
strangeness sector and the repulsive baryonic interaction, with indications that hyperons have a smaller
repulsive core than nonstrange baryons. The modified hadron resonance gas model presented here
significantly improves the description of lattice QCD susceptibilities at chemical freeze-out and can be used
for the analysis of event-by-event fluctuations in heavy-ion collisions.

DOI: 10.1103/PhysRevD.104.094009

I. INTRODUCTION

Significant theoretical and experimental effort is dedi-
cated to mapping out the QCD phase diagram in the
temperature T and baryon chemical potential μB plane,
and to search for the elusive critical point [1–21] (for recent
reviews see e.g., [22–25]). Ultrarelativistic heavy-ion
collisions are generating the deconfined phase of strongly
interacting matter in the laboratory. By systematically
decreasing the collision energy of the incoming nuclei,
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Laboratory is scanning the phase diagram in the
so-called second beam energy scan (BESII), soon to be
followed by even lower collision energies at NICA and at
the GSI-FAIR accelerator.
First-principles lattice QCD simulations are available for

several thermodynamic quantities, such as the equation
of state at zero [5,6,26] and small chemical potential
[27–31], QCD transition line [30,32–34], as well as
diagonal [35–43] and off-diagonal [42] fluctuations of
conserved charges. However, they are currently limited
to the low baryonic chemical potential regime, due to the
fermionic sign problem. Effective models that can repro-
duce lattice QCD results in certain regimes of temperature
and chemical potential are therefore very useful to extend
the coverage of the phase diagram beyond the reach of

lattice QCD. The models are also necessary to make a
connection to the common heavy-ion observables, such
as the measurements of various distributions of identified
hadrons.
In the low-temperature regime (T ≲ 160), the bulk

thermodynamics of QCD is generally well described by
a multicomponent gas of free hadrons and resonances
[3,44–46] the so-called hadron resonance gas (HRG)
model. This indicates that hadron interactions in this regime
may be dominated by the formation of known resonances.
The HRG model has been widely used to study the
confined phase of QCD matter below the transition line
[47–55]. Its remarkable agreement with the equation of
state from first-principles lattice calculations has led to its
popularity, especially in the study of the chemical freeze-
out in HICs [56–63]. However, with the availability of
more differential observables like susceptibilities of con-
served charges, discrepancies between the predictions
of the fundamental theory and the HRG model have
been observed [42,64,65], specifically at temperatures
T ∼ 150–160 MeV that characterize the chemical freeze-
out in heavy-ion collisions at the highest energies. In
particular, lattice QCD results for the partial pressures
have shown a need for more resonances in the strange
sector than those which are already experimentally well
known [46,64]. On the other hand, some susceptibility
ratios including χB4 =χ

B
2 and χS4=χ

S
2 suggest the need for

repulsive interactions [33,39,46].
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Several extensions of the HRG model have thus been
proposed to improve the agreement with lattice QCD. One
possibility is extending the hadronic spectrum—the model
input—to include more states not yet observed [46,61,64].
Other extensions incorporate additional, nonresonant
interactions between hadrons such as excluded volume
[55,66–75], van der Waals [45,76–79], mean field [53,80],
or are based on scattering phase shifts [81–87]. While one
of the advantages of the standard HRG model is certainly
the lack of free parameters, apart from the uncertainties in
the hadronic spectrum, introducing additional interactions
unavoidably leads to new free parameters that need to
be constrained through comparison with lattice results. We
propose a combination of these different corrections to the
standard HRG model and investigate its agreement with
several lattice results on the susceptibilities.
In this paper, we consider two HRG model extensions:

the excluded volume interaction in the baryon sector, and
the inclusion of additional particles in the hadronic list,
beyond those experimentally observed. We emphasize the
complementary nature of these two extensions and identify
combinations of susceptibilities of conserved charges
that allow to constrain them separately. The resulting
HRG model considerably improves the description of
lattice QCD results, in particular those for fluctuations
of conserved charges. The model can thus be useful for the
analysis of freeze-out in heavy-ion collisions; in particular,
event by event fluctuations.

