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We carry out the canonical analysis of a covariant version of unimodular gravity in terms of the
connection representation. We then proceed to quantize this theory by implementing the Dirac procedure.
We confirm whether and how the Kodama state, which is a solution of quantum general relativity, can be
extended into covariant unimodular gravity. Finally, we discuss the difference of quantum states between
covariant unimodular gravity, the original unimodular gravity, and general relativity.
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I. INTRODUCTION

Unimodular gravity is a simple modification of general
relativity (GR) in which the determinant of the spacetime
metric is restricted to be constant. Due to this restriction,
unimodular gravity does not preserve the full diffeomor-
phism invariance. Nevertheless, the classical field equa-
tions in unimodular gravity are almost the same as in GR.
A subtle but crucial difference from GR is that the
cosmological constant is treated as an arbitrary integration
constant [1]. This arbitrariness brings a different perspec-
tive on the cosmological constant problem [2,3].
The Hamiltonian analysis of unimodular gravity in

terms of the Arnowitt-Deser-Misner (ADM) variables
has been performed in Refs. [4,5]. In contrast to ordinary
GR, the lapse function is not regarded as an independent
variable due to the unimodular condition, and the
Hamiltonian constraint is a second-class constraint.
Additionally, the total Hamiltonian does not vanish on
the constraint surface. In canonical quantum theory, these
differences from GR cause the differences in the physical
states. Specifically, the physical state of unimodular
gravity is constructed from the eigenstates of the cosmo-
logical constant. Furthermore, unimodular gravity can
have an appropriate time variable, and the physical state
obeys the Schrödinger-like equation rather than the
Wheeler-DeWitt one. In this sense, one can avoid the
problem of time in quantum gravity [2,6].
In this paper, we perform the canonical analysis of

unimodular gravity and its quantization; however, the
theory we will discuss has two different points from the
original unimodular gravity explained above. The first
point is that we employ a covariant version of unimodular

gravity that was suggested in Ref. [7]. In this framework,
the square root of the determinant of the spacetime metric
is equal to the divergence of a densitized vector field,
and the full diffeomorphism invariance is retained.
Moreover, one can introduce time as spacetime volume
[8]. This theory gives the same physics as the original
unimodular gravity at least at the classical level, while we
can expect that these two unimodular theories provide
different quantum theories because of the difference of
the constraints.
The second point is that we describe the theory in terms

of the connection representation instead of the ADM one.
Within the framework, one of the configuration variables is
the Ashtekar-Barbero connection with the Barbero-Immirzi
parameter β, and its conjugate momentum is the densitized
triad [9–11]. The advantage of this representation is that the
constraints are somewhat simpler than those in the ADM
representation. Thanks to the simplicity, several solutions
that satisfy quantum first-class constraints of GR have
been found. In particular, the Kodama state, which is also
called the Chern-Simons state, is a well-known solution
of quantum GR with a nonvanishing cosmological constant
in the case of β ¼ i (the imaginary unit) [12,13].
A generalization of the Kodama state for real values of
β was also suggested in Ref. [14]. On the other hand, the
Kodama state is not regarded as a physical state in the
original unimodular gravity [15].
The aim of this paper is to confirm the difference

between covariant unimodular gravity, the original unim-
odular gravity, and GR, especially at the quantum level.
The manuscript is organized as follows. In Sec. II, we
perform the Hamiltonian analysis of covariant unimodular
gravity in terms of the connection representation. While
some work along this line has been done for β ¼ i [16,17],
we further develop the theory for real values of β. Although
this choice makes the Hamiltonian constraint more*shinji0yamashita@gmail.com
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complicated than in the case of β ¼ i, it facilitates the
construction of the inner product in quantum theory. In
Sec. III, we quantize the theory by applying the Dirac
procedure [18,19]. Then, we consider whether and how the
Kodama state can be extended into covariant unimodular
gravity, mainly following Ref. [14]. In Sec. IV, we
summarize our results including the comparison between
covariant unimodular gravity, the original unimodular
gravity, and GR.
We use the following notation. Greek letters μ; ν;… ∈

fτ; 1; 2; 3g indicate four-dimensional spacetime indices
where τ is the time flow component. Capital letters
I; J;… ∈ f0; 1; 2; 3g are Lorentz indices. Letters a; b;… ∈
f1; 2; 3g are three-dimensional spatial indices, and
i; j;… ∈ f1; 2; 3g are internal su(2) Lie algebra indices.
We employ a four-metric signature ð−;þ;þ;þÞ, and use
units in which the speed of light is unity.

II. CANONICAL ANALYSIS

The simplest action of the original unimodular gravity
without matter is obtained by modifying the Einstein-
Hilbert action

SUGðgμν;ΛÞ ¼
1

2k

Z
d4x

h ffiffiffiffiffiffiffiffiffiffiffiffiffi
−detg

p
Rð4Þ −Λð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
−detg

p
−αÞ

i
;

ð1Þ

where k is Newton’s constant times 8π, Rð4Þ is a scalar
curvature of four-dimensional spacetime, Λ is a scalar field
that plays the role of a Lagrange multiplier, and α is a fixed
scalar density. The variation with respect to Λ leads to
the unimodular condition

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
− α ¼ 0. In this frame-

work, the spacetime diffeomorphism is restricted so that
the value of the determinant of the four-metric remains
unchanged.
The reformulation of unimodular gravity that ensures full

diffeomorphism invariance was introduced by Henneaux
and Teitelboim [7]. The action has the form

SHTðgμν;Λ;ϕμÞ

¼ 1

2k

Z
d4x

h ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
Rð4Þ − Λ

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
− ∂μϕ

μ
�i

;

ð2Þ

where ϕμ is a densitized vector field of weight one. The
unimodular condition is rewritten as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
− det g

p
− ∂μϕ

μ ¼ 0.
Let us write the action corresponding to (2) in terms of the
connection representation. This can be done by modifying
the Holst action [20]

SðωIJ
μ ; e

μ
I ;Λ;ϕμÞ

¼
Z

d4xL

¼ −
1

2kβ

Z
eI ∧ eJ ∧

�
Rð4Þ
IJ −

β

2
ϵIJKLRð4ÞKL

�

−
1

48k

Z
ΛϵIJKLeI ∧ eJ ∧ eK ∧ eL

þ 1

2k

Z
d4xΛ∂μϕ

μ; ð3Þ

where eI is a cotetrad, Rð4ÞIJ ¼ dωIJ þ ωI
K ∧ ωKJ is a

curvature of the spin connection ωIJ
μ , and β is the Barbero-

Immirzi parameter that takes nonvanishing real values. The
3þ 1 form of the above action under the time gauge e0a ¼ 0
is written as

S ¼ 1

kβ

Z
d4xðEa

i
_Ai
a − Ai

τGi − NaVa − NCÞ

þ 1

2k

Z
d4xðΛ _ϕτ − ΛN det e − ϕa∂aΛÞ; ð4Þ

where det e is a determinant of a cotriad eia, Ea
i ¼ ðdet eÞeai

is a densitized triad, Ai
μ ¼ − 1

2
ϵijkω

jk
μ − βω0i

μ , Na is a shift
vector, and N is a lapse function. The spatial component
of Ai

μ is usually expressed as Ai
a ¼ Γi

a þ βKi
a, where

Γi
a ¼ − 1

2
ϵijkω

jk
a is a three-dimensional spin connection

compatible with eai , and Ki
a ¼ −ω0i

a ¼ Kabebjδ
ij is related

with the extrinsic curvature Kab and eai . In addition,

Gi ¼ −ðDaEaÞi ¼ −ð∂aEa
i þ ϵij

kAj
aEa

kÞ; ð5Þ

Va ¼ −Eb
i F

i
ba; ð6Þ

C ¼ 1

2β
ffiffiffiffiffiffiffiffiffiffi
detE

p ϵijkEa
i E

b
j ½ð1þ β2ÞRabkðEÞ − Fabk�; ð7Þ

where Fi
ab ¼ ∂aAi

b − ∂bAi
a þ ϵijkA

j
aAk

b is a curvature of A
i
a,

Ri
abðEÞ ¼ ∂aΓi

b − ∂bΓi
a þ ϵijkΓ

j
aΓk

b is a curvature of Γi
a that

is constructed from Ea
i , and detE ¼ ðdet eÞ2 is a determi-

nant of Ea
i . Note that while C (7) is often expressed as

C ¼ β

2
ffiffiffiffiffiffiffiffiffiffi
detE

p ϵijkEa
i E

b
j ½Fabk − ð1þ β2ÞϵklmKl

aKm
b �; ð8Þ

we use the former expression (7) for latter convenience.
The configuration variables of this theory are ðAi

