PHYSICAL REVIEW D 104, 086031 (2021)
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We propose a novel codimension-n holography, called cone holography, between a gravitational theory
in (d + 1)-dimensional conical spacetime and a conformal field theory (CFT) on the (d+ 1 —n)-
dimensional defects. Similar to wedge holography, the cone holography can be obtained by taking the zero-
volume limit of holographic defect CFT. Remarkably, it can be regarded as a holographic dual of the edge
modes on the defects. For one class of solutions, we prove that the cone holography is equivalent to
AdS/CFT, by showing that the classical gravitational action and thus the CFT partition function in large N
limit are the same for the two theories. In general, cone holography and AdS/CFT are different due to the
infinite towers of massive Kaluza-Klein modes on the branes. We test cone holography by studying Weyl
anomaly, entanglement/Rényi entropy, and correlation functions and find good agreement between the
holographic and the CFT results. In particular, the c-theorem is obeyed by cone holography. These are
strong supports for our proposal. We discuss two kinds of boundary conditions, the mixed boundary
condition and Neumann boundary condition, and find that they both define a consistent theory of cone
holography. We also analyze the mass spectrum on the brane and find that the larger the tension is, the more
continuous the mass spectrum is. The cone holography can be regarded as a generalization of the wedge
holography, and it is closely related to the defect CFT, entanglement/Rényi entropy, and AdS/BCFT
(dCFT). Here BCFT(dCFT) means a conformal field theory defined in a manifold with a boundary (defect).

Thus, it is expected to have a wide range of applications.

DOI: 10.1103/PhysRevD.104.086031

I. INTRODUCTION

The AdS/CFT correspondence plays an important role
in our modern understanding of quantum gravity [1-3]. As
an exact realization of the holographic principle [4,5], it
proposes that the quantum gravity theory in an asymptoti-
cally anti-de Sitter space (AdS) is dual to the conformal
field theory (CFT) on the boundary. Since it is a strong-
weak duality, it provides a powerful tool to study the
nonperturbative phenomena in gauge theories [6—8], quan-
tum information [9], and condensed matter physics [10].

Many interesting generalizations of AdS/CFT have been
developed, which include de Sitter/CFT [11-15], Kert/CFT
[16,17], flat space holography [18,19], brane world holog-
raphy [20-22], surface/state correspondence [23,24], and
AdS/BCFT [25-30]. Here, BCFT means a conformal field
theory defined on a manifold with a boundary, where
suitable boundary conditions are imposed. It is remarkable
that, in the past few years, a doubly holographic model has
been proposed for the resolution of information paradox,
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where the island plays an important role in recovering the
Page curve of Hawking radiation [31-33]. See also
Refs. [34-57] for related topics.

Recently, a codimension-2 holography, named wedge
holography, is proposed by Ref. [58] between the gravita-
tional theory in a (d 4 1)-dimensional wedge spacetime and
the (d — 1)-dimensional CFT on the corner of the wedge:

gravity on wedge W, ; ~ CFT,_; onZX.

The geometry of wedge holography is shown in Fig. 1
(right), where N denotes (d + 1)-dimensional wedge space,
0, and Q, denote two d-dimensional branes, and X is the
corner of the wedge where CFT,_; lives. See also Ref. [59]
for a similar proposal of codimension-2 holography. Wedge
holography can produce the correct free energy, Weyl
anomaly, entanglement/Rényi entropy, and correlation
functions [58,60]. For one novel class of solutions, it is
proved that wedge holography is equivalent to AdS/CFT
[60]. These are all strong supports for wedge holography. It
is interesting that wedge holography can be obtained as a
special limit of AdS/BCFT [25] with vanishing width of a
strip [58]. See Fig. 1 (left) for example. Here, BCFT means
a conformal field theory defined on a manifold with a
boundary, where suitable boundary conditions are imposed.

As a limit of AdS/BCFT, the wedge holography
can be regarded as a holographic dual of the edge
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FIG. 1.

modes on the boundary. Let us explain more on this
viewpoint. When there is a boundary, in general, there
are boundary contributions to Weyl anomaly [61,62].
Take 3D BCFT as an example; the Weyl anomaly is given
by [63]

A= / Ay /[ol (b Row + BaTER), (1)
oM

where OM, Ry, kup, by, and b, denote the boundary of
manifold M, intrinsic Ricci scalar, traceless parts of
extrinsic curvatures, and boundary central charges, respec-
tively. Remarkably, the first term of (1) takes the same form
as Weyl anomaly of 2D CFTs. Furthermore, the boundary
central charge b; obeys a c-like theorem [63], i.e.,
biyy = bi1r. This strongly suggests that there are effective
CFTs living on the boundary. Note that the effective CFT is
a little different from the usual one, since the Weyl anomaly
(1) also depends on the extrinsic curvature Trk?, which
contains the bulk information. Thus, it is expected that the
holographic dual of such effective CFT is different from the
usual one. This novel kind of effective CFT has a natural
physical origin; it is the edge mode on the boundary of
BCFTs. Now, let us consider the space with two parallel
boundaries, such as a strip in Fig. 2 (left), where the two
parallel boundaries are labeled as two blue points. Taking
the vanishing volume limit M — 0 so that the two parallel
boundaries coincide with each other, the 3D BCFTs living
in M disappear, and only the edge modes on the boundary
OM survive. See Fig. 2 (left), for example, where d = 3 for
our case. In this way, we get effective 2D CFTs from a limit
of 3D BCFTs. Let us go on to discuss the holographic
realization of the above approach. According to AAS/BCFT

CFT4 BCFT4 CFTy CFTy4
o o e
X=0M M X =0M by

FIG. 2. (Left) BCFT,; on M and the edge mode as effective

CFT,_, on £ = 0M. (Right) in the zero-volume limit M — 0,
BCFT,; on M disappears, and only the edge modes CFT,_; =
CFT,_; & CFT,_; on X survive.

b

(Left) wedge holography from AdS/BCFT. (Right) geometry of wedge holography.

[25], the two boundaries [X of Fig. 2 (left)] are extended to
two end-of-world branes Q; and Q, in the bulk N, and the
gravity theory in the bulk A is dual to the BCFT on M. See
Fig. 1 (left), for example. By taking the zero-volume limit
of AdS/BCFT, i.e., M — 0, we are left with the edge mods
on X, and we finally obtain the wedge holography as shown
in Fig. 1 (right), which can be regarded as a holographic
dual of edge modes as we have argued above.

Some comments are in order:

(1) The dependence on extrinsic curvatures by the Weyl
anomaly (1) implies that the edge modes contain the
bulk information. As a result, the 2D edge mode is
not dual to a 3D gravity as usual. Instead, it is dual to
the gravity theory in a 4D wedge spacetime.

(2) The above discussions can be generalized to general
dimensions. For even d, the boundary term of the
Weyl anomaly does not include intrinsic Euler
density. This does not mean there are no edge modes
on the boundary. In fact, there is always boundary
entropy on the boundary, which decreases under
renormalization group (RG) flow and is strong
evidence for the existence of boundary states/
edge modes.

(3) Let us summarize the steps for the construction of
wedge holography as a holographic dual of edge
modes. First, study the Weyl anomaly to see if the
edge modes behave effectively as CFTs on the defect.
Second, take a suitable zero-volume limit so that only
the edge modes survive. Third, extend the discus-
sions into the bulk to obtain a holographic dual of the
edge modes. In other words, take a suitable limit of
AdS/BCFT to get wedge holography.

So far, we have focused on the codimension-1 defect
(boundary). It is interesting to generalize the discussions to
general defect CFT (dCFT). This is the main purpose of this
paper. We follow the above steps for the construction of
wedge holography and generalize it to codimension-m
defects. Let us first study the Weyl anomaly. Without loss
of generality, we consider a codimension-2 defect in four
dimensions. The Weyl anomaly takes the following form,

c .. a
— d 4 Cljle“ _ E 2
A A * |g|<167r2 ik 172 4> @)
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+/dy2 lo|(d\Rp + d,C + dsTrk?),  (3)
D

where Cjji, E4, Rp, and k are the Weyl tensor, Euler
density in the bulk M, intrinsic Ricci scalar, and traceless
parts of extrinsic curvatures on the defect D, respectively.
Here, C% denotes the contraction of the Weyl tensor
projected to directions orthogonal to D, and
(a,c,dy,d,,d;3) are central charges. Similar to the case
of BCFT, the first term of (3) takes the same form as Weyl
anomaly of 2D CFTs, and the corresponding central charge
d; obeys a c-like theorem [63], i.e., djyy = djr. This
means that the edge modes on the defect behave effectively
as 2D CFTs. Since the Weyl anomaly (3) on the defect D
also depends on the bulk Weyl tensions and extrinsic
curvatures, the edge modes contain the bulk information
and are different from the usual 2D CFTs. This is also
similar to the case of BCFT.

