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The superconformal index of theN ¼ 4 SUðNÞ supersymmetric Yang-Mills theory counts the 1=16-BPS
(Bogomol’nyi-Prasad-Sommerfield) states in this theory, and has been used via the AdS=CFT correspon-
dence to count black holemicrostates of 1=16-BPS black holes. On one hand, this indexmay be related to the
Euclidean partition function of the theory on S3 × S1 with complex chemical potentials, which maps by the
AdS=CFT correspondence to a sum over Euclidean gravity solutions. On the other hand, the index may be
expressed as a sum over solutions to Bethe Ansatz (BA) equations. We show that the solutions to the BA
equations that are known to have a good large N limit, for the case of equal chemical potentials for the two
angular momenta, have a one-to-one mapping to (complex) Euclidean black hole solutions on the gravity
side. This mapping captures both the leading contribution from the classical gravity action (of order N2), as
well as nonperturbative corrections in 1=N, which on the gravity side are related to wrapped D3-branes.
Some of the BA solutions map to orbifolds of the standard Euclidean black hole solutions (which obey
exactly the same boundary conditions as the other solutions). A priori there are many more gravitational
solutions than Bethe Ansatz solutions, but we show that, by considering the nonperturbative effects, the
extra solutions are ruled out, leading to a precise match between the solutions on both sides.

DOI: 10.1103/PhysRevD.104.086026

I. INTRODUCTION AND SUMMARY

The AdS=CFT correspondence [1–4] maps black holes
in asymptotically anti–de Sitter (AdS) spacetimes to
coarse-grained descriptions of states in conformal field
theories (CFTs), such that the Bekenstein-Hawking entropy
of the black holes may be given a statistical mechanics
interpretation as a counting of CFT microstates. For general
nonsupersymmetric black holes we do not have good
methods to count these states in the strongly coupled
theories which map under the AdS=CFT correspondence
to weakly curved backgrounds (where the Bekenstein-
Hawking computation is valid). In the last few years,
considerable progress has been made [5–28] in perform-
ing this counting for 1=16-BPS (Bogomol’nyi-Prasad-
Sommerfield) black holes in type IIB string theory on
AdS5 × S5, which map to 1=16-BPS states in the N ¼ 4

SUðNÞ supersymmetric Yang-Mills (SYM) theory on S3

(this followed related results in other backgrounds, starting
with [29] and including [30–48]).
The counting of 1=16-BPS states is based on computing

the superconformal index [49,50], which is a sum over
these states with chemical potentials for four of the five
charges carried by the black holes [the black holes carry
three global symmetry charges R1;2;3 in the Cartan algebra
of the SUð4ÞR symmetry, and two angular momenta J1;2 in
AdS5]. It is not possible to directly relate the index to the
number of BPS states with given charges, both because the
index is insensitive to one of the charges, and because it
counts states with a factor of ð−1ÞF, so there can be
cancellations between bosonic and fermionic states.
Indeed, when the index was first computed in the large
N limit with real chemical potentials [50], a mismatch
was found between the value of the index and the expect-
ation from black holes. However, this discrepancy does not
arise for generic complex chemical potentials [6,7],1 and
in various limits the index was successfully matched
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1It was already shown in AdS4 [32] how the index with
complex chemical potentials captures the Bekenstein-Hawking
entropy of BPS black holes.
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(at leading order in the large N limit) with the expectation
from the black hole solutions.
More precisely, the superconformal index is a grand-

canonical partition function, and one would expect its
Legendre transform [51] to agree—at leading order—with
the black hole entropy. This is indeed the case if one
performs the Legendre transform with respect to the four
available chemical potentials. This was shown both directly
in the large N limit [7], as well as going through a Cardy-
like limit that retains states with charges much larger than
the central charge [6].
In this paper we do not discuss the black hole microstate

counting, but instead we aim to understand better the
interpretation (on the gravity side) of the superconformal
index as a Euclidean partition function, hoping that this
better understanding will also be useful in the future for the
microstate counting problem. In general, as we review in
Sec. II, the superconformal index is related to the Euclidean
partition function of the theory on S3 × S1, with specific
background fields related to the chemical potentials appear-
ing in the index (which can be real or complex), which
ensure that supersymmetry is preserved [52–54]. The
AdS=CFT correspondence tells us that this partition func-
tion should be described in the large N limit on the gravity
side in terms of a sum over all asymptotically AdS5 × S5

solutions of type IIB string theory that satisfy appropriate
boundary conditions (related to the background fields). Up
to now, only specific solutions, which give the leading
contribution to the partition function for certain chemical
potentials, were considered; however, the full answer on the
gravity side includes all of these solutions, and also the
fluctuations around these solutions, including both pertur-
bative contributions in 1=N (from supergravity fields) and
nonperturbative contributions (from wrapped D-branes).
And moreover, different solutions dominate for different
values of the chemical potentials.
We would like to ask whether the sum over Euclidean

gravity solutions and the fluctuations around them can be
reproduced by a direct computation of the index. There are
several different methods that have been used to compute
the index in the large N limit. One is the so-called Cardy
limit [6,55–57], a sort of “high-temperature” limit taken on
the chemical potentials in which the integral expression of
the index considerably simplifies, and that can then be
easily followed by the large N limit. Another one is the
Bethe Ansatz method [7], described below. A third method
is the saddle-point approximation applied to a nonanalytic
extension of the index integral formula [15,17,24]. A fourth
method is an expansion of the index integral formula
around a complexified Gross-Witten-Wadia model [22,26].
In this paper we focus on the Bethe Ansatz method [7],

which is valid when the chemical potentials for the angular
momenta obey specific relations; we discuss in this paper
only the simplest case when this method applies, which is
for equal chemical potentials for the two angular momenta.