τ; Ai
a; N;

Na;Λ;ϕτ;ϕaÞ. The canonical conjugate momenta (multi-
plied by kβ or 2k) are given by

πi ¼ kβ
∂L
∂ _Ai

τ

¼ 0; Ea
i ¼ kβ

∂L
∂ _Ai

a

; ð9Þ
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πN ¼ kβ
∂L
∂ _N

¼ 0; πa ¼ kβ
∂L
∂ _Na ¼ 0; ð10Þ

πΛ ¼ 2k
∂L
∂ _Λ

¼ 0; ð11Þ

pτ ¼ 2k
∂L
∂ _ϕτ

¼ Λ; pa ¼ 2k
∂L
∂ _ϕa

¼ 0: ð12Þ

These momenta yield primary constraints

πi ≈ πN ≈ πa ≈ πΛ ≈ Π ≈ pa ≈ 0; ð13Þ

where Π ¼ pτ − Λ, and the symbol ≈ is weak equality,
which indicates that the equality holds on the constraint
surface. The fundamental Poisson bracket relations are

fAi
τðxÞ; πjðyÞg ¼ kβδijδ

3ðx − yÞ;
fAi

aðxÞ; Eb
j ðyÞg ¼ kβδbaδijδ

3ðx − yÞ;
fNðxÞ; πNðyÞg ¼ kβδ3ðx − yÞ;
fNaðxÞ; πbðyÞg ¼ kβδabδ

3ðx − yÞ;
fΛðxÞ; πΛðyÞg ¼ 2kδ3ðx − yÞ;
fϕτðxÞ; pτðyÞg ¼ 2kδ3ðx − yÞ;
fϕaðxÞ; pbðyÞg ¼ 2kδabδ

3ðx − yÞ: ð14Þ

The total Hamiltonian HT is a combination of the ordinary
Hamiltonian and the primary constraints with Lagrange
multipliers vi; va; vN; vΛ; w̃; w̃a:

HTðAi
τ;πi; Ai

a; Ea
i ; N;πN;Na; πa;Λ; πΛ;ϕτ; pτ;ϕa; paÞ

¼
Z

d3x

�
1

kβ
ðAi

τGi þNaVa þNCÞ

þ 1

2k
ðΛN det eþ ϕa∂aΛÞ þ

1

kβ
ðviπi þ vaπa þ vNπNÞ

þ 1

2k
ðvΛπΛ þ w̃Πþ w̃apaÞ

�
; ð15Þ

where w̃ and w̃a are densities of weight one. In general,
every constraint must satisfy the stability condition, that is,
each constraint must hold under time evolution on the
constraint surface. Applying this condition to the primary
constraints (13), we have

fπi; HTg ¼ −Gi ≈ 0; ð16Þ

fπa; HTg ¼ −Va ≈ 0; ð17Þ

fπN;HTg ¼ −Φ ≈ 0; ð18Þ

fπΛ; HTg ¼ −ðN det e − ∂aϕ
a − w̃Þ ≈ 0; ð19Þ

fΠ; HTg ¼ −vΛ ≈ 0; ð20Þ

fpa;HTg ¼ −Σa ≈ 0; ð21Þ

where

Φ ¼ 1

2β
ffiffiffiffiffiffiffiffiffiffi
detE

p ϵijkEa
i E

b
j

×

�
ð1þ β2ÞRabk − Fabk þ

β2Λ
6

ϵabcEc
k

�
; ð22Þ

Σa ¼ ∂aΛ: ð23Þ

While vi, va, vN , and w̃a remain unspecified, vΛ and w̃ are
determined by Eqs. (19) and (20) as

vΛ ¼ 0; w̃ ¼ N det e − ∂aϕ
a: ð24Þ

The secondary constraints Gi ≈ 0 (16), Va ≈ 0 (17), and
Φ ≈ 0 (18) are the Gauss, vector, and Hamiltonian con-
straints, respectively, which are the same as those in GR.
The secondary constraint Σa ≈ 0 (21) implies that Λ is a
spatial constant. We define the smeared versions of the
secondary constraints:

G½Xi� ¼ 1

kβ

Z
d3xXiGiðxÞ; ð25Þ

V½Xa� ¼ 1

kβ

Z
d3xXaVaðxÞ; ð26Þ

Φ½X� ¼ 1

kβ

Z
d3xXΦðxÞ; ð27Þ

Σ½X̃a� ¼ 1

2k

Z
d3xX̃aΣaðxÞ; ð28Þ

where Xi; Xa; X are test functions, and X̃a is a densitized
test function. One can check that every secondary con-
straint has a weakly vanishing Poisson bracket with the
total Hamiltonian (15). Then, every secondary constraint
automatically satisfies the stability condition, and no more
constraints arise.
Now, we can classify the primary constraints ðπi; πa; πN;

πΛ;Π; paÞ and the secondary constraints ðG½Xi�; V½Xa�;
Φ½X�;Σ½X̃a�Þ into the first- and second-class constraints.
The weakly nonvanishing Poisson brackets among these
constraints are

fπΛðxÞ;ΠðyÞg ¼ 2kδ3ðx − yÞ; ð29Þ

fπΛ;Φ½X�g ¼ −X det e; ð30Þ

fπΛ;Σ½X̃a�g ¼ ∂aX̃a: ð31Þ
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Hence constraints ðπΛ;Π;Φ½X�;Σ½X̃a�Þ are second class,
and the remaining constraints are first class.
The number of the second-class constraints can be

reduced by replacing Φ½X� and Σ½X̃a� with the modified
constraints Φ0½X� and Σ0½X̃a�, respectively:

Φ0½X� ¼ Φ½X� þ 1

2k

Z
d3xXΠ det e

¼ 1

2kβ2

Z
d3x

Xffiffiffiffiffiffiffiffiffiffi
detE

p ϵijkEa
i E

b
j

×

�
ð1þ β2ÞRabk − Fabk þ

β2

6
ϵabcpτEc

k

�
; ð32Þ

Σ0½X̃a� ¼ Σ½X̃a� þ 1

2k

Z
d3xX̃a∂aΠ

¼ 1

2k

Z
d3xX̃a∂apτ: ð33Þ

In fact, the weakly nonvanishing Poisson bracket among
the primary constraints ðπi; πa; πN; πΛ;Π; paÞ and the
secondary constraints ðG½Xi�; V½Xa�;Φ0½X�;Σ0½X̃a�Þ is
only one:

fπΛðxÞ;ΠðyÞg ¼ 2kδ3ðx − yÞ: ð34Þ

Then, constraints ðπΛ;ΠÞ are second class, and the remain-
ing constraints are first class. Let us count the degrees of
freedom of this theory. Variables ðAi

τ; Ai
a; N; Na;Λ;ϕτ;ϕaÞ

have 3þ 9þ 1þ 3þ 1þ 1þ 3 ¼ 21 components. The
first-class constraints ðπi; πa; πN; pa; G½Xi�; V½Xa�;Φ0½X�;
Σ0½X̃a�Þ constrain 3þ 3þ 1þ 3þ 3þ 3þ 1þ 1 ¼ 18

components. Note that Σ0½X̃a� constrains only one compo-
nent, because this constraint is parametrized by ∂aX̃a rather
than X̃a. The second-class constraints ðπΛ;ΠÞ constrain
ð1þ 1Þ=2 ¼ 1 component. Therefore, the local degrees
of freedom in configuration space are 21 − 18 − 1 ¼ 2.
This result is consistent with GR and the original unim-
odular gravity [15].
Using the second-class constraints Π ≈ 0 and πΛ ≈ 0, we

can eliminate variables Λ and πΛ by substituting

Λ ¼ pτ; πΛ ¼ 0: ð35Þ

After the elimination, the total Hamiltonian (15) is
rewritten as

HTðAi
τ; πi; Ai

a; Ea
i ; N; πN; Na; πa;ϕτ; pτ;ϕa; paÞ

¼ G½Ai
τ� þ V½Na� þΦ0½N� þ Σ0½ϕa�

þ
Z

d3x

�
1

kβ
ðviπi þ vaπa þ vNπNÞ þ

1

2k
w̃apa

�
:

ð36Þ

The constraint Σ0½X̃a� ≈ 0 (33) and the evolution equation
fpτ; HTg ≈ 0 imply that pτ is a spacetime constant. In
addition, the evolution equation fϕτ;HTg¼Ndete−∂aϕ

a

leads to the covariant version of the unimodular condition
N det e − ∂μϕ

μ ¼ 0. Obviously, pτ and Λ correspond to the
cosmological constant (times two) in GR.
We can introduce the spatial diffeomorphism constraint

D½Xa� by extending the vector constraint V½Xa�:

D½Xa� ¼ V½Xa� þ G½XaAi
a� − Σ0½Xaϕτ�: ð37Þ

This constraint generates the spatial diffeomorphism for the
dynamical variables

fAi
a;D½Xb�g ¼ LX⃗A

i
a; fEa

i ;D½Xb�g ¼ LX⃗E
a
i ; ð38Þ

fϕτ;D½Xa�g ¼ LX⃗ϕ
τ; fpτ;D½Xa�g ¼ LX⃗pτ; ð39Þ

where LX⃗ is a Lie derivative along X⃗. The constraint D½Xa�
is first class, and holds the stability condition

fD½Xa�; HTg ¼ G½LX⃗A
i
τ� þ V½LX⃗N

a�
þΦ0½LX⃗N� þ Σ0½LX⃗ϕ

a�
≈ 0: ð40Þ

We employ D½Xa� instead of V½Xa� as an element of the
first-class constraints.

III. QUANTIZATION

After the reduction (35), all the remaining constraints
ðπi; πa; πN; pa; G½Xi�;D½Xa�;Φ0½X�;Σ0½X̃a�Þ belong to first
class. Hence, we can proceed to quantize this theory by
replacing Poisson brackets f•; •g with quantum commuta-
tors ðiℏÞ−1½•̂; •̂�. The quantum operators corresponding to
the canonical variables are given by

Âi
τ ¼ Ai

τ; π̂i ¼ −iℏkβ
δ

δAi
τ
; ð41Þ

Âi
a ¼ Ai

a; Êa
i ¼ −iℏkβ

δ

δAi
a
; ð42Þ

N̂ ¼ N; π̂N ¼ −iℏkβ
δ

δN
; ð43Þ

N̂a ¼ Na; π̂a ¼ −iℏkβ
δ

δNa ; ð44Þ

ϕ̂τ ¼ ϕτ; p̂τ ¼ −2iℏk
δ

δϕτ ; ð45Þ

ϕ̂a ¼ ϕa; p̂a ¼ −2iℏk
δ

δϕa : ð46Þ
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A physical state Ψ must satisfy the quantized first-class
constraints

π̂iΨ ¼ π̂NΨ ¼ π̂aΨ ¼ p̂aΨ ¼ 0; ð47Þ

Ĝ½Xi�Ψ ¼ D̂½Xa�Ψ ¼ Φ̂0½X�Ψ ¼ Σ̂0½X̃a�Ψ ¼ 0: ð48Þ

Constraints (47) indicate that Ψ should be independent
from Ai

τ; N; Na, and ϕa, that is,

Ψ ¼ Ψ½ϕτ; Ai
a�: ð49Þ

We assume that the wave functional is variable-separable,
namely, Ψ½ϕτ; Ai

a� ¼ Ψ½ϕτ�Ψ½Ai
a�. Constraint Σ̂0½X̃a�Ψ ¼

ð2kÞ−1 R d3xX̃a∂ap̂τΨ ≈ 0 implies that Ψ has the form

Ψ½ϕτ; Ai
a� ¼ exp

�
λ

−2iℏk

Z
d3xϕτ

�
Ψ½Ai

a�; ð50Þ

that satisfies

p̂τΨ½ϕτ; Ai
a� ¼ λΨ½ϕτ; Ai

a�; ð51Þ

where λ is an unspecified constant. Note that p̂τ weakly
commutes with every quantum first-class constraint;
therefore, p̂τ is the physical observable in the sense of
Dirac [19].
A possible solution of the constraints (47) and (48) is

expressed as

Ψλ;R½ϕτ; Ai
a�

¼ Ψλ½ϕτ�Ψλ;R½Ai
a�

¼ exp

�
λ

−2iℏk

Z
d3xϕτ

�

× exp

�
6

iℏkβ3λ

�
YCS½Ai

a�− 2ð1þ β2Þ
Z

TrðA ∧ RÞ
��

;