Now, let us turn to the second step to take a suitable zero-
volume limit. To have a well-defined zero-volume limit, we
add a boundary P which surrounds the codimension-2
defect D as shown in Fig. 3. We require the geometry of P
to be S; X R, so that it coincides with the codimension-2
defect D = R, in the zero-volume limit with §; — 0. See
Fig. 3, for example, where d = 4 and m = 2 for our present
case. Let us explain the above constructions in more details.
Consider the following metric for general d and m,

2 d—m
Z
ds® = dz* + ?dggl_l +) dy?, (4)
i=1

boundary : P = S;,_1 X Ry_m

codimension-m defect : D = Ry_p,

FIG. 3. Zero-volume limit of dCFT. M is a d-dimensional
manifold where dCFT is defined, P is the boundary of M and D is
a codimension-m defect at the center of M. The metric is given by
@), ds? = d2 + 5dQL_, + 3¢ dy? with 0 <z <z, The
defect D and the boundary P are located at z =0 and z = z,
respectively. Note that the geometry of P is chosen to be §,,_; x
R,_,, so that it coincides with the defect D = R,_,, in the zero-
volume limit M — 0 with zy — 0 and S,,_; — 0. Here, z, is the

radius of the sphere S,,_;. In such a limit, only the edge modes of
dCFT survive.

where ¢ is a positive constant related to the conical
singularity, den_l is the line element of the unit sphere,
the codimension-m defect D is located at z = 0, and the
boundary P is at z = z3. From (4), it is clear that the
boundary P = S,,_; X R;_,, coincides with the codimen-
sion-m defect D = R,_,, in the zero-volume limit,

limP~D =Ry, (5)

70—0

where we have used the fact that the sphere S,,_; shrinks to
zero in the limit of zero radius z, — 0. Before we go to the
third step, let us further discuss the edge modes. For
simplicity, we return to the case with d =4 and m = 2.
Before we take the limit z, — 0, there are two kinds of edge
modes: one lives on the 2D defect D, and the other one lives
on 3D boundary P. After we perform the limit z, — 0, the
circle §; — 0 shrinks to zero. Due to the Kaluza-Klein
mechanism, the 3D edge modes on P become effectively 2D
fields, which include massless modes and infinite towers of
massive modes. Since the massive modes have infinite mass
my ~ k/zy — oo, they decouple from the massless modes
and can be ignored safely at finite energy scale. As a result,
the edge modes on the 3D boundary P become a massless
Kaluza-Klein (KK) mode on the 2D defect D ~ lim_ _,, P in
the zero-volume limit. Now, the two kinds of edge modes
both live on the 2D defect D effectively in the zero-volume
limit. Clearly, this is also the case for general d and m.
Now, let us go to step 3 to construct a holographic dual of
the edge modes on defects. Recall that dCFT lives in the
manifold M with a boundary P and a codimension-m defect
D at the center. See Fig. 3. We first consider a small but
finite M. Following AdS/BCFT [25] and AdS/dCFT
[64—66],1 the boundary P and the codimension-m defect
D on M are extended to an end-of-world brane Q and a
codimension-m brane E in the bulk, respectively. Please see
Fig. 4 for the geometry, where C is the bulk spacetime
bounded by Q and M, ie, 0C=QuU M. According to
AdS/BCFT [25] and AdS/dCFT [64-66], a gravity theory
in the bulk C is dual to the dCFT defined on M. Now, let us
take the zero-volume limit M — 0. On the AdS boundary,
the boundary P and codimension-m defect D coincide, and
only edge modes of dCFT survive. On the other hand, in the
bulk, C becomes a conical spacetime when M — 0. Thus,
the gravity theory in the (d + 1)-dimensional conical
spacetime C is dual to the edge modes (CFT) on the
(d-m)-dimensional defect D. We call this novel holography
cone holography or codimension-n holography, where
n=m+ 1. See Fig. 5 for the geometry of cone

'In fact, AdS/BCFT can be regarded as a special case of AdS/
dCFT, since the boundary is a codimension-1 defect. For our
purpose, we want to distinguish the codimension-1 defect and the
codimension-m defect with m > 2. Thus, by “dCFT,” we means
the codimension-m defect with m > 2 in this paper.
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holography, which we will explain more in Sec. II. Note
that the above arguments can be regarded as a derivation of
cone holography from AdS/dCFT following the same logic
of the derivation of wedge holography from AdS/BCFT
[58]. In the remainder of this paper, we provide more
evidence for this proposal.

Let us summarize the main results of this paper. We
propose a codimension-n holography, called cone holog-
raphy, between the gravitational theory in a (d+ 1)-
dimensional conical spacetime and the CFT on a
(d + 1 — n)-dimensional defect. We discuss two kinds
of boundary conditions for the end-of-world brane Q,
the mixed boundary condition, and Neumann boundary
condition and show that they both define a consistent
theory. We test our proposal by studying holographic Weyl
anomaly, holographic entanglement/Rényi entropy, and
holographic correlation functions and find good agreement
with results of CFTs. Besides, we find that the c¢-theorem
is obeyed by cone holography. These are all strong support
for our proposal. Finally, we discuss the mass spectrum of
cone holography and find that there are infinite towers of
massive gravity on the brane. In the limit of small brane
tensions, the massive modes are frozen at low energy, and
the effective theory on the brane is Einstein gravity.

The paper is organized as follows. In Sec. II, we
formulate the cone holography and prove that it is equiv-
alent to AdS/CFT with Einstein gravity for a novel class of
solutions. In Sec. III, we test cone holography by studying
the holographic Weyl anomaly, holographic Rényi entropy,
and correlation functions. In Sec. IV, we discuss carefully
the cone holography with the Neumann boundary con-
dition. In Sec. V, we discuss more general solutions to cone
holography and show that the gravity on the brane is
massive generally. Finally, we conclude with some open
problems in Sec. VL.

Our notations are as follows. The coordinates on C, Q, E,
and D are labeled by X4 = (r,x%y’), x* = (xy'),
vy =(z, y’) and yf, respectively, where A runs from 1 to
d+ 1, aruns from 2 to n — 1, and i runs from n to d + 1.
Besides, gag, h,, 7ij> and ;5 denote the metrics on C, Q,
E, and D. D is a codimension-m defect on the AdS
boundary M, and E is a codimension-m brane in the bulk
N, where m = n — 1.

II. CONE HOLOGRAPHY

In this section, we formulate the general theory of cone
holography. We discuss the geometry, the boundary con-
ditions, and solutions. We prove that the gravitational
action of cone holography is equivalent to that of
AdS/CFT for one general class of solutions. Assuming
that AdS/CFT holds, this can be regarded as a proof of
cone holography in a certain sense. For simplicity, we
mainly focus on the mixed BC in this section. We leave a
careful study of Neumann BC for Sec. IV.

A. Cone holography

1. Geometry

To start, let us recall the geometry of cone holography as
shown in Figs. 4 and 5. Let us first illustrate Fig. 4. M is the
d-dimensional manifold where the dCFT is defined, P is
the boundary of M, and D is a codimension-m defect at the
center of M. The geometry of the boundary is set to be
P = S,,_; x D so that it shrinks to the defect D in the zero-
volume limit with M — 0 and S,,_; — 0. Following AdS/

FIG. 4. Cone holography from AdS/BCFT and AdS/dCFT.
DCFT lives in the manifold M with a boundary P and a
codimension-m defect D at the center. The boundary P and
codimension-m defect D are extended to an end-of-world brane
Q and a codimension-m brane E in the bulk, respectively. C
(orange) is the bulk spacetime bounded by Q and M, M (gray) is
the AdS boundary. In the limit M — 0, the bulk spacetime C
becomes a cone, and we obtain the cone holography from AdS/
BCFT and AdS/dCFT.

E:AdSsi2-n -~

N : AdSg+1

C : cone in AdS4+1

- - Q:AdSgs2-n X Sn2

M

FIG. 5. Geometry of cone holography: M is a d-dimensional
manifold (gray plane), and D is a codimension-m defect (blue
point) in M, where m =n—1. M is extended to a (d+ 1)-
dimensional asymptotically AdS space N, and D is extended to a
(d + 1)-dimensional cone C (orange) in the bulk. The cone C is
bounded by a codimension-1 brane Q (boundary of orange cone),
i.e., 0C = Q. The geometries of Q and E are set to be AdS,,,_, X
S,—» and AdS,.,_, so that they shrink to the same defect D =
0Q = JE on the AdS boundary M. The cone holography proposes
that a gravity theory in the (d + 1)-dimensional cone C is dual to a
CFT on (d + 1 — n)-dimensional defect D.
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BCFT [25] and AdS/dCFT [64-66], the boundary P and
codimension-m defect D on M are extended to an end-of-
world brane Q and a codimension-m brane E in the bulk,
respectively. C is the bulk manifold bounded by Q and M,
ie,0C=0QuU M. According to AAS/BCFT [25] and AdS/
dCFT [64-66], the gravity theory in the bulk C is dual to
the dCFT on M. In the zero-volume limit M — 0, the dCFT
on M disappears, and only the edge modes on the defect
D ~1limy,_, P survive. As a result, the gravity theory in the
bulk C is dual to the edge modes on the defect D ~
limy,_, P in the zero-volume limit M — 0. In this way, we
derive cone holography from a suitable limit of AdS/dCFT.

Let us go on to explain Fig. 5, which is obtained from
Fig. 4 by taking the limit M — 0. M is a d-dimensional
manifold, D is a codimension-m defect in M, where
m=n-—1. In AdS/CFT, M is extended to a (d+ 1)-
dimensional asymptotically AdS space N. In cone holog-
raphy, the defect D is extended to a (d + 1)-dimensional
cone C in the bulk, which is bounded by an end-of-world
brane Q, i.e., 0C = Q. This should be understood as a limit
of AdS/dCFT as shown in Fig. 4: P is extended to Q, D is
extended to E, and M is extended to C. Note that the
geometries of Q and E are required to be AdS,,,_, X S,_»
and AdS,,,_, so that they shrink to the same defect
D = 0Q = OF on the AdS boundary M. This is a key
characteristic of cone holography, which enables the
theory to be codimension n. It should be stressed that,
as a solution to Einstein equation, the bulk geometry is
smooth everywhere. The conical singularity can only
appear on the defect D. The cone holography proposes
that classical gravity in the cone C,, ~CFT,,_, on
the defect D. It is a natural generalization of wedge
holography [58]. Similar to wedge holography [58], the
cone holography can be obtained as a suitable limit of AdS/
BCFT [25-30] and AdS/dCFT [64-66]. As we have
explained in the Introduction and in the above paragraph,
cone holography can be regarded as a holographic dual of
edge modes on defects. From now on, we forget the origin
from edge modes and take cone holography as a general
theory of holography. We label the cone holography by
AdSC,,,/CFT,,,_, in this paper.

To get a better understanding of the geometry of Fig. 5,
let us study a typical metric of cone holography,

dz? + 324 dy;
z2 ’

0<r<p, (6)

ds® = dr® + sinh?(r)dQ2,_, + cosh?(r)

whichis alocally AdS space. Here, r is the proper distance to
the codimension-m brane E, szm_] is the line element of the
unit sphere, m = n — 1, and p is a constant. The codimen-
sion-m brane E, the end-of world brane Q, and the AdS
boundary M are located at r =0, r =p, and r = oo,
respectively. The codimension-m defect D is at z =0 on

FIG. 6. A sketch of cone holography for ¢ =0 and ¢ = 7,
where ¢ ~ ¢ + 2.

the AdS boundary M. Please see Fig. 6 for a sketch of the
geometry of cone holography for ¢ = 0 and ¢p = =, where ¢
isthe angle of S,,_; with the period 2z. From (6), we can read
off the induced metrics on the branes E and Q as

dz? + Y 4= dy?
dsp = ———=—1, (7)

z
dz> + > 4" dy?
2171 i , (8)

dsgy = sinh*(p)dQ;, | + cosh?(p) ;

which clearly shows that the geometries of £ and Q are
AdS, > ,and AdS, ,_, X S,_»,asisshownin Fig. 5 (recall
that n = m + 1). Let us go on to discuss the induced metric
on the AdS boundary M (r = o). From (6), we have

) e2r d—m
iy~ im & (208, +a2+ 3 ). 9
. -

1

which is conformally equivalent to the metric of dCFT (4)
with ¢ = 1. Recall that ¢ is a parameter related to the conical
singularity, which is defined in (4). When g = 1, there is no
conical singularity on the defect D, i.e., z = 0. To discuss
more general defects with conical singularities, one can
replace the metric (6) by

2 d-m .2
dz? + 3 ¢ dy; (10)

2 El

ds* = dr?* + f(r)dQ?,_, + g(r) ;

where f(r) and g(r) can be determined by solving Einstein
equations with suitable boundary conditions. We will dis-
cuss this more general metric later.

2. Action and boundary conditions

The gravitational action of cone holography is given by

1
1= daxa+! R-2A
g X VIsl(R=20)
1
b [ @t SRR -T) T / dy'=m /] (1)
SHGN 0 E
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where R is the Ricci scalar, —2A = d(d — 1) is the cosmo-
logical constant (we have set AdS radius L = 1), K is the
extrinsic curvature, 7 and T are the tensions of branes Q
and E. g3, h,w, and yij are metrics on C, Q, and E,
respectively. Note that there is no well-defined thin brane
limit for the Einstein equations for codimension 3 and higher
unless the tensions T; vanish [67-70]. Thus, we have

Tp— 0, form>3. (12)
As aresult, the last term of action (11) should be understood
as a probe brane with T — 0 for m > 3, which is added to
help us to determine the location of branes. To have nonzero
tensions for m > 3, one can consider either higher derivative
gravity or thick branes [70]. On the other hand, the
codimension-2 brane (m = 2) can have nonzero tension
Tg. And the tension is related to the conical singularity by
Ty~ (q—1)/q [66).

One of the central tasks of cone holography is to
determine the locations of the two kinds of branes (E
and Q). Let us first discuss the codimension-m brane E.
Inspired by Ryu-Takayanagi formula [71], we propose that
E is a minimal surface in the bulk whose boundary is given
by the defect D, i.e., OE = D. One trick to derive this
proposal is to consider a probe brane in the action (11).
Label the embedding functions of E by

X4 =X40"); (13)
the induced metric on E becomes y;; = %’}( %’ff gas(X).

Varying the action (11) with respect to X*, we get

oxl = TE/ dyd+2 "V ‘7’ KEQAB5XB =0, (14)

where K4 = y"(D;D;X* + T'3D;X?D;X) are the traces
of extrinsic curvatures and D; denotes covariant derivatives
on E. From (14), we read off the equation of motion (EOM)
of X4,

Ky =0. (15)

which implies that E is a minimal surface in the bulk.
Recall that (15) is derived by % f £ /7 = 05 itis clear that
E is a minimal surface.

Let us go on to study the location of the end-of-world
brane Q, which can be fixed by choosing suitable boundary
conditions [25,28]. Consider the variation of action (11)
and focus on boundary terms on Q; we have

/ VIh|(K* = (K = T)h*)8h,, = 0. (16)
(@)

To have a well-defined action principle, one can impose
either a Neumann BC (NBC) [25],

NBC: K* — (K —=T)h"* =0, (17)
or a Dirichlet BC (DBC) 6h,,|, = 0 [28], which both
define a consistent theory of AdS/BCFT. Recall that, for
our present case, the geometry of Q is divided into two
independent sectors, i.e., AdS;,_, x S,_,. For each sector,
we can impose either a NBC or DBC. For our purpose,
we hope to have a dynamical gravity on the AdS, ,_,
sector so that the cone holography can be derived from
AdS;.»_,/CFT, _,. This means that we should impose a
NBC on the AdS,,_,, sector. ? One choice is the NBC (17)
on both sectors, and the other one is the mixed BC that we
impose NBC on AdS,,,_, sector but the DBC on the S,,_,
sector. To illustrate the mixed BC, let us write the metric of
Q into the following form,

ds2Q = hy,dxtdx" = hypdx®dx” + h;dy'dy’, (18)

where h,;, are metrics of the S,,_, sector and &;; are metrics
for the AdS,,,_, sector. Now, the mixed BC (MBQC) is
given by

MBC: h,dx®dx? =13dQ% ,, K7—(K-T)h/=0, (19)
where [, is the radius of the sphere and dQ2_, is the
line element of (n —2)-dimensional unit sphere. A
covariant expression of first equation of (19) would be
R, = (n—3)hy,/1%, Cd =0, where R, C“’“d denote
the Ricci tensor and Weyl tensor defined by hu,,. Below, we
take the MBC to illustrate the cone holography and leave
the discussions of NBC for Sec. IV. As will be shown

below, solutions to MBC are much simpler than those
to NBC.

3. Solutions

Now, we are ready to discuss the solutions to cone
holography. It should be stressed that, as a solution to
Einstein equation, the bulk geometry is smooth every-
where. The conical singularity can only appear on the
defect D. To warm up, let us first study the one without
conical singularities on the defect D. We take the following
Ansatz of the metric,

ds?> =dr? +sinh?(r)dQ2_, +cosh?(r)h;;(y)dy'dy’,  (20)

which obeys MBC (19) by design and reduces to the typical
metric (6) when /1;,(y) is an AdS metric (recall n = m + 1).

By “AdS,,,_,,” we means the asymptotically AdS generally.
Thus the gravity can be dynamical in the AdS, ,_, sector.

In addition to the local condition R, = (n —3)hy,/
[3,C%ed =0, we further require that the solution has the
correct topology S,_,. Take the case n = 3 as an example; we
require that the solution should automatically yield a periodic
angle ¢ rather than that one sets the period by hand.
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Actually, /;;(y) can be a more general metric. According to
Ref. [72], the metric (20) is a solution to the Einstein
equation with a negative cosmological constant in d + 1
dimensions,

R dld-1
Rup — EgAB = %%B’ (21)

provided that h; ; obey the Einstein equation with a negative
cosmological constant in d + 2 — n dimensions,

Rj, - (d+1-n)(d-n)-

Here, Rj,; denote the curvatures with respect to the metric

h;j, and we have set the AdS radius L = 1 for simplicity.
Recall that the codimension-m brane E, the end-of world
brane Q, and the AdS boundary M are located at r = 0,
r = p, and r = oo, respectively.

Let us explain why the metric (20) obeys MBC (19) on the
end-of-world brane Q (r = p). The induced metric on Q is

ds}) = sinh?(p)dQ2_, + cosh?(p)h;;(y)dy'dy’. ~ (23)

Comparing with (18), we read off h,,dx"dx" =
sinh?(p)dQ2_,, which indeed satisfies DBC on the
S,_> sector (19) with radius /, = sinh p. As for the remain-
ing part, let us calculate the extrinsic curvature
K, =10,h We get

17 | r=p*

K, = coth(p)h,y, K;; = tanh(p)h (24)

]
which obeys the NBC on the AdS,,,_, sector as long as we
parametrize the tension by 7= (n—2)coth(p) + (d+1—n)
tanh(p) so that K —T = tanh(p) and K;; = (K —T)h;;.
Now, we finish the proof of the statement that the metric
(20) satisfies MBC (19).

Let us go on to explain why there is no conical
singularity on the defect D for the metric (20). The
arguments are similar to those around (9). The only
difference is that now ; ; is more general. For our purpose,

we let h; ; be the metric of an asymptotically AdS,

dz* + o352, $)dy'dyl
2

hii(v)dy'dy’ = ; , (25)

where o; ;= al(f;.) + Zzog}) 4+ .... From (20) and (25), we
notice that the induced metric on the AdS boundary M
(r = o) is conformally equivalent to

ds}y ~ 22dQ2,_, + dz? + o35(z. 9)dy'dyl,  (26)

which clearly shows that there is no conical singularity on
the defect D located at z = 0.

To allow a conical singularity on the defect D, we choose
a more general Ansatz of the metric [64,72],

ds* = dr* + f(r)dQi_, + g(r)h;(y)dy'dy’. (27)

where h; ; satisfy (22). We should impose suitable boundary
conditions for f(r) and g(r). As we have mentioned in
Sec. 2.1.2, the codimension-2 brane and codimension-m
brane with m > 3 are quite different, and we discuss them
separately below. For m =2 (n = 3), we choose

& e
limf(r)=—, limg(r)isfinite, lim——==1, 28
im (1) =5, timg() m =1 (8)

where ¢ is a positive constant. Then, the metric (27)
becomes

2
ds? ~dr + S dg? + - (29)
q
near the brane E (r = 0) in the bulk and becomes

ds® ~ dz* + 22dg* + - - (30)

near the defect D (z = 0) on the AdS boundary M (r = o).
Here, we have replaced dQ? by d¢* and have used (25).
The period of ¢ is fixed to be 27¢ in order to have a smooth
solution (29) in the bulk. As a result, from (30), there is a
conical singularity on the defect D when g # 1. Clearly,
there is no way to get rid of conical singularities for both
(29) and (30) unless g = 1.

As for m > 2 (n > 3), the situation is quite different.
Remarkably, Einstein equations fix the asymptotical
expression of f(r) to be lim,_ f(r) = r?, which is closely
related to the fact that the tension 75 must be zero for
codimension-m branes with m > 2. Please see (A19) and
(A21) of the Appendix for more details. Thus, we choose a
different BC for this case,

1
}i_r}réf(r) =7, 1%g(r)is finite, rlgg%:? (31)
Now, the metric (27) becomes
ds*> ~dr* + r?dQ>_, + - - (32)

near the brane E (r = 0) in the bulk and becomes
2
ds? ~ dz? +;d§2ﬁ_2 e (33)

near the defect D (z = 0) on the AdS boundary M (r = c0).
To have a smooth bulk solution (32), we choose the range
of angles to be the normal ones. For example, we choose
0 C[0.x] for dQ2_, = d6* + sin® 0dQ2_;. As a result,
from (33), there is a conical singularity on the defect D
for g # 1.
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In general, there are no analytical solutions of (27) when
q # 1. Fortunately, there is an exact solution when m = 2

(n =3),

ds* = i + f(F)dg? + FPhy;(y)dy'dy!,  (34)
f(7) '
where]_‘()—r—l—i‘,j(?h—l), > 7y, and
rodr
= — . 35
' / 77 5

Imposing the conditions (28), or equivalently, f'(7;,) =
2/q, we fix the constant

1+ /1=2d + &4
7 =T ¢ +dq (36)

r, = dq

Obviously, Eq. (34) is quite similar to the metric of the
hyperbolic black hole. The only difference is that ¢ is a
spatial coordinate instead of a time coordinate. The time
direction is hidden in the /;;(y)dy'dy’ sector of (34). The
branes E and Q are located at ¥ = 7, and 7 = 7\, where 7
can be derived from the MBC (19) as

J_i(?o)

ro

K-T= = tanhp. (37)
To end this subsection, let us discuss briefly the solution
to NBC (17). For simplicity, let us focus on the case m = 2
with metric (34). The codimension-2 brane E is still located
at 7 = 75, (r = 0). However, the end-of-world brane is no
longer located at constant 7. Instead, in order to satisfy

NBC (17), it must depend on other coordinates, i.e.,
7 =T7(¢,y). We leave a careful study of the solutions to
NBC for Sec. IV. Finally, it should be mentioned that (27) is
|

Thasc,., = 16chN

871&12\, / \/ | 1| sinh”=2(p) cosh?™>~"(p) tanh p
Vv
=2 / sinh"~2(r) cosh®~"( dr/ \/1h|(R
16T[GN
\/1h|(R
16 Gd+2 n) /

+(d+1-n)(d—n))

which is equal to the gravitational action /g, , , With
Newton’s constant given by
1 Vg ) / P,
—_—— = sinh"~2(r) cosh® ™" (r)dr 42)
e ol A (

not the most general solution to cone holography. We leave
the study of more general solutions to Sec. V.

B. Equivalence to AdS/CFT

In this subsection, we prove that, for the class of
solutions studied in Sec. Il A, the gravitational action of
cone holography is equivalent to that of AdS/CFT with
Einstein gravity,

(38)

Tadsc, = Tadsyn -

Assuming AdS;,,_,/CFT, _, holds, which means that
the CFT partition function in the large N limit is given by
the classical gravitational action

ZCFT4+|—n = e7Msuz > (39)
we get immediately a proof of cone holography
Zcr,,, ., = e hascun (40)

at least for the class of solutions of Sec. Il A. Note that
Igs,,, , and Ipgsc,,, of (39) and (40) are Euclidean
actions. For simplicity, below, we focus on the actions
in the Lorentz signature, which differ from the ones in
Euclidean signature by a minus sign.

To warm up, let us first consider the case without conical
singularities, i.e., ¢ = 1. Equivalently, the tension of the
codimension-m brane is zero, i.e., T = 0. Recall that T
always vanishes for codimension-m branes with m > 2 and
Tp~(q—1)/qg=0 for codimension-2 branes when
g = 1. On the contrary, the tension of codimension-1 brane
Q is nonzero, i.e., T # 0. Substituting the metric (20) into
the action (11) and applying MBC (19) together with the
formula (A11) with f(r) = sinh?(r), g(r) = cosh?(r), we
derive

Vv g -
Sz // sinh"=2(r) cosh® 2" (r)dr x / \/ |h|(Rysech?(r) 4+ (d — n + 1)(d — n + 2)sech?(r) — 2d)

4 (d+1-n)(d-n))

= Iads,,, ,» (41)
|
~ nzl
where Q denotes the AdS;,,_, sectorof Qand Vg = I%Z’é )
2

is the volume of (n-2)-dimensional unit sphere. Note that we
take f_li j off shell in the above derivations, which means that
fzij need not satisfy (22). Besides, we have used
—2A=d(d-1),K — T = tanh p and the following formula:
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/ " sinh"2(r) cosh?™"(r)(d — 2n + 2 — d cosh(2r))dr
0
= —2sinh""!(p) cosh?"+1(p). (43)

Now, we have proven the equivalence (38) between cone
holography and AdS/CFT for the case without conical
singularities.

Let us go on to discuss the case with nontrivial conical
singularities, i.e., ¢ # 1. For simplicity, let us first consider
the codimension-3 holography, which has an exact solution
(34). Note that the solution (34) is smooth everywhere in the
bulk, even at the location of E; the real conical singularity is
on the conical defect D instead of E. As a result, one
does not count the action of codimension-2 brane

in the bulk [66,73,74]. It is more like a trick to determine the
location of E but does not contribute to the action directly.4
Another way to understand this is that we regularize the
integral region by r > € > 0 and take the limit ¢ — O at the
end of calculations. These are the common methods used to
study holographic Rényi entropy, where there is a cosmic
brane in the bulk [66,73,74]. Another example is that, to
calculate the holographic free energy, one does not take into
account the contribution of ‘“conical singularity” on the
horizon of black hole. The spacetime is smooth, and nothing
special happens on the horizon.

Substituting (34) into the action (11) without /5 and
applying boundary condition (37) and f(7) =7 —1—

;.(/72 _ )
i (7, — 1), we obtain

Ip = =T [ \/y when calculating the gravitational action
|
2nq  [Fo __ R+ (d-1)(d-2)
I =—1_ | a1\ /|n| (=L -2d
ASCi1 = 167Gy [ h || ( 72

—d-2 —d—2
q 'y "I 7
=170 " h h|(R; +
8(;N d'— 2 l/[Q | |( h

which proves the equivalence (38) with n = 3 (m = 2) for
general g, provided that the effective Newton’s constant on
Q is defined by

/\/ﬁ 27 ()

(d=2)(d-3))

F+(d=2)(d—3)) = Iags, (44)

I

where recall that ¢ = 2/f'(7;,) = 27, /(dF} — d + 2).
Now, let us consider the most general case, the cone

holography with general codimensions n =m + 1 and

nontrivial conical singularities, i.e., ¢ # 1. We focus on

the class of solution (27) with 0 < r < r,,. Following the

above approach, we derive

2ra (P42 — 7d=2
@1 Tl )’ (45)
(;N (;N d'—'2
|
digen Ri+(d+2-n)(d+1-n)
I YZg(r) /A [ =
AdSC,y = 167zGN/ rf(r)= | |( o

—Ia;%;545/huRw+w+4—nxd—n»—fMaﬂw

where the Newton’s constants are related by

L= [t @)
GS\(}H—Z—n) GN

and r = r( is the location of end-of-world brane Q. Note
that Vg ~=2zqforn=3andVy =V  forn>3.To
derive (46), we have used the integral formula

“It affects the action by the backreaction to the bulk solution.

2a) gt [ o Fatm) 4
(46)

A“ﬂw%ma%m—l—d+dmﬂMr

= 21Tl 2 (o) (48)

It is interesting that, although the exact expressions
of f(r) and g(r) are unknown generally, the EOM and
BC of f(r) and g(r) are sufficient to derive (48). The
proof is as follows. Differentiating (48) with respect to r,
we get
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4dg(r)* = 29(r)(2d + g"(r)
_(n=2)g(n)f'(ng(r)
f(r)

which is just the EOM (A14). Note that we have replaced r;,
by r above. To prove (48), we still need to verify that

—2n+2)+ (n—-d)g(r)?

=0, (49)

d

f(0)Fg(0)F¢(0) = 0. (50)

Recall the BC (28) (31) of f(r) and g(r), which yields
lim,_q /(r)%g(r)'%'q () ~ O(r"=%) = 0. So, Eq. (50) is
indeed satisfied. Now, we finish the proof of (48) by using
the EOM and BC of f(r) and g(r).

In the above discussions, we focus on the nonrenormal-
ized actions (41), (44), and (46), which are divergent
generally. To get finite results, one can perform the holo-
graphic renormalization [75,76] by adding suitable counter-
terms on the defect D. Following Refs. [75,76], we choose
the following counterterms on D,

/\/|?<21<2+2n—d)

counter —

16G

1
Ry 4--- 1
d—1-n £t )’ (51)

which makes the equivalence

IAdSCdH + Icounter = IAdeJrz,n + Icounter (52)

still hold after renormalization. Now, we finish the proof of
the statement that AdSC,,;/CFT,,,_, with the solutions
(20), (27), and (34) is equivalent to AdS, ,_,/CFT,.i_,
with Einstein gravity, at least at the classical level for
gravity, or equivalently, in the large N limit for CFTs.

The equivalence (52) is quite powerful, which enables us
to derive many interesting physical quantities such as
entanglement/Rényi entropy for cone holography directly
following the approach of AdS/CFT. See Sec. Il for
examples. Assuming that AdS/CFT holds, which is widely
accepted, the equivalence (52) is actually a proof of the
cone holography in a certain sense. It should be stressed
that the solution (34) is not the most general solution to
cone holography. As a result, in general, cone holography is
different from AdS/CFT with Einstein gravity. That is
because there are infinite towers of massive Kaluza-Klein
modes on the branes. And the effective gravity on the brane
is massive gravity instead of Einstein gravity generally.
This is consistent with the interpretation of cone hologra-
phy as a holographic dual of edge modes. As mentioned in
the Introduction, the edge modes include bulk information
and differ from the usual CFTs. Thus, in general, the cone
holography as a holographic dual of edge modes is different
from AdS/CFT.

ITII. ASPECTS OF CONE HOLOGRAPHY

Since cone holography with the solutions (27) is equiv-
alent to AdS/CFT with vacuum Einstein gravity, many
interesting results of AdS/CFT can be reproduced in cone
holography. These include holographic Weyl anomaly,
holographic Entanglement/Rényi entropy, and holographic
correlation functions, which all agree with the results of
CFTs. See Refs. [60], for example, where the case of wedge
holography is carefully studied. The generalization to cone
holography is straightforward. Actually, we only need to
replace Newton’s constant Gj‘(, of Ref. [60] by Gg],”_” 47)
for cone holography with the class of solutions (27). Thus,
we do not repeat the calculations here. Instead, we only list
some of the key results and steps for the convenience of
readers. For simplicity, let us focus on the cone holography
AdSC,,.,/CFT, below.

A. Holographic Weyl anomaly

We assume that the spacetime on E and Q is an
asymptotically AdS,

dz> + a;;dyidyj
2 9

Zz
(53)

ds* = dr® + sinh?(r)dQ?2_, + cosh?(r)

where o;; = aEA) + 2%(o; ( ) +/1§}) Inz) + ..., and a§‘;> is the

metric on defect D. Solvmg Einstein equations (21), we get

0ij () _ _Rp

0'()10';,}_ =5 (54)
where R, is the Ricci scalar on the defect D. Note that (54)
can also be obtained from the asymptotical symmetry of
AdS [77], which plays an important role in the off-shell
derivations of holographic Weyl anomaly [78]. Substituting
the above two equations into the gravitational action (11)
and selecting the UV logarithmic divergent term, we can
derive the holographic Weyl anomaly [79]. We get

A= [ a5 ko, (59)
with the central charge

3V

c="tn2 /p sinh"~2(r) cosh(r)dr =
0

377 sinh"!(p)
2Gy ’

GyI'(%5Y) n-1
(56)

It is interesting that the central charge ¢ is a monotonically
increasing function of p,

d,c > 0. (57)
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Recall that r = p denotes the location of end-of-world
brane Q. The larger p is, the closer the brane Q tends into
AdS boundary M. See Fig. 6, for example. Note that the
AdS boundary corresponds to UV, while the deep bulk
corresponds to IR. Thus, we have

Puv = PIR- (58)

It should be mentioned that (58) can also be derived from
the null energy condition on Q [26]. From (57) and (58), we
get a holographic proof of the c-theorem [80,81]

Cyy 2 CRR- (59)

This is a strong support for our proposal of cone
holography.

The above discussions apply to the case without conical
singularities, i.e., ¢ = 1. It is straightforward to extend the
above discussions to general case with ¢ # 1. By applying
the solution (27), we obtain the Weyl anomaly (55) with the
central charge

Sz [ g0 Eatrta (60
= — 2 2
c Gy o r)z g(r)dr,

where rq is the location of Q. Since f(r) and g(r) are
positive functions, we have 9, ¢ > 0. Following the above
arguments, we have ryyy > ror- Thus, the c-theorem (59)
is still obeyed for the general case with g # 1.

B. Holographic Rényi entropy

Rényi entropy measures the quantum entanglement of a
subsystem, which is defined by

1
S, = = plntrpﬁ, (61)

where p is a positive integer and p, = trzp is the induced
density matrix of a subregion A. Here, A denotes the
complement of A, and p is the density matrix of the whole
system. In the limit p — 1, Rényi entropy becomes the von
Neumann entropy, which is also called entanglement entropy,

Sgg = —trpa Inpy. (62)

In the gravity dual, Rényi entropy can be calculated by the
area of a codimension-2 cosmic brane [66]

-1 area(cosmic brane
P20, (—p Sp> _ area( ») (63)

4Gy '

where the cosmic brane,, is anchored at the entangling surface

OA. Since the tension of cosmic brane T,= ﬁ 1S nonzero

generally, it backreacts on the bulk geometry. In the tension-
less limit p — 1, the cosmic brane becomes a minimal surface

and (63) becomes the Ryu-Takayanagi formula for entangle-
ment entropy [71]

area(minimal surface)
4Gy, ‘

Sk = (64)

For cone holography, the holographic Rényi entropy is
still given by (63). What is new is that the codimension-2
cosmic brane ends on the end-of-world brane Q and
codimension-m brane E. The location of cosmic brane
can be fixed by solving Einstein equations with back-
reactions [66].

Inspired by Refs. [73,74,82], we make the following
Ansatz of the bulk metric,

ds* = dr® + sinh?(r)dQ2_,
di? 1
+ COShz(r)( 5 d - - (72 ——2) dr* + 72dH%>,

72— L
- P

(65)

where p is the Rényi index, dH? = dy*/y* is the line
element of one-dimensional hyperbohc space. The cosmic
brane is just the horizon of hyperbolic black hole, whose
area is given by

area(cosmic brane )

Ve V
= ST, /ﬂ sinh"~2(r) cosh(r)dr,
p 0
(66)

where V; is the volume of hyperbolic space. From (63),
(65), and (66), we finally obtain the holographic Rényi
entropy for CFT, as

p+1Vs Va /
S = —2n2_Z1 [ sinh"2(r) cosh(r)dr
p+1c
—EVHI’ (67)

where we have used (56) above. Note that Vi, includes a
log term Vi, |t =2 [73], and (67) gives the correct
universal term of Renyi entropy,

p+1c

S|, =
|11’1— p 6

(68)
This is also a support for the cone holography.

C. Holographic correlation functions

In this subsection, we study the correlation functions for
cone holography. The holographic two point functions of
stress tensors can be derived following the approach of
Ref. [60] for wedge holography. We do not repeat it here.
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Instead, we study the two point functions of scalar
operators for cone holography AdSC, ,/CFT,.

Let us focus on the probe limit with the bulk metric
given by

+ (P = 1)dQ;_, + Pdsigs,,  (69)

which is a locally AdS space. We make the following
Ansatz of bulk scalar,

¢ = ¢7(?)¢y(y)’

where y denotes the coordinate of dsidsz. Substituting (70)
into the Klein-Gordon equation in the bulk

94(v/99"" Op9)
Vi

(70)

- M?¢ =0, (71)

we get

87(?3(72 - )nTla?(ﬁ?(?)) + Dyd)y(y) _ Mz

(72)

where [, denotes the d’Alembert operator in AdS;. To
solve (72), we assume ¢, (y) satisfies Klein-Gordon equa-
tion in AdS;,

g, (y) =0, (73)

Dy¢y(y) -

where 7 is a constant and will be determined later. Then,
Eq. (72) becomes

OPE = P07 _ (o 0P\,
e G U

which can be solved as

. 2m+n—,/4M2 (n—1) —1—2m+n—|—\/4M2 (n—1)>2

¢; = cr " F
2m—|—n—\/4M2 (n—1)2-1 2m+n—|—\/4M2+(n—l

+cor™ 2F1

, (75)

where ,F; is the hypergeometric function and c¢; and ¢, are integral constants. Without loss of generality, we can set

c; =1L (76)
We impose the natural boundary condition on the codimension-(n — 1) brane E,
hm¢ (7) is finite, (77)
which yields
(i - ﬁz)F(MH_n_ 44M2+(n—1)2)r(2rh+5—n+\/44m> s
Ch = —
2 (i + I)F(_zm+5—n— 44M2+(n—1)2)1_.(—2ﬁ1+5—n+\4/4m)
for odd n and
(i - m)r(2m+n—l— 44M2+(n—1)2)1—,(21ﬁ+n—1+\/44m) 79
Cy = _r(m N I)F(—2m+n—1— 44M2+(n—1)2)r.(—2rﬁ+n—1+\4/zm) (79)
for even n. On the end-of-world brane Q, we can impose 0:(7p) =0 (81)

either DBC,
##(7o) =0, (80)

or NBC,

where 7 is the location of Q. For simplicity, we do not
show the exact expressions of (80) and (81). From (80) or

(81), in principle, we can solve m in terms of M,
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o= m(M,n, 7). (82)

There are infinite solutions for the allowed mass 771, which
corresponds to the infinite massive KK modes.

Now, we have fixed the mass 7z from boundary con-
ditions, and we are ready to derive the two point function of
scalar operators. According to AdS/CFT, the bulk scalar
field with mass 77 in AdS; is dual to a scalar operator O
with the conformal dimension

A=1+V1+m? (83)

and the two point functions of O are given by

1

= |x_x/‘2A‘

(0(x)O(x)) (84)

Let us show more details for the derivation of holo-
graphic two point function (84) for cone holography. The
bulk scalar action is given by

r=-3 / VIl (g 0ab0sd + MPH). (85)
C

Substituting the Ansatz (70) into (85) and using EOM (74)
together with BCs (80), (81), we can obtain

1 o .. ~
I==3 /C V1ol (G (05203 + 970igp, 0,0, 02 + M p245)

1 _1 o .. 9
= __/ \/E<— 95 ( |g|grra?¢?)¢?¢)2' + 9”5i¢y3i‘/’y¢% + M2¢%¢§>
2Jc g

VIl

\% To w3 _ . 1 I .
=25 [Mre -0 g [\l E0b,0,8,+ i) ~ = [ @000, + i), (50

which is proportional to the scalar action in AdS; up to a
constant factor. Recall that ; ; 1s the metric of AdS;. Now,
following the standard approach of AdS/CFT [3], we can
derive the two point function (84) from (86).

To summary, we have shown that the cone holography
can produce the correct Weyl anomaly, entanglement/
Rényi entropy, and correlation functions, which are strong
supports for our proposal. For simplicity, we focus on
AdSC, ,/CFT, in this section. Following Ref. [60], the
generalization to AdSC,,/CFT,_, is straightforward.

IV. CONE HOLOGRAPHY WITH NEUMANN BC

In this section, we discuss the cone holography with
NBC. Compared with MBC and DBC, it is more difficult to
find solutions to NBC generally. For example, as men-
tioned at the end of Sec. I A, the natural embedding
function r = r, of brane Q does not satisfy NBC.> To
satisfy NBC, we can consider more general embedding
functions. For simplicity, we focus on AdSCs/CFT, below,
which is the simplest nontrivial example.

The bulk metric for AdSCs/CFT, is given by (34) with
d = 4. The codimension-2 brane E is at 7 = 7, (36), and
the embedding function of the codimension-1 brane Q is
assumed to be

7= F(¢). (87)

It obeys the NBC only if r = ry — oo, which means that the
end-of-world brane Q approaches the AdS boundary M.

|
Imposing NBC (17), we derive one independent equation,

F(F(¢))\/coth’ pf(F(¢)) — F(¢)*

F(g) =+ ) ,

(88)

where recall that f(7) = 7 — 1 — :—3 (72 — 1). Without loss
of generality, we focus on the case F’(¢) > 0 below. The
other case with F’(¢) <0 can be obtained from the one
with F'(¢) > 0 by the symmetry ¢ - —¢.

For 7, = 1, we can solve

F=F(¢) = \/cosh2p +sinh?pcot? p.  (89)

Note that 7 = oo for ¢ = 0,7, which means that Q
intersects the AdS boundary M at these two angles. See
Fig. 7, for example, where z = 1/7.

For general 7, there is no analytical solution to (88).
Instead, we get an integral expression,

N FdF
0= 5 NETT G

. (90)

where

F min

1
=5\/ 2cosh?(p) + ﬂcosh(p)\/ cosh(2p) + 87} — 87 + 1,
(o1
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which is derived from +/coth?pf(Fp) — F2,, = 0.

Note that (90) cannot cover the full range of the
angle, i.e., 2zq. Instead, it only covers the piece 0 < ¢ <
FdF

o with
o= /mm (F)y/coth® pf (F) —

See Fig. 7, for example, where 7, = 1, ¢y = /2, and (90)
covers one-quarter of the angle range. For large p — oo,
we also have ¢y — n/2. However, this is not the case for
|

(92)

L agsc,.,

general p and 7;,. To have a well-defined period, we require
that

— = integers, (93)
0

which yields some constraints on p and 7. In other words,
the tensions of the branes Q and E are not independent for
the cone holography with NBC.

Now, let us turn to study the gravitational action.
Following the approach of Sec. II B and using (88), we get

_ﬁ/ d¢/ d77i- 1\/ﬁ<R” (d;zl)(d_z)—2d>

"(¢)?

+8ﬂc I / HIF (g \/ (F(¢))+E<F<¢>>tanhp

1 /2ﬂqd¢
_167TGN
\/|R|(R
" 1l6n Gd b / g

which is proportional to the gravitational action of AdS,_;.
Note that the above derivations applies to general d. For our
propose, we focus on d = 4 in this section.

Unlike the case of MBC (44), the effective Newton’s
constant is divergent

1 1 [  F(¢)* -7
BN e 95
Gy Gnlo 2 3)
1.0
081
—E
0.6
— Q
04| — M
0.2+
K 2 s P s s ¢

FIG. 7. Cone holography with NBC for 7, =1 (¢ = 1). The
codimension-2 brane E (Z = 1), codimension-1 brane Q (89), and
AdS boundary M (z = 0) are labeled by the blue, orange, and
green lines, respectively. The bulk metric is given by (34) with
d = 4 and 7, = 1. The embedding function of Q is given by (89).
Note that 7 = 1/7 and ¢ ~ ¢ + 2z. Note also that the defect D
with z = 0 (25) is not shown in this figure.

d —

I /\/|7 )(d-3))

)(d—-3)). (94)

|
where we have set d = 4 above. That is because F(¢) could
be infinite at some angles. See (89), for example. To get
finite results, we need to regularize the effective Newton
constant (95). It is more convenient to consider the integral
of F instead of the integral of ¢ for (95). Using (88) and
(93), we have

o

1 21g / FdF -7
GZ(V) GN ¢0 Fmin

F(F)\/coth® pf(F) —F> 2

3

(96)

where we set F, — oo at the end of regularization.
Expanding the above integral element in powers of large
F, we get

1 12 Fs (sinh 1
w__ﬂ/ (M+O<_2>>dF
Gy Gy 9o Jr,, 2 F

_ 1 2nq (Sinh(p) Fot - > (97)

2

where ... denotes finite terms. One natural regularization is
that we just drop the above divergent term and define the
renormalized Newton’s constant by
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sinh(p)
2

/Fm (F?> —7)FdF
+
i 2F (F)+/coth? pf (F) —

1 1271'6]( P

G(3) B Gy ¢

Nren

>. (98)

Recall the fact that the induced metric on the brane at a
finite place is dynamical, while the induced metric on the
brane at infinity (such as the AdS boundary) is non-
dynamical. The above regularization is just removing the
contributions from the nondynamical (infinite) regions of
the brane. Note also that

inh Fu
sinh(p) - i

2 © 71

(F* = P)FdF
Fuin 2f (F)+/coth? pf (F) —

is the value for a pure AdS space. Thus, Eq. (98) is just the
usual regularization by subtracting an AdS background.
Let us take the cases with ¢y = 7/2 (92) to illustrate the
above formula. Equivalently, we consider the cases 7, = 1
or p — oo. By direct calculations, we find that (98)
vanishes for 7, = 1, which means that the dual CFT has

zero central charge ¢ = 3/ (ZGSVr)en) = 0. To have a non-

trivial CFT duality, we recélulre that 7, # 1 for this model.
As for p — oo, we derive

1 1 1
lim = q(1—7%) [—(r2 +2)
oo (3 h h
MG, G ;
3
1’6[ 4(572 — 1)~ + O(e“‘/’)}, (100)
whereT — v Iise V41q+8q2 < 1 and we have 0,¢ > 0 from

(100). Recalhng that pyy > pr and ¢ =3 /(ZGNren), we
notice that the c-theorem cyy > cpg is obeyed for large p. In
fact, one can check that the right-hand side of (98) is a
positive and monotonically increasing function of p. See
Fig. 8, for example. Note that the p satisfying the constraint
(93) are actually some discrete points in the blue line of
Fig. 8. Since the continuous p is consistent with the c-
theorem, so is the discrete p. Thus, the cone holography
with NBC obeys the c-theorem.

In fact, the regularized Newton’s constant (98) can
be derived from the holographic renormalization of AdS/
BCFT [30]. Recall that the divergence of (95) and (96)
comes from the region near 7 = 1/z = F,, or equiva-
lently, ¢ = 0,2¢,4¢,.... As shown in Fig. 9, these
regions can be regarded as a special limit M — 0 from
AdS/BCFT.

The renormalized action of AdS;/BCFT, can be found
in Ref. [30], where suitable counterterms are added on M

®Please see Appendix B for the derivations.

Gn
C';(S)Nren
4+
3 L
2 L
1 L
. . ‘ . , =)
0.5 1.0 15 2.0 25 3.0
FIG. 8. The renormalized Newton’s constant (98) increases

with p, which is consistent with c-theorem. Without loss of
generality, we have set g = 3.

M —0

FIG. 9. Cone holography from AdS/BCFT. Taking the limit
M — 0, the above figure becomes the region near ¢ = 0,z and
z = 1/7~0 of Figure 5 for cone holography with NBC.

and P. See Fig. 9 for a sketch of M and P. Taking the limit
M — 0, only the counterterms on P survive for the cone
holography with the NBC,’

27zq
P =", 872Gy

/\/|g_P<® @0——s1nhpRp) (101)

where P is located at 7 = F, %}q denotes the total

numbers of P, © is the supplementary angle between Q
and M, ©y = O(7 - ), gp denotes and metric, and
Rp is the Ricci scalar on P. See Fig. 9, for example.
Note that the first term of (101) is the famous Hayward
term [83,84], which is added for a well-defined variation of
the action.