In this method the index is written as a sum over solutions
to Bethe Ansatz equations (BAEs) (at least when these
solutions are discrete). Some of the known solutions to
these equations give contributions which in the large N
limit resemble our expectations from the gravity side; there
is a leading term (in the logarithm of the contribution to the
partition function) of order N2, then power-law corrections
in 1=N, and then nonperturbative corrections of order e−N.
This raises a natural question—can we identify the sum
over Bethe Ansatz solutions in the CFT computation of the
index, with the sum over gravitational solutions? A priori
there is no reason for such a matching of individual terms in
the sum (as opposed to the full partition function); in
particular, it has not been shown on the gravity side that the
partition function localizes to a discrete sum over solutions,
analogous to the Bethe Ansatz result. However, we will
show that there is in fact a precise matching between the
two sides.
In one direction, we show that every solution to the

Bethe Ansatz equations which is known to have a good
large N limit, may be identified with a specific Euclidean
solution on the gravity side. These solutions are either
Euclidean black holes (belonging to one of the two
branches of known supersymmetric black hole solutions),
or Zm orbifolds of Euclidean black holes which satisfy the
same boundary conditions. The matching involves both
the leading contribution of order N2 to the logarithm of the
partition function, as well as the form of the nonperturba-
tive corrections, which on the gravity side arise from
wrapped D3-branes.
In the other direction, we note that a priori there are

many more gravitational solutions with the correct boun-
dary conditions than Bethe Ansatz solutions, and that if we
naïvely sum over all solutions on the gravity side we obtain
divergences, since the real part of their actions is not
bounded from below. However, our supersymmetric
Euclidean solutions are all complex valued, and it is not
obvious what the rules for including such solutions in the
gravitational theory are. We use (as previous works do) a
specific prescription for evaluating the action of the
complex solutions (at leading order in 1=N) by analytic
continuation. However, it is not clear when this analytic
continuation is valid, since various poles may be encoun-
tered when one tries to explicitly continue the relevant
contours in the gravitational path integral (to the extent that
such a path integral description makes sense to begin with).
And moreover, when we analytically continue only the
leading contribution to some solution, we risk having
subleading terms become dominant over the leading ones
[for instance, a nonperturbative correction of the form
e−Na2 is negligible for real a, but becomes dominant when
Reða2Þ < 0]. We suggest a specific prescription for which
solutions should be included in the path integral, namely
that solutions for which the nonperturbative contributions
from wrapped D3-branes are exponentially large (rather
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than exponentially suppressed) should not be included.
With this (reasonable but not rigorously derived) prescrip-
tion, we find a precise one-to-one match between the
solutions on both sides.
The wrapped D3-brane solutions mentioned above,

which give nonperturbative corrections on the gravity side
matching the Bethe Ansatz solutions, wrap an S3 inside the
S5 and an S1 in the AdS5 coordinates. In addition to these,
there are also other Euclidean wrapped D3-branes that
preserve supersymmetry, which wrap an S1 inside the S5

and an S3 in the AdS5 coordinates. These additional D3-
branes are not related to nonperturbative terms in the Bethe
Ansatz contribution of the Hong-Liu solutions, but they
still give corrections to the gravitational partition function.
The interpretation of these corrections in the Bethe Ansatz
expansion will be discussed elsewhere [58]. In this paper,
whenever we mention wrapped D3-branes without indicat-
ing their type, we will always be referring to the first type of
D3-brane solutions.
Our analysis in this paper focuses on the Eucllidean path

integral, but along the way, we have also found new
supersymmetric Lorentzian probe D3-brane configurations
in the BPS black hole backgrounds (and complexification
thereof) that generalize the giant and dual giant graviton
configurations in AdS5 [59–61]. It would be interesting to
analyze how these configurations affect the counting of
black hole microstates, and in particular if they may be
related to any multicenter black hole solutions in AdS, but
this lies beyond the scope of this work.
After reviewing the superconformal index, the parti-

tion function, and their relation in Sec. II, we review in
Sec. III the Bethe Ansatz method and the known solutions
(found in [33,62]), and we compute their perturbative
and nonperturbative contributions to the index in the large
N limit. In Sec. IV we review the known black hole
solutions using the consistent truncation to a 5D super-
gravity theory, and in particular the Euclidean super-
symmetric black hole solutions. We show that the action
of some of these solutions agrees (at leading order in 1=N)
with the Bethe Ansatz results, but that more solutions
exist on the gravity side. In Sec. V we lift the Euclidean
black hole solutions to 10D, and compute the nonpertur-
bative contributions to the partition function from
wrapped Euclidean D3-branes in these backgrounds. In
Sec. VI we describe the prescription mentioned above
for keeping only the solutions whose nonperturbative
corrections from wrapped D3-branes are small, and we
show that these solutions match precisely to a subclass of
the Bethe Ansatz solutions, including both the leading
term and the form of the nonperturbative corrections.
Finally, in Sec. VII we show that some specific orbifolds
of Euclidean black hole solutions also contribute to the
same Euclidean partition function (since they have the
same boundary conditions), and that the orbifold solu-
tions which satisfy our criterion precisely match with the

remaining Bethe Ansatz solutions. Appendix A contains
reference material, Appendices B–D contain details
on field theory and gravity computations, while in
Appendix E we present the new Lorentzian D3-brane
giant graviton configurations.

A. Future directions

There are many open questions left by our analysis.
Some of them are as follows:
(1) The rules of the AdS=CFT correspondence in the

presence of complex sources (such as the back-
ground metric or gauge fields) are not clear. A
commonly used method is to take results for the
classical action on the gravity side computed for real
sources, and to analytically continue them to com-
plex sources, where the result may also be inter-
preted as related to a complex gravity solution (with
complex boundary conditions related to the complex
sources). Analytic continuations of this type may be
dangerous, both because poles or other features may
be encountered when shifting the contours where the
gravitational fields are valued, and because sublead-
ing contributions for real sources may become
dominant for some complex-valued sources. In this
paper we discuss in detail an example of the latter
problem, and suggest a prescription in which only
(complex) gravitational solutions which do not have
any instabilities related to nonperturbative contribu-
tions becoming large should be included. It would be
useful to find a rigorous justification for this pre-
scription by carefully analyzing the analytic contin-
uations that are involved.

(2) Our results suggest that, as the Bethe Ansatz
prescription does on the CFT side, the gravita-
tional computation of the supersymmetric partition
function on S3 × S1 may perhaps be localized to a
discrete sum over supersymmetric gravity solutions.
It would be interesting to perform such a localiza-
tion on the gravity side, at least in the supergra-
vity approximation and perhaps along the lines of
[63–65], and to see if it reproduces the results we
found in this paper.

(3) In this paper we only compared the leading ex-
ponents in the contributions of various solutions to
the path integral—both for the classical gravity
solutions (contributing to the logarithm of the
partition function at order N2) and for the non-
perturbative corrections coming from D3-branes.
From the Bethe Ansatz we can also find the
subleading contributions to the logarithm of the
partition function, of order logðNÞ (already consid-
ered in [21]) and of order 1, and we seem to find no
further perturbative corrections in 1=N. It would be
interesting to reproduce these corrections from one-
loop fluctuations around our gravitational solutions,
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and to confirm that higher-loop corrections are
absent on the gravity side. In the case of the D3-
branes, we can again compute on the field theory
side also the coefficients of the exponentials that we
matched, and it would be interesting to match those
with multiplicities of D3-brane solutions on the
gravity side.

(4) So far there is no classification of all solutions to
the Bethe Ansatz equations for the SUðNÞ N ¼ 4
SYM theories, and for finite N there are cer-
tainly additional solutions beyond the ones we
analyzed, including continuous families of solutions
[16,66,67]. It would be interesting to classify all the
solutions, and to understand whether some of the
other solutions might have an interpretation as
classical gravity solutions as well.

There are also many possible generalizations of our
analysis:
(1) We analyzed only the case of equal chemical

potentials for the two angular momenta, since in
this case the Bethe Ansatz computation of the index
is the simplest. The Bethe Ansatz computation
works whenever the ratio between the two angular
momenta is rational [20,68], but for general rational
values, extra parameters appear in the sum over
Bethe Ansatz solutions, and the number of these
parameters is of order N, so that in the large N limit
there is an exponentially large number of terms
appearing in the sum. On the other hand, on the
gravity side nothing drastic seems to change when
the chemical potentials are not equal (or even when
their ratio is not rational), though some of the details
of our analysis may be modified. This suggests
that the extra parameters should be summed over
before matching to the gravity side in order to still
have a matching between the two sides. It would be
interesting to perform these sums and to match the
Bethe Ansatz results to a sum over gravity solutions
also for other ratios of chemical potentials. Note that
it is not obvious if this should be possible or not;
even if the gravity computation localizes as men-
tioned above, it is not guaranteed that the same sum
over solutions will appear on the gravity side as on
the field theory side (only the full partition function
has to match). However, our results suggest that such
a mapping may be possible also for general ratios of
the angular momenta chemical potentials.

(2) Many of our computations, both on the field theory
side (using the Bethe Ansatz) and on the gravity
side, may be generalized to general theories with 4D
N ¼ 1 superconformal symmetry. Indeed, the lead-
ing contributions from both sides have been matched
in some other cases [14,20]. It would be interesting
to check if also in these other cases, the full sum over
Bethe Ansatz solutions may be matched in the large

N limit to a sum over gravitational solutions, as we
found for the N ¼ 4 SYM theories. It may also be
possible to generalize the analysis to supersymmet-
ric Sd−1 × S1 partition functions of d-dimensional
superconformal field theories in other dimensions
(perhaps starting from [44,69,70]).

(3) Nonperturbative corrections to the Euclidean parti-
tion function coming from wrapped branes, similar
to the ones we found, presumably exist for all
black hole solutions in any dimension. It would
be interesting to evaluate these contributions and,
where possible, to match them to the field theory
side.2 Of course, this requires lifting these black hole
solutions—which are often found in truncations
of the gravitational theory to a lower-dimensional
theory—to 10D or 11D (depending on the case). It
would also be interesting to understand if there are
other cases where these contributions “destabilize”
some complexified solutions of the gravity equations
of motion, as we found.

Last but not least, it would be interesting to under-
stand the implications of our analysis (which is purely in
Euclidean signature) to the counting of 1=16-BPS black
hole microstates.

II. THE SPHERE PARTITION FUNCTION
AND THE INDEX

A. The sphere thermal partition function

In this paper we would like to match the partition
function of N ¼ 4 SUðNÞ SYM on S3 × S1, which is
closely related to the superconformal index, with the
gravitational partition function of its holographic dual,
type IIB string theory on a spacetime which is asymptoti-
cally AdS5 × S5. We will begin in this section with the field
theory side by describing the precise relation between the
partition function and the superconformal index.
Using N ¼ 1 notation, the field content of the N ¼ 4

SYM theory consists of a vector multiplet and three chiral
multiplets X, Y, Z, all in the adjoint representation of
the gauge group, with a superpotential proportional to
W ¼ TrðX½Y; Z�Þ. The R symmetry is SUð4ÞR: going to the
Cartan Uð1Þ3, we choose a basis of generators R1;2;3 each
giving R charge 2 to a single chiral multiplet and zero to the
other two, in a symmetric way. In addition, local operators
(or, equivalently, states in the theory on S3) are labeled by
two angular momenta J1;2, which are half-integer, and each
rotates anR2 ⊂ R4 in which S3 is embedded. We define the
fermion number as F ¼ 2J1. Note that all fields in the
theory (and thus all states) have integer charges under R1;2;3

and obey

2Nonperturbative corrections to the contribution to the super-
conformal index (or other supersymmetric partition functions)
coming from AdS5 have been studied, e.g., in [71–73].
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F ¼ 2J1;2 ¼ R1;2;3 ðmod 2Þ: ð2:1Þ

We can add chemical potentials for each of these five
charges, and the thermal partition function of the theory on
S3 can then be expressed as a trace over the Hilbert space of
the theory as

Z ¼ Trðe−βHþ
P

i
βΩiJiþ1

2

P
a
βΦaRaÞ; ð2:2Þ

where β is the inverse temperature,H is the Hamiltonian on
S3 in the absence of background fields (related to the
operator dimension by the state/operator correspondence),
and Ωi (with i ¼ 1; 2) and Φa (with a ¼ 1; 2; 3) are
chemical potentials. The 1

2
for the R charges comes from

our convention that the Ji are half-integers, while the Ra are
integers. With this convention, given (2.1), the partition
function (2.2) is periodic under shifts

fΩ1;Ω2;Φ1;Φ2;Φ3g →

�
Ω1 þ

2πin1
β

;Ω2 þ
2πin2
β

;Φ1 þ
2πim1

β
;Φ2 þ

2πim2

β
;Φ3 þ

2πim3

β

�
ð2:3Þ

for any integers n1, n2, m1, m2, m3 whose sum is even.
As usual, we can think of (2.2) as a Euclidean

partition function3 on S1β × S3 where the Euclidean
time direction tE has periodicity β (up to a zero-point
energy that we will discuss below). The chemical
potentials Ωi and Φa can be thought of as background
holonomies (on the thermal circle) of gauge fields
coupled to the conserved currents (whose charges are
the angular momenta and the R charges). For example,
the Φa are equivalent to background fields Aa

tE ¼ i
2
Φa

for the gauge fields coupled to the currents of Ra. In
principle, the chemical potentials in (2.2) can be real or
complex, as long as the partition function (2.2) con-
verges; the inverse temperature β can also be complex,
though then the geometrical Euclidean interpretation is
less clear.
For the chemical potentials related to the angular

momenta, the background fields in question are really
off-diagonal components of the metric; for an angular
momentum involving a shift in an angular coordinate ϕ
of S3, we can think of them as gtEϕ components of this
metric, proportional to ðiΩiÞ. This can also be thought
of as a different complex structure for the fibration of
the Euclidean time circle over the sphere [54]. When Ω
is purely imaginary, the modification in the metric is
real, while otherwise the metric becomes complex.
In this case we can also implement the chemical

potentials in a different way. Since wave functions of
states with angular momentum J have angular depend-
ence eiJϕ on an angular variable ϕ, we can alternatively
keep the original S3 metric on the sphere, but we use a
different identification around the time circle,

ðtE;ϕÞ ∼ ðtE þ β;ϕ − iβΩÞ; ð2:4Þ

which leads to the very same factor of eβΩJ in the trace
(2.2). We will call this the “coordinate shift realization”
of the chemical potentials, while the previous imple-
mentation is the “metric realization.”
When Ω is purely imaginary, using (2.4) is a reasonable

alternative description, equivalent to modifying the metric,
but otherwise we need to be careful in how to interpret the
identification (2.4) [together with the standard ð2πÞ perio-
dicity of ϕ]. A consistent way to implement this realization
for general complexΩ is to define a new angular coordinate

ϕ̃ ¼ ϕþ iΩtE ð2:5Þ

such that the new coordinate ϕ̃ still has a 2π periodicity, and
it can be taken to be real (even when Ω is complex), while
the other identification is simply ðtE; ϕ̃Þ ∼ ðtE þ β; ϕ̃Þ. This
defines the coordinate range of ϕ and tE for the “coordinate
shift realization” of the chemical potentials. Note that in
general the original coordinate ϕ of the S3 is complex now
(in particular since β may also be complex, so that tE which
runs from 0 to β is also complex), but ϕ̃ is real. The metric
in the new coordinate ϕ̃ is generally complex. Indeed, the
metric in this new coordinate is essentially the same as the
metric in the first approach discussed above. In this
framework we know the range of the coordinates even
whenΩ and β are complex, and this will be useful when we
discuss holography below.

B. The superconformal index

The superconformal index is defined for general 4D
N ¼ 1 superconformal field theories; in the N ¼ 4 SYM
theory it counts (with sign) 1=16 BPS states on S3

preserving one complex supercharge Q, which we choose
to be associated with a specific Uð1ÞR symmetry with
charge r ¼ ðR1 þ R2 þ R3Þ=3. The superconformal index
keeps track of some combinations of the R charges and the
two angular momenta J1;2. It is useful to introduce two
flavor generators q1;2 ¼ 1

2
ðR1;2 − R3Þ that commute withQ

and the N ¼ 1 superconformal subalgebra containing it.

3Actually, there could be a proportionality constant ZS1×S3 ¼
e−Cðβ;Ωi ;ΦaÞZ, where Z is as in (2.2), coming from background
dependent counterterms. For our purposes this distinction can be
ignored, as explained below.
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The superconformal index [49,50] is then defined by the
trace4

Iðp; q; y1; y2Þ ¼ Tr0½ð−1ÞFe−βfQ;Q̄gpJ1þ1
2
R3qJ2þ1

2
R3yq11 y

q2
2 �
ð2:6Þ

over the Hilbert space on S3, where by Tr0 we mean the
trace in the convention where the contribution of the
vacuum is 1. Here p, q, y1;2 are fugacities, and it is con-
venient to introduce chemical potentials σ, τ, Δ1;2 such that

p ¼ e2πiσ; q ¼ e2πiτ; y1;2 ¼ e2πiΔ1;2 : ð2:7Þ

The index is well-defined for jpj, jqj < 1, namely for
ImðσÞ, ImðτÞ > 0. Given (2.1), the index is a single-valued
function of the fugacities (2.7); i.e., it is periodic under
integer shifts of the chemical potentials σ, τ,Δ1, andΔ2. By
standard arguments [74], the index only counts states
annihilated by Q and Q̄ and is thus independent of β.
For the purpose of relating the partition function (2.2) to

the superconformal index, note that, in order to preserve the
specific supercharge Q mentioned above on S1β × S3, the
chemical potentials in (2.2) have to satisfy [5]

βð1þΩ1 þΩ2 −Φ1 −Φ2 −Φ3Þ ¼ 2πin; n ∈ Z: ð2:8Þ

In addition, in order for (2.2) to have the interpretation of
computing a thermal partition function, we must have
antiperiodic boundary conditions for the fermions (and in
particular for the supercharge) around the thermal cycle,
and this requires n to be odd [5]. We will choose n ¼ 1, but
this does not affect anything because of the periodicity (2.3)
of the chemical potentials.
Our specific conserved supercharge has the algebra [50]

fQ; Q̄g ¼ H − J1 − J2 −
1

2
ðR1 þ R2 þ R3Þ: ð2:9Þ

Thus, we can write the partition function (2.2) as

Z ¼ Trðe−βfQ;Q̄gþ
P

i
βðΩi−1ÞJiþ1

2

P
a
βðΦa−1ÞRaÞ; ð2:10Þ

and using the relation (2.8) between the chemical potentials
one finds

Z ¼ Trðe−βfQ;Q̄geπiR3e
P

i
βðΩi−1ÞðJiþ1

2
R3Þ

× eβðΦ1−1ÞR1−R32 eβðΦ2−1ÞR2−R32 Þ: ð2:11Þ

For the charge assignments of our theory, the factor eπiR3 is
equivalent to ð−1ÞF. Note also that in the new expression,
since ðR1 − R3Þ and ðR2 − R3Þ are even and Ji þ 1

2
R3 is an

integer, the periodicities of the remaining four chemical
potentials are reduced to ð2πi=βÞ. Defining new chemical
potentials for the four independent charges that, given (2.8),
we have access to, namely

σ ¼ βðΩ1 − 1Þ
2πi

; τ ¼ βðΩ2 − 1Þ
2πi

; Δa ¼
βðΦa − 1Þ

2πi
for a ¼ 1; 2; ð2:12Þ

one finally finds that

Z ¼ Trðð−1ÞFe−βfQ;Q̄ge2πiσðJ1þ1
2
R3Þe2πiτðJ2þ1

2
R3Þ

× e2πiΔ1q1e2πiΔ2q2Þ;
¼ e−βE0Iðσ; τ;Δ1;Δ2Þ; ð2:13Þ

where I is the superconformal index (2.6) defined above,
and E0 (which is related to the charges of the ground state
on S3) is called here the Casimir energy.5 This relation
between the thermal partition function (2.2) [when (2.8)
holds] and the index will enable us to relate the index
that we compute in the field theory, to computations of the
S1 × S3 partition function using the gravitational dual.
Note that, in general, E0 is scheme dependent. The

authors of [75] argued that supersymmetry dictates (if a
supersymmetric regularization is used) a specific choice of
renormalization scheme which fixes the value of E0 to a
specific value ESUSY depending on the chemical potentials,
which is then called the supersymmetric Casimir energy. In
[5] a localization computation verified (2.13) when (2.8)
applies and found the supersymmetric Casimir energy.
Both of these papers relied on coupling the theory to

curved space using the R multiplet. Recently, it was argued
that for theories with an anomalousUð1ÞR symmetry (in the
sense of nonconservation of the current in the presence of a
background field, as inN ¼ 4 SYM) this coupling induces
supercurrent anomalies, see [76–82]. They suggest that
additional counterterms should be added to the action in
order to restore supersymmetry. These counterterms could
change the value of E0. A similar argument was made in
[83], where it was suggested that in order to regularize the
theory in a supersymmetric and diffeomorphism invariant
way one should add an additional counterterm to the action.
This changes (2.13) to Z ¼ e−βWe−βESUSYI , where W is the
additional counterterm and ESUSY is the same as before.
We will avoid this discussion by considering the ratio

between the partition function and the contribution of the
vacuum, which equals the index I in every consistent
scheme. On the gravity side we realize this through

4Often the powers in the index are written as pJ1þ1
2
rqJ2þ1

2
r.

Compared to this convention, we have swallowed a power
of pq into y1 and y2 in order to obtain a single-valued function.
The relation of our variables to those of [50] is p ¼ t3xjthere,
q ¼ t3=xjthere, y1 ¼ t2vjthere, y2 ¼ t2w=vjthere.

5If our renormalization scheme requires additional counter-
terms, they would appear similarly to E0.
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“background subtraction,” namely regularizing the gravi-
tational action by subtracting the contribution coming from
empty thermal AdS, and we compare the result of this
regularization to the computation of the index.6

III. FIELD THEORY ANALYSIS

We are interested in the superconformal index (2.6) of
the four-dimensional N ¼ 4 supersymmetric Yang-Mills
theory with gauge group SUðNÞ.
Bethe Ansatz formulation.—The index is independent of

the gauge coupling, and thus can be computed exactly
[49,50,85,86] in terms of a certain contour integral.
However, in order to extract the large N limit, it is

convenient to consider the so-called Bethe Ansatz formula
[68,87]. In this paper we will mainly be interested in the
case of two equal angular fugacities:

p ¼ q ⇔ σ ¼ τ: ð3:1Þ

In this case the Bethe Ansatz formula reads7

Iðq; y1; y2Þ ¼ κN
X

û∈BAEs
Zðû;Δ; τÞHðû;Δ; τÞ−1: ð3:2Þ

The sum is over the solution set fûg to a system of
transcendental equations, dubbed here BAEs. Defining the
Bethe Ansatz (BA) operators

Qiðu;Δ; τÞ≡ e6πi
P

j
uij
YN
j¼1

θ0ðuji þ Δ1; τÞθ0ðuji þ Δ2; τÞθ0ðuji − Δ1 − Δ2; τÞ
θ0ðuij þ Δ1; τÞθ0ðuij þ Δ2; τÞθ0ðuij − Δ1 − Δ2; τÞ

ð3:3Þ

for i ¼ 1;…; N, the BA equations are given by

1 ¼ Qi

QN
for i ¼ 1;…; N − 1: ð3:4Þ

The quasielliptic function θ0 is defined in Appendix A,
while uij ¼ ui − uj. The unknowns are the “complexified
SUðNÞ holonomies” ui living on a torus of modular
parameter τ, namely with identifications

ui ∼ ui þ 1 ∼ ui þ τ for i ¼ 1;…; N − 1; ð3:5Þ

while uN is fixed by the constraint
P

N
i¼1 ui ¼ 0. The BAEs

(3.4) are invariant under such shifts. In fact, a stronger
property holds: Qi are invariant under shifts of the
components of the antisymmetric tensor uij by 1 or τ,
even relaxing the condition that uij ¼ ui − uj.
It was proven in [68] that only the solutions that are not

invariant under any nontrivial element of the Weyl group of
SUðNÞ (namely, only solutions with all ui different on the
torus) actually contribute to the sum in (3.2). Moreover, it
was shown in [67] that only the solutions to a more
restrictive set of equations,

Qi ¼ ð−1ÞN−1 for i ¼ 1;…; N ð3:6Þ

and dubbed “reduced Bethe Ansatz equations,” actually
contribute to the index. Notice that

Q
N
i¼1Qi ¼ 1 identi-

cally. We stress that from each solution in terms of uij
on the torus, one gets up to N2 solutions in terms of ui,
related by a shift of the “center of mass” of the first N − 1
components. Some of those, however, could be equivalent
up to the Weyl group action, and thus the exact multiplicity
should be determined by a case-by-case analysis.
The prefactor in (3.2) is

κN ¼ 1

N!

�ðq; qÞ2∞Γ̃ðΔ1; τ; τÞΓ̃ðΔ2; τ; τÞ
Γ̃ðΔ1 þ Δ2; τ; τÞ

�N−1
; ð3:7Þ

where ðz; qÞ∞ is the q-Pochhammer symbol while
Γ̃ðu; σ; τÞ is the elliptic gamma function, defined in
Appendix A. The function Z is given by

Zðu;Δ; τÞ ¼
YN
i≠j

Γ̃ðuij þ Δ1; τ; τÞΓ̃ðuij þ Δ2; τ; τÞ
Γ̃ðuij þ Δ1 þ Δ2; τ; τÞΓ̃ðuij; τ; τÞ

ð3:8Þ

and it coincides [using (A16)] with the integrand of the
standard integral formula for the superconformal index.
Finally, H is a Jacobian defined as

H ¼ det

�
1

2πi
∂logðQi=QNÞ

∂uj
�
i;j¼1;…;N−1

≡ detðAijÞ: ð3:9Þ

Here we introduced the ðN − 1Þ × ðN − 1Þ Jacobian matrix
Aij for later convenience.
Notice that Qi, κN , Z, and H are all invariant under

integer shifts of τ, Δ1, and Δ2, implying that the super-
conformal index (3.2) is a single-valued function of the

6Note that background subtraction is believed to give the same
results for the ratio we compute as a more precise computation
using holographic renormalization in the bulk, as in [69] (see also
[84] for an alternative scheme). With the specific regularization
used there, E0 matches the usual Casimir energy in a free CFT,
see also Appendix A of [75] (and our footnote 19).

7This expression was derived in [68] assuming that the Bethe
Ansatz equations have isolated solutions. It has been noticed in
[16,66,67] that for theN ¼ 4 SYM theory, the equations can also
have continuous families of solutions. In this case the expression
of their contributions should likely be modified. In this paper we
will ignore the contributions of those continuous families, leaving
their study to future work.
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fugacities. This is also apparent from the Hamiltonian
definition (2.6), as already noted.
The superconformal index of the N ¼ 4 SYM theory

with gauge group UðNÞ is related to the one for gauge
group SUðNÞ by the simple relation

IUðNÞ ¼ IUð1ÞISUðNÞ; ð3:10Þ
where

IUð1Þðp; q; y1; y2Þ ¼ ðp;pÞ∞ðq; qÞ∞
Γ̃ðΔ1; σ; τÞΓ̃ðΔ2; σ; τÞ
Γ̃ðΔ1 þ Δ2; σ; τÞ

ð3:11Þ

is the index of the free N ¼ 4 Uð1Þ theory.
Hong-Liu solutions.—The full set of solutions to (3.6) is

not known (see also footnote 7); however, a large set was
found in [33,62] and we will refer to them as Hong-Liu
(HL) solutions. They are labeled by three integers:

fm; n; rg such that N ¼ m · n; 0 ≤ r < n: ð3:12Þ

The solutions are

uj ≡ u|̂ k̂ ¼ ūþ |̂
m
þ k̂
n

�
τ þ r

m

�
: ð3:13Þ

Here we have decomposed the index j ¼ 0;…; N − 1 into
the indices |̂ ¼ 0;…; m − 1 and k̂ ¼ 0;…; n − 1.Moreover,
ū is a constant chosen in such a way to solve the SUðNÞ
constraint (but recall that what enters in all formulas are the
differences uij ¼ ui − uj). Notice that these solutions are in
one-to-one correspondence with subgroups of ZN × ZN of
orderN. It turns out that each HL solution has multiplicityN
(besides the N! coming from permutations of uis), corre-
sponding to the inequivalent solutions to the SUðNÞ
constraint.
The BAEs (3.6) are invariant under SLð2;ZÞ modular

transformations of the torus, namely under the generators

T∶
�
τ ↦ τ þ 1

u ↦ u
; S∶

�
τ ↦ −1=τ
u ↦ u=τ

; C∶
�
τ ↦ τ

u ↦ −u
:

ð3:14Þ

It follows that theHL solutions formorbits underPSLð2;ZÞ,
completely classified by the integer d ¼ gcdðm; n; rÞ. The
action of PSLð2;ZÞ is given by

T∶fm; n; rg ↦ fm; n; rþmg;

S∶fm; n; rg ↦

�
gcdðn; rÞ; mn

gcdðn; rÞ ;
mðn − rÞ
gcdðn; rÞ

�
; ð3:15Þ

where the last entry of fm0; n0; r0g is understood mod n0.

A. Contributions of Hong-Liu solutions

We will compute the contribution of each of the HL
solutions (3.13) to the sum in (3.2). While H will remain
somehow implicit, we will be able to obtain a very explicit
expression for Z.
It is convenient to rewrite uij as

uij ≡ uðj1k1Þðj2k2Þ ¼ vj1j2 þ wk1k2 ; ð3:16Þ
with j1; j2 ¼ 0;…; m − 1 and k1; k2 ¼ 0;…; n − 1, as
well as

vj1j2 ¼ vj1 − vj2 ¼
j1 − j2
m

;

wk1k2 ¼ wk1 − wk2 ¼
k1 − k2

n

�
τ þ r

m

�
: ð3:17Þ

We also define

ξj ¼ e2πivj ; ζk ¼ e2πiwk : ð3:18Þ

1. Elliptic gamma functions

To evaluate the contribution to the index, we need to
compute

γΔ ¼
XN
i≠j

log ðΓ̃ðuij þ Δ; τ; τÞÞjð3.16Þ;

¼
Xm−1

j1;j2¼0

Xn−1
k1≠k2

log ðΓ̃ðvj1j2 þ wk1k2 þ Δ; τ; τÞÞ

þ n
Xm−1

j1≠j2

log ðΓ̃ðvj1j2 þ Δ; τ; τÞÞ ð3:19Þ

for Δ ∈ f0;Δ1;Δ2;Δ1 þ Δ2g. Notice that while expðγΔÞ is
well defined, γΔ is only defined modulo 2πi. We set

y ¼ e2πiΔ: ð3:20Þ

When Δ is a generic complex number, one easily verifies
the shift property

γΔþ1
m
− γΔ ¼ −N log

�
Γ̃ðΔþ 1

m ; τ; τÞ
Γ̃ðΔ; τ; τÞ

�
: ð3:21Þ

We will use this relation in the following. It follows
that γΔþ1 ¼ γΔ.
The case Δ ≠ 0.—Our strategy is to expand the func-

tions appearing in (3.19) inside a common domain of
convergence, and then manipulate and resum the expan-
sions. As long as we obtain exact expressions, the latter will
be valid on the full domain of analyticity, possibly up to
ambiguities by 2πi from the logarithms [such ambiguities
disappear when considering expðγΔÞ]. The details of the
computation are in Appendix B 1. Defining
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τ̌ ¼ mτ þ r and q̌ ¼ e−2πi=τ̌; ð3:22Þ

we obtain the exact expression8

γΔ ¼ πi
N2

m

ðτ̌ −mΔÞðτ̌ −mΔ − 1
2
Þðτ̌ −mΔ − 1Þ

3τ̌2
−
πim
6

�
τ̌ −mΔ −

1

2

�

− N log ðΓ̃ðΔ; τ; τÞÞ − N log

�
θ0

�
NΔ
τ̌

;−
n
τ̌

��
þm

X∞
k¼0

log

 
ψðkþ1þmΔ

τ̌=n Þ
ψðk−mΔ

τ̌=n Þ

!
: ð3:23Þ

The function ψðuÞ appearing here is defined in Appendix A.
The expression we obtained will be convenient when taking the large N limit; however, if we are interested in an explicit

exact expression, even the remaining infinite sum can be computed exploiting the modular formula (A19). We obtain the
following9:

γΔ ¼ πi
N2

m

ðτ̌ −mΔÞðτ̌ −mΔ − 1
2
Þðτ̌ −mΔ − 1Þ

3τ̌2
−
πim
6

�
τ̌ −mΔ −

1

2

�

þ πimQðmΔ; τ̌=n; τ̌=nÞ − ðN −mÞ log
�
θ0

�
NΔ
τ̌

;−
n
τ̌

��

− N log ðΓ̃ðΔ; τ; τÞÞ þm log

�
Γ̃
�
mΔ;

τ̌

n
;
τ̌

n

��
: ð3:24Þ

Here Qðu; τ; τÞ is a cubic polynomial in u, defined in (A20).
The case Δ ¼ 0.—This case requires a separate treatment, which can be found in Appendix B 2. We obtain

γ0 ¼ πi
N2

m

τ̌ðτ̌ − 1
2
Þðτ̌ − 1Þ
3τ̌2

−
πimτ̌

6
þ N log

�
τ̌

N

�
þ 2N log

� ðq; qÞ∞
ðq̌n; q̌nÞ∞

�
: ð3:25Þ

Notice that we could have obtained this expression directly as the Δ → 0 limit of (3.23). To do that, we need the following
asymptotic behaviors, easy to derive:

θ0

�
NΔ
τ̌

;−
n
τ̌

�
∼Δ→0 ð1 − e2πiNΔ=τ̌Þðq̌n; q̌nÞ2∞

Γ̃ðΔ; τ; τÞ ∼Δ→0 1

1 − e2πiΔ
1

ðq; qÞ2∞
: ð3:26Þ

It follows that

−N lim
Δ→0

log

�
Γ̃ðΔ; τ; τÞθ0

�
NΔ
τ̌

;−
n
τ̌

��
¼ 2N log

� ðq;qÞ∞
ðq̌n; q̌nÞ∞

�
þ N log

�
τ̌

N

�
: ð3:27Þ

The last sum in (3.23) is regular at Δ ¼ 0: most terms cancel out, and one uses ψð0Þ ¼ eπi=12.

8Taking the exponential of the right-hand side, one verifies that it is invariant under mΔ → mΔþ 1, performed in all terms but the
first one in the second line [while if we do not take the exponential, we are left with −πimn2 − N logð−1Þ plus possible multiples of 2πi
from the branch cuts of the logs]. It follows that the right-hand side satisfies the shift property (3.21).

9One can verify that under r → rþ n, which corresponds to τ̌ → τ̌ þ n, the quantity γΔ gets shifted by mπi nðnþ1Þðn−1Þ
3

(which is
always a multiple of 2πi) plus possible multiples of 2πi from the branch cuts of the logs. It follows that expðγΔÞ is invariant, as it should.
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2. The Jacobian

The Jacobian was defined in (3.9). It is convenient to
introduce an auxiliary chemical potential Δ3 defined by

X3
a¼1

Δa − σ − τ ∈ Z ð3:28Þ

(and then set σ ¼ τ), in order to make manifest the action of
the Weyl group of SUð3Þ—the global symmetry contained
in SUð4ÞR that commutes with the preserved supercharges
Q; Q̄. We can then rewrite the BA operators (3.3) as

Qi ¼ e−2πi
P

j
uij
Y3
a¼1

YN
j¼1

θ0ðuji þ Δa; τÞ
θ0ðuij þ Δa; τÞ

: ð3:29Þ

With a few manipulations that we report in Appendix B 3,
the ðN − 1Þ × ðN − 1Þ Jacobian matrix Aij can be com-
pactly written as

Aij ¼ NbNBij þ Cij: ð3:30Þ

Here

bN ¼ −4þ 1

τ̌

X3
a¼1

�
2mΔa þ 1þ G

�
0;
NΔa

τ̌
;−

n
τ̌

��
;

Bij ¼ δij þ 1;

Cij ¼
X3
a¼1

½GðuiN;Δa; τÞ þ GðujN;Δa; τÞ

− Gðuij;Δa; τÞ − Gð0;Δa; τÞ�; ð3:31Þ

with i; j ¼ 1;…; N − 1, where the function Gðu;Δ; τÞ is
defined in Appendix A. Notice that detðBÞ ¼ N and

ðB−1Þij ¼ δij − 1=N. To compute the determinant, we
factorize A and obtain

logðHÞ≡ logðdetðAÞÞ ¼ N logðNÞ þ ðN − 1Þ logðbNÞ

þ log

�
det

�
1þ b−1N

N
B−1C

��
: ð3:32Þ

The last term of this expression is still rather implicit,
however this will be good enough to compute the large
N limit.

3. Total contribution

We denote the total contribution of the HL solution
fm; n; rg to the index as

Ifm;n;rg ¼ N · N! · κNZðu;Δ; τÞHðu;Δ; τÞ−1jð3.16Þ: ð3:33Þ

The factor N · N! takes into account the multiplicity of the
solution fm; n; rg: indeed N! comes from the Weyl group
action that permutes the eigenvalues ui, while N comes
from the inequivalent choices of sets of points fuig on the
torus that give rise to the same uijs, as discussed after
(3.13). Such N inequivalent choices correspond to shifts of
the center of mass of the first N − 1 holonomies, and can be
parametrized, for ð|̂; k̂Þ ≠ ðm; nÞ, as

uðlÞ
|̂ k̂

¼ ūþ |̂
m
þ k̂
n

�
τ þ r

m

�
þ l1τ þ l2

N
; ð3:34Þ

with l1 ¼ 0;…; m − 1 and l2 ¼ 0;…; n − 1. As discussed
before, all these solutions give exactly the same contribu-
tion to Z and H.
Using that Γ̃ðuþ Δ1 þ Δ2; σ; τÞ−1 ¼ Γ̃ð−uþ Δ3; σ; τÞ

and putting everything together, we eventually find

logðIfm;n;rgÞ ¼ PðmΔ; τ̌Þ þ logðNÞ þ 2 log
h
ðq̌n;q̌nÞN∞
ðq;qÞ∞

i
− N logðτ̌Þ − ðN − 1Þ logðbNÞ

þP3
a¼1

�
−N log

h
θ0
�
NΔa
τ̌ ;− n

τ̌

	i
− logðΓ̃ðΔa; τ; τÞÞ þm

P∞
k¼0

log

�
ψðkþ1þmΔa

τ̌=n Þ
ψðk−mΔa

τ̌=n Þ

��

þ πim
6

�P
a
mΔa − 2τ̌ þ 3

2

	
− log

h
det
�
1þ b−1N

N B−1C
	i

:

ð3:35Þ

Recall that τ̌ ¼ mτ þ r and q̌ ¼ e−2πi=τ̌. Here PðmΔ; τ̌Þ is the contribution of order N2:

PðmΔ; τ̌Þ ¼ πiN2

3m

�X3
a¼1

ðτ̌ −mΔaÞðτ̌ −mΔa − 1
2
Þðτ̌ −mΔa − 1Þ

τ̌2
−
τ̌ðτ̌ − 1

2
Þðτ̌ − 1Þ
τ̌2

�
: ð3:36Þ
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B. The large N limit

We proceed to compute the large N limit of (3.35).
Clearly, this depends on how we scale m, n, r with N. In
this paper10 we consider BA solutions fm; n; rg with m, r
fixed and n → ∞.
There are various terms in (3.35) that are exponentially

suppressed in the limit and go to zero. For instance,
N log ððq̌n; q̌nÞ∞Þ ∼ −Nq̌n for n → ∞, and thus this term
is of orderOðNe−NÞ and goes to zero. It turns out that when
the electric chemical potentials Δa¼1;2;3 are in a particular
range, namely

0 < Im

�
mΔa

τ̌

�
< Im

�
−
1

τ̌

�
; ð3:37Þ

many other terms are exponentially suppressed as
OðNe−NÞ. We have the following:

N log

�
θ0

�
NΔa

τ̌
;−

n
τ̌

��
∼ −Nðỹna þ ðq̌=ỹaÞnÞ → 0;

m
X∞
k¼0

log

 
ψðkþ1þmΔa

τ̌=n Þ
ψðk−mΔa

τ̌=n Þ

!
∼ −N

X∞
k¼0

�
kþ 1þmΔa

τ̌
ðq̌=ỹaÞn

−
k −mΔa

τ̌
ỹna

�
q̌nk → 0;

NG
�
0;
NΔa

τ̌
;−

n
τ̌

�
∼ 2Nðỹna − ðq̌=ỹaÞnÞ → 0:

ð3:38Þ

On the other hand, the quantity log½detð1þ B−1C=bNNÞ� is
of orderOð1Þ. To see that, notice from (3.31) that the matrix
C has entries of order 1, the matrix B−1C has entries of order
1, bN is of order 1, and hence the matrix E ≡ B−1C=bNN
has entries of order 1=N. It follows that all traces TrðElÞ are
of order 1 (or higher powers of 1=N), and so is
log½detð1þ EÞ� ¼P∞

l¼1
1
l ð−1Þlþ1TrðElÞ. We will study

the Jacobian in more detail in Sec. III D below.
We conclude that in the range (3.37) it is relatively

simple to take the large N limit—and the only term that
contributes at order OðN2Þ is P. The range (3.37) corre-
sponds to mΔa lying within an open strip in the complex
plane, bounded by the line Lτ̌ through 0 and τ̌ on the right,
and by the line through −1 and τ̌ − 1 on the left (see Fig. 1).
From (3.23) and as noticed in footnote 8, γΔ is invariant if
we shift mΔ → mΔþ 1 in all terms but N log ðΓ̃ðΔ; τ; τÞÞ;
similarly bN in (3.31) is invariant under that shift. We can
exploit this fact to push mΔa towards the range (3.37).

To that purpose, we introduce the periodic discontinuous
function ½Δ�τ defined as

½Δ�τ ¼
�
zjz ¼ Δ mod 1; Im

�
−
1

τ

�
> Im

�
z
τ

�
> 0

�

for Im

�
Δ
τ

�
∉ Z × Im

�
−
1

τ

�
: ð3:39Þ

This gives the image of Δ under an integer shift that sets it
between Lτ − 1 on the left and Lτ on the right (see Fig. 1
for a picture of this domain, in yellow), while it remains
undefined ifΔ ∈ Lτ þ Z. In other words, ½Δ�τ is defined by
the conditions

½Δ�τ ¼ Δ mod 1; Im

�
−
1

τ

�
> Im

�½Δ�τ
τ

�
> 0:

ð3:40Þ

We also define

½Δ�0τ ¼ ½Δ�τ þ 1; ð3:41Þ

which gives the image ofΔ under an integer shift that sets it
between Lτ on the left and Lτ þ 1 on the right, whenever Δ
does not lie on Lτ þ Z. These functions satisfy

½Δþ 1�τ ¼ ½Δ�τ; ½Δþ τ�τ ¼ ½Δ�τ þ τ;

½−Δ�τ ¼ −½Δ�τ − 1 ¼ −½Δ�0τ: ð3:42Þ

In particular,
P

3
a¼1Δa − 2τ ∈ Z implies ½Δ3�τ ¼ 2τ − 1−

½Δ1 þ Δ2�τ, and multiplying by m also implies

½mΔ3�τ̌ ¼ 2τ̌ − 1 − ½mΔ1 þmΔ2�τ̌: ð3:43Þ

The strategy is thus to perform integer shifts of themΔas
in the arguments of γΔ and bN in such a way that we land
inside the range (3.37). This is always possible as long as
none of the mΔa is exactly on the line Lτ̌ or one of its
images under integer shifts. This allows us to write the
contribution from the HL solution fm; n; rg as

FIG. 1. Fundamental strips for ½Δ�τ and ½Δ�0τ. The function ½Δ�τ
is the restriction of Δ mod 1 to the region Imð−1=τÞ >
ImðΔ=τÞ > 0 (in yellow, on the left), while ½Δ�0τ is the restriction
of Δ mod 1 to the region 0 > ImðΔ=τÞ > Imð1=τÞ (in purple, on
the right). We dubbed Lτ the blue line through 0 and τ.

10Other largeN limits may also be considered, and we have not
checked all the possibilities. However, our matching to the
gravitational side suggests that any other limit does not corre-
spond to black hole solutions with an action of order N2.
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logðIÞ ¼ Pð½mΔ�τ̌; τ̌Þ þ logðNÞ þ 2 log
�ðq̌n; q̌nÞN∞
ðq; qÞ∞

�
− N logðτ̌Þ − ðN − 1Þ log½bNð½mΔ�τ̌; τ̌Þ�

þ
X3
a¼1

�
−N log

�
θ0

�
n½mΔa�τ̌

τ̌
;−

n
τ̌

��
− log ðΓ̃ðΔa; τ; τÞÞ þm

X∞
k¼0

log

�
ψðkþ1þ½mΔa�τ̌

τ̌=n Þ
ψðk−½mΔa�τ̌

τ̌=n Þ

��

þ πim
6

�X
a

½mΔa�τ̌ − 2τ̌ þ 3

2

�
− log

�
det
�
1þ bNð½mΔ�τ̌; τ̌Þ−1

N
B−1C

��
: ð3:44Þ

Note that no shift has been done within the matrix C in the last term. Because of the constraint (3.28) between Δa and τ that
defines Δ3, the functions P and bN simplify. Notice that, in general, Imð−2=τ̌Þ > Imðð½mΔ1�τ̌ þ ½mΔ2�τ̌Þ=τ̌Þ > 0, and
therefore one should distinguish between two cases in parameter space:

1st case∶ ½mΔ1�τ̌ þ ½mΔ2�τ̌ ¼ ½mΔ1 þmΔ2�τ̌
2nd case∶ ½mΔ1�τ̌ þ ½mΔ2�τ̌ ¼ ½mΔ1 þmΔ2�τ̌ − 1: ð3:45Þ

The second case is equivalent to ½mΔ1�0τ̌ þ ½mΔ2�0τ̌ ¼ ½mΔ1 þmