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In the context of the gauge/gravity duality, using the proposed candidate c-function, which is derived
from the entanglement entropy of a strip-shaped region, we investigate the RG flow for dþ 1-dimensional
quantum field theories with broken Lorentz and rotational symmetries in the IR, but preserved conformal
invariance in the UV boundary. We examine conditions of monotonicity of the c-function for holographic
anisotropic theories dual to the Einstein gravity via the constraints imposed by the null energy conditions.
We consider near UV and IR behaviors and identify the sufficient conditions that guarantee the c function
decreases monotonically along the RG flows.
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I. INTRODUCTION

A challenging question in the quantum field theory
(QFT) is finding a proper quantity in order to probe the
structure of parameter space of QFT. The renormalization
group (RG) provides a framework to study various aspects
of the QFT space. The RG denotes how physics in different
energy scales can be related to each others.
There are special points in this space, called fixed points,

which correspond to theories with scaling symmetry. Other
theories may be derived from such points by various
deformations. By definition, this quantity/function is def-
inite positive and monotonically decreases along the RG
flows and is a measure of degrees of freedom of the
effective theory. Another feature of this function is that its
values at fixed points equal to the central charges of the
corresponding theories.
In the space of two-dimensional QFT, Zamolodchikov

[1] showed that there exists such a positive definite function
c2, which decreases monotonically along the RG flows.
This function is stationary and coincides with the central
charge c of the associated fixed points CFT. As a
consequence, if RG flows connect two UV and IR fixed
points, we have

cUV > cIR: ð1:1Þ

From the Wilsonian point of view, it is a measure of the
effective degrees of freedom that decreases along the
RG flows.
One of the suitable candidates c-function is emergent in

the realm of the information theory. In this context, the
proper c-function is derived from the entanglement entropy
that is a measure of quantum entanglement. It can be
used as a measure of effective degrees of freedom in QFT
along the RG flows in the Wilsonian sense. For a two-
dimensional conformal field theory, the entanglement
entropy for an interval of length l is given by [2,3]

SCFTEE ¼ c
3
log

�
l
δ

�
þ � � � ; ð1:2Þ

where c is the central charge, δ is a UV regulator, and dots
denote the l-independent nonuniversal terms.
The authors [4,5] reformulated the Zamolodchikov’s

c-theorem for a two-dimensional QFT in terms of SEE
and defined

c2 ¼ 3l
dSEEðlÞ

dl
: ð1:3Þ

The monotonicity flow of the c2, dc2=dl ≤ 0, can be shown
from the strong subadditivity property of SEE as well as the
Lorentz symmetry and unitarity of the underlying QFT.
It takes the value c2 ¼ c at RG fixed points.
The generalization of the c-theorem for higher dimen-

sions is remained a challenging problem. This issue has
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been addressed in [6–9] for three- and four-dimensional
theories with Lorentz invariance. On the other hand, the
gauge/gravity duality provides a framework to investigate
the RG flows to arbitrary dimensions in the gravitational
context [10–14]. The connection between RG flows and the
entanglement entropy well is depicted via holographic
prescription of computing the entanglement entropy of
the boundary theory [15–17]. The authors [16,18] defined a
candidate c-function which extracted from the holographic
entanglement entropy of a strip-shape region. In [18], it was
shown that the c-functions for a Lorentz invariant QFT
decreases monotonically if the bulk gravity/matter fields
satisfy the null-energy conditions.
There is a natural question that in what extend one can

recover monotonic RG flows for theories which exhibit
broken Lorentz invariance. In [19], it was shown that for
weakly coupled Lorentz-violating field theories, the entan-
glement entropy does not decrease monotonically under
RG flows. On the other hand, [20] claimed that for Lorentz-
violating strongly coupled field theories with holographic
dual such a breakdown of the candidate c function can be
seen. However they also, with respect to the asymptotic UV
behavior of the geometry, identified sufficient conditions
to have a monotonically decreasing c function along
the RG flow. These theories are associated to geometries
with a dynamical exponent z and a hyperscaling violation
parameter θ.
These dual models are important in studying QFTs with

violation of Lorentz invariance and broken rotational
symmetry [21–31]. It is worth mentioning that there are
studies on RG-flows in theories without Lorentz symmetry
while they have Galilean invariance only. There is a
possibility to introduce monotonically decreasing quan-
tities in these models which start from a UV fixed point
which is not relativistically conformal invariant, so they are
anisotropic models with Lifshitz symmetry [32–35].
In this work, we raise the question that how the

anisotropy affects the monotonicity of the RG flows, and
in what conditions we can define the candidate c-function
from holographic entanglement entropy for theories that
exhibit Lorentz-violating as well as rotational symmetry
breaking. We will construct a c-function that interpolates
between a UV CFT and an IR anisotropic theory.
For this regarding, we consider the cases in which the

Lorentz and rotational symmetries are broken only in the
IR, while the UV boundary is still conformally invariant,
and then examine flowing from a fixed point and, in
particular, a c-function of the RG flow. There are other
related works in this context [36,37].
This paper is organized as follows. In Sec. II, first we

briefly review the holographic entanglement entropy of a
strip-shaped region in an AdS background, then we derive
the Ryu-Takayanagi minimal surface for an anisotropic
dilaton-axion model and also in a hyperscaling violation
background. In Sec. III, we derive null energy conditions,

and propose the candidate c-function, for geometries
dual to anisotropic QFTs. In Sec. IV, we illustrate our
results in some anisotropic backgrounds. Finally we con-
clude in Sec. V. In Appendix A, we provide more details on
calculating the holographic entanglement entropy. To do
so, we take the width of the strip in two directions: first,
along the isotropic scaling dimensions, then in the aniso-
tropic direction. More details on deriving the RG-flow are
provided in Appendix B.

II. HOLOGRAPHIC ENTANGLEMENT ENTROPY
OF ANISOTROPIC MODELS

In the following subsections, we calculate the holo-
graphic entanglement entropy of a strip-shaped region for
some anisotropic models. To understand its relationship to
the c function, let us first recall [18] approach, which leads
to the identification of the candidate c-function by the
holographic entanglement entropy of a strip-shaped region
for a CFT.
In the UV fixed point we have a CFT, which is dual

to AdSdþ2 background. Therefore, we can apply Ryu-
Takayanagi ðRTÞ prescription [15,16] to derive the holo-
graphic entanglement entropy. For a subregion V on the
dþ 1-dimensional boundary field theory, it is given by

SEE ¼ AreaðmÞ
4GN

; ð2:1Þ

where m is the minimal surface in dþ 2-dimensional bulk
and is homologous to V and ∂m matches the entangling
surface ∂V on the boundary. The above formula holds in the
case that the bulk physics is described by the Einstein
gravity.
The holographic entanglement entropy for a strip-shaped

region, where entangling surface is described by two
parallel ðd − 1Þ-dimensional planes separated by a distance
l, is given by [15,16]

SCFT ¼ αd

�
H
δ

�
d−1

−
1

ðd − 1Þβd
Cd

�
H
l

�
d−1

ð2:2Þ

where αd and βd are positive dimensionless numerical
factors, and H ≫ l can be intended as an IR regulator
along the entangling surface. The first term denotes the area
law and the second one is finite with coefficient Cd, which
is related to the central charge of the underlying CFT via

Cd ¼ βd
ld

Hd−1
∂SCFTEE

∂l ð2:3Þ

This is suggestive that a c-function candidate along the
RG flows can be extracted from the holographic entangle-
ment entropy as [16,18]

cd ¼ βd
ld

Hd−1
∂SEE
∂l : ð2:4Þ

MOSTAFA GHASEMI and SHAHROKH PARVIZI PHYS. REV. D 104, 086028 (2021)

086028-2



where at the fixed point we have cd ¼ Cd. The monoto-
nicity of this function along the RG flows comes from the
Lorentz symmetry and subadditivity inequalities of the
entanglement entropy.
In the next section, we promote it to an anisotropic

theory and consider the sufficient conditions for mono-
tonically decreasing of the candidate c-function along
RG flows. Before that, it would be helpful to find the
entanglement entropy of a strip-shaped region for such
theories. We consider two kinds of anisotropic models.