II. THE HRG MODEL AND ITS MODIFICATIONS

A. Ideal HRG

The partial pressure for particle species i in the ideal
HRG model can be written as

PiðT; μB; μQ; μSÞ

¼ diT
2π2

Z
∞

0

ð−1ÞBiþ1k2dk

× ln
�
1þ ð−1ÞBiþ1λiðT; μiÞ exp

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

i

p
T

��
;

ð1Þ

where di is the spin degeneracy factor, Bi is the baryon
number of species i, k is the momentum, λiðT; μiÞ ¼
exp½ðBiμB þQiμQ þ SiμSÞ=T� is the particle fugacity,
and mi is the mass of species i. The partial pressure can
be presented as a series containing the modified Bessel
function of the second kind by expanding the logarithm and
integrating term by term

PiðT; μB; μQ; μSÞ

¼ diT2

2π2
X∞
N¼1

½ð−1ÞBiþ1�Nþ1λiðT; μiÞ
N2

m2
i K2

�
N
mi

T

�
: ð2Þ

Taking the first term in the expansion corresponds to the
Boltzmann approximation. This approximation is sufficient
for our purposes and will be used throughout. The pressure
attains the following convenient form

PiðT; μB; μQ; μSÞ ¼ diϕ̃ðT;miÞλiðT; μiÞ;

ϕ̃ðT;miÞ ¼
m2

i T
2

2π2
K2ðmi=TÞ: ð3Þ

The full pressure in the ideal HRG model corresponds to
the sum of partial pressures of all hadronic components.
It is convenient to group the contributions of the various
hadrons in accordance with their quantum numbers. For
instance, introducing

ϕ̃ðTÞ ¼
X

j∈sectors
djϕ̃ðT;mjÞ; ð4Þ

allows us to identify the different sectors of the total HRG
pressure broken down by various quantum numbers that are
listed in Table I. Note that all species apart from the i ¼ 0
sector (neutral particles) have a corresponding antiparticle
sector. Therefore, the pressure from Eq. (3) takes the form
of a truncated relativistic expansion in fugacities,

PðT; μB; μQ; μSÞ ¼ ϕ̃0ðTÞ þ
X
i≠0

2 eϕiðTÞ cosh ðμi=TÞ; ð5Þ

where μi ¼ BiμB þQiμQ þ SiμS is the chemical potential
of the corresponding ith sector. Each term in Eq. (5)
corresponds to the partial pressure associated with the
particular set of hadronic quantum numbers.

TABLE I. The list of hadronic quantum number sets contrib-
uting to the pressure of the ideal HRG model. The last column
identifies the lowest mass hadron representing the set of quantum
numbers.

i B Q S Base hadron

0 0 0 0 π0

1 0 1 0 πþ
2 0 1 1 Kþ
3 0 0 1 K0

4 1 0 0 n
5 1 1 0 p
6 1 2 0 Δþþ
7 1 −1 0 Δ−

8 1 0 −1 Λ
9 1 1 −1 Σþ
10 1 −1 −1 Σ−

11 1 0 −2 Ξ0

12 1 −1 −2 Ξ−

13 1 −1 −3 Ω−
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B. Extended spectrum

As a correction to the standard HRG model, our first
extension is the incorporation of hadronic states beyond
those which are well known experimentally. When con-
sidering the partial pressures from lattice QCD, it has been
shown that the hadronic spectrum in QCD goes beyond
what exists in the ordinary version of the hadronic list from
the Particle Data Group (PDG) with only the most well-
known states [88]. The PDG ranks particles by how well
established they are, with a rating based on a number of
stars (*). The **** states are those which are very well
established, like e.g., nucleons or Δð1232Þ resonances. On
the opposite side, the * states are the least established ones,
for example Δð1750Þ and other high-mass resonances.
A previous investigation of the agreement between the
partial pressures from the lattice and those obtained in the
HRG model with different hadronic lists across the various
quantum number sectors, found that the PDG2016þ
particle list reproduced the largest number of quantities
calculated on the lattice without exceeding them [46]. This
hadronic list incorporates all states from the 2016 version
of the PDG [89], starting from the well-known ones, all
the way down to those listed as seen, with a confidence
rating of *. Another possibility is to incorporate the states
predicted by the Quark model (QM) [90–92], which
includes an even larger number of hadrons than those
contained in the PDG2016þ. As we can see in Eq. (3),
any additional states seek to increase the pressure of the
system, i.e., a larger number of states will lead to a larger
overall pressure.
It was recently pointed out in Ref. [93] that some states

calculated within the quark model from Ref. [90] are
overlapping with states later measured by the PDG [88].
In light of this, we provide an update to the QM list first
published in Ref. [61] that removes all the duplicate states
that remained as an artifact of those early quark model
calculations [94]. We note that the calculations here
denoted as QM are using this updated list and that we
observed a minimal difference between the old and new list
when calculating the fluctuations of interest in this study.
In this study, we aim at identifying the most suitable

description of the lattice data, with both the excluded
volume interactions and additional hadronic states incor-
porated. In order to do so, we revisit the comparison with
lattice data and investigate several different hadronic lists:
(a) PDG2016—ordinary hadronic list with only the well-

known states *** − **** from the 2016 Particle Data
booklet;

(b) PDG2016þ—the list containing both the established
(***−****) and unconfirmed (*−**) states;

(c) Quark model (QM)—the list which incorporates all
states predicted by the quark model.