"Note that the counterterms on P also include extrinsic
curvatures. Since they do not contribute to the present case,
we do not list them for simplicity.
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From (34) with d = 4 and (88), we can derive

1 2mq (—sinh(p) 1
’P_16nGN¢o< 2 F°°+0<F°o>>
y /Q VIl(R; +2).

Adding the above I to the cone action (94) and using (97),
we finally obtain

(102)

1

Ipase, +1p = M/Q \/ |h|(R; +2) = Iags,» (103)
0 Nren

where Gﬁjeg exactly agrees with (98). Now, we finish the

proof of the equivalence between the cone holography with
the NBC and AdS/CFT. We also verify that the renor-
malized Newton’s constant is indeed given by (98) by
applying the holographic renormalization. Following
approaches of Sec. III, we can derive holographic Weyl
anomaly, entanglement/Rényi entropy, and correlation
functions for the cone holography with NBC.

V. MASSIVE MODES OF CONE HOLOGRAPHY

In the above sections, we focus on the class of solutions
(27), where the effective gravity on the brane is Einstein
gravity and thus is massless. In this section, we investigate
more general solutions to cone holography and find that
there are infinite towers of massive modes of gravitons on
the brane. As a result, the cone holography is different from
AdS/CFT with Einstein gravity generally. In some range of
parameters such as small brane tensions 7 < 1, the
massive modes are suppressed, and Einstein gravity is a
good approximate on the brane.

For simplicity, we focus on the MBC in this section. We
take the following Ansatz of the perturbation metric,

ds®> = dr® + sinh?(r)dQ?_,

+ cosh?(r) (i) (v) + H(r) R} ())dy'dy/,  (104)

H(r) =

cioFi(ay, ay; "534 s tanh?(r)) + cytanh®™"(r), F (a3, as; 5" ; tanh?(r)),

where ,F| is the hypergeometric function, G%;g is the
Meijer G function, c¢; and ¢, are integral constants, and a;
are given by

1

4

ay+4,a, +4
clel(al,az;"gl;tanhz(r))+c2G§:g<tanh2(r)|1 2°72 2>, n=3,

where }_zl(?) (v) is an AdS metric and i_zl(-jl-)(y) denote the
metric perturbations on the brane E. Note that the induced
metric on E is proportional to the AdS sector of the induced
metric on Q. In the language of bulk metric perturbations,

we have

8gi; = cosh?(r)H(r)h{Y ().

ij

(105)

6grA = 0’ 6gaA = 01

For simplicity, we do not consider the angle dependence of
perturbations.
We choose the following gauge,

VA59AB =0,

gAB(SgAB = 07 (106)

which yields

RO =0,

in(l) _
D'h;;” =0, (107)

where VA and D' are the covariant derivatives with respect
to g4p and BE?),

equations become

respectively. In the gauge (106), Einstein

Substituting (105) together with (107) into (108) and
separating variables, we obtain

(DD +2 - )k (v) = 0, (109)
sinh(2r)H" (r) + (d cosh(2r) — d + 2n — 4)H'(r)
+ 22 tanh(r)H(r) = 0, (110)

where 1, denotes the mass of gravitons on the brane,
which will be determined later. Solving (110), we get

0.0 (111)

ay=7(n=d=14\/d=n+ 17 +402), (113)

FN-

1
a5 :Z(S—d—n—\/(d—n+1)2+4n%%), (114)
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a4:41—‘(5—d—n+\/(d—n+l)2+4n%%). (115)

Near the brane E (r = 0), Eq. (111) behaves as

cylnr+---,
H(r)"’ 1
sz_i_...’

n=3 116
n>3, (116)

where - - - denote higher order terms in r.
We impose the natural boundary condition on the brane
E (r = 0), which means the perturbation on FE is finite,

H(r)|,— is finite. (117)

From (116) and (117), we get

We impose MBC (19) on the end-of-world brane Q
(r = p), which yields

H'(r) 0. (119)

|r=p =
Substituting (111) and (118) into (119), we derive

3 101 tanh(p)sech?(p), F;
n

n+1

X (1 +ay, 1+ ay; ;tanh2(p)) =0. (120)

Recall that a; are given by (112) and (113), which depend
on 7. The above equation imposes a constraint on the
possible mass 7. Clearly, the massless mode with 713 = 0
is always a solution to (120).

To get more understandings of the spectrum, let us study
some special cases. In the large p limit, Eq. (120) can be
approximated by

+1
,F <1 +a,,1+a2;r12;1)
rg- nregh .
7 W

- I_,(d-&-n—l—w/4rﬁ§+(d—n+1)2)r(d+n—1+\/4rhi+(d—n+1) )
4 4

(121)
which has the roots
mr~ (2k+d—-2)2k+n-3), k>1, forlarge p.
(122)

Recall that p is related to the tension of the end-of-world
brane Q, i,e, T = (d — 1) tanh(p). Note that the mass 7
(0)

defined in (109) is with respect to the induced metric i_zi I

on E. We are interested in the effective mass on Q instead
of E. That is because, according to the brane world
holography, the gravity is approximately localized on the
end-of-world brane Q. The mass on Q is defined by

2 5 \im D'Di+2 ., \:()
<DQ+L_2Q_ka>hij ()= m_ka hi;’ (y)=0,

(123)

where [, and L, = cosh(p) are the d’ Alembert operator
and the AdS radius on Q, respectively. Note that the
induced metric on Q is cosh? (p)ﬁl(-?). As a result, we have
O = D'D;/ cosh?(p). Comparing (123) with (109), we
read off

52
A2 ny

=% 124
"ot cosh?(p) (124)

From (122) and (124), we find that the mass on Q becomes
continuous in the large p limit

1
lim Ari gy ~ 0. 125
pggo Mok cosh(p) - (125)
Since the range of r is infinite in the large p limit., i.e.,
0<r<p— oo, it is natural that the spectrum becomes
continuous in this case.

Let us go on to study the limit with small p. From (124),
we have i = riy; at small p. Thus, we do not distinguish
them below. Recall that 0 < r < p; small p also means
small r. For small », EOM (110) becomes

2rH"(r) + 2n— 4)H'(r) + 2m3rH(r) = 0. (126)
Remarkably, the above equation is independent of the
spacetime dimension d. Solving the above equation
together with the natural boundary condition (117), we get

H(r)= Clr%_%Jn—3(|mk|r),

2

(127)

where J,, denotes the Bessel function of the first kind. Now,
imposing the MBC (119), we obtain the constraint of 7, for
small p,

3_ny A A
c1pr 2|y [ Jua ([ p) = 0. (128)
Again, the massless mode 77y = 0 is a solution. In general,
the masses |ii1;| are given by the roots of Bessel function

JnT—l divided by p. Let us list the first few terms of |

>

R 383 7.02 10.17 13.32
|| =0, . . .
P p p p

forn =23,

(129)
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. 449 7.73 1090 14.07
|mk| = 07 s 5 s Seas
p p p

for n = 4.

(130)

The asymptotic expression of (128) at large |y p is

given by
e 2% cos (inlp = "Z) w0, (131)
T 4

from which we derive

n(4k —4n; +n-2)
4p

|77y | = , k> 1, for small p,

(132)

where 7, is an integer which we fine tune in order to make
(132) to be the kth root of (128) for large k. For example,
we have n; =0 for n =3 and n =4. Interestingly,
Eq. (132) agrees well with (129) and (130) even for
small k.

Some comments are in order. First, it is remarkable that,
at small p, my is independent of the dimension of
spacetime, i.e., d. Second, iy, with m > 1 is inversely
proportional to p and thus is quite large at small p. As a
result, the massive modes of gravitons are suppressed, and
the low-energy effective theory on the brane is Einstein
gravity approximately. It is quite similar to the usual KK
mechanism. Consider a space with a small circle Ry x Sy;
the masses of massive KK modes are quite large, i.e.,
my ~k/ry = oo, when the circle radius is small, i.e.,
ro = 0. At low energy, only the massless mode is excited,
and the massive modes are frozen. Third, the cone
holography with 0 < r < p is quite different from the usual
brane world holography with —co < r < p. As a result, the
mass spectra of the two theories are quite different. For
example, the masses of brane world holography are not
inversely proportional to p at small p.

To summarize, we find that, as is expected, there are
infinite massive KK modes on the brane. As a result, in
general, the cone holography is different from AdS/CFT
with Einstein gravity. One can argue that the cone holog-
raphy is equivalent to AdS/CFT with infinite towers of
massive gravity on the brane. However, the simpler and
better way to study the holographic dual of edge modes is
the Einstein gravity is the bulk cone rather than the infinite
towers of massive gravity on the brane. For the large brane
tension p — oo, the mass spectrum is continuous, while for
the small brane tension p — 0, the mass spectrum is
discrete, and the masses of massive modes become infinite.
At low energy, only the massless mode is excited. As a
result, when p is small, the low-energy effective theory on
the brane is Einstein gravity. To end this section, let us draw
some figures for the mass spectrum of cone holography.

H'(p)
20
10
/ \ ] \ — p=1
“VMN\M AV/E XY
-10 :
20
H'(p)
15
10
Y — p=1
AL A A A =0.2
2 ho ) % 7 ?

FIG. 10. Mass spectrum of cone holography, where the masses
correspond to the intersections of the curve H'(p) and the ri-axis.
The above figure is for d = 4 and n = 3, and the below figure is
for d = 5 and n = 4. The blue curve is for p = 1, and the yellow
curve is for p = 0.2. The larger the tension p is, the more
continuous the mass spectrum is.

See Fig. 10, for example, where the intersections of the
curve and the mi-axis denote the allowed masses on
the brane.

VI. CONCLUSIONS

In this paper, we propose a novel codimension-n holog-
raphy, called cone holography, which conjectures that a
gravity theory in (d 4 1)-dimensional conical spacetime is
dual to a CFT on the (d + 1 — n)-dimensional defects. The
cone holography can be derived by taking the suitable zero-
volume limit of AdS/dCFT, and it can be regarded as a
holographic dual of the edge modes on the defects. For one
class of exact solutions, we prove the cone holography by
showing that it is equivalent to AdS/CFT with Einstein
gravity. The proof is valid at least in the classical level for
gravity or, equivalently, in large N limit for CFTs. We test
cone holography by studying holographic Weyl anomaly,
holographic Rényi entropy, and correlation functions and
find good agreement with the results of CFTs. In particular,
the c-theorem is obeyed by cone holography. These are
strong supports for our proposal. In addition to the mixed
boundary condition, we also discuss the cone holography
with Neumann boundary conditions. We find that the end-of-
world brane Q intersects with the AdS boundary M at some
specific angles for NBC. As a result, the effective Newton
constant is divergent and needs to be regularized. By
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performing the holographic renormalization, we get a well-
defined Newton’s constant, which is consistent with the
c-theorem. Finally, we analyze the mass spectrum of cone
holography and find that the larger the tension is, the more
continuous the mass spectrum is. Due to the massive KK
modes on the brane, in general, cone holography is different
from AdS/CFT with Einstein gravity. When the tension p is
small, since the massive modes are frozen at low energy,
the effective theory on the brane is Einstein gravity. The cone
holography is a generalization of wedge holography [58—60]
and is closely related to brane world holography [20-22],
AdS/BCFT [25-30], AdS/dCFT [64-66], and holographic
Entanglement/Rényi entropy [66,71,73,74,82]. Thus, it is
expected to have a wide ranges of applications.

Many interesting problems remain to be investigated. We

list some of them for examples:

(1) For the cone holography with NBC, we assume the
embedding function of Q to be 7 = F(¢) and find
that Q tends to infinity at some angles, i.e.,
F(¢;) = oo. It is interesting to consider more gen-
eral embedding functions and see if the end-of-world
brane Q could be located at finite place.

(2) There are many different kinds of warped embed-
dings between Einstein manifolds [72]. In this paper,
we discuss only one of them and find that the
corresponding cone holography is equivalent to
AdS/CFT with Einstein gravity. It is interesting
to study other kinds of embeddings in the framework
of cone holography.

(3) Find more general solutions different from (27) of
cone holography. Similar to the case of wedge
holography [60], these solutions are expected to
reproduce a more general Weyl anomaly, such as the
second and third terms of (3).

(4) In this paper, we mainly focus on vacuum Einstein
gravity. We discuss briefly the scalar fields for
correlation functions. It is interesting to study more
general matter fields such as Maxwell’s fields, which
play an important role in AdS/CMT.

(5) Generalize cone holography to higher derivative
gravity. It is interesting that, unlike the wedge
holography, it is easier to find nontrivial solutions
(non-AdS) to the cone holography for higher deriva-
tive gravity.

(6) In this paper, we focus on the classical limit of
gravity. It is interesting to study the quantum
corrections and see if the equivalence between the
cone holography and AdS/CFT still hold.

(7) Apply cone holography to discuss the information
paradox such as island and the Page curve of
Hawking radiations.

(8) Find other interesting applications
holography.

We hope these interesting problems can be addressed in

the future.

for cone
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APPENDIX A: SOME FORMULAS
Let us start with the metric in the bulk

ds® = g pdX*dX®
=dr* + f(r)ya(x)dx?dx? 4 g(r)h;;(y)dy'dy’, (A1)

where y,, and l_z,»j are the metrics satisfying the following
equations,

R, oy = (n=3)7ap, Ry =—(d+1-n)h; (A2)

From the above metric, we obtain nonzero affines and
curvatures as follows,

f f
FZb:_ﬁgab’ F?b:ﬁéz’ FZc:FYZc’ (A3)
g e : :
Uy==a,0  Th=3,0  Th=Tije (A4
lf// 1f/2
Rjp=|—-——4+-5
arb < 2f +4f2>gab7
1f/2
Rpeq = Ryabcd - ZF (0¢9pa — 5?19175), (AS5)
lg// 19/2
Ro.=|—-<-Z+-L")g.,
irj < 29+4g2 gl]
. . g’2 . .
Ry =Ry jiy — ig (84951 = 91951) (A6)
a 119
Ry = —17551,9[/, (A7)
(¢)? ¢ >
R, = (d- 2 - = -2 -—,
= t=ns) (LoD -y (- L
(A8)
f/ 2 d—n+2 f/g/ f// n—=3 f/ 2
PN () el A e D A
4f 4fg 2f 4f
(A9)
g/ 2 d—n—+1 g/ 2 n—2 f/g/ g//
Ry=ry, + (W2 =1 DGY_(0=Dfg o
4g 4g 4fg 29
(A10)
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R, Ry (n=2)f'(2f(d=n+2)g +g(n=5)f)

R=-1+
foyg 4f%g
_4(f(d=n+2)g" + gln=2)f") + fd=n=1)(d=n+2)(g)’ "
4f g
where g,, = f(r)yij» 9ij = 9(r)h;; and (), and (); denote the quantities defined by the metrics y;; and h;;, respectively.
Applying Einstein equations R,z = —dg,p together with (A2), we obtain EOMs of f(r) and g(r) as
d— 2 /2_2 /! -2 /2_2 1"
(d=n 22 =20) | =221 e
4q° 4f
—d —NFd +20(—F" +2n—6 —4)(f2
4fg 4f
72— /)
(—29(2d + ¢ —2n +2) + 4d@ + (n — d)(¢)?) + M# =0. (A14)
|
There are two kinds of exact solutions to the above n—2 . Vd d—n-+1
equations. The first kind is f(r)= p Slnh2< n—Zr)’ g(r)= P (A16)

f(r) = sinh?r, g(r) = cosh?r, (A15)
which corresponds to an asymptotically AdS space. The

second kind of solution is given by

fld=n+1)(d—-n+2)(f)?

Note that the metric (A1) with f(r) and g(r) given by (A16)
is not an AdS metric.

From (A12), (A13), and (A14), we can derive two
independent equations,

g:

and

1\ 2 1! 3 ! 1 /! (A17)
(FP((d=6)df + "+ (n=6)(n=3)) + ffOf =2f(df = " +n=3)(2(df +n=3) = /")
1642 f* + (d(n = 6) +4)(f')* = 4f(f)?(2(n* = Tn +12) = (d = 2)f")
+4f%(d(d=3n+10)(f)?) = 8df}((d—n+4)f" —4(n - 3))
+4f2((=f"+2n=6)((=d +n=3)f" +2(n=3)) + (=d +n=2)f'f®) = 0. (A18)
The third order differential equation (A18) can be solved n? —1 -3)
numerically. Once we solve f(r) from (A18), we can derive % +0(") =0, (A21)

g(r) by (A17).

To end this section, let us consider the perturbation
solutions near the brane E, ie., r =0. We take the
following Ansitze:

2

f(r) :f—2+clr4+czr6—|— o(r?), (A19)
m
g(r) = di + drr* + O(r*). (A20)
Substituting the above Ansidtze into Einstein

equation (A13), we get

which yields either n =3 or m = 1. For n = 3, solving
EOMs (A12), (A13), and (A14), we derive

c2(17d — 8)im* = 3c,d(d + 1)m* + d*
20(d — 1)in? ’
4 d=2)d-1)
" 6eym? + (d-3)d’
(d—2)(d -3¢ im?)

dy = , A22
> 6cim? + (d-3)d (A22)

Cyr =
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where /m and ¢, are free parameters. As for n > 3, we must have m = 1. Solving EOMs (A12), (A13), and (A14), we obtain

A(d(11n—16) —=2n> +2n+4) = 3c,d(d +n—2) + d*

2= St 1)(d—n+2) ’
(d=n+1)(d-n+2)
dy = :
3¢i(n* =3n+2) +d(d—2n+3)
d, (d=n+1)(d-3c;(n-2)) (A23)

T3¢, (n*=3n+2)+dd—2n+3)

where ¢ is a free parameter. Similarly, we can solve the perturbation solutions near the AdS boundary M, i.e., r — o0. One
can check that (lim,_m% — 1) can be nonzero for n > 3. Thus, the BC (31) chosen in Sec. Il A is well defined.

7

APPENDIX B: INTEGRAL

In this Appendix, we study the integral (98) carefully. Under the coordinate transformation

F = % \/cosh(p) (\/5(2R2 + 1)\/8?‘}1 — 872 +cosh(2p) + 1+ 200sh(p)>, (B1)

the integral (98) becomes

1 12nq /oo IR ( sinh(p) (cosh(p)(2 cosh(p) + V2(2R? + 1)/cosh(2p) + 87} — 873 + 1))*?
GV Gy ¢o Jo 4v/R™ + 1(cosh(2p) 4+ v2(2R% + 1) cosh(p) \/cosh(2p) + 874 — 872 + 1 + 472 — 3)
23/4
- Tsinh(p)\/cosh(,o)\/é_ll + cosh(2p) + 87} — 8?%). (B2)

Expanding the above integral in powers of e”, we have

1 1 27:q/°° (2—72—?§+(f§—1)(R2(872—67%+4)+7?2—3?2+67§—4) Y _4p)>
- - e e
G Gy ¢o Jo 4(R*+1) 4(R*+1)?
1 N 3 _,,__ _ _
:G—N4q(l—r%l) [g(r%—FZ)—Rri(Sr%—l)e 2P+O(e 4p):|, (B3)

which exactly agrees with (100). Note that we have used ¢, = 7/2 for p — oo above. From (B2), it is straightforward to
numerically derive the relation between the renormalized Newton’s constant and p. See Fig. 8 for example.
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