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We propose a novel codimension-n holography, called cone holography, between a gravitational theory
in (dþ 1)-dimensional conical spacetime and a conformal field theory (CFT) on the ðdþ 1 − nÞ-
dimensional defects. Similar to wedge holography, the cone holography can be obtained by taking the zero-
volume limit of holographic defect CFT. Remarkably, it can be regarded as a holographic dual of the edge
modes on the defects. For one class of solutions, we prove that the cone holography is equivalent to
AdS=CFT, by showing that the classical gravitational action and thus the CFT partition function in large N
limit are the same for the two theories. In general, cone holography and AdS=CFT are different due to the
infinite towers of massive Kaluza-Klein modes on the branes. We test cone holography by studying Weyl
anomaly, entanglement/Rényi entropy, and correlation functions and find good agreement between the
holographic and the CFT results. In particular, the c-theorem is obeyed by cone holography. These are
strong supports for our proposal. We discuss two kinds of boundary conditions, the mixed boundary
condition and Neumann boundary condition, and find that they both define a consistent theory of cone
holography. We also analyze the mass spectrum on the brane and find that the larger the tension is, the more
continuous the mass spectrum is. The cone holography can be regarded as a generalization of the wedge
holography, and it is closely related to the defect CFT, entanglement/Rényi entropy, and AdS/BCFT
(dCFT). Here BCFT(dCFT) means a conformal field theory defined in a manifold with a boundary (defect).
Thus, it is expected to have a wide range of applications.

DOI: 10.1103/PhysRevD.104.086031

I. INTRODUCTION

The AdS=CFT correspondence plays an important role
in our modern understanding of quantum gravity [1–3]. As
an exact realization of the holographic principle [4,5], it
proposes that the quantum gravity theory in an asymptoti-
cally anti-de Sitter space (AdS) is dual to the conformal
field theory (CFT) on the boundary. Since it is a strong-
weak duality, it provides a powerful tool to study the
nonperturbative phenomena in gauge theories [6–8], quan-
tum information [9], and condensed matter physics [10].
Many interesting generalizations of AdS=CFT have been

developed, which include de Sitter/CFT [11–15], Kerr/CFT
[16,17], flat space holography [18,19], brane world holog-
raphy [20–22], surface/state correspondence [23,24], and
AdS/BCFT [25–30]. Here, BCFT means a conformal field
theory defined on a manifold with a boundary, where
suitable boundary conditions are imposed. It is remarkable
that, in the past few years, a doubly holographic model has
been proposed for the resolution of information paradox,

where the island plays an important role in recovering the
Page curve of Hawking radiation [31–33]. See also
Refs. [34–57] for related topics.
Recently, a codimension-2 holography, named wedge

holography, is proposed by Ref. [58] between the gravita-
tional theory in a (dþ 1)-dimensional wedge spacetime and
the (d − 1)-dimensional CFT on the corner of the wedge:

gravity on wedgeWdþ1 ≃ CFTd−1 onΣ:

The geometry of wedge holography is shown in Fig. 1
(right), where N denotes (dþ 1)-dimensional wedge space,
Q1 and Q2 denote two d-dimensional branes, and Σ is the
corner of the wedge where CFTd−1 lives. See also Ref. [59]
for a similar proposal of codimension-2 holography. Wedge
holography can produce the correct free energy, Weyl
anomaly, entanglement/Rényi entropy, and correlation
functions [58,60]. For one novel class of solutions, it is
proved that wedge holography is equivalent to AdS=CFT
[60]. These are all strong supports for wedge holography. It
is interesting that wedge holography can be obtained as a
special limit of AdS/BCFT [25] with vanishing width of a
strip [58]. See Fig. 1 (left) for example. Here, BCFT means
a conformal field theory defined on a manifold with a
boundary, where suitable boundary conditions are imposed.
As a limit of AdS/BCFT, the wedge holography

can be regarded as a holographic dual of the edge
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modes on the boundary. Let us explain more on this
viewpoint. When there is a boundary, in general, there
are boundary contributions to Weyl anomaly [61,62].
Take 3D BCFT as an example; the Weyl anomaly is given
by [63]

A ¼
Z
∂M

dy2
ffiffiffiffiffiffi
jσj

p
ðb1R∂M þ b2Trk̄2Þ; ð1Þ

where ∂M, R∂M, k̄ab, b1, and b2 denote the boundary of
manifold M, intrinsic Ricci scalar, traceless parts of
extrinsic curvatures, and boundary central charges, respec-
tively. Remarkably, the first term of (1) takes the same form
as Weyl anomaly of 2D CFTs. Furthermore, the boundary
central charge b1 obeys a c-like theorem [63], i.e.,
b1UV ≥ b1 IR. This strongly suggests that there are effective
CFTs living on the boundary. Note that the effective CFT is
a little different from the usual one, since the Weyl anomaly
(1) also depends on the extrinsic curvature Trk̄2, which
contains the bulk information. Thus, it is expected that the
holographic dual of such effective CFT is different from the
usual one. This novel kind of effective CFT has a natural
physical origin; it is the edge mode on the boundary of
BCFTs. Now, let us consider the space with two parallel
boundaries, such as a strip in Fig. 2 (left), where the two
parallel boundaries are labeled as two blue points. Taking
the vanishing volume limit M → 0 so that the two parallel
boundaries coincide with each other, the 3D BCFTs living
in M disappear, and only the edge modes on the boundary
∂M survive. See Fig. 2 (left), for example, where d ¼ 3 for
our case. In this way, we get effective 2D CFTs from a limit
of 3D BCFTs. Let us go on to discuss the holographic
realization of the above approach. According to AdS/BCFT

[25], the two boundaries [Σ of Fig. 2 (left)] are extended to
two end-of-world branes Q1 and Q2 in the bulk N, and the
gravity theory in the bulk N is dual to the BCFT onM. See
Fig. 1 (left), for example. By taking the zero-volume limit
of AdS/BCFT, i.e., M → 0, we are left with the edge mods
on Σ, and we finally obtain the wedge holography as shown
in Fig. 1 (right), which can be regarded as a holographic
dual of edge modes as we have argued above.
Some comments are in order:
(1) The dependence on extrinsic curvatures by the Weyl

anomaly (1) implies that the edge modes contain the
bulk information. As a result, the 2D edge mode is
not dual to a 3D gravity as usual. Instead, it is dual to
the gravity theory in a 4D wedge spacetime.

(2) The above discussions can be generalized to general
dimensions. For even d, the boundary term of the
Weyl anomaly does not include intrinsic Euler
density. This does not mean there are no edge modes
on the boundary. In fact, there is always boundary
entropy on the boundary, which decreases under
renormalization group (RG) flow and is strong
evidence for the existence of boundary states/
edge modes.

(3) Let us summarize the steps for the construction of
wedge holography as a holographic dual of edge
modes. First, study the Weyl anomaly to see if the
edgemodes behave effectively as CFTs on the defect.
Second, take a suitable zero-volume limit so that only
the edge modes survive. Third, extend the discus-
sions into the bulk to obtain a holographic dual of the
edge modes. In other words, take a suitable limit of
AdS/BCFT to get wedge holography.

So far, we have focused on the codimension-1 defect
(boundary). It is interesting to generalize the discussions to
general defect CFT (dCFT). This is the main purpose of this
paper. We follow the above steps for the construction of
wedge holography and generalize it to codimension-m
defects. Let us first study the Weyl anomaly. Without loss
of generality, we consider a codimension-2 defect in four
dimensions. The Weyl anomaly takes the following form,

A ¼
Z
M
dx4

ffiffiffiffiffi
jgj

p �
c

16π2
CijklCijkl −

a
16π2

E4

�
ð2Þ

FIG. 2. (Left) BCFTd on M and the edge mode as effective
CFTd−1 on Σ ¼ ∂M. (Right) in the zero-volume limit M → 0,
BCFTd on M disappears, and only the edge modes CFTd−1 ¼
CFTd−1 ⊕ CFTd−1 on Σ survive.

FIG. 1. (Left) wedge holography from AdS/BCFT. (Right) geometry of wedge holography.
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þ
Z
D
dy2

ffiffiffiffiffiffi
jσj

p
ðd1RD þ d2Cab

ab þ d3Trk̄2Þ; ð3Þ

where Cijkl, E4, RD, and k̄ are the Weyl tensor, Euler
density in the bulk M, intrinsic Ricci scalar, and traceless
parts of extrinsic curvatures on the defect D, respectively.
Here, Cab

ab denotes the contraction of the Weyl tensor
projected to directions orthogonal to D, and
ða; c; d1; d2; d3Þ are central charges. Similar to the case
of BCFT, the first term of (3) takes the same form as Weyl
anomaly of 2D CFTs, and the corresponding central charge
d1 obeys a c-like theorem [63], i.e., d1UV ≥ d1 IR. This
means that the edge modes on the defect behave effectively
as 2D CFTs. Since the Weyl anomaly (3) on the defect D
also depends on the bulk Weyl tensions and extrinsic
curvatures, the edge modes contain the bulk information
and are different from the usual 2D CFTs. This is also
similar to the case of BCFT.
Now, let us turn to the second step to take a suitable zero-

volume limit. To have a well-defined zero-volume limit, we
add a boundary P which surrounds the codimension-2
defect D as shown in Fig. 3. We require the geometry of P
to be S1 × R2 so that it coincides with the codimension-2
defect D ¼ R2 in the zero-volume limit with S1 → 0. See
Fig. 3, for example, where d ¼ 4 andm ¼ 2 for our present
case. Let us explain the above constructions in more details.
Consider the following metric for general d and m,

ds2 ¼ dz2 þ z2

q2
dΩ2

m−1 þ
Xd−m
î¼1

dy2
î
; ð4Þ

where q is a positive constant related to the conical
singularity, dΩ2

m−1 is the line element of the unit sphere,
the codimension-m defect D is located at z ¼ 0, and the
boundary P is at z ¼ z0. From (4), it is clear that the
boundary P ¼ Sm−1 × Rd−m coincides with the codimen-
sion-m defect D ¼ Rd−m in the zero-volume limit,

lim
z0→0

P ≃D ¼ Rd−m; ð5Þ

where we have used the fact that the sphere Sm−1 shrinks to
zero in the limit of zero radius z0 → 0. Before we go to the
third step, let us further discuss the edge modes. For
simplicity, we return to the case with d ¼ 4 and m ¼ 2.
Before we take the limit z0 → 0, there are two kinds of edge
modes: one lives on the 2D defectD, and the other one lives
on 3D boundary P. After we perform the limit z0 → 0, the
circle S1 → 0 shrinks to zero. Due to the Kaluza-Klein
mechanism, the 3D edgemodes onP become effectively 2D
fields, which include massless modes and infinite towers of
massive modes. Since the massive modes have infinite mass
m̂k ∼ k=z0 → ∞, they decouple from the massless modes
and can be ignored safely at finite energy scale. As a result,
the edge modes on the 3D boundary P become a massless
Kaluza-Klein (KK)mode on the 2D defectD ≃ limz0→0 P in
the zero-volume limit. Now, the two kinds of edge modes
both live on the 2D defect D effectively in the zero-volume
limit. Clearly, this is also the case for general d and m.
Now, let us go to step 3 to construct a holographic dual of

the edge modes on defects. Recall that dCFT lives in the
manifold M̂ with a boundary P and a codimension-m defect
D at the center. See Fig. 3. We first consider a small but
finite M̂. Following AdS/BCFT [25] and AdS/dCFT
[64–66],1 the boundary P and the codimension-m defect
D on M̂ are extended to an end-of-world brane Q and a
codimension-m brane E in the bulk, respectively. Please see
Fig. 4 for the geometry, where C is the bulk spacetime
bounded by Q and M̂, i.e., ∂C ¼ Q ∪ M̂. According to
AdS/BCFT [25] and AdS/dCFT [64–66], a gravity theory
in the bulk C is dual to the dCFT defined on M̂. Now, let us
take the zero-volume limit M̂ → 0. On the AdS boundary,
the boundary P and codimension-m defect D coincide, and
only edge modes of dCFT survive. On the other hand, in the
bulk, C becomes a conical spacetime when M̂ → 0. Thus,
the gravity theory in the (dþ 1)-dimensional conical
spacetime C is dual to the edge modes (CFT) on the
(d-m)-dimensional defect D. We call this novel holography
cone holography or codimension-n holography, where
n ¼ mþ 1. See Fig. 5 for the geometry of cone

FIG. 3. Zero-volume limit of dCFT. M̂ is a d-dimensional
manifold where dCFT is defined, P is the boundary of M̂ andD is
a codimension-m defect at the center of M̂. The metric is given by
(4), ds2 ¼ dz2 þ z2

q2 dΩ
2
m−1 þ

P
d−m
î¼1

dy2
î

with 0 ≤ z ≤ z0. The

defect D and the boundary P are located at z ¼ 0 and z ¼ z0,
respectively. Note that the geometry of P is chosen to be Sm−1 ×
Rd−m so that it coincides with the defect D ¼ Rd−m in the zero-
volume limit M̂ → 0 with z0 → 0 and Sm−1 → 0. Here, z0 is the
radius of the sphere Sm−1. In such a limit, only the edge modes of
dCFT survive.

1In fact, AdS/BCFT can be regarded as a special case of AdS/
dCFT, since the boundary is a codimension-1 defect. For our
purpose, we want to distinguish the codimension-1 defect and the
codimension-m defect with m ≥ 2. Thus, by “dCFT,” we means
the codimension-m defect with m ≥ 2 in this paper.
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holography, which we will explain more in Sec. II. Note
that the above arguments can be regarded as a derivation of
cone holography from AdS/dCFT following the same logic
of the derivation of wedge holography from AdS/BCFT
[58]. In the remainder of this paper, we provide more
evidence for this proposal.
Let us summarize the main results of this paper. We

propose a codimension-n holography, called cone holog-
raphy, between the gravitational theory in a (dþ 1)-
dimensional conical spacetime and the CFT on a
ðdþ 1 − nÞ-dimensional defect. We discuss two kinds
of boundary conditions for the end-of-world brane Q,
the mixed boundary condition, and Neumann boundary
condition and show that they both define a consistent
theory. We test our proposal by studying holographic Weyl
anomaly, holographic entanglement/Rényi entropy, and
holographic correlation functions and find good agreement
with results of CFTs. Besides, we find that the c-theorem
is obeyed by cone holography. These are all strong support
for our proposal. Finally, we discuss the mass spectrum of
cone holography and find that there are infinite towers of
massive gravity on the brane. In the limit of small brane
tensions, the massive modes are frozen at low energy, and
the effective theory on the brane is Einstein gravity.
The paper is organized as follows. In Sec. II, we

formulate the cone holography and prove that it is equiv-
alent to AdS=CFT with Einstein gravity for a novel class of
solutions. In Sec. III, we test cone holography by studying
the holographic Weyl anomaly, holographic Rényi entropy,
and correlation functions. In Sec. IV, we discuss carefully
the cone holography with the Neumann boundary con-
dition. In Sec. V, we discuss more general solutions to cone
holography and show that the gravity on the brane is
massive generally. Finally, we conclude with some open
problems in Sec. VI.
Our notations are as follows. The coordinates onC,Q, E,

and D are labeled by XA ¼ ðr; xa; yiÞ, xμ ¼ ðxa; yiÞ,
yi ¼ ðz; yîÞ, and yî, respectively, where A runs from 1 to
dþ 1, a runs from 2 to n − 1, and i runs from n to dþ 1.
Besides, gAB; hμν, γij, and σ î ĵ denote the metrics on C, Q,
E, and D. D is a codimension-m defect on the AdS
boundary M, and E is a codimension-m brane in the bulk
N, where m ¼ n − 1.

II. CONE HOLOGRAPHY

In this section, we formulate the general theory of cone
holography. We discuss the geometry, the boundary con-
ditions, and solutions. We prove that the gravitational
action of cone holography is equivalent to that of
AdS=CFT for one general class of solutions. Assuming
that AdS=CFT holds, this can be regarded as a proof of
cone holography in a certain sense. For simplicity, we
mainly focus on the mixed BC in this section. We leave a
careful study of Neumann BC for Sec. IV.

A. Cone holography

1. Geometry

To start, let us recall the geometry of cone holography as
shown in Figs. 4 and 5. Let us first illustrate Fig. 4. M̂ is the
d-dimensional manifold where the dCFT is defined, P is
the boundary of M̂, and D is a codimension-m defect at the
center of M̂. The geometry of the boundary is set to be
P ¼ Sm−1 ×D so that it shrinks to the defect D in the zero-
volume limit with M̂ → 0 and Sm−1 → 0. Following AdS/

FIG. 4. Cone holography from AdS/BCFT and AdS/dCFT.
DCFT lives in the manifold M̂ with a boundary P and a
codimension-m defect D at the center. The boundary P and
codimension-m defect D are extended to an end-of-world brane
Q and a codimension-m brane E in the bulk, respectively. C
(orange) is the bulk spacetime bounded by Q and M̂, M (gray) is
the AdS boundary. In the limit M̂ → 0, the bulk spacetime C
becomes a cone, and we obtain the cone holography from AdS/
BCFT and AdS/dCFT.

FIG. 5. Geometry of cone holography: M is a d-dimensional
manifold (gray plane), and D is a codimension-m defect (blue
point) in M, where m ¼ n − 1. M is extended to a (dþ 1)-
dimensional asymptotically AdS space N, and D is extended to a
(dþ 1)-dimensional cone C (orange) in the bulk. The cone C is
bounded by a codimension-1 brane Q (boundary of orange cone),
i.e., ∂C ¼ Q. The geometries ofQ and E are set to be AdSdþ2−n ×
Sn−2 and AdSdþ2−n so that they shrink to the same defect D ¼
∂Q ¼ ∂E on the AdS boundaryM. The cone holography proposes
that a gravity theory in the (dþ 1)-dimensional cone C is dual to a
CFT on ðdþ 1 − nÞ-dimensional defect D.
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BCFT [25] and AdS/dCFT [64–66], the boundary P and
codimension-m defect D on M̂ are extended to an end-of-
world brane Q and a codimension-m brane E in the bulk,
respectively. C is the bulk manifold bounded by Q and M̂,
i.e., ∂C ¼ Q ∪ M̂. According to AdS/BCFT [25] and AdS/
dCFT [64–66], the gravity theory in the bulk C is dual to
the dCFTon M̂. In the zero-volume limit M̂ → 0, the dCFT
on M̂ disappears, and only the edge modes on the defect
D ≃ limM̂→0 P survive. As a result, the gravity theory in the
bulk C is dual to the edge modes on the defect D ≃
limM̂→0 P in the zero-volume limit M̂ → 0. In this way, we
derive cone holography from a suitable limit of AdS/dCFT.
Let us go on to explain Fig. 5, which is obtained from

Fig. 4 by taking the limit M̂ → 0. M is a d-dimensional
manifold, D is a codimension-m defect in M, where
m ¼ n − 1. In AdS=CFT, M is extended to a (dþ 1)-
dimensional asymptotically AdS space N. In cone holog-
raphy, the defect D is extended to a (dþ 1)-dimensional
cone C in the bulk, which is bounded by an end-of-world
braneQ, i.e., ∂C ¼ Q. This should be understood as a limit
of AdS/dCFT as shown in Fig. 4: P is extended to Q, D is
extended to E, and M̂ is extended to C. Note that the
geometries of Q and E are required to be AdSdþ2−n × Sn−2
and AdSdþ2−n so that they shrink to the same defect
D ¼ ∂Q ¼ ∂E on the AdS boundary M. This is a key
characteristic of cone holography, which enables the
theory to be codimension n. It should be stressed that,
as a solution to Einstein equation, the bulk geometry is
smooth everywhere. The conical singularity can only
appear on the defect D. The cone holography proposes
that classical gravity in the cone Cdþ1 ≃ CFTdþ1−n on
the defect D. It is a natural generalization of wedge
holography [58]. Similar to wedge holography [58], the
cone holography can be obtained as a suitable limit of AdS/
BCFT [25–30] and AdS/dCFT [64–66]. As we have
explained in the Introduction and in the above paragraph,
cone holography can be regarded as a holographic dual of
edge modes on defects. From now on, we forget the origin
from edge modes and take cone holography as a general
theory of holography. We label the cone holography by
AdSCdþ1=CFTdþ1−n in this paper.
To get a better understanding of the geometry of Fig. 5,

let us study a typical metric of cone holography,

ds2 ¼ dr2 þ sinh2ðrÞdΩ2
m−1 þ cosh2ðrÞ dz

2 þP
d−m
î¼1

dy2
î

z2
;

0 ≤ r ≤ ρ; ð6Þ

which is a locallyAdS space.Here, r is the proper distance to
the codimension-m braneE, dΩ2

m−1 is the line element of the
unit sphere, m ¼ n − 1, and ρ is a constant. The codimen-
sion-m brane E, the end-of world brane Q, and the AdS
boundary M are located at r ¼ 0, r ¼ ρ, and r ¼ ∞,
respectively. The codimension-m defect D is at z ¼ 0 on

the AdS boundary M. Please see Fig. 6 for a sketch of the
geometry of cone holography forϕ ¼ 0 andϕ ¼ π, whereϕ
is the angle ofSm−1with the period 2π. From (6),we can read
off the induced metrics on the branes E and Q as

ds2E ¼ dz2 þP
d−m
î¼1

dy2
î

z2
; ð7Þ

ds2Q ¼ sinh2ðρÞdΩ2
m−1 þ cosh2ðρÞ dz

2 þP
d−m
î¼1

dy2
î

z2
; ð8Þ

which clearly shows that the geometries of E and Q are
AdSdþ2−n andAdSdþ2−n × Sn−2, as is shown in Fig. 5 (recall
that n ¼ mþ 1). Let us go on to discuss the induced metric
on the AdS boundary M (r ¼ ∞). From (6), we have

ds2M ∼ lim
r→∞

e2r

z2

�
z2dΩ2

m−1 þ dz2 þ
Xd−m
î¼1

dy2
î

�
; ð9Þ

which is conformally equivalent to the metric of dCFT (4)
with q ¼ 1. Recall that q is a parameter related to the conical
singularity, which is defined in (4). When q ¼ 1, there is no
conical singularity on the defect D, i.e., z ¼ 0. To discuss
more general defects with conical singularities, one can
replace the metric (6) by

ds2 ¼ dr2 þ fðrÞdΩ2
m−1 þ gðrÞ dz

2 þP
d−m
î¼1

dy2
î

z2
; ð10Þ

where fðrÞ and gðrÞ can be determined by solving Einstein
equations with suitable boundary conditions. We will dis-
cuss this more general metric later.

2. Action and boundary conditions

The gravitational action of cone holography is given by

I¼ 1

16πGN

Z
C
dXdþ1

ffiffiffiffiffi
jgj

p
ðR−2ΛÞ

þ 1

8πGN

Z
Q
dxd

ffiffiffiffiffiffi
jhj

p
ðK−TÞ−TE

Z
E
dydþ1−m

ffiffiffiffiffi
jγj

p
; ð11Þ

FIG. 6. A sketch of cone holography for ϕ ¼ 0 and ϕ ¼ π,
where ϕ ≃ ϕþ 2π.
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where R is the Ricci scalar, −2Λ ¼ dðd − 1Þ is the cosmo-
logical constant (we have set AdS radius L ¼ 1), K is the
extrinsic curvature, T and TE are the tensions of branes Q
and E. gAB, hμν, and γij are metrics on C, Q, and E,
respectively. Note that there is no well-defined thin brane
limit for the Einstein equations for codimension 3 and higher
unless the tensions TE vanish [67–70]. Thus, we have

TE → 0; for m ≥ 3: ð12Þ

As a result, the last term of action (11) should be understood
as a probe brane with TE → 0 for m ≥ 3, which is added to
help us to determine the location of branes. To have nonzero
tensions form ≥ 3, one can consider either higher derivative
gravity or thick branes [70]. On the other hand, the
codimension-2 brane (m ¼ 2) can have nonzero tension
TE. And the tension is related to the conical singularity by
TE ∼ ðq − 1Þ=q [66].
One of the central tasks of cone holography is to

determine the locations of the two kinds of branes (E
and Q). Let us first discuss the codimension-m brane E.
Inspired by Ryu-Takayanagi formula [71], we propose that
E is a minimal surface in the bulk whose boundary is given
by the defect D, i.e., ∂E ¼ D. One trick to derive this
proposal is to consider a probe brane in the action (11).
Label the embedding functions of E by

XA ¼ XAðyiÞ; ð13Þ

the induced metric on E becomes γij ¼ ∂XA

∂yi
∂XB

∂yj gABðXÞ.
Varying the action (11) with respect to XA, we get

δXI ¼ TE

Z
E
dydþ2−n

ffiffiffiffiffi
jγj

p
KA

EgABδX
B ¼ 0; ð14Þ

where KA
E ¼ γijðDiDjXA þ ΓA

BCDiXBDjXCÞ are the traces
of extrinsic curvatures andDi denotes covariant derivatives
on E. From (14), we read off the equation of motion (EOM)
of XA,

KA
E ¼ 0; ð15Þ

which implies that E is a minimal surface in the bulk.
Recall that (15) is derived by δ

δXA

R
E

ffiffiffi
γ

p ¼ 0; it is clear that
E is a minimal surface.
Let us go on to study the location of the end-of-world

braneQ, which can be fixed by choosing suitable boundary
conditions [25,28]. Consider the variation of action (11)
and focus on boundary terms on Q; we haveZ

Q

ffiffiffiffiffiffi
jhj

p
ðKμν − ðK − TÞhμνÞδhμν ¼ 0: ð16Þ

To have a well-defined action principle, one can impose
either a Neumann BC (NBC) [25],

NBC∶ Kμν − ðK − TÞhμν ¼ 0; ð17Þ

or a Dirichlet BC (DBC) δhμνjQ ¼ 0 [28], which both
define a consistent theory of AdS/BCFT. Recall that, for
our present case, the geometry of Q is divided into two
independent sectors, i.e., AdSdþ2−n × Sn−2. For each sector,
we can impose either a NBC or DBC. For our purpose,
we hope to have a dynamical gravity on the AdSdþ2−n
sector so that the cone holography can be derived from
AdSdþ2−n=CFTdþ1−n. This means that we should impose a
NBC on the AdSdþ2−n sector.

2 One choice is the NBC (17)
on both sectors, and the other one is the mixed BC that we
impose NBC on AdSdþ2−n sector but the DBC on the Sn−2
sector. To illustrate the mixed BC, let us write the metric of
Q into the following form,

ds2Q ¼ hμνdxμdxν ¼ habdxadxb þ hijdyidyj; ð18Þ

where hab are metrics of the Sn−2 sector and hij are metrics
for the AdSdþ2−n sector. Now, the mixed BC (MBC) is
given by

MBC∶ habdxadxb¼ l20dΩ2
n−2; Kij−ðK−TÞhij¼0; ð19Þ

where l0 is the radius of the sphere and dΩ2
n−2 is the

line element of (n − 2)-dimensional unit sphere. A
covariant expression of first equation of (19) would be
R̄ab ¼ ðn − 3Þhab=l20; C̄abcd ¼ 0, where R̄ab; C̄abcd denote
the Ricci tensor andWeyl tensor defined by hab.

3 Below, we
take the MBC to illustrate the cone holography and leave
the discussions of NBC for Sec. IV. As will be shown
below, solutions to MBC are much simpler than those
to NBC.

3. Solutions

Now, we are ready to discuss the solutions to cone
holography. It should be stressed that, as a solution to
Einstein equation, the bulk geometry is smooth every-
where. The conical singularity can only appear on the
defect D. To warm up, let us first study the one without
conical singularities on the defectD. We take the following
Ansatz of the metric,

ds2¼dr2þsinh2ðrÞdΩ2
n−2þcosh2ðrÞh̄ijðyÞdyidyj; ð20Þ

which obeys MBC (19) by design and reduces to the typical
metric (6) when h̄ijðyÞ is an AdS metric (recall n ¼ mþ 1).

2By “AdSdþ2−n,” we means the asymptotically AdS generally.
Thus, the gravity can be dynamical in the AdSdþ2−n sector.

3In addition to the local condition R̄ab ¼ ðn − 3Þhab=
l20; C̄

abcd ¼ 0, we further require that the solution has the
correct topology Sn−2. Take the case n ¼ 3 as an example; we
require that the solution should automatically yield a periodic
angle ϕ rather than that one sets the period by hand.
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Actually, h̄ijðyÞ can be a more general metric. According to
Ref. [72], the metric (20) is a solution to the Einstein
equation with a negative cosmological constant in dþ 1
dimensions,

RAB −
R
2
gAB ¼ dðd − 1Þ

2
gAB; ð21Þ

provided that h̄ij obey the Einstein equation with a negative
cosmological constant in dþ 2 − n dimensions,

Rh̄ij −
Rh̄

2
h̄ij ¼

ðdþ 1 − nÞðd − nÞ
2

h̄ij: ð22Þ

Here, Rh̄ij denote the curvatures with respect to the metric
h̄ij, and we have set the AdS radius L ¼ 1 for simplicity.
Recall that the codimension-m brane E, the end-of world
brane Q, and the AdS boundary M are located at r ¼ 0,
r ¼ ρ, and r ¼ ∞, respectively.
Let us explainwhy themetric (20) obeysMBC (19) on the

end-of-world brane Q (r ¼ ρ). The induced metric on Q is

ds2Q ¼ sinh2ðρÞdΩ2
n−2 þ cosh2ðρÞh̄ijðyÞdyidyj: ð23Þ

Comparing with (18), we read off habdxadxb ¼
sinh2ðρÞdΩ2

n−2, which indeed satisfies DBC on the
Sn−2 sector (19) with radius l0 ¼ sinh ρ. As for the remain-
ing part, let us calculate the extrinsic curvature
Kμν ¼ 1

2
∂rhμνjr¼ρ. We get

Kab ¼ cothðρÞhab; Kij ¼ tanhðρÞhij; ð24Þ

which obeys the NBC on the AdSdþ2−n sector as long as we
parametrize the tension by T¼ðn−2ÞcothðρÞþðdþ1−nÞ
tanhðρÞ so that K − T ¼ tanhðρÞ and Kij ¼ ðK − TÞhij.
Now, we finish the proof of the statement that the metric
(20) satisfies MBC (19).
Let us go on to explain why there is no conical

singularity on the defect D for the metric (20). The
arguments are similar to those around (9). The only
difference is that now h̄ij is more general. For our purpose,
we let h̄ij be the metric of an asymptotically AdS,

h̄ijðyÞdyidyj ¼
dz2 þ σ î ĵðz; ŷÞdyîdyĵ

z2
; ð25Þ

where σ î ĵ ¼ σð0Þ
î ĵ

þ z2σð1Þ
î ĵ

þ…. From (20) and (25), we

notice that the induced metric on the AdS boundary M
(r ¼ ∞) is conformally equivalent to

ds2M ∼ z2dΩ2
m−1 þ dz2 þ σ î ĵðz; ŷÞdyîdyĵ; ð26Þ

which clearly shows that there is no conical singularity on
the defect D located at z ¼ 0.

To allow a conical singularity on the defectD, we choose
a more general Ansatz of the metric [64,72],

ds2 ¼ dr2 þ fðrÞdΩ2
n−2 þ gðrÞh̄ijðyÞdyidyj; ð27Þ

where h̄ij satisfy (22). We should impose suitable boundary
conditions for fðrÞ and gðrÞ. As we have mentioned in
Sec. 2.1.2, the codimension-2 brane and codimension-m
brane with m ≥ 3 are quite different, and we discuss them
separately below. For m ¼ 2 (n ¼ 3), we choose

lim
r→0

fðrÞ¼ r2

q2
; lim

r→0
gðrÞis finite; lim

r→∞

fðrÞ
gðrÞ ¼1; ð28Þ

where q is a positive constant. Then, the metric (27)
becomes

ds2 ∼ dr2 þ r2

q2
dϕ2 þ � � � ð29Þ

near the brane E (r ¼ 0) in the bulk and becomes

ds2 ∼ dz2 þ z2dϕ2 þ � � � ð30Þ
near the defectD (z ¼ 0) on the AdS boundaryM (r ¼ ∞).
Here, we have replaced dΩ2

1 by dϕ2 and have used (25).
The period of ϕ is fixed to be 2πq in order to have a smooth
solution (29) in the bulk. As a result, from (30), there is a
conical singularity on the defect D when q ≠ 1. Clearly,
there is no way to get rid of conical singularities for both
(29) and (30) unless q ¼ 1.
As for m > 2 (n > 3), the situation is quite different.

Remarkably, Einstein equations fix the asymptotical
expression of fðrÞ to be limr→0 fðrÞ ¼ r2, which is closely
related to the fact that the tension TE must be zero for
codimension-m branes with m > 2. Please see (A19) and
(A21) of the Appendix for more details. Thus, we choose a
different BC for this case,

lim
r→0

fðrÞ¼ r2; lim
r→0

gðrÞ is finite; lim
r→∞

fðrÞ
gðrÞ ¼

1

q2
: ð31Þ

Now, the metric (27) becomes

ds2 ∼ dr2 þ r2dΩ2
n−2 þ � � � ð32Þ

near the brane E (r ¼ 0) in the bulk and becomes

ds2 ∼ dz2 þ z2

q2
dΩ2

n−2 þ � � � ð33Þ

near the defectD (z ¼ 0) on the AdS boundaryM (r ¼ ∞).
To have a smooth bulk solution (32), we choose the range
of angles to be the normal ones. For example, we choose
θ ⊂ ½0; π� for dΩ2

n−2 ¼ dθ2 þ sin2 θdΩ2
n−3. As a result,

from (33), there is a conical singularity on the defect D
for q ≠ 1.
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In general, there are no analytical solutions of (27) when
q ≠ 1. Fortunately, there is an exact solution when m ¼ 2
(n ¼ 3),

ds2 ¼ dr̄2

f̄ðr̄Þ þ f̄ðr̄Þdϕ2 þ r̄2h̄ijðyÞdyidyj; ð34Þ

where f̄ðr̄Þ ¼ r̄2 − 1 − r̄d−2h
r̄d−2

ðr̄2h − 1Þ, r̄ ≥ r̄h, and

r ¼
Z

r̄

r̄h

dr̄ffiffiffiffiffiffiffiffiffi
f̄ðr̄Þ

p : ð35Þ

Imposing the conditions (28), or equivalently, f̄0ðr̄hÞ ¼
2=q, we fix the constant

r̄h ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2dq2 þ d2q2

p
dq

: ð36Þ

Obviously, Eq. (34) is quite similar to the metric of the
hyperbolic black hole. The only difference is that ϕ is a
spatial coordinate instead of a time coordinate. The time
direction is hidden in the h̄ijðyÞdyidyj sector of (34). The
branes E and Q are located at r̄ ¼ r̄h and r̄ ¼ r̄0, where r̄0
can be derived from the MBC (19) as

K − T ¼
ffiffiffiffiffiffiffiffiffiffiffi
f̄ðr̄0Þ

p
r̄0

¼ tanh ρ: ð37Þ

To end this subsection, let us discuss briefly the solution
to NBC (17). For simplicity, let us focus on the case m ¼ 2
with metric (34). The codimension-2 brane E is still located
at r̄ ¼ r̄h (r ¼ 0). However, the end-of-world brane is no
longer located at constant r̄. Instead, in order to satisfy
NBC (17), it must depend on other coordinates, i.e.,
r̄ ¼ r̄ðϕ; yÞ. We leave a careful study of the solutions to
NBC for Sec. IV. Finally, it should be mentioned that (27) is

not the most general solution to cone holography. We leave
the study of more general solutions to Sec. V.

B. Equivalence to AdS=CFT

In this subsection, we prove that, for the class of
solutions studied in Sec. II A, the gravitational action of
cone holography is equivalent to that of AdS=CFT with
Einstein gravity,

IAdSCdþ1
¼ IAdSdþ2−n

: ð38Þ
Assuming AdSdþ2−n=CFTdþ1−n holds, which means that
the CFT partition function in the large N limit is given by
the classical gravitational action

ZCFTdþ1−n
¼ e−IAdSdþ2−n ; ð39Þ

we get immediately a proof of cone holography

ZCFTdþ1−n
¼ e−IAdSCdþ1 ; ð40Þ

at least for the class of solutions of Sec. II A. Note that
IAdSdþ2−n

and IAdSCdþ1
of (39) and (40) are Euclidean

actions. For simplicity, below, we focus on the actions
in the Lorentz signature, which differ from the ones in
Euclidean signature by a minus sign.
To warm up, let us first consider the case without conical

singularities, i.e., q ¼ 1. Equivalently, the tension of the
codimension-m brane is zero, i.e., TE ¼ 0. Recall that TE
always vanishes for codimension-m branes withm > 2 and
TE ∼ ðq − 1Þ=q ¼ 0 for codimension-2 branes when
q ¼ 1. On the contrary, the tension of codimension-1 brane
Q is nonzero, i.e., T ≠ 0. Substituting the metric (20) into
the action (11) and applying MBC (19) together with the
formula (A11) with fðrÞ ¼ sinh2ðrÞ; gðrÞ ¼ cosh2ðrÞ, we
derive

IAdSCdþ1
¼ VSn−2

16πGN

Z
ρ

0

sinhn−2ðrÞ coshdþ2−nðrÞdr ×
Z
Q̄

ffiffiffiffiffiffi
jh̄j

q
ðRh̄sech

2ðrÞ þ ðd − nþ 1Þðd − nþ 2Þsech2ðrÞ − 2dÞ

þ VSn−2

8πGN

Z
Q̄

ffiffiffiffiffiffi
jh̄j

q
sinhn−2ðρÞ coshdþ2−nðρÞ tanh ρ

¼ VSn−2

16πGN

Z
ρ

0

sinhn−2ðrÞ coshd−nðrÞdr
Z
Q̄

ffiffiffiffiffiffi
jh̄j

q
ðRh̄ þ ðdþ 1 − nÞðd − nÞÞ

¼ 1

16πGðdþ2−nÞ
N

Z
Q̄

ffiffiffiffiffiffi
jh̄j

q
ðRh̄ þ ðdþ 1 − nÞðd − nÞÞ ¼ IAdSdþ2−n

; ð41Þ

which is equal to the gravitational action IAdSdþ2−n
with

Newton’s constant given by

1

Gðdþ2−nÞ
N

¼ VSn−2

GN

Z
ρ

0

sinhn−2ðrÞ coshd−nðrÞdr; ð42Þ

where Q̄ denotes theAdSdþ2−n sector ofQ andVSn−2 ¼ 2π
n−1
2

Γðn−1
2
Þ

is the volume of (n-2)-dimensional unit sphere. Note that we
take h̄ij off shell in the above derivations, which means that
h̄ij need not satisfy (22). Besides, we have used
−2Λ¼dðd−1Þ,K − T ¼ tanh ρ and the following formula:
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Z
ρ

0

sinhn−2ðrÞ coshd−nðrÞðd − 2nþ 2 − d coshð2rÞÞdr

¼ −2 sinhn−1ðρÞ coshd−nþ1ðρÞ: ð43Þ

Now, we have proven the equivalence (38) between cone
holography and AdS=CFT for the case without conical
singularities.
Let us go on to discuss the case with nontrivial conical

singularities, i.e., q ≠ 1. For simplicity, let us first consider
the codimension-3 holography, which has an exact solution
(34). Note that the solution (34) is smooth everywhere in the
bulk, even at the location of E; the real conical singularity is
on the conical defect D instead of E. As a result, one
does not count the action of codimension-2 brane
IE ¼ −TE

R
E

ffiffiffi
γ

p
when calculating the gravitational action

in the bulk [66,73,74]. It is more like a trick to determine the
location of E but does not contribute to the action directly.4

Another way to understand this is that we regularize the
integral region by r ≥ ϵ > 0 and take the limit ϵ → 0 at the
end of calculations. These are the common methods used to
study holographic Rényi entropy, where there is a cosmic
brane in the bulk [66,73,74]. Another example is that, to
calculate the holographic free energy, one does not take into
account the contribution of “conical singularity” on the
horizon of black hole. The spacetime is smooth, and nothing
special happens on the horizon.
Substituting (34) into the action (11) without IE and

applying boundary condition (37) and f̄ðr̄Þ ¼ r̄2 − 1−
r̄d−2h
r̄d−2

ðr̄2h − 1Þ, we obtain

IAdSCdþ1
¼ 2πq

16πGN

Z
r̄0

r̄h

dr̄r̄d−1
ffiffiffiffiffiffi
jh̄j

q �
Rh̄ þ ðd − 1Þðd − 2Þ

r̄2
− 2d

�
þ 2πq
8πGN

Z
Q̄

ffiffiffiffiffiffi
jh̄j

q
r̄d−20 f̄ðr̄0Þ

¼ q
8GN

r̄d−20 − r̄d−2h

d − 2

Z
Q̄

ffiffiffiffiffiffi
jh̄j

q
ðRh̄ þ ðd − 2Þðd − 3ÞÞ

¼ 1

16πGðd−1Þ
N

Z
Q̄

ffiffiffiffiffiffi
jh̄j

q
ðRh̄ þ ðd − 2Þðd − 3ÞÞ ¼ IAdSd−1 ; ð44Þ

which proves the equivalence (38) with n ¼ 3 (m ¼ 2) for
general q, provided that the effective Newton’s constant on
Q̄ is defined by

1

Gðd−1Þ
N

¼ 2πq
GN

ðr̄d−20 − r̄d−2h Þ
d − 2

; ð45Þ

where recall that q ¼ 2=f̄0ðr̄hÞ ¼ 2r̄h=ðdr̄2h − dþ 2Þ.
Now, let us consider the most general case, the cone

holography with general codimensions n ¼ mþ 1 and
nontrivial conical singularities, i.e., q ≠ 1. We focus on
the class of solution (27) with 0 ≤ r ≤ r0. Following the
above approach, we derive

IAdSCdþ1
¼ VŜn−2

16πGN

Z
r0

0

drfðrÞn−22 gðrÞdþ2−n
2

ffiffiffiffiffiffi
jh̄j

q �
Rh̄þðdþ2−nÞðdþ1−nÞ

gðrÞ −2d

�
þ VŜn−2

16πGN

Z
Q̄

ffiffiffiffiffiffi
jh̄j

q
fðr0Þn−22 gðr0Þd−n2 g0ðr0Þ

¼ 1

16πGðd−1Þ
N

Z
Q̄

ffiffiffiffiffiffi
jh̄j

q
ðRh̄þðdþ1−nÞðd−nÞÞ¼ IAdSdþ2−n

; ð46Þ

where the Newton’s constants are related by

1

Gðdþ2−nÞ
N

¼ VŜn−2

GN

Z
r0

0

drfðrÞn−22 gðrÞd−n2 ; ð47Þ

and r ¼ r0 is the location of end-of-world brane Q. Note
that VŜn−2

¼ 2πq for n ¼ 3 and VŜn−2
¼ VSn−2 for n > 3. To

derive (46), we have used the integral formula

Z
r0

0

fðrÞn−22 gðrÞd−n2 ðn − 1 − dþ dgðrÞÞdr

¼ 1

2
fðr0Þn−22 gðr0Þd−n2 g0ðr0Þ: ð48Þ

It is interesting that, although the exact expressions
of fðrÞ and gðrÞ are unknown generally, the EOM and
BC of fðrÞ and gðrÞ are sufficient to derive (48). The
proof is as follows. Differentiating (48) with respect to r0,
we get4It affects the action by the backreaction to the bulk solution.
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4dgðrÞ2 − 2gðrÞð2dþ g00ðrÞ − 2nþ 2Þ þ ðn − dÞg0ðrÞ2

−
ðn − 2ÞgðrÞf0ðrÞg0ðrÞ

fðrÞ ¼ 0; ð49Þ

which is just the EOM (A14). Note that we have replaced r0
by r above. To prove (48), we still need to verify that

fð0Þn−22 gð0Þd−n2 g0ð0Þ ¼ 0: ð50Þ

Recall the BC (28), (31) of fðrÞ and gðrÞ, which yields
limr→0 fðrÞn−22 gðrÞd−n2 g0ðrÞ ∼Oðrn−2Þ ¼ 0. So, Eq. (50) is
indeed satisfied. Now, we finish the proof of (48) by using
the EOM and BC of fðrÞ and gðrÞ.
In the above discussions, we focus on the nonrenormal-

ized actions (41), (44), and (46), which are divergent
generally. To get finite results, one can perform the holo-
graphic renormalization [75,76] by adding suitable counter-
terms on the defect D. Following Refs. [75,76], we choose
the following counterterms on D,

Icounter ¼
1

16πGðdÞ
N

Z
D

ffiffiffiffiffiffi
jσj

p �
2KΣ þ 2ðn − dÞ

−
1

d − 1 − n
RΣ þ � � �

�
; ð51Þ

which makes the equivalence

IAdSCdþ1
þ Icounter ¼ IAdSdþ2−n

þ Icounter ð52Þ

still hold after renormalization. Now, we finish the proof of
the statement that AdSCdþ1=CFTdþ1−n with the solutions
(20), (27), and (34) is equivalent to AdSdþ2−n=CFTdþ1−n
with Einstein gravity, at least at the classical level for
gravity, or equivalently, in the large N limit for CFTs.
The equivalence (52) is quite powerful, which enables us

to derive many interesting physical quantities such as
entanglement/Rényi entropy for cone holography directly
following the approach of AdS=CFT. See Sec. III for
examples. Assuming that AdS=CFT holds, which is widely
accepted, the equivalence (52) is actually a proof of the
cone holography in a certain sense. It should be stressed
that the solution (34) is not the most general solution to
cone holography. As a result, in general, cone holography is
different from AdS=CFT with Einstein gravity. That is
because there are infinite towers of massive Kaluza-Klein
modes on the branes. And the effective gravity on the brane
is massive gravity instead of Einstein gravity generally.
This is consistent with the interpretation of cone hologra-
phy as a holographic dual of edge modes. As mentioned in
the Introduction, the edge modes include bulk information
and differ from the usual CFTs. Thus, in general, the cone
holography as a holographic dual of edge modes is different
from AdS=CFT.

III. ASPECTS OF CONE HOLOGRAPHY

Since cone holography with the solutions (27) is equiv-
alent to AdS=CFT with vacuum Einstein gravity, many
interesting results of AdS=CFT can be reproduced in cone
holography. These include holographic Weyl anomaly,
holographic Entanglement/Rényi entropy, and holographic
correlation functions, which all agree with the results of
CFTs. See Refs. [60], for example, where the case of wedge
holography is carefully studied. The generalization to cone
holography is straightforward. Actually, we only need to
replace Newton’s constant Gd

N of Ref. [60] by Gdþ2−n
N (47)

for cone holography with the class of solutions (27). Thus,
we do not repeat the calculations here. Instead, we only list
some of the key results and steps for the convenience of
readers. For simplicity, let us focus on the cone holography
AdSCnþ2=CFT2 below.

A. Holographic Weyl anomaly

We assume that the spacetime on E and Q̄ is an
asymptotically AdS,

ds2 ¼ dr2 þ sinh2ðrÞdΩ2
n−2 þ cosh2ðrÞ dz

2 þ σ î ĵdy
îdyĵ

z2
;

ð53Þ

where σ î ĵ ¼ σð0Þ
î ĵ

þ z2ðσð1Þ
î ĵ

þ λð1Þ
î ĵ

ln zÞ þ…, and σð0Þ
î ĵ

is the

metric on defectD. Solving Einstein equations (21), we get

σð0Þî ĵσð1Þ
î ĵ

¼ −
RD

2
; ð54Þ

where RD is the Ricci scalar on the defect D. Note that (54)
can also be obtained from the asymptotical symmetry of
AdS [77], which plays an important role in the off-shell
derivations of holographic Weyl anomaly [78]. Substituting
the above two equations into the gravitational action (11)
and selecting the UV logarithmic divergent term, we can
derive the holographic Weyl anomaly [79]. We get

A ¼
Z
D
dy2

ffiffiffiffiffiffi
jσj

p c
24π

RD; ð55Þ

with the central charge

c¼3VSn−2

2GN

Z
ρ

0

sinhn−2ðrÞcoshðrÞdr¼ 3π
n−1
2

GNΓðn−12 Þ
sinhn−1ðρÞ

n−1
:

ð56Þ

It is interesting that the central charge c is a monotonically
increasing function of ρ,

∂ρc ≥ 0: ð57Þ
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Recall that r ¼ ρ denotes the location of end-of-world
brane Q. The larger ρ is, the closer the brane Q tends into
AdS boundary M. See Fig. 6, for example. Note that the
AdS boundary corresponds to UV, while the deep bulk
corresponds to IR. Thus, we have

ρUV > ρIR: ð58Þ

It should be mentioned that (58) can also be derived from
the null energy condition onQ [26]. From (57) and (58), we
get a holographic proof of the c-theorem [80,81]

cUV ≥ cIR: ð59Þ

This is a strong support for our proposal of cone
holography.
The above discussions apply to the case without conical

singularities, i.e., q ¼ 1. It is straightforward to extend the
above discussions to general case with q ≠ 1. By applying
the solution (27), we obtain the Weyl anomaly (55) with the
central charge

c ¼ 3VŜn−2

2GN

Z
r0

0

fðrÞn−22 gðrÞ12dr; ð60Þ

where r0 is the location of Q. Since fðrÞ and gðrÞ are
positive functions, we have ∂r0c ≥ 0. Following the above
arguments, we have r0UV ≥ r0 IR. Thus, the c-theorem (59)
is still obeyed for the general case with q ≠ 1.

B. Holographic Rényi entropy

Rényi entropy measures the quantum entanglement of a
subsystem, which is defined by

Sp ¼ 1

1 − p
ln trρpA; ð61Þ

where p is a positive integer and ρA ¼ trĀρ is the induced
density matrix of a subregion A. Here, Ā denotes the
complement of A, and ρ is the density matrix of the whole
system. In the limit p → 1, Rényi entropy becomes the von
Neumann entropy, which is also called entanglement entropy,

SEE ¼ −trρA ln ρA: ð62Þ

In the gravity dual, Rényi entropy can be calculated by the
area of a codimension-2 cosmic brane [66]

p2∂p

�
p − 1

p
Sp

�
¼ areaðcosmic branepÞ

4GN
; ð63Þ

where the cosmic branep is anchored at the entangling surface
∂A. Since the tension of cosmic brane Tp ¼ p−1

4pGN
is nonzero

generally, it backreacts on the bulk geometry. In the tension-
less limitp → 1, the cosmic brane becomes aminimal surface

and (63) becomes the Ryu-Takayanagi formula for entangle-
ment entropy [71]

SEE ¼ areaðminimal surfaceÞ
4GN

: ð64Þ

For cone holography, the holographic Rényi entropy is
still given by (63). What is new is that the codimension-2
cosmic brane ends on the end-of-world brane Q and
codimension-m brane E. The location of cosmic brane
can be fixed by solving Einstein equations with back-
reactions [66].
Inspired by Refs. [73,74,82], we make the following

Ansatz of the bulk metric,

ds2 ¼ dr2 þ sinh2ðrÞdΩ2
n−2

þ cosh2ðrÞ
�

dr̃2

r̃2 − 1
p2

−
�
r̃2 −

1

p2

�
dt2 þ r̃2dH2

1

�
;

ð65Þ

where p is the Rényi index, dH2
1 ¼ dy2=y2 is the line

element of one-dimensional hyperbolic space. The cosmic
brane is just the horizon of hyperbolic black hole, whose
area is given by

areaðcosmic branepÞ ¼
VSn−2VH1

p

Z
ρ

0

sinhn−2ðrÞ coshðrÞdr;

ð66Þ

where VH1
is the volume of hyperbolic space. From (63),

(65), and (66), we finally obtain the holographic Rényi
entropy for CFT2 as

Sp ¼ pþ 1

p

VSn−2VH1

8GN

Z
ρ

0

sinhn−2ðrÞ coshðrÞdr

¼ pþ 1

p
c
12

VH1
; ð67Þ

where we have used (56) above. Note that VH1
includes a

log term VH1
jln1ϵ ¼ 2 [73], and (67) gives the correct

universal term of Renyi entropy,

Spjln1ϵ ¼
pþ 1

p
c
6

ð68Þ

This is also a support for the cone holography.

C. Holographic correlation functions

In this subsection, we study the correlation functions for
cone holography. The holographic two point functions of
stress tensors can be derived following the approach of
Ref. [60] for wedge holography. We do not repeat it here.
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Instead, we study the two point functions of scalar
operators for cone holography AdSCnþ2=CFT2.
Let us focus on the probe limit with the bulk metric

given by

ds2 ¼ dr̄2

r̄2 − 1
þ ðr̄2 − 1ÞdΩ2

n−2 þ r̄2ds2AdS3 ; ð69Þ

which is a locally AdS space. We make the following
Ansatz of bulk scalar,

ϕ ¼ ϕr̄ðr̄ÞϕyðyÞ; ð70Þ

where y denotes the coordinate of ds2AdS3 . Substituting (70)
into the Klein-Gordon equation in the bulk

∂Að ffiffiffi
g

p
gAB∂BϕÞffiffiffi
g

p − M̂2ϕ ¼ 0; ð71Þ

we get

∂ r̄ðr̄3ðr̄2 − 1Þn−12 ∂ r̄ϕr̄ðr̄ÞÞ
r̄3ðr̄2 − 1Þn−32 ϕr̄ðr̄Þ

þ□yϕyðyÞ
r̄2ϕyðyÞ

¼ M̂2; ð72Þ

where □y denotes the d’Alembert operator in AdS3. To
solve (72), we assume ϕyðyÞ satisfies Klein-Gordon equa-
tion in AdS3,

□yϕyðyÞ − m̂2ϕyðyÞ ¼ 0; ð73Þ

where m̂ is a constant and will be determined later. Then,
Eq. (72) becomes

∂ r̄ðr̄3ðr̄2 − 1Þn−12 ∂ r̄ϕr̄ðr̄ÞÞ
r̄3ðr̄2 − 1Þn−32 ¼

�
M̂2 −

m̂2

r̄2

�
ϕr̄ðr̄Þ; ð74Þ

which can be solved as

ϕr̄ ¼ c1r−m̂2F1

"
−2m̂þ n −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M̂2 þ ðn − 1Þ2

q
− 1

4
;
−2m̂þ nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M̂2 þ ðn − 1Þ2

q
− 1

4
; 1 − m̂; r2

#

þ c2rm̂2F1

"
2m̂þ n −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M̂2 þ ðn − 1Þ2

q
− 1

4
;
2m̂þ nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M̂2 þ ðn − 1Þ2

q
− 1

4
; m̂þ 1; r2

#
; ð75Þ

where 2F1 is the hypergeometric function and c1 and c2 are integral constants. Without loss of generality, we can set

c1 ¼ 1: ð76Þ

We impose the natural boundary condition on the codimension-(n − 1) brane E,

lim
r̄→1

ϕr̄ðr̄Þ is finite; ð77Þ

which yields

c2 ¼ −
Γð1 − m̂ÞΓ

�
2m̂þ5−n−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M̂2þðn−1Þ2

p
4

�
Γ
�
2m̂þ5−nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M̂2þðn−1Þ2

p
4

�
Γðm̂þ 1ÞΓ

�
−2m̂þ5−n−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M̂2þðn−1Þ2

p
4

�
Γ
�
−2m̂þ5−nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M̂2þðn−1Þ2

p
4

� ð78Þ

for odd n and

c2 ¼ −
Γð1 − m̂ÞΓ

�
2m̂þn−1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M̂2þðn−1Þ2

p
4

ÞΓð2m̂þn−1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M̂2þðn−1Þ2

p
4

�
Γðm̂þ 1ÞΓ

�
−2m̂þn−1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M̂2þðn−1Þ2

p
4

ÞΓð−2m̂þn−1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4M̂2þðn−1Þ2

p
4

� ð79Þ

for even n. On the end-of-world brane Q, we can impose
either DBC,

ϕr̄ðr̄0Þ ¼ 0; ð80Þ
or NBC,

∂ r̄ϕr̄ðr̄0Þ ¼ 0; ð81Þ

where r̄0 is the location of Q. For simplicity, we do not
show the exact expressions of (80) and (81). From (80) or
(81), in principle, we can solve m̂ in terms of M̂,
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m̂ ¼ m̂ðM̂; n; r̄0Þ: ð82Þ

There are infinite solutions for the allowed mass m̂, which
corresponds to the infinite massive KK modes.
Now, we have fixed the mass m̂ from boundary con-

ditions, and we are ready to derive the two point function of
scalar operators. According to AdS=CFT, the bulk scalar
field with mass m̂ in AdS3 is dual to a scalar operator O
with the conformal dimension

Δ ¼ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ m̂2

p
; ð83Þ

and the two point functions of O are given by

hOðxÞOðx0Þi ¼ 1

jx − x0j2Δ : ð84Þ

Let us show more details for the derivation of holo-
graphic two point function (84) for cone holography. The
bulk scalar action is given by

I ¼ −
1

2

Z
C

ffiffiffiffiffi
jgj

p
ðgAB∂Aϕ∂Bϕþ M̂2ϕ2Þ: ð85Þ

Substituting the Ansatz (70) into (85) and using EOM (74)
together with BCs (80), (81), we can obtain

I ¼ −
1

2

Z
C

ffiffiffiffiffi
jgj

p
ðgr̄ r̄ð∂ r̄ϕr̄Þ2ϕ2

y þ gij∂iϕy∂jϕyϕ
2
r̄ þ M̂2ϕ2

r̄ϕ
2
yÞ

¼ −
1

2

Z
C

ffiffiffiffiffi
jgj

p �
−1ffiffiffiffiffijgjp ∂ r̄ð

ffiffiffiffiffi
jgj

p
gr̄ r̄∂ r̄ϕr̄Þϕr̄ϕ

2
y þ gij∂iϕy∂jϕyϕ

2
r̄ þ M̂2ϕ2

r̄ϕ
2
y

�

¼ −
VSn−2

2

Z
r̄0

1

r̄ðr̄2 − 1Þn−32 ϕ2
r̄ðr̄Þdr̄

Z ffiffiffiffiffiffi
jh̄j

q
ðh̄ij∂iϕy∂jϕy þ m̂2ϕ2

yÞ ∼ −
1

2

Z
dy3

ffiffiffiffiffiffi
jh̄j

q
ðh̄ij∂iϕy∂jϕy þ m̂2ϕ2

yÞ; ð86Þ

which is proportional to the scalar action in AdS3 up to a
constant factor. Recall that h̄ij is the metric of AdS3. Now,
following the standard approach of AdS=CFT [3], we can
derive the two point function (84) from (86).
To summary, we have shown that the cone holography

can produce the correct Weyl anomaly, entanglement/
Rényi entropy, and correlation functions, which are strong
supports for our proposal. For simplicity, we focus on
AdSCnþ2=CFT2 in this section. Following Ref. [60], the
generalization to AdSCdþ1=CFTdþ1−n is straightforward.

IV. CONE HOLOGRAPHY WITH NEUMANN BC

In this section, we discuss the cone holography with
NBC. Compared with MBC and DBC, it is more difficult to
find solutions to NBC generally. For example, as men-
tioned at the end of Sec. II A, the natural embedding
function r ¼ r0 of brane Q does not satisfy NBC.5 To
satisfy NBC, we can consider more general embedding
functions. For simplicity, we focus on AdSC5=CFT2 below,
which is the simplest nontrivial example.
The bulk metric for AdSC5=CFT2 is given by (34) with

d ¼ 4. The codimension-2 brane E is at r̄ ¼ r̄h (36), and
the embedding function of the codimension-1 brane Q is
assumed to be

r̄ ¼ FðϕÞ: ð87Þ

Imposing NBC (17), we derive one independent equation,

F0ðϕÞ ¼ � f̄ðFðϕÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coth2 ρf̄ðFðϕÞÞ − FðϕÞ2

p
FðϕÞ ; ð88Þ

where recall that f̄ðr̄Þ ¼ r̄2 − 1 − r̄2h
r̄2 ðr̄2h − 1Þ. Without loss

of generality, we focus on the case F0ðϕÞ ≥ 0 below. The
other case with F0ðϕÞ ≤ 0 can be obtained from the one
with F0ðϕÞ ≥ 0 by the symmetry ϕ → −ϕ.
For r̄h ¼ 1, we can solve

r̄ ¼ FðϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2 ρþ sinh2 ρ cot2 ϕ

q
: ð89Þ

Note that r̄ ¼ ∞ for ϕ ¼ 0; π, which means that Q
intersects the AdS boundary M at these two angles. See
Fig. 7, for example, where z̄ ¼ 1=r̄.
For general r̄h, there is no analytical solution to (88).

Instead, we get an integral expression,

ϕðr̄Þ ¼
Z

r̄

Fmin

FdF

f̄ðFÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coth2 ρf̄ðFÞ − F2

p ; ð90Þ

where

Fmin

¼1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cosh2ðρÞþ

ffiffiffi
2

p
coshðρÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshð2ρÞþ8r̄4h−8r̄2hþ1

qr
;

ð91Þ
5It obeys the NBC only if r ¼ r0 → ∞, which means that the

end-of-world brane Q approaches the AdS boundary M.
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which is derived from
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coth2 ρfðFminÞ − F2

min

p
¼ 0.

Note that (90) cannot cover the full range of the
angle, i.e., 2πq. Instead, it only covers the piece 0 ≤ ϕ ≤
ϕ0 with

ϕ0 ¼
Z

∞

Fmin

FdF

f̄ðFÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coth2 ρf̄ðFÞ − F2

p : ð92Þ

See Fig. 7, for example, where r̄h ¼ 1, ϕ0 ¼ π=2, and (90)
covers one-quarter of the angle range. For large ρ → ∞,
we also have ϕ0 → π=2. However, this is not the case for

general ρ and r̄h. To have a well-defined period, we require
that

πq
ϕ0

¼ integers; ð93Þ

which yields some constraints on ρ and r̄h. In other words,
the tensions of the branes Q and E are not independent for
the cone holography with NBC.
Now, let us turn to study the gravitational action.

Following the approach of Sec. II B and using (88), we get

IAdSCdþ1
¼ 1

16πGN

Z
2πq

0

dϕ
Z

r̄0

r̄h

dr̄r̄d−1
ffiffiffiffiffiffi
jh̄j

q �
Rh̄ þ ðd − 1Þðd − 2Þ

r̄2
− 2d

�

þ 1

8πGN

Z
2πq

0

dϕ
Z
Q̄

ffiffiffiffiffiffi
jh̄j

q
FðϕÞd−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F0ðϕÞ2
f̄ðFðϕÞÞ þ f̄ðFðϕÞÞ

s
tanh ρ

¼ 1

16πGN

Z
2πq

0

dϕ
FðϕÞd−2 − r̄d−2h

d − 2

Z
Q̄

ffiffiffiffiffiffi
jh̄j

q
ðRh̄ þ ðd − 2Þðd − 3ÞÞ

¼ 1

16πGðd−1Þ
N

Z
Q̄

ffiffiffiffiffiffi
jh̄j

q
ðRh̄ þ ðd − 2Þðd − 3ÞÞ; ð94Þ

which is proportional to the gravitational action of AdSd−1.
Note that the above derivations applies to general d. For our
propose, we focus on d ¼ 4 in this section.
Unlike the case of MBC (44), the effective Newton’s

constant is divergent

1

Gð3Þ
N

¼ 1

GN

Z
2πq

0

dϕ
FðϕÞ2 − r̄2h

2
; ð95Þ

where we have set d ¼ 4 above. That is because FðϕÞ could
be infinite at some angles. See (89), for example. To get
finite results, we need to regularize the effective Newton
constant (95). It is more convenient to consider the integral
of F instead of the integral of ϕ for (95). Using (88) and
(93), we have

1

Gð3Þ
N

¼ 1

GN

2πq
ϕ0

Z
F∞

Fmin

FdF

f̄ðFÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coth2 ρf̄ðFÞ − F2

p F2 − r̄2h
2

;

ð96Þ

where we set F∞ → ∞ at the end of regularization.
Expanding the above integral element in powers of large
F, we get

1

Gð3Þ
N

¼ 1

GN

2πq
ϕ0

Z
F∞

Fmin

�
sinhðρÞ

2
þO

�
1

F2

��
dF

¼ 1

GN

2πq
ϕ0

�
sinhðρÞ

2
F∞ þ � � �

�
; ð97Þ

where… denotes finite terms. One natural regularization is
that we just drop the above divergent term and define the
renormalized Newton’s constant by

FIG. 7. Cone holography with NBC for r̄h ¼ 1 (q ¼ 1). The
codimension-2 brane E (z̄ ¼ 1), codimension-1 braneQ (89), and
AdS boundary M (z̄ ¼ 0) are labeled by the blue, orange, and
green lines, respectively. The bulk metric is given by (34) with
d ¼ 4 and r̄h ¼ 1. The embedding function ofQ is given by (89).
Note that z̄ ¼ 1=r̄ and ϕ ≃ ϕþ 2π. Note also that the defect D
with z ¼ 0 (25) is not shown in this figure.
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1

Gð3Þ
Nren

¼ 1

GN

2πq
ϕ0

�
−
sinhðρÞ

2
F∞

þ
Z

F∞

Fmin

ðF2 − r̄2hÞFdF
2f̄ðFÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coth2 ρf̄ðFÞ − F2

p �
: ð98Þ

Recall the fact that the induced metric on the brane at a
finite place is dynamical, while the induced metric on the
brane at infinity (such as the AdS boundary) is non-
dynamical. The above regularization is just removing the
contributions from the nondynamical (infinite) regions of
the brane. Note also that

sinhðρÞ
2

F∞ ¼ lim
r̄h→1

Z
F∞

Fmin

ðF2 − r̄2hÞFdF
2f̄ðFÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coth2 ρf̄ðFÞ − F2

p ð99Þ

is the value for a pure AdS space. Thus, Eq. (98) is just the
usual regularization by subtracting an AdS background.
Let us take the cases with ϕ0 ¼ π=2 (92) to illustrate the

above formula. Equivalently, we consider the cases r̄h ¼ 1
or ρ → ∞. By direct calculations, we find that (98)
vanishes for r̄h ¼ 1, which means that the dual CFT has

zero central charge c ¼ 3=ð2Gð3Þ
NrenÞ ¼ 0. To have a non-

trivial CFT duality, we require that r̄h ≠ 1 for this model.
As for ρ → ∞, we derive6

lim
ρ→∞

1

Gð3Þ
Nren

¼ 1

GN
4qð1 − r̄2hÞ

�
π

8
ðr̄2h þ 2Þ

−
3π

16
r̄4hð5r̄2h − 1Þe−2ρ þOðe−4ρÞ

�
; ð100Þ

where 1ffiffi
2

p ≤ r̄h ¼ 1þ
ffiffiffiffiffiffiffiffiffiffi
1þ8q2

p
4q < 1 and we have ∂ρc > 0 from

(100). Recalling that ρUV > ρIR and c ¼ 3=ð2Gð3Þ
N renÞ, we

notice that the c-theorem cUV ≥ cIR is obeyed for large ρ. In
fact, one can check that the right-hand side of (98) is a
positive and monotonically increasing function of ρ. See
Fig. 8, for example. Note that the ρ satisfying the constraint
(93) are actually some discrete points in the blue line of
Fig. 8. Since the continuous ρ is consistent with the c-
theorem, so is the discrete ρ. Thus, the cone holography
with NBC obeys the c-theorem.
In fact, the regularized Newton’s constant (98) can

be derived from the holographic renormalization of AdS/
BCFT [30]. Recall that the divergence of (95) and (96)
comes from the region near r̄ ¼ 1=z̄ ¼ F∞ or equiva-
lently, ϕ ¼ 0; 2ϕ0; 4ϕ0;…. As shown in Fig. 9, these
regions can be regarded as a special limit M → 0 from
AdS/BCFT.
The renormalized action of AdS5=BCFT4 can be found

in Ref. [30], where suitable counterterms are added on M

and P. See Fig. 9 for a sketch of M and P. Taking the limit
M → 0, only the counterterms on P survive for the cone
holography with the NBC,7

IP ¼ 2πq
ϕ0

1

8πGN

Z
P

ffiffiffiffiffiffiffiffi
jgPj

p �
Θ − Θ0 −

1

4
sinh ρRP

�
; ð101Þ

where P is located at r̄ ¼ F∞,
2πq
ϕ0

denotes the total
numbers of P, Θ is the supplementary angle between Q
and M, Θ0 ¼ Θðr̄ → ∞Þ, gP denotes and metric, and
RP is the Ricci scalar on P. See Fig. 9, for example.
Note that the first term of (101) is the famous Hayward
term [83,84], which is added for a well-defined variation of
the action.

FIG. 8. The renormalized Newton’s constant (98) increases
with ρ, which is consistent with c-theorem. Without loss of
generality, we have set q ¼ 3.

FIG. 9. Cone holography from AdS/BCFT. Taking the limit
M → 0, the above figure becomes the region near ϕ ¼ 0; π and
z̄ ¼ 1=r̄ ∼ 0 of Figure 5 for cone holography with NBC.

6Please see Appendix B for the derivations.

7Note that the counterterms on P also include extrinsic
curvatures. Since they do not contribute to the present case,
we do not list them for simplicity.
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From (34) with d ¼ 4 and (88), we can derive

IP ¼ 1

16πGN

2πq
ϕ0

�
− sinhðρÞ

2
F∞ þO

�
1

F∞

��

×
Z
Q̄

ffiffiffiffiffiffi
jh̄j

q
ðRh̄ þ 2Þ: ð102Þ

Adding the above IP to the cone action (94) and using (97),
we finally obtain

IAdSC5
þ IP ¼ 1

16πGð3Þ
Nren

Z
Q̄

ffiffiffiffiffiffi
jh̄j

q
ðRh̄ þ 2Þ ¼ IAdS3 ; ð103Þ

where Gð3Þ
Nreg exactly agrees with (98). Now, we finish the

proof of the equivalence between the cone holography with
the NBC and AdS=CFT. We also verify that the renor-
malized Newton’s constant is indeed given by (98) by
applying the holographic renormalization. Following
approaches of Sec. III, we can derive holographic Weyl
anomaly, entanglement/Rényi entropy, and correlation
functions for the cone holography with NBC.

V. MASSIVE MODES OF CONE HOLOGRAPHY

In the above sections, we focus on the class of solutions
(27), where the effective gravity on the brane is Einstein
gravity and thus is massless. In this section, we investigate
more general solutions to cone holography and find that
there are infinite towers of massive modes of gravitons on
the brane. As a result, the cone holography is different from
AdS=CFT with Einstein gravity generally. In some range of
parameters such as small brane tensions T ≪ 1, the
massive modes are suppressed, and Einstein gravity is a
good approximate on the brane.
For simplicity, we focus on the MBC in this section. We

take the following Ansatz of the perturbation metric,

ds2 ¼ dr2 þ sinh2ðrÞdΩ2
n−2

þ cosh2ðrÞðh̄ð0Þij ðyÞ þHðrÞh̄ð1Þij ðyÞÞdyidyj; ð104Þ

where h̄ð0Þij ðyÞ is an AdS metric and h̄ð1Þij ðyÞ denote the
metric perturbations on the brane E. Note that the induced
metric on E is proportional to the AdS sector of the induced
metric on Q. In the language of bulk metric perturbations,
we have

δgrA ¼ 0; δgaA ¼ 0; δgij ¼ cosh2ðrÞHðrÞh̄ð1Þij ðyÞ:
ð105Þ

For simplicity, we do not consider the angle dependence of
perturbations.
We choose the following gauge,

∇AδgAB ¼ 0; gABδgAB ¼ 0; ð106Þ

which yields

Dih̄ð1Þij ¼ 0; h̄ð0Þijh̄ð1Þij ¼ 0; ð107Þ

where ∇A and Di are the covariant derivatives with respect

to gAB and h̄ð0Þij , respectively. In the gauge (106), Einstein
equations become

ð∇C∇C þ 2ÞδgAB ¼ 0: ð108Þ

Substituting (105) together with (107) into (108) and
separating variables, we obtain

ðDiDi þ 2 − m̂2
kÞh̄ð1Þij ðyÞ ¼ 0; ð109Þ

sinhð2rÞH00ðrÞ þ ðd coshð2rÞ − dþ 2n − 4ÞH0ðrÞ
þ 2m̂2

k tanhðrÞHðrÞ ¼ 0; ð110Þ

where m̂k denotes the mass of gravitons on the brane,
which will be determined later. Solving (110), we get

HðrÞ ¼

8>><
>>:

c12F1ða1; a2; n−12 ; tanh2ðrÞÞ þ c2G
2;0
2;2

�
tanh2ðrÞj a1 þ

d
2
; a2 þ d

2

0; 0

�
; n ¼ 3;

c12F1ða1; a2; n−12 ; tanh2ðrÞÞ þ c2tanh3−nðrÞ2F1ða3; a4; 5−n2 ; tanh2ðrÞÞ; n > 3;

ð111Þ

where 2F1 is the hypergeometric function, G2;0
2;2 is the

Meijer G function, c1 and c2 are integral constants, and ai
are given by

a1 ¼
1

4

�
n − d − 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − nþ 1Þ2 þ 4m̂2

k

q �
; ð112Þ

a2 ¼
1

4

�
n − d − 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − nþ 1Þ2 þ 4m̂2

k

q �
; ð113Þ

a3 ¼
1

4

�
5 − d − n −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − nþ 1Þ2 þ 4m̂2

k

q �
; ð114Þ
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a4 ¼
1

4

�
5 − d − nþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − nþ 1Þ2 þ 4m̂2

k

q �
: ð115Þ

Near the brane E (r ¼ 0), Eq. (111) behaves as

HðrÞ ∼
	
c2 ln rþ � � � ; n ¼ 3;

c2 1
rn−3 þ � � � ; n > 3;

ð116Þ

where � � � denote higher order terms in r.
We impose the natural boundary condition on the brane

E (r ¼ 0), which means the perturbation on E is finite,

HðrÞjr¼0 is finite: ð117Þ

From (116) and (117), we get

c2 ¼ 0: ð118Þ

We impose MBC (19) on the end-of-world brane Q
(r ¼ ρ), which yields

H0ðrÞjr¼ρ ¼ 0: ð119Þ

Substituting (111) and (118) into (119), we derive

m̂2
k

c1
1 − n

tanhðρÞsech2ðρÞ2F1

×

�
1þ a1; 1þ a2;

nþ 1

2
; tanh2ðρÞ

�
¼ 0: ð120Þ

Recall that ai are given by (112) and (113), which depend
on m̂2

k. The above equation imposes a constraint on the
possible mass m̂k. Clearly, the massless mode with m̂2

0 ¼ 0

is always a solution to (120).
To get more understandings of the spectrum, let us study

some special cases. In the large ρ limit, Eq. (120) can be
approximated by

2F1

�
1þ a1; 1þ a2;

nþ 1

2
; 1

�

¼ Γðd
2
− 1ÞΓðnþ1

2
Þ

Γðdþn−1−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m̂2

kþðd−nþ1Þ2
p

4
ÞΓðdþn−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m̂2

kþðd−nþ1Þ2
p

4
Þ
≈ 0;

ð121Þ

which has the roots

m̂2
k ≈ ð2kþ d − 2Þð2kþ n − 3Þ; k ≥ 1; for large ρ:

ð122Þ

Recall that ρ is related to the tension of the end-of-world
brane Q, i,e, T ¼ ðd − 1Þ tanhðρÞ. Note that the mass m̂k

defined in (109) is with respect to the induced metric h̄ð0Þij

on E. We are interested in the effective mass on Q instead
of E. That is because, according to the brane world
holography, the gravity is approximately localized on the
end-of-world brane Q. The mass on Q is defined by

�
□Qþ

2

L2
Q
−m̂2

Qk

�
h̄ð1Þij ðyÞ¼

�
DiDiþ2

cosh2ðρÞ−m̂2
Qk

�
h̄ð1Þij ðyÞ¼0;

ð123Þ

where □Q and LQ ¼ coshðρÞ are the d’Alembert operator
and the AdS radius on Q, respectively. Note that the

induced metric on Q is cosh2ðρÞh̄ð0Þij . As a result, we have
□Q ¼ DiDi= cosh2ðρÞ. Comparing (123) with (109), we
read off

m̂2
Qk ¼

m̂2
k

cosh2ðρÞ : ð124Þ

From (122) and (124), we find that the mass on Q becomes
continuous in the large ρ limit

lim
ρ→∞

Δm̂Qk ∼
1

coshðρÞ → 0: ð125Þ

Since the range of r is infinite in the large ρ limit., i.e.,
0 ≤ r ≤ ρ → ∞, it is natural that the spectrum becomes
continuous in this case.
Let us go on to study the limit with small ρ. From (124),

we have m̂Qk ≈ m̂k at small ρ. Thus, we do not distinguish
them below. Recall that 0 ≤ r ≤ ρ; small ρ also means
small r. For small r, EOM (110) becomes

2rH00ðrÞ þ ð2n − 4ÞH0ðrÞ þ 2m̂2
krHðrÞ ¼ 0: ð126Þ

Remarkably, the above equation is independent of the
spacetime dimension d. Solving the above equation
together with the natural boundary condition (117), we get

HðrÞ ¼ c1r
3
2
−n
2Jn−3

2
ðjm̂kjrÞ; ð127Þ

where Jv denotes the Bessel function of the first kind. Now,
imposing the MBC (119), we obtain the constraint of m̂k for
small ρ,

c1ρ
3
2
−n
2jm̂kjJn−1

2
ðjm̂kjρÞ ¼ 0: ð128Þ

Again, the massless mode m̂0 ¼ 0 is a solution. In general,
the masses jm̂kj are given by the roots of Bessel function
Jn−1

2
divided by ρ. Let us list the first few terms of jm̂kj,

jm̂kj ¼ 0;
3.83
ρ

;
7.02
ρ

;
10.17
ρ

;
13.32
ρ

;… for n¼ 3;

ð129Þ
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jm̂kj ¼ 0;
4.49
ρ

;
7.73
ρ

;
10.90
ρ

;
14.07
ρ

;… for n¼ 4:

ð130Þ

The asymptotic expression of (128) at large jm̂kjρ is
given by

c1ρ1−
n
2

ffiffiffiffiffiffiffiffi
2m̂k

π

r
cos

�
jm̂kjρ −

nπ
4

�
≈ 0; ð131Þ

from which we derive

jm̂kj ≈
πð4k − 4n1 þ n − 2Þ

4ρ
; k ≫ 1; for small ρ;

ð132Þ

where n1 is an integer which we fine tune in order to make
(132) to be the kth root of (128) for large k. For example,
we have n1 ¼ 0 for n ¼ 3 and n ¼ 4. Interestingly,
Eq. (132) agrees well with (129) and (130) even for
small k.
Some comments are in order. First, it is remarkable that,

at small ρ, m̂k is independent of the dimension of
spacetime, i.e., d. Second, m̂k with m ≥ 1 is inversely
proportional to ρ and thus is quite large at small ρ. As a
result, the massive modes of gravitons are suppressed, and
the low-energy effective theory on the brane is Einstein
gravity approximately. It is quite similar to the usual KK
mechanism. Consider a space with a small circle R4 × S1;
the masses of massive KK modes are quite large, i.e.,
m̂k ∼ k=r0 → ∞, when the circle radius is small, i.e.,
r0 → 0. At low energy, only the massless mode is excited,
and the massive modes are frozen. Third, the cone
holography with 0 ≤ r ≤ ρ is quite different from the usual
brane world holography with −∞ ≤ r ≤ ρ. As a result, the
mass spectra of the two theories are quite different. For
example, the masses of brane world holography are not
inversely proportional to ρ at small ρ.
To summarize, we find that, as is expected, there are

infinite massive KK modes on the brane. As a result, in
general, the cone holography is different from AdS=CFT
with Einstein gravity. One can argue that the cone holog-
raphy is equivalent to AdS=CFT with infinite towers of
massive gravity on the brane. However, the simpler and
better way to study the holographic dual of edge modes is
the Einstein gravity is the bulk cone rather than the infinite
towers of massive gravity on the brane. For the large brane
tension ρ → ∞, the mass spectrum is continuous, while for
the small brane tension ρ → 0, the mass spectrum is
discrete, and the masses of massive modes become infinite.
At low energy, only the massless mode is excited. As a
result, when ρ is small, the low-energy effective theory on
the brane is Einstein gravity. To end this section, let us draw
some figures for the mass spectrum of cone holography.

See Fig. 10, for example, where the intersections of the
curve and the m̂-axis denote the allowed masses on
the brane.

VI. CONCLUSIONS

In this paper, we propose a novel codimension-n holog-
raphy, called cone holography, which conjectures that a
gravity theory in (dþ 1)-dimensional conical spacetime is
dual to a CFT on the ðdþ 1 − nÞ-dimensional defects. The
cone holography can be derived by taking the suitable zero-
volume limit of AdS/dCFT, and it can be regarded as a
holographic dual of the edge modes on the defects. For one
class of exact solutions, we prove the cone holography by
showing that it is equivalent to AdS=CFT with Einstein
gravity. The proof is valid at least in the classical level for
gravity or, equivalently, in large N limit for CFTs. We test
cone holography by studying holographic Weyl anomaly,
holographic Rényi entropy, and correlation functions and
find good agreement with the results of CFTs. In particular,
the c-theorem is obeyed by cone holography. These are
strong supports for our proposal. In addition to the mixed
boundary condition, we also discuss the cone holography
with Neumann boundary conditions. We find that the end-of-
world brane Q intersects with the AdS boundaryM at some
specific angles for NBC. As a result, the effective Newton
constant is divergent and needs to be regularized. By

FIG. 10. Mass spectrum of cone holography, where the masses
correspond to the intersections of the curveH0ðρÞ and the m̂-axis.
The above figure is for d ¼ 4 and n ¼ 3, and the below figure is
for d ¼ 5 and n ¼ 4. The blue curve is for ρ ¼ 1, and the yellow
curve is for ρ ¼ 0.2. The larger the tension ρ is, the more
continuous the mass spectrum is.
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performing the holographic renormalization, we get a well-
defined Newton’s constant, which is consistent with the
c-theorem. Finally, we analyze the mass spectrum of cone
holography and find that the larger the tension is, the more
continuous the mass spectrum is. Due to the massive KK
modes on the brane, in general, cone holography is different
from AdS=CFT with Einstein gravity. When the tension ρ is
small, since the massive modes are frozen at low energy,
the effective theory on the brane is Einstein gravity. The cone
holography is a generalization of wedge holography [58–60]
and is closely related to brane world holography [20–22],
AdS/BCFT [25–30], AdS/dCFT [64–66], and holographic
Entanglement/Rényi entropy [66,71,73,74,82]. Thus, it is
expected to have a wide ranges of applications.
Many interesting problems remain to be investigated. We

list some of them for examples:
(1) For the cone holography with NBC, we assume the

embedding function of Q to be r̄ ¼ FðϕÞ and find
that Q tends to infinity at some angles, i.e.,
FðϕiÞ → ∞. It is interesting to consider more gen-
eral embedding functions and see if the end-of-world
brane Q could be located at finite place.

(2) There are many different kinds of warped embed-
dings between Einstein manifolds [72]. In this paper,
we discuss only one of them and find that the
corresponding cone holography is equivalent to
AdS=CFT with Einstein gravity. It is interesting
to study other kinds of embeddings in the framework
of cone holography.

(3) Find more general solutions different from (27) of
cone holography. Similar to the case of wedge
holography [60], these solutions are expected to
reproduce a more general Weyl anomaly, such as the
second and third terms of (3).

(4) In this paper, we mainly focus on vacuum Einstein
gravity. We discuss briefly the scalar fields for
correlation functions. It is interesting to study more
general matter fields such as Maxwell’s fields, which
play an important role in AdS/CMT.

(5) Generalize cone holography to higher derivative
gravity. It is interesting that, unlike the wedge
holography, it is easier to find nontrivial solutions
(non-AdS) to the cone holography for higher deriva-
tive gravity.

(6) In this paper, we focus on the classical limit of
gravity. It is interesting to study the quantum
corrections and see if the equivalence between the
cone holography and AdS=CFT still hold.

(7) Apply cone holography to discuss the information
paradox such as island and the Page curve of
Hawking radiations.

(8) Find other interesting applications for cone
holography.

We hope these interesting problems can be addressed in
the future.
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APPENDIX A: SOME FORMULAS

Let us start with the metric in the bulk

ds2 ¼ gABdXAdXB

¼ dr2 þ fðrÞγabðxÞdxadxb þ gðrÞh̄ijðyÞdyidyj; ðA1Þ

where γab and h̄ij are the metrics satisfying the following
equations,

Rγ ab ¼ ðn − 3Þγab; Rh̄ ij ¼ −ðdþ 1 − nÞh̄ij ðA2Þ

From the above metric, we obtain nonzero affines and
curvatures as follows,

Γr
ab ¼ −

f0

2f
gab; Γa

rb ¼
f0

2f
δab; Γa

bc ¼ Γγ
a
bc; ðA3Þ

Γr
ij ¼ −

g0

2g
gij; Γi

rj ¼
g0

2g
δij; Γi

jk ¼ Γh̄
i
jk; ðA4Þ

Rr
arb ¼

�
−
1

2

f00

f
þ 1

4

f02

f2

�
gab;

Ra
bcd ¼ Rγ

a
bcd −

1

4

f02

f2
ðδacgbd − δadgbcÞ; ðA5Þ

Rr
irj ¼

�
−
1

2

g00

g
þ 1

4

g02

g2

�
gij;

Ri
jkl ¼ Rh̄

i
jkl −

1

4

g02

g2
ðδikgjl − δilgjkÞ; ðA6Þ

Ra
ibj ¼ −

1

4

f0

f
g0

g
δabgij; ðA7Þ

Rrr ¼ ðd − nþ 2Þ
�ðg0Þ2
4g2

−
g00

2g

�
þ ðn − 2Þ

�ðf0Þ2
4f2

−
f00

2f

�
;

ðA8Þ

Rab¼Rγabþ
�ðf0Þ2
4f2

−
ðd−nþ2Þf0g0

4fg
−
f00

2f
−
ðn−3Þðf0Þ2

4f2

�
gab

ðA9Þ

Rij¼Rh̄ijþ
�ðg0Þ2
4g2

−
ðd−nþ1Þðg0Þ2

4g2
−
ðn−2Þf0g0

4fg
−
g00

2g

�
gij

ðA10Þ
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R ¼ Rγ

f
þ Rh̄

g
−
ðn − 2Þf0ð2fðd − nþ 2Þg0 þ gðn − 5Þf0Þ

4f2g

−
4gðfðd − nþ 2Þg00 þ gðn − 2Þf00Þ þ fðd − n − 1Þðd − nþ 2Þðg0Þ2

4fg2
ðA11Þ

where gab ¼ fðrÞγij, gij ¼ gðrÞh̄ij and ðÞγ and ðÞh̄ denote the quantities defined by the metrics γij and h̄ij, respectively.

Applying Einstein equations RAB ¼ −dgAB together with (A2), we obtain EOMs of fðrÞ and gðrÞ as

ðd − nþ 2Þððg0Þ2 − 2gg00Þ
4g2

þ dþ ðn − 2Þððf0Þ2 − 2ff00Þ
4f2

¼ 0; ðA12Þ

ð−dþ n − 2Þf0g0 þ 2gð−f00 þ 2n − 6Þ
4fg

þ d −
ðn − 4Þðf0Þ2

4f2
¼ 0; ðA13Þ

ð−2gð2dþ g00 − 2nþ 2Þ þ 4dg2 þ ðn − dÞðg0Þ2Þ þ ð2 − nÞgf0g0
f

¼ 0: ðA14Þ

There are two kinds of exact solutions to the above
equations. The first kind is

fðrÞ ¼ sinh2r; gðrÞ ¼ cosh2r; ðA15Þ

which corresponds to an asymptotically AdS space. The
second kind of solution is given by

fðrÞ¼n−2

d
sinh2

� ffiffiffi
d

pffiffiffiffiffiffiffiffiffiffi
n−2

p r

�
; gðrÞ¼d−nþ1

d
: ðA16Þ

Note that the metric (A1) with fðrÞ and gðrÞ given by (A16)
is not an AdS metric.
From (A12), (A13), and (A14), we can derive two

independent equations,

g ¼ fðd − nþ 1Þðd − nþ 2Þðf0Þ2
ðf0Þ2ððd − 6Þdf þ f00 þ ðn − 6Þðn − 3ÞÞ þ ffð3Þf0 − 2fðdf − f00 þ n − 3Þð2ðdf þ n − 3Þ − f00Þ ðA17Þ

and
16d2f4 þ ðdðn − 6Þ þ 4Þðf0Þ4 − 4fðf0Þ2ð2ðn2 − 7nþ 12Þ − ðd − 2Þf00Þ

þ 4f2ðdðd − 3nþ 10Þðf0Þ2Þ − 8df3ððd − nþ 4Þf00 − 4ðn − 3ÞÞ
þ 4f2ðð−f00 þ 2n − 6Þðð−dþ n − 3Þf00 þ 2ðn − 3ÞÞ þ ð−dþ n − 2Þf0fð3ÞÞ ¼ 0: ðA18Þ

The third order differential equation (A18) can be solved
numerically. Once we solve fðrÞ from (A18), we can derive
gðrÞ by (A17).
To end this section, let us consider the perturbation

solutions near the brane E, i.e., r ¼ 0. We take the
following Ansätze:

fðrÞ ¼ r2

m̄2
þ c1r4 þ c2r6 þOðr8Þ; ðA19Þ

gðrÞ ¼ d1 þ d2r2 þOðr4Þ: ðA20Þ

Substituting the above Ansätze into Einstein
equation (A13), we get

ðm̄2 − 1Þðn − 3Þ
r2

þOðr0Þ ¼ 0; ðA21Þ

which yields either n ¼ 3 or m̄ ¼ 1. For n ¼ 3, solving
EOMs (A12), (A13), and (A14), we derive

c2 ¼
c21ð17d − 8Þm̄4 − 3c1dðdþ 1Þm̄2 þ d2

20ðd − 1Þm̄2
;

d1 ¼
ðd − 2Þðd − 1Þ

6c1m̄2 þ ðd − 3Þd ;

d2 ¼
ðd − 2Þðd − 3c1m̄2Þ
6c1m2 þ ðd − 3Þd ; ðA22Þ
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where m̄ and c1 are free parameters. As for n > 3, we must have m̄ ¼ 1. Solving EOMs (A12), (A13), and (A14), we obtain

c2 ¼
c21ðdð11n − 16Þ − 2n2 þ 2nþ 4Þ − 3c1dðdþ n − 2Þ þ d2

5ðnþ 1Þðd − nþ 2Þ ;

d1 ¼
ðd − nþ 1Þðd − nþ 2Þ

3c1ðn2 − 3nþ 2Þ þ dðd − 2nþ 3Þ ;

d2 ¼
ðd − nþ 1Þðd − 3c1ðn − 2ÞÞ

3c1ðn2 − 3nþ 2Þ þ dðd − 2nþ 3Þ ; ðA23Þ

where c1 is a free parameter. Similarly, we can solve the perturbation solutions near the AdS boundaryM, i.e., r → ∞. One
can check that ðlimr→∞

fðrÞ
gðrÞ − 1Þ can be nonzero for n > 3. Thus, the BC (31) chosen in Sec. II A is well defined.

APPENDIX B: INTEGRAL

In this Appendix, we study the integral (98) carefully. Under the coordinate transformation

F ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðρÞ

� ffiffiffi
2

p
ð2R2 þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8r̄4h − 8r̄2h þ coshð2ρÞ þ 1

q
þ 2 coshðρÞ

�r
; ðB1Þ

the integral (98) becomes

1

Gð3Þ
N ren

¼ 1

GN

2πq
ϕ0

Z
∞

0

dR ×

�
sinhðρÞðcoshðρÞð2 coshðρÞ þ ffiffiffi

2
p ð2R2 þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshð2ρÞ þ 8r̄4h − 8r̄2h þ 1

p
ÞÞ3=2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 1

p
ðcoshð2ρÞ þ ffiffiffi

2
p ð2R2 þ 1Þ coshðρÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshð2ρÞ þ 8r̄4h − 8r̄2h þ 1

p
þ 4r̄2h − 3Þ

−
23=4

4
sinhðρÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
coshðρÞ

p ffiffiffi
4

p
1þ coshð2ρÞ þ 8r̄4h − 8r̄2h

�
: ðB2Þ

Expanding the above integral in powers of eρ, we have

1

Gð3Þ
Nren

¼ 1

GN

2πq
ϕ0

Z
∞

0

dR ×

�
2 − r̄4h − r̄2h
4ðR2 þ 1Þ þ ðr̄2h − 1ÞðR2ð8r̄6h − 6r̄2h þ 4Þ þ 7r̄6h − 3r̄4h þ 6r̄2h − 4Þ

4ðR2 þ 1Þ2 e−2ρ þOðe−4ρÞ
�

¼ 1

GN
4qð1 − r̄2hÞ

�
π

8
ðr̄2h þ 2Þ − 3π

16
r̄4hð5r̄2h − 1Þe−2ρ þOðe−4ρÞ

�
; ðB3Þ

which exactly agrees with (100). Note that we have used ϕ0 ¼ π=2 for ρ → ∞ above. From (B2), it is straightforward to
numerically derive the relation between the renormalized Newton’s constant and ρ. See Fig. 8 for example.
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