The latter two lists were introduced and described in detail
in Refs. [46,61]. We also checked that the most recent
compilation of the established states from the Particle Data

Group—the PDG2020 list—yields negligible differences
compared to the PDG2016 list, thus we retain the latter list
in the analysis for consistency with Refs. [46,61].

C. Excluded volume

The next extension to the HRG model is the excluded
volume (EV) model. This corresponds to including repul-
sive interactions between hadrons. Many versions of the
EV-HRG model have been considered in the literature.
Here we follow the approach introduced in Refs. [45,72]
where EV interactions are included only for baryon-baryon
and antibaryon-antibaryon pairs. This corresponds to a
minimalistic EV extension that does not affect meson-
meson and meson-baryon interactions, which are presumed
to be dominated by resonance formation and thus already
included in the HRGmodel. The pressure is partitioned into
contributions of noninteracting mesons and interacting
baryons and antibaryons

p ¼ pid
M þ pev

B þ pev
B̄ ; ð6Þ

where

pid
M ¼ ϕ̃0ðTÞ þ

X
i≠0;i∈M

2ϕ̃iðTÞ coshðμi=TÞ; ð7Þ

and

pev
BðB̄Þ ¼

X
i∈B

ϕ̃iðTÞ expð�μi=TÞ exp
�−bpev

BðB̄Þ
T

�
: ð8Þ

Here, i ∈ M corresponds to mesons (Bi ¼ 0), i ∈ B cor-
responds to baryons (Bi ¼ 1), b is the baryon-excluded
volume parameter, and ϕ̃ðTÞ is given in Eq. (3).
Equation (8) can be solved in terms of the Lambert W
function [68,95]:

pev
BðB̄Þ ¼

T
b
W½ϰBðB̄ÞðT; μB; μQ; μSÞ�; ð9Þ

where

ϰBðB̄ÞðT; μB; μQ; μSÞ ¼ b
X
i∈B

ϕ̃iðTÞ expð�μi=TÞ: ð10Þ

The explicit form Eq. (9) for the pressure in the EV-HRG
model in terms of the Lambert W function allows us to
forgo solving the transcendental equation for the pressure.
One should note that different formulations of the

excluded volume HRG model exist in the literature. In
the formulation that we use the EV interactions are intro-
duced only for baryon-baryon and antibaryon-antibaryon
pairs with a common EV parameter b. This is consistent
with the model used in Refs. [45,72]. In other EV models
[67,73,75] the repulsive interactions are introduced for all
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hadron pairs, and each hadronic species may be characterized
by its own value of the EV parameter. As such, these types of
EV models contain many more free parameters, while ours
is a minimalistic approach. The EV effects influence the
thermodynamics differently in the latter class of EV models,
and the conclusions obtained in this work within the former
class of EV models do not necessarily translate.

III. SUSCEPTIBILITIES

The two HRG model extensions introduced above—the
excluded volume corrections and the inclusion of extra
states—are complementary to one another. This can be seen
in the following way. Adding extra resonances can be
interpreted as adding attractive interactions among hadrons
that lead to the formation of these resonances. Given the fact
that all the extra states have baryon number equal to either 0
or �1, this may correspond to meson-meson and meson-
baryon interactions, but not to baryon-baryon interactions.
On the other hand, the EV corrections considered here
correspond to repulsive baryon-baryon interactions but not
to any meson-meson or meson-baryon interactions.
Therefore, the two extensions describe different physics,
and thus, they can and should be considered simultaneously.
Both extensions affect the equation of state. For instance,

the inclusion of extra states increases the pressure at a given
temperature and chemical potential, while the EV inter-
actions lead to its suppression. It can be challenging, then,
to constrain the two effects separately. In order to achieve
those constraints, we study differential observables that
have recently been obtained on the lattice, namely the
susceptibilities of conserved charges

χBQS
lmn ¼ ∂lþmþnðp=T4Þ

∂ðμB=TÞl∂ðμQ=TÞm∂ðμS=TÞn : ð11Þ

The susceptibilities in Eq. (11) can be calculated
explicitly in the EV-HRG model with extra states by

utilizing Eq. (9) and the known properties of the Lambert
W function. One can then construct specific combinations of
susceptibilities that are mainly sensitive to either the extra
states or baryon excluded volume, but not to both.