A. An anisotropic model in the UV regime

In this subsection, we consider an anisotropic theory for
which the dual gravitational theory is defined by the
Einstein-axion-dilaton action [21,28,29],

S ¼ 1

2l3
p

Z
d5x

ffiffiffiffiffiffi
−g

p ðRþ LMÞ

LM ¼ −
1

2
ð∂ϕÞ2 þ VðϕÞ − 1

2
ZðϕÞð∂χÞ2 ð2:5Þ

where V and Z are a potential for the dilaton field ϕ, and a
coupling between the axion field χ and the dilaton,
respectively. With respect to generic choice of the V and
Z we can find various solutions. With

VðϕÞ ¼ 12 coshðσϕÞ − 6σ2ϕ2; ZðϕÞ ¼ e2γϕ ð2:6Þ

near the boundary, this potential approaches the cosmo-
logical constant (with the radius of curvature is L ¼ 1) and
we have a UV fixed point with conformal symmetry on the
boundary.
Now take a linear axion as χ ¼ ay, then the Einstein’s

equations can be found as

3A0ð2A0 þ h0Þ ¼ 1

4
ð2e2AVðϕÞ − a2e−2hZðϕÞ þ ϕ02Þ ð2:7Þ

3A00 þ 3A0h0 þ 3A02 þ h00 þ h02

¼ 1

4
ð2e2AVðϕÞ − a2e−2hZðϕÞ − ϕ02Þ ð2:8Þ

3e2hðA00 þ A02Þ ¼ 1

4
ð2e2ðAþhÞVðϕÞ − e2hϕ02 þ a2ZðϕÞÞ

ð2:9Þ

and the dilaton equation,

ϕ00 þϕ0ð3A0 þ h0Þ ¼ a2γe2γϕ−2h þ 12σe2Aðσϕ− sinhðσϕÞÞ:
ð2:10Þ

where an anisotropic ansatz is introduced as

ds2 ¼ e2AðrÞ
�
−fðrÞdt2 þ dr2

fðrÞ þ dx21 þ dx22 þ e2hðrÞdy2
�

ϕ ¼ ϕðrÞ; χ ¼ ay: ð2:11Þ

Here, we restrict ourselves to zero temperature solution for
which fðrÞ ¼ 1. For a small anisotropy ar ≪ 1, a pertur-
bative solution can be found as

AðrÞ ¼ − logðrÞ − a2r2

72
þ a4r4

1200
ð3γ2 þ 1Þð1 − 5 logðarÞÞ

þOðarÞ6; ð2:12Þ

hðrÞ ¼ a2r2

8
−

a4r4

2592
ð31þ 81γ2 − 54ð3γ2 þ 1Þ logðarÞÞ

þOðarÞ6; ð2:13Þ

ϕðrÞ ¼−
γa2r2

4
þa4r4

96
γð3γ2þ 1Þð1− 4 logðarÞÞþOðarÞ6:

ð2:14Þ

In the following, we are going to find the entanglement
entropy for two cases with the width of strip along one of x
coordinates and along y direction.
Let us first consider the width of the strip along one of

xi’s directions, say x ¼ x1 as −l=2 ≤ x ≤ l=2, then para-
metrize the RT surface as r ¼ rðxÞ. The entanglement
entropy follows as

Sx ¼
4πHd−1

ld
p

Z l−ϵ
2

0

dxeB
ffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2 þ 1

p
ð2:15Þ

where BðrÞ ¼ dAðrÞ þ hðrÞ with d ¼ 3, ϵ is a UV cutoff
and H is a cutoff on length of the strip. The EoM is

̈r ¼ B0ð1þ _r2Þ ð2:16Þ

where dot denotes d=dx and prime is d=dr. Since the
integrand of (2.15), L is independent of x, we can introduce
the following constant of motion,

KdðlÞ ¼
�
L − _r

∂L
∂ _r
�

−1

¼ e−B
ffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2 þ 1

p
ð2:17Þ

Then we can write

KdðrmÞ ¼ e−BðrmÞ ð2:18Þ

where rm is the maximum of r at _r ¼ 0. It follows then
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Sx ¼
4πHd−1

ld
p

Z l−ϵ
2

0

dxe2BðrðxÞÞ−BðrmÞ

¼ 4πHd−1

ld
p

Z
rm

δ
dr

e2BðrðxÞÞ−BðrmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2ðBðrÞ−BðrmÞÞ − 1

p ð2:19Þ

where we used _r ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2BðrÞ−2BðrmÞ − 1

p
and δ is the UV

cutoff on r coordinate.
We compute the entanglement entropy in the

Appendix A and find it as,

Sx ¼
4πH2

l3
p

�
−
0.1603
l2

þ a2

12
loglþ 0.0316a2

− ð0.0088þ 0.0293γ2 þ 0.0048γ4Þa4l2

þ ð0.0079þ 0.0127γ2 − 0.0326γ4Þa4l2 logðalÞ
�
:

ð2:20Þ

The leading term corresponds to (2.2) with d ¼ 3, but in
contrast, the second term in (2.20) is a universal logarithmic
term which has no counterpart in (2.2).
As the second case, we consider the strip as −l=2 ≤

y ≤ l=2, and reparametrize the RT surface as r ¼ rðyÞ.
Then we have

Sy ¼
4πHd−1

ld
p

Z l−ϵ
2

0

dxedA
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2 þ e2h

p
: ð2:21Þ

The constant of motion is

KdðlÞ ¼ e−B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e−2h _r2 þ 1

p
; ⟹ KdðrmÞ ¼ e−BðrmÞ

ð2:22Þ

It follows then

Sy ¼
4πHd−1

ld
p

Z l−ϵ
2

0

dye2BðrðyÞÞ−BðrmÞ

¼ 4πHd−1

ld
p

Z
rm

δ
dr

e2BðrÞ−BðrmÞ

e−h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2BðrÞ−2BðrmÞ − 1

p ð2:23Þ

where we used _r ¼ −e−h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2BðrÞ−2BðrmÞ − 1

p
. From the

calculations in the Appendix A, we found,

Sy ¼
4πH2

l3
p

�
−
0.1603
l2

−
a2

24
logðlÞ þ 0.0259a2

þ ð0.0002þ 0.0050γ2Þa4l2

− ð0.0039þ 0.0118γ2Þa4l2 logðalÞ
�

ð2:24Þ

B. Anisotropy in a hyperscaling model

As another interesting case, consider the potential V in
(2.5) to be [21,22]

VðϕÞ ¼ 6eσϕ; ZðϕÞ ¼ e2γϕ ð2:25Þ

the resulting solution of equation of motions is a Lifshitz-
like anisotropic hyperscaling violation metric with the
arbitrary critical exponent z. The hyperscaling violation
exponent θ is related to the σ and γ constants. It is worth
mentioning that this potential can be considered as the IR
limit of (2.6). But, these solutions indeed exist as exact
metrics along UV to IR (not only as limits). The Lagrangian
setup for these solutions from UV to IR as well as the exact
scaling factors of the background solution are presented in
[22,23].1 There are other related works in this background
and context [27,30]. In otherwise, the anisotropic IR
metrics that is derived in [21] can be understood as a
double wick rotation of the standard Lifshitz/HsV metrics
as well as scaling of z and θ [31].
In any way, here we suppose it to be an independent

potential valid everywhere (not only IR). Now by a linear
axion in the y-direction, χ ¼ ay, one finds the following
exact solution [21,22]

ds2 ¼ L̃2ðarÞ2θdz
�
−dt2 þ dr2 þ dx⃗2d−1

ðarÞ2 þ c1dy2

ðarÞ2=z
�
;

ϕ ¼ c2 logðarÞ þ ϕ0: ð2:26Þ

where z ¼ ð4γ2 − 3σ2 þ 2Þ=ð4γ2 − 6γσÞ and θ ¼ 3σ=ð2γÞ.
For simplicity we consider a ¼ 1 and absorb c1 in y
coordinate,

ds2 ¼ L̃2r
2θ
dz

�
−dt2 þ dr2 þ dx⃗2d−1

r2
þ dy2

r2=z

�
: ð2:27Þ

The scale transformation of the coordinates is defined as

t → λt; r → λr xi → λxi; y → λ
1
zy; ds2 → λ

2θ
dzds2:

ð2:28Þ

The metric transforms covariantly under these
transformations.
The holographic entanglement entropy of a curved

region in this background is considered in [30]. The above
metric has an anisotropic scaling in one of spatial coor-
dinates, so we consider two possible ways to addressing
this problem. First, we take the width of the strip along the
anisotropic scaling direction y, while in the second case we
put up the width of strip along one of the isotropic scaling
directions xi’s.

1We would like to thank Dimitrios Giataganas for pointing this
out to us.
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1. The width of the strip along the anisotropic
scaling direction

In this case, we take the strip as

−l
2

≤ y ≤
l
2
; 0 ≤ xi ≤ H; ð2:29Þ

We choose the profile of the bulk minimal surface as
y ¼ yðrÞ. Hence, the induced metric on this minimal
surface reads

ds2 ¼ L̃2r
2θ
dz−2
�
dx⃗2d−1 þ

�
1þ y02

r
2
z−2

�
dr2
�
; ð2:30Þ

where L̃ is the AdS curvature scale, and y0 ¼ ∂ry. The
holographic entanglement entropy is given by

SEE ¼ 2π

ld
p

Z
dσ

ffiffiffi
γ

p ¼ L̃d2πHd−1

ld
p

×
Z

rm

δ
dr

1

rdþ
1−θ
z −1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2ð

1
z−1Þ þ y02

q
; ð2:31Þ

in which δ is a UV cutoff. rm is the turning point of the
minimal surface defined in such a way that rm ¼ rðx ¼ 0Þ
and y0ðrmÞ ¼ ∞. Note that the entropy functional (2.31)
does not depend explicitly on y, so there is a conserved
quantity

1

rdþ
1−θ
z −1

y0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
2
z−2 þ y02

q ¼ 1

r
dþ1−θ

z −1
m

ð2:32Þ

Using this, we can rewrite SEE and width of the strip l as
functions of turning point rm,

SEE ¼ L̃d2πHd−1

ld
p

I; ð2:33Þ

in which I is

I ¼ 1

r
d−θ

z−1
m

Z
1

δ
rm

du
u

θ
z−dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − u2ðdþ
1−θ
z −1Þ

p ; ð2:34Þ

l ¼ 2r
1
z
m

Z
1

0

du
udþ

2−θ
z −2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − u2ðdþ
1−θ
z −1Þ

p ; ð2:35Þ

where u ¼ r=rm. If we explicitly compute the above
integrals, we can write the SEE as a function of width of
the strip l. To proceed, we must note that for special value
of θ the logarithmic term appears. So, we separate it.

(i) θ ≠ zðd − 1Þ

l ¼ αr
1
z
m; α ¼ 2

ffiffiffi
π

p
z
Γð zðd−1Þþ2−θ

2ðzðd−1Þþ1−θÞÞ
Γð 1

ð2ðzðd−1Þþ1−θÞÞÞ
ð2:36Þ

SEE ¼ 4πzH
θ
z

zðd − 1Þ − θ

L̃d

ld
p

�
H
δ

�
d−θ

z−1

− βd
L̃d

ld
p

�
H
l

�
zðd−1Þ−θ

ð2:37Þ

where

βd ¼
2zπ

3
2

2zðd − 1Þ − 2θ þ 1
Hð1−zÞðd−1Þþθ

×

� Γð− 1
2
þ 1

2ðzðd−1Þþ1−θÞÞ
Γð−1þ 1

ð2ðzðd−1Þþ1−θÞÞÞ
�
αðd−1Þz−θ: ð2:38Þ

(ii) θ ¼ zðd − 1Þ
In this case, we find l ¼ 2zr

1
z
m, and the holo-

graphic entanglement entropy is

SEE ¼ 2πHd−1 L̃
d

ld
p
log

lz

ð2zÞzδ : ð2:39Þ

This result shows that the boundary theory exhibits a
logarithmic area law violation, which may be a sign
that the boundary theory has a Fermi surface.

2. The width of the strip along one of the
isotropic scaling direction

In this case, we take the strip as

−l
2

≤ x1 ≤
l
2
; 0≤ xi ≤H; i≠ 1; 0≤ y≤H; ð2:40Þ

We choose the profile of the bulk minimal surface as
x1 ¼ xðrÞ. So the induced metric on the minimal surface is
derived as

ds2 ¼ L̃dr
2θ
dz−2
�
dx⃗2d−2 þ

1

r
2
z−2

dy2 þ ð1þ x02Þdr2
�
; ð2:41Þ

where L̃ is the AdS curvature scale, and x0 ¼ ∂rx. The
holographic entanglement entropy is given by

SEE ¼
2π

ld
p

Z
dσ

ffiffiffi
γ

p ¼ L̃d2πHd−1

ld
p

Z
rm

δ
dr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x02

p

rdþ
1−θ
z −1

; ð2:42Þ

in which δ is a UV cutoff, and rm is turning point of
minimal surface, and x0ðrmÞ ¼ ∞. The corresponding
conserved quantity is defined as
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1

rdþ
1−θ
z −1

x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x02

p ¼ 1

r
dþ1−θ

z −1
m

ð2:43Þ

Using this we can rewrite the SEE and width of the strip l as
functions of turning point rm,

SEE ¼ L̃d2πHd−1

ld
p

I; ð2:44Þ

in which I is

I ¼ 1

r
dþ1−θ

z −2
m

Z
1

δ
rm

du
1

udþ
1−θ
z −1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2ðdþ

1−θ
z −1Þ

p ; ð2:45Þ

l ¼ 2rm

Z
1

0

du
udþ

1−θ
z −1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − u2ðdþ
1−θ
z −1Þ

p ; ð2:46Þ

Here u ¼ r=rm. Similarly, we can explicitly compute the
above integrals, and rewrite the SEE as a function of width
of the strip l. Again, for a special value of θ a logarithmic
term appears. So, we separate it.

(i) θ ≠ zðd − 2Þ þ 1

l ¼ αrm; α ¼ 2
ffiffiffi
π

p Γð zdþ1−θ
2ðzðd−1Þþ1−θÞÞ

Γð z
ð2ðzðd−1Þþ1−θÞÞÞ

ð2:47Þ

SEE ¼ 4πz
zðd − 2Þ þ 1 − θ

L̃d

ld
p

�
H
δ

�
dþ1−θ

z −2

− βd
L̃d

ld
p

�
H
l

�
dþ1−θ

z −2
ð2:48Þ

where

βd ¼
2zπ

3
2

zðd − 2Þ þ 1 − θ
H1−1

z

×

 
Γð ð2−dÞzþθ−1

2ðzðd−1Þþ1−θÞÞ
Γð z

ð2ðzðd−1Þþ1−θÞÞÞ

!
α

ðd−2Þzþ1−θ
z : ð2:49Þ

(ii) θ ¼ zðd − 2Þ þ 1
In this case, we find l ¼ 2rm, and the holographic

entanglement entropy takes

SEE ∼
L̃d

ld
p
log

l
δ
: ð2:50Þ

This result shows that the entanglement entropy of
the boundary theory exhibits a logarithmic violation
area law, which may be a sign that the boundary
theory has a Fermi surface.

III. A c-FUNCTION FROM THE HOLOGRAPHIC
ENTANGLEMENT ENTROPY IN AN
ANISOTROPIC FIELD THEORY

In this section, we probe the monotonicity of a candidate
c function. Let us start with the following generic metric
which exhibits violation of the Lorentz invariance and
broken rotational symmetry, but respects translational
symmetry,

ds2 ¼ e2AðrÞð−dt2 þ dr2 þ dx2d−1 þ e2hðrÞdy2Þ ð3:1Þ

In Sec. IV, we give an explicit example for such theories.
To introduce the c-function, we consider a strip as the
entangled region. Similar to the previous section, we study
two cases where the strip is along one of xi ’s and along y
direction in the following two subsections.

A. The width of strip along one of the
isotropic scaling dimensions

Now we need to derive the variation of S with respect
to l. We follow [18] and details are left to the Appendix B.
It results to

dSx
dl

¼ 2πHd−1

ld
p

1

Kd
: ð3:2Þ

Then define

cx ≔ βx
ld

Hd−1
∂Sx
∂l

¼ βx
2πld

ld
pKd

ð3:3Þ

where βx is a positive numerical constant. We then find
the flow dcx=drm where rm is defined as rm ¼ rð0;lÞ with
_rð0;lÞ ¼ 0 as

dcx
drm

¼ βx
4πld−1

ld
p

B0ðrmÞ
Z

l=2

0

dx
B02 − dB00

B02 ð3:4Þ

The details are given in the Appendix B. Note that by
setting hðrÞ ¼ 0 and changing the coordinate r to domain
wall coordinate, (3.4) transforms to the similar expression
given in [18].
To study the behavior of (3.4) under the RG-flow, we

use the null energy conditions (NECs). First, let us take a
general null vector as

ξ ¼ e−A
�
a0∂t þ ar∂r þ

Xd−1
i

ai∂i þ e−hay∂y

�
ð3:5Þ

with a20 ¼ a2r þ a2y þ
P

d−1
i¼1 a

2
i . Then, the general NEC can

be read as
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da2rA02 − da2yA0h0 − ða2r þ a2yÞh02 − da2rA00

− ða2r þ a2yÞh00 ≥ 0 ð3:6Þ

One can put ar ¼ 1 and ay ¼ 0 to obtain

N1 ≡ dA02 − h02 − dA00 − h00 ≥ 0 ð3:7Þ
Another independent null energy condition can be found by
taking ar ¼ 0 and ay ¼ 1,

N2 ≡ −dA0h0 − h02 − h00 ≥ 0 ð3:8Þ
The inequalities (3.7) and (3.8) can be respectively trans-
formed to

f01ðrÞ≡ ð−B0e−dAþhÞ0 ¼ ðdðd − 1ÞA02 þ N1Þe−dAþh ≥ 0;

ð3:9Þ
f02ðrÞ≡ ð−h0eBÞ0 ≥ 0: ð3:10Þ

Now let us write the integrand of (3.4) as

B02 − dB00 ¼ dN1 þ ðd − 1Þh02 þ 2h0B0: ð3:11Þ
Since the first two terms in the right-hand side are positive,
it is enough to put h0B0 ≥ 0 to have sufficient condition for
the integrand to be non-negative. Now (3.9) and (3.10)
indicate that if one starts with positive f1ðrÞ and f2ðrÞ at
the UV boundary, they remain positive in the bulk which
means that we have B0ðrÞ ≤ 0 and h0ðrÞ ≤ 0 everywhere.
Then from (3.11) the integrand of (3.4) is positive while
B0ðrmÞ ≤ 0 which in turn implies that the c-function is a
monotonically decreasing function of rm,

dcd
drm

≤ 0: ð3:12Þ

So using the NECs, the sufficient conditions are B0ðrÞ ≤ 0
and h0ðrÞ ≤ 0 at the UV boundary.
To satisfy (3.12), another possibility is demanding

B0 ≥ 0 and B02 − dB00 ≤ 0. To have positive B0, it is
sufficient to have f1 ≤ 0 at the IR limit. We also assume
B00 ≥ 0 which implies B0 remains positive. Then

B02 − dB00 ¼ −N1 − ðdþ 1ÞB00 þ 2B02 − 2B0h0 − ðd− 1Þh02
ð3:13Þ

Since N1 and B00 are positive, the sufficient condition is

2B02 − 2B0h0 − ðd − 1Þh02 ≤ 0 ð3:14Þ

Reminding our assumption B0 ≥ 0, the above inequality
implies either h0 ≥ B0ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2d − 1Þp

− 1Þ=ðd − 1Þ or h0 ≤
B0ð− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2d − 1Þp

− 1Þ=ðd − 1Þ. The corresponding region
in the B0 − h0 plane is shown in Fig. 1. Unfortunately,
neither IR nor UV boundary conditions are sufficient to
satisfy these inequalities.

B. The width of strip along the anisotropic direction

In this subsection, we consider the width of strip to be
along y-direction (i.e., −l=2 ≤ y ≤ l=2). It is convenient
to change variable to dρ ¼ e−hdr, then the metric read as

ds2 ¼ e2AðρÞþ2hðρÞð−e−2hðρÞdt2þdρ2þ e−2hðρÞdx2d−1þdy2Þ
ð3:15Þ

By taking ρ ¼ ρðyÞ as the Ryu-Takayanagi (RT) surface,
the entropy functional would be

Sy ¼
4πHd−1

ld
p

Z l−ϵ
2

0

dyedAþh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
_ρ2 þ 1

q
ð3:16Þ

where _ρ ¼ dρ=dy. This is similar to (2.15) by replacing
r → ρ and everything should go exactly the same as
previous subsection to find,

dcy
dρm

¼ β̃y
4πld−1

ld
p

B0ðρmÞ
Z l

2

0

dy
B0ðρÞ2 − dB00ðρÞ

B0ðρÞ2 ð3:17Þ

Now we go back to r coordinate,

dcy
drm

¼ β̃y
4πld−1

ld
p

B0ðrmÞ
Z l

2

0

dy
B02−dðh0B0 þB00Þ

B02 ð3:18Þ

where all functions are in r coordinate.
Similar to previous subsection, we first consider B0 ≤ 0

while the integrand in (3.18) is positive. Then similar to
(3.7), we can write

B02 − dðB00 þ h0B0Þ ¼ dN1 þ ðd − 1Þh02 þ ð2 − dÞh0B0

ð3:19Þ

2 1 0 1 2
2

1

0

1

2
d 3

B '

h'

FIG. 1. The shaded area in B0 − h0 plane in d ¼ 3 show the
regions where both B0 ≥ 0 and (3.8) are satisfied. We also
assumed B00 ≥ 0.
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For d ¼ 2, this is always positive. For d > 2 and since
we assumed B0 ≤ 0, the sufficient condition is h0 ≥ 0.
Equation (3.9) indicates that if starting with a negative
B0 at UV boundary, it remains negative in whole regions
inside the bulk. In contrast, there is no guarantee for h0 to
remain positive starting with h0 > 0 at r ¼ 0. However, we
show that our example in Sec. IVA satisfies conditions
B0 < 0, h0 > 0 and gives monotonically decreasing
c-function in some range of parameters.
Now consider the case, when B0ðrmÞ ≥ 0 and the

integrand of (3.17) is negative. We can write

B02 − dðB00 þ B0h0Þ ¼ −dN1 − 2dB00 þ 2B02

− B0ðdþ 2Þh0 − ðd − 1Þh02 ð3:20Þ
Again we assume B00 ≥ 0 and demand the right-hand side
of the above equation to be negative. It is sufficient to set

2B02 − B0ðdþ 2Þh0 − ðd − 1Þh02 ≤ 0 ð3:21Þ
The corresponding region in the B0 − h0 plane is shown
in Fig. 2.

IV. SOME EXAMPLES

To ilustrate our RG-flow in (3.4), we consider the axion-
dilaton and hyperscaling models discussed in Sec. II.

A. c-function for the axion-dilaton model

Let us consider the small a expansion in (2.12) to find

BðrÞ ¼ −3 logðrÞ þ a2r2

12
−

a4r4

64800
ð1539γ2 þ 613Þ

þ a4r4

120
ð3γ2 þ 1Þ logðarÞ þ � � � ð4:1Þ

It indicates that near UV boundary, B0ðrÞ < 0, while from
(2.12) we have h0ðrÞ > 0, so the sufficient conditions
discussed below (3.11) are not satisfied. However, we
can investigate the behavior of dc=drm explicitly. For the
width of strip along the x direction, the integrand of (3.4)
can be found as

B02 − dB00

B02 ¼ −
a2r2

6
−
a4r4

972
ð54ð3γ2 þ 1Þ logðarÞ

− 81γ2 − 22Þ þ � � � ð4:2Þ

which is negative near UV boundary while B0ðrÞ < 0,
therefore we have dcx=drm > 0 which has a wrong sign. In
Fig. 3 left panel, the shaded area shows the region where
B02 − dB00 and B0 have opposite signs. It indicates that
dcx=drm doesn’t have any monotonic decreasing behavior.
From the calculations in Appendix A, we found SEE and
dc=dl as a function of l and draw them in Fig. 4. It shows
that dc=dl cannot be negative in the UV regime.
For the width of strip along y-direction, the sufficient

condition from (3.19) is B0 ≤ 0 and h0 ≥ 0. These are valid
close to the UV boundary. To be sure about the behavior
inside the bulk, let us compute the integrand of (3.18) as,

B02 − dðB00 þ h0B0Þ
B02 ¼ a2r2

12
þ a4r4

3888
ð37þ 81γ2

þ 108ð3γ2 þ 1Þ logðarÞÞ þ � � �
ð4:3Þ

It is positive close to r ¼ 0 and since B0 < 0 in this region
one expects dcy=drm to be negative. However, the right
panel in Fig. 3 shows that this is valid in the region where
NEC’s are valid and γ ≤ 3. For γ > 3, there is a narrow
region where NEC’s are valid, but the integrand of (3.18) is
negative, which leads to the wrong sign dcy=drm > 0. One
may claim that the integration in (3.18) from 0 to rm may
gives an overall positive result, but the explicit investigation
shows that this is not the case.
To summarize the results in this subsection, we found

that the behavior of dcx=drm does not decrease monoton-
ically when the strip width is along the x-direction. In the
case of y-direction, dcy=drm < 0 as long as NEC’s are
valid and γ ≤ 3. Explicit calculation of c-functions and its
derivatives are given in Appendix A and depicted in Fig. 4.

B. c-function for the hyperscaling model

Here, we consider the anisotropic model (2.5) with the
potential (2.25), which as discussed in the beginning of
Sec. II B, is valid in the full range of scales from UV to IR.
However, it can also be considered as the IR limit of (2.6).
This later point of view is more convenient to study the
c-function, since our results in Sec. II B indicate that the
entanglement entropy behaves as S ∼ l1−n, where n ≠ d

2 1 0 1 2
2

1

0

1

2
d 3

B '

h'

FIG. 2. This diagram is related to the case that the width of strip
is along y-direction with d ¼ 3. The shaded area in B0 − h0 plane,
shows the regions where both B0 ≥ 0 and (3.21) are valid. We also
assumed B00 ≥ 0.
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and depends on d, θ and z, so the c-function in (2.4) does
not approach to the CFT central chrage in the UV limit.
As such, we consider (2.25) as the IR tail of the anisotropic

theory and investigate the conditions for which the
c-function (2.4) is monotonically decreasing along the
RG-flow in this regime.
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4
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Sx
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4
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0.08
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0.02

0.02

0.04

dcx d

1

2

3

4
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0.015

0.010

0.005

Sy

1

2

3

4

1 2 3 4 5 6

0.004

0.003

0.002

0.001

0.001

0.002

0.003

dcy d

FIG. 4. The above (below) panels are the entropy S and the derivative of the c-function for the width of strip in the x-direction
(y-direction) as derived inAppendixA.All diagrams are drawn for a ¼ 0.1 and γ ¼ 1, 2, 3, 4. For the x direction, there is nomonotonically
decreasing of the cx-function, while in the y direction we can see the monotonic behavior with negative derivative for γ ≤ 3.

0 5 10 15 20 25 30
0

2

4

6

8

r

B B 2 dB 0

NECs 0

0 5 10 15 20 25 30
0

2

4

6

8

r

B B 2 d B B h 0

NECs 0

FIG. 3. In the left panel, shaded areas in r − γ plane depict the regions where B02 − dB00 and B0 have opposite signs. This is sufficient to
have dcx=drm ≤ 0 for the width of strip along the x direction. The shaded area in the right panel shows dcy=drm ≤ 0 for width of strip
along the y direction. The checkered regions in both panels show the area where NEC0s are valid. It can be inferred that dcx=drm has no
monotonic behavior, whereas, dcy=drm for γ < 3 is monotonically decreasing as long as NEC’s are valid.
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Let us recall the solution for arbitrary d as [21],

ds2 ¼ L̃2r
2θ
dz

�
−dt2 þ dr2 þ dx⃗2d−1

r2
þ dy2

r
2
z

�
; ð4:4Þ

In comparison to (3.1), we identify metric functions as

AðrÞ ¼
�
θ

dz
− 1

�
logðrÞ ð4:5Þ

hðrÞ ¼
�
1 −

1

z

�
logðrÞ ð4:6Þ

It follows then,

B0 ¼ −dzþ θ þ z − 1

z
1

r
ð4:7Þ

Ix ≔
B02 − dB00

B02 ¼ dz
−dzþ θ þ z − 1

þ 1 ð4:8Þ

It is clear that both expressions have definite signs
independent of r. So we can set parameters such that
either B0 and Ix have opposite signs and they never change
their signs as functions of r. In this regime, the null energy
conditions (NEC) are as follows

−dðθ − 1Þz − dþ θ2 ≥ 0 ð4:9Þ

ðz − 1Þðdz − θ þ 1Þ ≥ 0: ð4:10Þ

Figure 5 left panel, shows regions in θ − z plane where
B0 and Ix have opposite signs and NEC’s are satisfied which

guarantees that cx is a monotonically decreasing function of
rm. For the width of strip along the y-direction, we find the
integrand of (3.18) as

Iy ≔
B02 − dðB00 þ h0B0Þ

B02 ¼ z
−dzþ θ þ z − 1

þ 1: ð4:11Þ

Now we look for regions where B0 and Iy have opposite
signs which are the shaded regions shown in Fig. 5 right
panel. This diagram shows that for z > 0 and θ < 0, the
NEC’s ≥ 0 are a subset of the shaded region which
indicates that at least for z > 0 and θ < 0, the null energy
conditions are sufficient to have a monotonically decreas-
ing c-function.

V. CONCLUSION

Within gauge/gravity duality, we calculate the entangle-
ment entropy (EE) of a strip-shaped region in dþ 1-
dimensional quantum field theory (QFT) with broken
Lorentz invariance as well as rotational symmetry. These
theories are representative for many physical phenomena.
So, extracting various information from these theories may
be helpful in understanding of some quantum systems. One
of the ways to receive information is computing the
entanglement entropy, which is a measure of entanglement
structure of the ground state of underlying theory.
We have computed the entanglement entropy of aniso-

tropic strongly gauge fields which are dual to two classes of
geometries. The first class is an anisotropic dilaton-axion
background and the second one is identified with dynami-
cal and hyperscaling violation parameters fz; θg. Note,
these geometries are defined in some intermediate regime.

B B 2 dB 0

2 1 0 1 2 3
4

3

2

1

0

1

2

3
d 3, x direction

z

B B 2 d B h B 0

2 1 0 1 2 3

1

d 3, y direction

z

0

1

2

3

2

3

4

FIG. 5. The left (right) panel is for the width of in the x-direction (y-direction) and the shaded areas in θ − z plane correspond to
regions where B0 and Eq. (4.8) [Eq. (4.11)] have opposite signs hence dc=drm ≤ 0. The checkered areas show the regions where NEC’s
are valid. We set d ¼ 3.
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We have done analytical computations in order to derived
the holographic entanglement entropy of a strip-shaped
region.
The holographic entanglement entropy of strip-shaped

region has been used to construct a candidate c-function
which is interpolated between UV and IR fixed points. We
identified sufficient conditions to provide monotonically
decreasing of c along RG flows. These conditions are
extracted from the null energy conditions of the bulk matter
fields.
We considered two cases where the width of strip is

along one of the isotropic directions or along the aniso-
tropic one. In these two cases different conditions are
needed to provide the monotonicity of the c-function. For a
strip with width along the anisotropic direction, the null
energy conditions provided with suitable UV boundary
conditions are sufficient to have a monotonically decreas-
ing c-function.
In order to find an intuition of these general discussion,

we illustrated the c function in some special cases in five
dimension. We have chosen two cases: near UV, and near
IR expansions. For each one we observed that c-function
monotonically decreased if the null energy conditions are
satisfied. Orientation of the strip is also important. For the
width of strip along the anisotropic direction the NEC’s are
enough to have a monotonically decreasing c-function,
while for the other directions it is not so. This behavior is
not so surprising, since the monotonicity of c-function is
expected from the Lorentz symmetry and subadditivity of
the entanglement entropy. For an anisotropic theory the
Lorentz symmetry is violated and there is no guarantee for
monotonicity of the c-function.
It is worth notice that for theories that undergo a

confinement/deconfinement transition, the behavior of

SðlÞ has generically a swallowtail behavior [27], (although
this behavior should be present as well in the models [21]
for large values of sigma, where one also expects a
deconfinement transition). Some portions of the swallow-
tail have dS=dl < 0, d2S=dl2 > 0. However, one can use
the c-function argument to discard these branches. Indeed,
one can show that the physical branches have both c > 0
and dc=dl < 0 even though dc=dl is discontinuous at the
point of the transition.2

It would be also interesting to consider theories for
which, in addition to the Lorentz-violation and broken
rotation, there is no translation symmetries.
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APPENDIX A: COMPUTING THE
ENTANGLEMENT ENTROPY

Starting with the entanglement region along one of the
x- coordinates, we insert the solution (2.12) in (2.19) and
expand in powers of a. Let us change the variable u ¼ r=rm
and subtract and add the divergent part as follows

Sx ¼
4πH2

l3
p

rm

Z
1

0

du

�
e2BðrmuÞ−BðrmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2ðBðrmuÞ−BðrmÞÞ − 1
p −

�
a2

12rmu
þ 1

r3mu3

��

þ 4πH2

l3
p

rm

Z
1

δ=rm

du
�

a2

12rmu
þ 1

r3mu3

�
: ðA1Þ

The first integral can be expanded to

4πH2

l3
p

�
1

r2m
S1 þ a2S2 þ a4r2mS3 þ a4r2mS4 logðarmÞ

�
ðA2Þ

where Si’s are defined as follows and can be found by numerical integration,

2We would like to thank Juan F. Pedraza for pointing this out to us.
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S1 ¼
Z

1

0

du

2
64 1ffiffiffiffiffiffiffiffiffiffiffiffi

1
u6 − 1

q
u6

−
1

u3

3
75 ¼ 0.2844

S2 ¼
Z

1

0

du

2
64 2u4 þ u2 þ 1

12
ffiffiffiffiffiffiffiffiffiffiffiffi
1
u6 − 1

q
u4ðu4 þ u2 þ 1Þ

−
1

12u

3
75 ¼ 0.0351

S3 ¼
Z

1

0

du

2
64ð1 − u2Þð326u8 þ 1552u6 þ 1940u4 þ 939u2 þ 388Þ

64800
ffiffiffiffiffiffiffiffiffiffiffiffi
1
u6
− 1

q
ðu2 − 1Þðu5 þ u3 þ uÞ2

þ γ2ð1 − u2Þð3078u8 þ 6156u6 þ 7695u4 þ 4617u2 þ 1539Þ
64800

ffiffiffiffiffiffiffiffiffiffiffiffi
1
u6 − 1

q
ðu2 − 1Þðu5 þ u3 þ uÞ2

þ 540ð2u10 þ 2u8 þ 2u6 − u4 − u2 − 1Þð1þ 3γ2Þ logðuÞ
64800

ffiffiffiffiffiffiffiffiffiffiffiffi
1
u6
− 1

q
ðu2 − 1Þðu5 þ u3 þ uÞ2

3
75 ¼ −0.0073 − 0.0294γ2

S4 ¼
Z

1

0

du

�ð2u5 þ 2u3 þ uÞð1þ 3γ2Þ
120ðu4 þ u2 þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u6

p
�
¼ 0.0085ð1þ 3γ2Þ ðA3Þ

and the second integral in (A1) is found to be

4πH2

l3
p

rm

Z
1

δ=rm

du

�
a2

12rmu
þ 1

r3mu3

�
¼ 4πH2

l3
p

�
1

2δ2
−

1

2r2m
−

1

12
a2 log

�
δ

rm

��
: ðA4Þ

Putting all results together

Sx ¼
4πH2

l3
p

�
1

r2m
S1 þ a2S2 þ a4r2mS3 þ a4r2mS4 logðarmÞ −

1

2r2m
þ 1

12
a2 logðrmÞ

�

¼ 4πH2

l3
p

�
−ð0.0073þ 0.0294γ2Þa4r2m þ 0.0085ð1þ 3γ2Þa4r2m logðarmÞ

þ 0.0351a2 −
0.2156
r2m

þ a2

12
logðrmÞ

�
ðA5Þ

where we dropped the δ dependent divergent parts which are independent of rm and l so do not contribute to the c-function.
Notice that the last term is a universal term as it appears in the logarithmic part of (A4).
Similarly, we can compute the width of strip l as a function of rm. Start with

l ¼ 2

Z
l=2

0

dx ¼ 2

Z
rm

0

dr
j_rj ¼ 2

Z
rm

0

dr
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2ðBðrÞ−BðrmÞÞ − 1
p ; ðA6Þ

it follows then

l ¼ 2rmðL1 þ a2r2mL2 þ a4r4mL3 þ a4r4m logðarmÞL4Þ
¼ 2rmð0.4312þ 0.0158a2r2m − ð0.0020þ 0.0062γ2Þa4r4m þ 0.0027ð1þ 3γ2Þa4r4m logðarmÞÞ ðA7Þ

where Li’s are as follows
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L1 ¼
Z

1

0

du

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1
u6 − 1

q
1
CA ¼ 0.4312

L2 ¼
Z

1

0

du

0
B@ 1

12
ffiffiffiffiffiffiffiffiffiffiffiffi
1
u6 − 1

q
ðu4 þ u2 þ 1Þ

1
CA ¼ 0.0158

L3 ¼
Z

1

0

du

0
B@−163u8 − 1063u6 þ 838u2 þ 540ðu8 þ u6 þ u4Þ logðuÞ þ 388

64800
ffiffiffiffiffiffiffiffiffiffiffiffi
1
u6
− 1

q
ðu2 − 1Þðu4 þ u2 þ 1Þ2

þ γ2ð−19u4 þ 20u4 logðuÞ þ 19Þ
800

ffiffiffiffiffiffiffiffiffiffiffiffi
1
u6
− 1

q
ðu6 − 1Þ

1
CA

¼ −0.0020 − 0.0062γ2

L4 ¼
Z

1

0

du

0
B@ ð1þ u2Þð1þ 3γ2Þ
120

ffiffiffiffiffiffiffiffiffiffiffiffi
1
u6 − 1

q
ðu4 þ u2 þ 1Þ

1
CA ¼ 0.0027ð1þ 3γ2Þ: ðA8Þ

Now we solve (A7) perturbatively to find rm in terms of l,

rm ¼ 1.1596l − 0.0571a2l3 þ ð0.0162þ 0.0185γ2 − 0.0175γ4Þa4l5

− ð0.0012þ 0.0070γ2 þ 0.0105γ4Þa4l5 logðalÞ: ðA9Þ

Plugging in (A5), we obtain,

Sx ¼
4πH2

l3
p

�
−
0.1603
l2

þ a2

12
loglþ 0.0316a2 − ð0.0088þ 0.0293γ2 þ 0.0048γ4Þa4l2

þ ð0.0079þ 0.0127γ2 − 0.0326γ4Þa4l2 logðalÞ
�
: ðA10Þ

Here we can find cx from (2.4) up to some constant,

cx ∼ l3
∂Sx
∂l ∼ 0.3207þ 0.0833a2l2 − ð0.0098þ 0.0459γ2 þ 0.0423γ4Þa4l4

þ ð0.0157þ 0.0253γ2 − 0.0653γ4Þa4l4 logðalÞ ðA11Þ

and its derivative

∂cx
∂l ∼ 0.1667a2l − ð0.0236þ 0.1584γ2 þ 0.2345γ4Þa4l3

þ ð0.0628þ 0.1015γ2 − 0.2611γ4Þa4l3 logðalÞ: ðA12Þ

Similar calculations can be done for the region along y-direction.

Sy ¼
4πH2

l3
p

rm

Z
1

0

du

�
e2BðrmuÞ−BðrmÞ

e−hðrmuÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2BðrmuÞ−2BðrmÞ − 1

p −
�

1

r3mu3
−

a2

24rmu

��

þ 4πH2

l3
p

rm

Z
1

δ=rm

du

�
1

r3mu3
−

a2

24rmu

�
: ðA13Þ
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We write the first integral as

4πH2

l3
p

rm

�
1

r3m
S̃1 þ

a2

rm
S̃2 þ a4rmS̃3 þ a4rmS̃4 logðarmÞ

�
ðA14Þ

with,

S̃1 ¼
Z

1

0

du

2
64 1ffiffiffiffiffiffiffiffiffiffiffiffi

1
u6
− 1

q
u6

−
1

u3

3
75 ¼ 0.2844

S̃2 ¼
Z

1

0

du

2
64 u4 − u2 − 1

24
ffiffiffiffiffiffiffiffiffiffiffiffi
1
u6
− 1

q
u4ðu4 þ u2 þ 1Þ

þ 1

24u

3
75 ¼ 0.0062

S̃3 ¼
Z

1

0

du

2
64−1579u10 − 2479u8 þ 873u6 þ 4279u4 − 221u2 − 873

259200
ffiffiffiffiffiffiffiffiffiffiffiffi
1
u6
− 1

q
ðu2 − 1Þðu5 þ u3 þ uÞ2

−
1080ðu10 þ u8 þ u6 − 3u4 − 3u2 − 3Þ logðuÞ

259200
ffiffiffiffiffiffiffiffiffiffiffiffi
1
u6
− 1

q
ðu2 − 1Þðu5 þ u3 þ uÞ2

−
γ2ð13u6 þ 10ðu6 − 3Þ logðuÞ − 19u2 þ 6Þ

800
ffiffiffiffiffiffiffiffiffiffiffiffi
1
u6
− 1

q
u2ðu6 − 1Þ

3
75 ¼ 0.0033þ 0.0089γ2

S̃4 ¼
Z

1

0

du

�
−ðu5 þ u3 þ 3uÞð1þ 3γ2Þ
240ðu4 þ u2 þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u6

p
�
¼ −0.0061ð1þ 3γ2Þ ðA15Þ

The second integral in (A13) is found to be

4πH2

l3
p

rm

Z
1

δ=rm

du

�
1

r3mu3
−

a2

24rmu

�
¼ 4πH2

l3
p

�
1

24
a2 log

�
δ

rm

�
þ 1

2δ2
−

1

2r2m

�
: ðA16Þ

Then one finds

Sy ¼
4πH2

l3
p

�
1

r2m
S̃1 þ a2S̃2 þ a4r2mS̃3 þ a4r2mS̃4 logðarmÞ −

1

2r2m
−

1

24
a2 logðrmÞ

�

¼ 4πH2

l3
p

�
ð0.0033þ 0.0089γ2Þa4r2m − 0.0061ð1þ 3γ2Þa4r2m logðarmÞ þ 0.0062a2

−
0.2156
r2m

−
a2

24
logðrmÞ

�
ðA17Þ

where we again dropped the δ dependent divergent parts.
We then compute the width of strip l as a function of rm as follows,

l ¼ 2

Z
l=2

0

dy ¼ 2

Z
rm

0

dr
j_rj ¼ 2

Z
rm

0

dr
1

e−h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2BðrÞ−2BðrmÞ − 1

p

¼ 2rmðL̃1 þ a2r2mL̃2 þ a4r4mL̃3 þ a4r4m logðarmÞL̃4Þ
¼ ð0.0051þ 0.0077γ2Þa4r5m − ð0.0063þ 0.0189γ2Þa4r5m logðarmÞ − 0.0517a2r3m þ 0.8624rm ðA18Þ

where L̃i’s are given as
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L̃1 ¼
Z

1

0

du

0
B@ 1ffiffiffiffiffiffiffiffiffiffiffiffi

1
u6 − 1

q
1
CA ¼ 0.4312

L̃2 ¼
Z

1

0

du
−3u6 − 3u4 − 3u2 þ 2

24
ffiffiffiffiffiffiffiffiffiffiffiffi
1
u6 − 1

q
ðu4 þ u2 þ 1Þ

¼ −0.0259

L̃3 ¼
Z

1

0

du

2
641552þ 6052u2 − 5125u4 − 9377u6 − 8477u8 þ 5125u10 þ 5125u12 þ 5125u14

259200
ffiffiffiffiffiffiffiffiffiffiffiffi
1
u6
− 1

q
ðu2 − 1Þðu4 þ u2 þ 1Þ2

−
1080u4ð5u10 þ 5u8 þ 5u6 − 7u4 − 7u2 − 7Þ logðuÞ

259200
ffiffiffiffiffiffiffiffiffiffiffiffi
1
u6
− 1

q
ðu2 − 1Þðu4 þ u2 þ 1Þ2

þ γ2ð25u10 − 44u4 þ 10ð7 − 5u6Þu4 logðuÞ þ 19Þ
800

ffiffiffiffiffiffiffiffiffiffiffiffi
1
u6 − 1

q
ðu6 − 1Þ

3
75

¼ 0.0026þ 0.0038γ2

L̃4 ¼
Z

1

0

du
ð−5u8 − 5u6 − 5u4 þ 2u2 þ 2Þð1þ 3γ2Þ

240
ffiffiffiffiffiffiffiffiffiffiffiffi
1
u6 − 1

q
ðu4 þ u2 þ 1Þ

¼ −0.00314521ð1þ 3γ2Þ: ðA19Þ

Now we solve (A18) perturbatively to find rm in terms of l,

rm ¼ 1.1596lþ 0.0935a2l3 þ ð0.0124 − 0.0119γ2Þa4l5 þ ð0.0153þ 0.0459γ2Þa4l5 logðalÞ: ðA20Þ

Plugging in (A17), we obtain,

Sy ¼
4πH2

l3
p

�
−
0.1603
l2

−
a2

24
logðlÞ þ 0.0259a2 þ ð0.0002þ 0.0050γ2Þa4l2

− ð0.0039þ 0.0118γ2Þa4l2 logðalÞ
�
: ðA21Þ

Then the c-function and its derivative can be found as

cy ∼ l3
∂Sy
∂l ∼ 0.3207 − 0.0417a2l2 − ð0.0034þ 0.0018γ2Þa4l4 − ð0.0079þ 0.0236γ2Þa4l4 logðalÞ

∂cy
∂l ∼ −0.0833a2l − ð0.0216þ 0.0306γ2Þa4l3 − ð0.0314þ 0.0943γ2Þa4l3 logðalÞ: ðA22Þ

APPENDIX B: THE RG-FLOW EQUATION

In this Appendix, we present the details of deriving the
RG-flow given in (3.4). First, we find variation of S with
respect to l, reminding that it has an explicit l dependence
through the integral upper bound and an implicit one
through rðx;lÞ. One finds,

dS
dl

¼ 4πHd−1

ld
p

eðd−1ÞAþhffiffiffiffiffiffiffiffiffiffiffiffi
_r2þ 1

p
�
1

2

�
1−

dϵ
dl

�
ð_r2þ 1Þþ _r

∂r
∂l
�����

x¼l−ϵ
2

;

ðB1Þ

where we have used (2.16) and integration by parts.
Following [18], we take a variation of rðl−ϵ

2
;lÞ ¼ rc with

respect to l to find�
_rðx;lÞ

2

�
1 −

dϵ
dl

�
þ ∂rðx;lÞ

∂l
�
x¼l−ϵ

2

¼ 0: ðB2Þ

Plugging in (B1), we find

dS
dl

¼ −
4πHd−1

ld
p

1

KdðlÞ
1

_r
∂r
∂l
����
x¼l−ϵ

2

: ðB3Þ
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In the UV regime, r → 0, the background is expected to be
AdS, so we have,

AðrÞ ∼ − logðrÞ
hðrÞ ∼ 0 ðB4Þ

Then we solve (2.17) to get _r ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

dr
2−2d − 1

q
and

integrate to find x,

x −
l
2
¼ 1

d − 1
K

1
d−1
d FðKdr1−dÞ ðB5Þ

where

FðuÞ ¼
Z

u
d

1−dffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − 1

p du: ðB6Þ

It is clear that at the boundary Fðu → ∞Þ ¼ 0. Now
following [18], take a partial derivative of (B5) with respect
to l, and solve for ∂r=∂l,
∂r
∂l ¼ 1

ðd − 1Þ
K0

dðlÞ
Kd

rþ 1

2ðd − 1Þ2 K
2

d−1
d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

dr
2−2d − 1

q

× ððd − 1Þ2 − 2K
d

1−d
d K0

dðlÞFðuÞÞ ðB7Þ

then divide by _r ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

dr
2−2d − 1

q
and take the limit r → 0

to find,

1

_u
∂u
∂l
����
x¼l

¼ −
1

2
: ðB8Þ

It follows then

dS
dl

¼ 2πHd−1

ld
p

1

Kd
; ðB9Þ

which is the Eq. (3.2).
Now our task is to find the flow dcd=drm where rm is

defined as rm ¼ rð0;lÞ with _rð0;lÞ ¼ 0. We proceed as

dcd
drm

¼ βd
2πdld−1

ld
pKd

�
dl
drm

þ 1

d
B0ðrmÞl

�
: ðB10Þ

On the other hand, l can be found as a function of rm,

l ¼ 2

Z
l=2

0

dx ¼ −2
Z

rm

0

dr
_r
¼ 2

Z
rm

0

dr
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2
de

2B − 1
q

ðB11Þ

Now define w ¼ KdeB and

GðwÞ ≔
Z

w−ð1þ1
dÞffiffiffiffiffiffiffiffiffiffiffiffiffi

w2 − 1
p dw ðB12Þ

which is indeed a hypergeometric function with Gðw →
∞Þ ¼ 0 at the boundary → 0. Then we have

l ¼ 2

Z
r¼rm

r¼0

K1=d
d eB=d

B0 dG

¼ 2
Gð1Þ
B0ðrmÞ

− 2

Z
rm

0

K1=d
d G

�
eB=d

B0

�0
dr ðB13Þ

where the first term is the boundary term. We now take a
derivative with respect to rm,

dl
drm

¼ −
2

d
Gð1Þ þ 2

d
B0ðrmÞ

Z
rm

0

K1=d
d G

�
eB=d

B0

�0
dr

− 2

Z
rm

0

K1=d
d

dG
drm

�
eB=d

B0

�0
dr

¼ −
2

d
Gð1Þ þ 2

d
B0ðrmÞ

Z
rm

0

�
K1=d

d GðwÞ þ de−B=dffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
�

×

�
eB=d

B0

�0
dr ðB14Þ

in which we have used

dG
drm

¼ −eBKdB0ðrmÞ
dG
dw

: ðB15Þ

Now plugging (B13) and (B14) in (B10) we obtain,

dcd
drm

¼ βd
4πdld−1

ld
p

B0ðrmÞ
Z

rm

0

e−B=dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

de
2B − 1

q �
eB=d

B0

�0
dr

¼ βd
4πdld−1

ld
p

B0ðrmÞ
Z

l=2

0

dxe−B=d
�
eB=d

B0

�0

¼ βd
4πld−1

ld
p

B0ðrmÞ
Z

l=2

0

dx
B02 − dB00

B02 : ðB16Þ
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