ð52Þ

where

YCS½Ai
a� ¼

Z
Tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
ð53Þ

is the Chern-Simons functional, Tr indicates the trace of
SU(2) generators Ti, which is normalized as TrðTiTjÞ ¼
− 1

2
δij, and λ and Ri

ab are parameters associated with the
cosmological constant and the spatial curvature, respec-
tively. We would like to emphasize that the form of the
second factor in (52), Ψλ;R½Ai

a�, was originally proposed in
Ref. [14] as a generalization of the Kodama state for real
values of β.
Since this state is a pure phase, we can define a naive

inner product

hΨλ0;R0 jΨλ;Ri ¼
Z

DϕτDAΨ�
λ0;R0 ½ϕτ; Ai

a�Ψλ;R½ϕτ; Ai
a�

∼ δðλ − λ0ÞδðR − R0Þ; ð54Þ

where

δðR − R0Þ ¼
Y
x

Y
a;b;i

δðRi
abðxÞ − R0i

abðxÞÞ: ð55Þ

The inner product (54) has an undesirable property. Due
to the factor δðR − R0Þ, when Ri

ab and R0i
ab have different

values, this inner product vanishes even if Ri
ab and R

0i
ab are

connected by the gauge and spatial diffeomorphism trans-
formations. We can improve this inner product by using the
group averaging technique [14]

ðΨλ0;R0 jΨλ;RÞ ¼
Z

DghΨλ0;φgR0 jΨλ;Ri

∼ δðλ − λ0Þ
Z

DgδðR − φgR0Þ; ð56Þ

where φg is the gauge and spatial diffeomorphism trans-
formations parametrized by g, and

R
Dg is an integral over

both transformations. The inner product (56) does not
vanish when λ ¼ λ0 and R0i

ab can reach Ri
ab by these

transformations. Note that these transformations do not
affect λ. We find that the state

ðΨλ;Rj ¼
Z

DghΨλ;φgRj ð57Þ

is invariant under the gauge and spatial diffeomorphism
transformations, because

ðΨλ;RjÛðφg0 Þ ¼
Z

DghΨλ;φg0 ∘φgRj ¼ ðΨλ;Rj; ð58Þ

where Ûðφg0 Þ is the operator corresponding to these
transformations. This is an analog of the strategy to obtain
the gauge and spatial diffeomorphism invariant state in loop
quantum gravity [21,22].
One can write the curvature operator R̂i

ab by using the
inner product (56) as

Z
d3xX̃ab

i R̂i
ab

¼
Z

d3xX̃ab
i

Z
DgDR0Dλ0φgR0i

abjΨλ0;φgR0 ihΨλ0;φgR0 j;

ð59Þ

where X̃ab
i is a densitized test function, and

R
DR0 is an

integral over the curvature parameter R0 modulo the
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gauge and spatial diffeomorphism transformations.
From Eq. (59), we have

Z
d3xX̃ab

i R̂i
abjΨλ;Ri ¼

Z
d3xX̃ab

i Ri
abjΨλ;Ri: ð60Þ

Using (51), (60), and

Êa
iΨλ;R½ϕτ; Ai

a� ¼
3

β2λ
ϵabc½Fbci − ð1þ β2ÞRbci�Ψλ;R½ϕτ; Ai

a�;

ð61Þ

we find that the state Ψλ;R½ϕτ; Ai
a� satisfies the Hamiltonian

constraint

Φ̂0½X�Ψλ;R½ϕτ; Ai
a�

¼ 1

2kβ2

Z
d3x

Xffiffiffiffiffiffiffiffiffiffi
det Ê

p ϵijkÊa
i Ê

b
j

×

�
ð1þ β2ÞR̂abk − F̂abk þ

β2

6
ϵabcp̂τÊ

c
k

�
Ψλ;R½ϕτ; Ai

a�

¼ 0: ð62Þ

Thus, under the appropriate inner product (56), the state
jΨλ;RÞ is a solution of quantum covariant unimodular
gravity.

IV. CONCLUSIONS

In this work, we have analyzed the full theory of
covariant unimodular gravity in terms of the connection
representation with real values of the Barbero-Immirzi
parameter β. Unlike the original unimodular gravity, the
Hamiltonian constraint of covariant unimodular gravity
(32) is first class. Therefore, the constraint structure of
covariant unimodular gravity is closer to that of GR than
that of the original unimodular gravity. The subtle differ-
ence from GR is that the cosmological constant in GR
is replaced with the canonical momentum pτ which is
regarded as a constant of motion and a Dirac observable.
In the original unimodular gravity, the Kodama state is

not a solution of the quantum constraints [15]. On the other
hand, in covariant unimodular gravity, the solution of the
constraints can be obtained by extending the Kodama state.
The state (52) is regarded as a natural extension of the state
proposed in Ref. [14]. Since this state is a pure phase,
it is delta-function normalizable. In addition, since all
the canonical variables are real, we can avoid the reality
condition problem. The main difference from the quantum
states of GR in Ref. [14] is that each state is labeled not
only by the spatial curvature Ri

ab (modulo the gauge and
spatial diffeomorphism transformations) but also by the
cosmological constant. This implies that a general solution
of the physical state can be written as a superposition of the
eigenstates of p̂τ and R̂i

ab. Thus, at least in this framework,

covariant unimodular gravity is different from GR at
the quantum level. Note that such a superposition of
the different values of the cosmological constant has
already appeared in previous studies both within the
Hamiltonian formalism [6,16] and the path integral
formalism [3,5,23].
It is still unclear whether the original unimodular gravity

and covariant unimodular gravity differ at the quantum
level. In the original unimodular gravity, only the wave
functional with zero cosmological constant has been found
[15]. On the other hand, in covariant unimodular gravity,
Ψλ;R½ϕτ; Ai

a� (52) is a state with a non-vanishing cosmo-
logical constant. To compare the two theories, one needs to
find a solution with a non-vanishing cosmological constant
in the original unimodular gravity. Note that even if such a
state is found, it is not so obvious whether the difference in
the physical states provides different physical predictions.
Another approach to confirm the difference between the

two unimodular theories is to compare the observables.
In general, a physical observable must commute with every
first-class constraint [19], while the two unimodular the-
ories have different first-class constraints. If we can define
appropriate observables, it will be easier to compare
the two theories. Let us consider Vτ ¼

R
d3xsN det e as

an example of a candidate for the physical observable.
Here, s ¼ signðdet eÞ, and the integral is over the spacelike
surface parametrized by τ. In covariant unimodular gravity,
the Poisson bracket between Vτ and the Hamiltonian
constraint does not weakly vanish: fVτ;Φ0½X�g ¼R
d3xsXNKi

aEa
i ≉ 0. This implies that, in quantum theory,

not all the constraints commute with V̂τ, and a physical
state is not an eigenstate of V̂τ. Hence, Vτ and the four-
volume

R
dτVτ are not observables in covariant unimodular

gravity. On the other hand, in the original unimodular
gravity, the unimodular constraint N det e − α ¼ 0 is a
second-class constraint. This means that N is not an
independent variable, and can be eliminated as N ¼
αðdet eÞ−1. Therefore, Vτ ¼

R
d3xsα. In this case, the

Poisson bracket between Vτ and every first-class constraint
weakly vanishes. However, Vτ and the four-volume in this
theory should be regarded as constants associated with the
Hamiltonian and the Lagrangian rather than observables.
Thus, Vτ is not an appropriate quantity to compare the
two theories. To confirm the (in)equivalence of the two
theories, one needs to find some other quantities that can be
physical observables.
It is worthwhile to investigate how covariant unimodular

gravity is extended into loop quantum gravity. Both
covariant unimodular gravity discussed above and loop
quantum gravity employ real values of the Barbero-Immirzi
parameter β. Therefore, one can expect that this theory can
be naturally extended into a full theory of loop quantum
gravity. Note that the symmetry-reduced models of covar-
iant unimodular gravity in the context of loop quantum
cosmology has been studied in Refs. [24–26].
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Another direction for future research is to investigate the
relation between the extended Kodama state (52) and other
physical states of unimodular gravity. In Refs. [27,28],
the Hartle-Hawking state, which is the solution of quantum
GR in the ADM representation, is interpreted as the
Fourier dual of the Kodama state. On the other hand,
there is also an argument that it is difficult to translate the
Hartle-Hawking state straightforwardly into the connection

representation [29]. The question of how these arguments
are modified in covariant unimodular gravity is left for
future study.
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