A. Extra states from baryon correlators

Firstly, we consider the following ratios of second order
susceptibilities

χBQ11 =χ
B
2 ; χBS11 =χ

B
2 :

By calculating them explicitly one obtains

χBQ11
χB2

¼
P

j∈sectorsBjQjϕ̃jðTÞP
j∈sectorsB

2
j ϕ̃jðTÞ

; ð12Þ

χBS11
χB2

¼
P

j∈sectorsBjSjϕ̃jðTÞP
j∈sectorsB

2
j ϕ̃jðTÞ

: ð13Þ

The excluded volume parameter b cancels out in this
combination of susceptibilities.1 On the other hand, the
ratios are sensitive to the particle list encoded in the “partial
pressures” ϕ̃j. Therefore, these ratios can be used to
constrain the hadronic spectrum. In particular, it follows
from Eqs. (12) and (13) that χBQ11 =χ

B
2 and χBS11 =χ

B
2 probe the

fractions of charged baryons and hyperons, respectively,
compared to all baryons.
The ratios χBQ11 =χ

B
2 and χBS11 =χ

B
2 are shown in Fig. 1. The

inclusion of extra states from PDG2016þ and QM leads
to the enhancement of −χBS11 =χB2 and the suppression of
χBQ11 =χ

B
2 . This is driven by the fact that the extra states are

mainly hyperons; thus, their addition increases the fraction

FIG. 1. Temperature dependence of second-order susceptibility ratios χBS11 =χ
B
2 and χBQ11 =χ

B
2 . Continuum-extrapolated lattice results

from Refs. [39,54] are shown by the black points with error bars, while the calculations within the EV-HRG model are the curves for
different hadronic lists. This combination of susceptibilities leads to the cancellation of the excluded volume parameter, b.

1A similar cancellation has been observed for the χBQ11 =χ
B
2 ratio

in Ref. [96] in the framework of the van der Waals HRG model.
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of strange baryons (probed by −χBS11 =χB2 ) and decreases
the fraction of nonstrange baryons (probed by χBQ11 =χ

B
2 ).

The comparison with continuum-extrapolated lattice data
[39,54] suggests the need for additional hyperon states
from PDG2016þ =QM, as previously discussed in
Ref. [46]. The best agreement with the lattice data is
obtained for the QM list.
None of the considered particle lists allow us to describe

the lattice data within errors at T ≳ 155 MeV. There are
several possibilities which might explain these deviations.
A possible explanation, which would not be captured by
our model or any modifications on it, is that this temper-
ature corresponds to the onset of deconfinement, at which
new degrees of freedom (quarks) start to be liberated.
Otherwise, an improvement in the agreement between
lattice results and the model could be obtained through
one of the following considerations. If there are even more
strange baryons than predicted by the QM, this could
improve the agreement with the lattice data. For instance,
the presence of broad, high-mass Hagedorn states [97]
may have a considerable effect on the susceptibilities as one
approaches the Hagedorn temperature TH ∼ 160–180 MeV
[98]. If the Hagedorn states contain more strange baryons
than nonstrange baryons, this may improve the agreement
with the lattice data in Fig. 1. However, it might be
challenging to preserve—at the same time—the agreement
with the individual susceptibilities rather than in the
ratios alone.
Other explanations would go beyond the physics of the

model employed in the present paper. For instance, we have
modeled all resonances as free particles with zero width.
On the other hand, many nonstrange baryon resonances
like Δ’s and N�’s are broad, thus a proper treatment of their
spectral functions should be important. Modeling of broad
resonances is challenging; analyses in the literature based
on either pion-nucleon scattering phase shifts within the
S-matrix approach [84] or energy-dependent Breit-Wigner
widths [99] indicate that partial pressures of such reso-
nances might be overestimated in the standard HRGmodel.
This implies that a more involved treatment of broad
resonances may lead to a suppressed χBQ11 =χ

B
2 ratio (and

hence an enhanced −χBS11 =χB2 ) and recover the agreement
with the lattice data.
Finally, the comparison with the lattice data may be

affected if there is a flavor hierarchy in baryon-excluded
volumes. While the excluded-volume effects cancel out in
χBQ11 =χ

B
2 and χBS11 =χ

B
2 ratios when a common EV parameter b

is used for all baryons, this would no longer be the case if
excluded volumes differ between strange and nonstrange
baryons. A smaller EV for strange baryons would lead to a
smaller suppression of χBS11 relative to χBQ11 , thus leading to
an improved agreement with the lattice data. It is possible
that a combination of the three effects discussed here is at
play, and it would be interesting to study these in more

detail in the future. We indeed find indications for the
flavor-dependent excluded volumes in the behavior of
fourth-order susceptibilities discussed in the following
subsection.

B. Fourth-order cumulants and excluded volume

In addition to the extra states, we also want to place
limits on the excluded volume parameter, b. This can be
done by considering ratios of fourth-to-second order
susceptibilities. The following three ratios are all equal
in the EV-HRG model under consideration and sensitive to
the EV parameter b,

χB4
χB2

¼ χBS31
χBS11

¼ χBQ31
χBQ11

¼ 1 − 8WðϰBÞ þ 6½WðϰBÞ�2
½1þWðϰBÞ�4

¼ 1 − 12ϰB þOðϰ2BÞ: ð14Þ

In the ideal HRG model, i.e., without the EV interactions,

ϰB ¼ 0 so that χB
4

χB
2

¼ χBS
31

χBS
11

¼ χBQ
31

χBQ
11

¼ 1 regardless of the inclu-

sion of any additional hadronic states. The suppression of
these ratios relative to unity, on the other hand, is directly
sensitive to the EV interactions and can be used to constrain
the EV parameter b. Furthermore, the fact that all three
ratios are predicted to be equal within the model allows us
to probe the limits of validity of the model, which would be
signaled by the point where the equality among these three
ratios no longer holds in the lattice data.
Figure 2 depicts the results of the calculation of the

ratios χB4 =χ
B
2 , χ

BS
31 =χ

BS
11 , and χBQ31 =χ

BQ
11 within the EV-HRG

model for range b ¼ 0.4–1 fm3 of the EV-parameter values.

FIG. 2. Temperature dependence of fourth-to-second order
susceptibility ratios χB4 =χ

B
2 , χBS31 =χ

BS
11 , and χBQ31 =χ

BQ
11 , predicted

to be equal in the EV-HRG model. The lattice data at finite lattice
spacing Nτ ¼ 12 from Ref. [42] are shown as grayscale symbols
with error bars, while the calculations within the EV-HRG model
are shown as bands for a range of excluded volume parameter, b,
and for different hadronic lists. The ideal HRG result is given by
the horizontal line at unity.

CONSTRAINING THE HADRONIC SPECTRUM AND REPULSIVE … PHYS. REV. D 104, 094009 (2021)

094009-5



The three ratios all coincide with one another, as expected,
and exhibit minimal dependence on the hadronic list
utilized. Therefore, these particular quantities are indeed
sensitive mainly to the excluded volume repulsive inter-
actions rather than to the hadronic spectrum used in the
HRG model. In Fig. 2 we compare the calculations in the
EV-HRG model with various particle lists to lattice data at
Nτ ¼ 12 from the Wuppertal-Budapest Collaboration
[42], in the temperature range T ¼ 135–170 MeV.
Since not all of the available lattice data are continuum
extrapolated, we choose this larger lattice spacing for the
comparisons and avoid constructing ratios that would
be a mixture of results at finite Nτ and in the continuum
limit. The qualitative behavior of the three ratios is very
similar in the whole temperature range considered.
Quantitatively, we see that at temperatures below
150 MeV the three ratios sit on top of each other. This
is expected, although the lattice error bars are relatively
sizable at those temperatures.
Statistically significant differences between the three

susceptibility ratios in the lattice data emerge at
T ≳ 160 MeV. On the one hand, this may be a reflection
of the transition to the deconfined phase where a hadronic
model would be expected to break down. In the Stefan-
Boltzmann limit of massless quarks one has χB4 =χ

B
2 ¼

χBS31 =χ
BS
11 → 2=ð3π2Þ while χBQ31 =χ

BQ
11 → 0. Thus, the nota-

bly smaller values of χBQ31 =χ
BQ
11 at T ≳ 160 MeV compared

to the other two ratios might be related to the smaller
Stefan-Boltzmann limit for this quantity. On the other hand,
these differences may also reflect a flavor hierarchy in
baryon excluded volumes. The ratios are predicted to be
equal in the EV-HRG model if all baryons are assigned a
common EV parameter b. However, if for example, strange
baryons have a different (smaller) excluded volume, one
would expect χBS31 =χ

BS
11 to exhibit smaller deviations from

the baseline of unity than the other ratios. We see in Fig. 2
that the separation between the strangeness and electric
charge susceptibilities is such that they lie on the higher and
lower ends of the b ¼ 0.4 fm3–1 fm3 band, respectively.
This is an indication that the strange baryons may indeed
have a smaller volume than the nonstrange ones. From a
phenomenological point of view, the smaller hyperon
volume could reflect the fact that hyperon-hyperon inter-
actions are mediated by the exchange of heavier mesons
like ϕ compared to nucleon-nucleon interactions which
correspond to the exchange of lighter, nonstrange mesons
like σ and ω. The implementation of smaller excluded
volumes for strange particles is possibly not unique. Such
extensions of the EV-HRG model have been considered in
Refs. [73,75,76,100] but are not considered in the present
study. Of course it can be done in the future in order to
model the subtle differences between χB4 =χ

B
2 , χ

BS
31 =χ

BS
11 , and

χBQ31 =χ
BQ
11 , for example at the chemical freeze-out in heavy-

ion collisions.

C. Effect of the extra states and excluded volume
on other susceptibilities

Next, we investigate the following two combinations of
susceptibilities that are sensitive to the extra strange states:
the kurtosis of net-strangeness fluctuations χS4=χ

S
2 and the

correlator χus11 between net numbers of up and strange
quarks. The effect of extra states on these quantities was
investigated in Ref. [46] without excluded volume effects.
It was shown there that extra states improve the description
of χus11 but in the case of the QM list spoil the agreement
with the lattice data for χS4=χ

S
2. Here we investigate how

these quantities are affected by the presence of baryon
excluded volume in addition to extra states.
Figure 3 depicts the temperature dependence of χS4=χ

S
2 .

This quantity does not involve any μB derivatives, thus
it does not probe the repulsive baryonic interactions as
directly as e.g., χB4 =χ

B
2 that we considered before. Due to

that fact, we calculate over a broader range of b ¼ 0–1 fm3

for the EV parameter value, given by the bands in Fig. 3.
Since there are no μB derivatives, both hyperons as well as
strange mesons like kaons contribute to this quantity.
Moreover, the values of χS4=χ

S
2 above unity are due to

multistrange hyperons. Figure 3 shows that the excluded
volume suppresses χS4=χ

S
2 . This effect is less pronounced

at smaller temperatures, but becomes sizable at
T ≳ 150 MeV. We see that the lattice data are under-
estimated when using the standard PDG2016 list, and the
excluded volume does not improve the agreement. For the
PDG2016þ list the agreement with the lattice data is
obtained at T ≲ 160 MeV for the smallest considered
values of the excluded volume (the upper part of the blue
band). This is consistent with the observation made earlier
that strange baryons prefer a smaller excluded volume.
On the other hand, when the QM list is considered,
which contains even more extra strange baryons, the

FIG. 3. Temperature dependence of fourth-to-second order
strangeness susceptibility ratio χS4=χ

S
2 . Continuum-extrapolated

lattice results for this quantity are given by black points with error
bars [46] and EV-HRG calculations are shown for the full range
of the parameter b for different hadronic lists.
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best agreement with the lattice data is obtained for the
higher value of the EV parameter, b ≃ 1 fm3 (the lower part
of the red band). We see similar effects for χus11, shown in
Fig. 4, with a slight over prediction in the case of the QM
list. The PDG2016 list describes the lattice data at
T ≲ 150 MeV, but breaks down at higher temperatures,
with no benefit from introducing the excluded volume. The
PDG2016þ and QM lists allow us to extend the agreement
with the lattice data for χus11 to T ¼ 160 MeV–165 MeV
when baryon excluded volumes of up to b ≃ 0.4 fm3 and
b ≃ 1 fm3 are used, respectively.
Based on the analysis of χS4=χ

S
2 and χus11, we observe a

correlation between the number of extra strange states and
baryon excluded volume: the larger the number of extra
states, the larger the excluded volume must be in order to
recover agreement with the lattice data for these two
quantities. Thus the attractive interactions via the inclusion

of extra states can be balanced by an additional repulsion in
the baryon sector in these observables. One way to break
this degeneracy is to consider quantities that probe only a
single one of the effects, like the χBQ11 =χ

B
2 and χBS11 =χ

B
2 ratios

that we considered earlier. However, those ratios may be
sensitive to additional physics like modeling of broad
resonances, as discussed above. Instead, we study here a
couple of additional susceptibilities that probe the strange-
ness content of baryons. First we look at χBS22 , which is a
doubly strange quantity and thus more sensitive to multi-
strange hyperons. This quantity, shown in the left panel of
Fig. 5, paints a picture consistent with χS4=χ

S
2 and χus11: extra

states are clearly needed to describe the lattice data, but
PDG2016þ prefers a smaller excluded volume while the
QM list prefers a larger one. On the other hand, the mixed
BQS susceptibility containing only one strangeness deriva-
tive χBQS

211 , shown in the right panel of Fig. 5, exhibits
only mild dependence on the excluded volume but large
sensitivity to the number of extra states. The minimal
dependence on the excluded volume parameter b of this
fourth-order susceptibility can be understood when one
considers that the derivatives with respect to Q and S are
only single derivatives. Some baryons, e.g., Σþ, carry
these conserved charges with opposite signs (see Table I).
For similar reasons, the contributions of the various
baryon-baryon interactions to χBQS

211 can be either positive
or negative and as such, each term making up this
quantity, as evaluated from Eqs. (9) and (11), can
contribute with different signs. This leads to a smaller
b dependence of χBQS

211 than that of χBS22 (the left panel of
Fig. 5), in which case all contributions carry the same
sign due to the fact that both the baryon number B and the
strangeness S in this observable are squared. The lattice
results tend to lie in between the predictions based on the
PDG2016þ and QM lists. This indicates that the number

FIG. 4. Up-strange quark susceptibility, χus11, as a function of
the temperature. The continuum-extrapolated lattice results are
given as black points with error bars [46], while the EV-HRG
calculations are shown for a range of the parameter b between 0.4
and 1 fm3 for different hadronic lists.

FIG. 5. Temperature dependence of mixed fourth-order susceptibilities χBS22 and χBQS
211 . The results at finite lattice spacingNτ ¼ 12 from

Ref. [42] are shown as black points with error bars. Left: Fourth-order baryon-strangeness susceptibility calculated with several different
hadronic lists in the EV-HRG model for the full range of the EV parameter b. Right: Mixed fourth order BQS susceptibility calculated
with several different hadronic lists in the EV-HRG model for a range of the EV parameter b between 0.4 and 1 fm3.
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of extra states might be underestimated in the PDG2016þ
list but overestimated in the QM list. Thus, the difference
between the two lists may be taken as a systematic
uncertainty in the particle list.
We note that the lattice data on the susceptibilities χBS22

and χBQS
211 , as well as the ratios χ

BS
31 =χ

BS
11 and χBQ31 =χ

BQ
11 , are

not continuum extrapolated but only available up to a
lattice spacing of Nτ ¼ 12. While continuum-extrapo-
lated lattice results for χB4 =χ

B
2 have been shown e.g., in

Ref. [36], in this paper we use Nτ ¼ 12 also for this
quantity, for a consistent comparison with the other
ratios. These data could be subject to slight alterations
in the continuum limit—in particular at the lower temper-
atures. Additionally, there are many more susceptibilities
available from the lattice than those explored in this work.
However, in this paper we focused mostly on baryon
and strangeness observables in order to probe the extra-
strange states and baryon-baryon interactions. This
allows us to avoid the most severe lattice systematics,
for instance taste violation, which mainly affect calcu-
lations sensitive to pion degrees of freedom, like e.g.,
electric-charge susceptibilities.

IV. CONCLUSIONS

We have investigated two common extensions of the
hadron resonance gas model that implement additional
attractive and repulsive interactions among hadrons. The
attractive interactions correspond to adding extra states
exceeding those measured with high confidence by the
Particle Data Group, leading to additive corrections to the
overall pressure in the HRG model. This has been studied
with the use of the PDG2016þ and QM particle lists. On
the other hand, we also apply excluded-volume correc-
tions in the baryon sector, which model the presence of
repulsive core in (anti)baryon-(anti)baryon interactions.
We demonstrate that these two extensions are comple-
mentary and find support in the available first-principles
lattice QCD data.
To constrain the two extensions simultaneously we

constructed specific combinations of conserved-charge
susceptibilities that probe the two effects separately. We
show that the second-order ratios, χBS11 =χ

B
2 and χBQ11 =χ

B
2 ,

probe only the hadron spectrum but not the excluded
volume. The inclusion of additional states improves the
agreement with the lattice data for these two quantities,
with the best description obtained using the QM list. Even
for the QM list, however, deviations from the lattice data
emerge at T ∼ 150–155 MeV. We argued that these devia-
tions may necessitate a more involved modeling of broad
resonances as well the possibility of smaller excluded
volumes for strange baryons compared to nonstrange ones.
We further studied the constraints on the hadronic spectrum
by analyzing the various strangeness susceptibilities,
including χS4=χ

S
2 , χ

us
11, χ

BS
22 , and χBQS

211 . The analysis of the

lattice data for these quantities indicates that both the
PDG2016þ and QM lists are preferable over the standard
list, where the former contains most, but not all, the extra
strange states while the QM list contains too many.
Therefore, the difference between the results using these
two lists can be taken as a systematic uncertainty due to the
hadron spectrum.
The fourth-to-second order ratios, χB4 =χ

B
2 , χ

BS
31 =χ

BS
11 , and

χBQ31 =χ
BQ
11 are shown to be mainly sensitive to the excluded-

volume corrections and, thus, suitable to constrain these
corrections. In the absence of the excluded-volume cor-
rections, these three ratios are equal to unity irrespective
of the hadronic spectrum. The excluded-volume effects, on
the other hand, suppress the ratios and make them behave
similarly to the lattice data at T ∼ 155–165 MeV. The EV-
HRG model that we use assigns a constant EV parameter b
for all baryons and predicts χB4 =χ

B
2 , χ

BS
31 =χ

BS
11 , and χBQ31 =χ

BQ
11

to be all equal to one another at a given temperature. The
lattice data, on the other hand, reveal statistically significant
differences between the three ratios at T ≳ 155 MeV,
which follow a hierarchy χBS31 =χ

BS
11 > χB4 =χ

B
2 > χBQ31 =χ

BQ
11 .

We argued that this hierarchy indicates a flavor dependence
in the baryon excluded volumes; namely, that strange
baryons have generally smaller excluded volumes than
nonstrange baryons. Therefore, while using a constant EV
parameter in a range b ¼ 0.4–1 fm3 may be good enough
to capture the general suppression of χB4 =χ

B
2 , χ

BS
31 =χ

BS
11 , and

χBQ31 =χ
BQ
11 ratios at T ∼ 155–165 MeV, a more involved

model is necessary to describe the subtle differences
between the three.
In summary, an extended HRG model incorporating

extra states via either the PDG2016þ or QM list as well as
baryon excluded volume with parameter b ¼ 0.4–1 fm3

significantly improves the description of many lattice QCD
susceptibilities at temperatures up to T ≃ 160–165 MeV
over the standard HRG model. We note that the results
from these two lists provide an estimate of the theoretical
uncertainty on the hadronic list. This is particularly relevant
for the chemical freeze-out conditions realized in heavy-ion
collisions and can be used for improved modeling of
event by event fluctuations measured in the corresponding
experiments at the LHC, RHIC, and SPS. For instance, the
EV-HRG model studied here can be directly used in the
generalized Cooper-Frye particalization routine developed
in Ref. [101]. We summarize the performance of each list as
follows: We find that the QM list performs better for the
ratio χBS11 =χ

B
2 , while both lists describe the continuum-

extrapolated lattice data well for χBQ11 =χ
B
2 as shown in Fig. 1.

For ratios of fourth-to-second order susceptibilities as
shown in Fig. 2, we find, as we expect, a small variation
in the results within the EV-HRG model for different lists.
From strangeness-sensitive susceptibilities χS4=χ

S
2 , χ

us
11 and

χBS22 , we determined that the PDG2016þ list agrees best
with the continuum-extrapolated lattice data for a small
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excluded volume b ≃ 0.2 –0.4 fm3, while the QM list finds
agreement when b ≃ 1 fm3. For the mixed fourth-order
susceptibility χBQS

211 , the optimal list for treatment of the
chemical freeze-out is PDG2016þ. Given that there is still
some tension between the PDG2016þ list and the QM list,
our results could indicate that more work is still needed to
determine the number of states in the hadronic spectrum in
heavy-ion collisions. Further improvements of the model
can be achieved by considering differences in excluded
volumes of strange and nonstrange baryons, as well as a
more involved modeling of broad resonances.
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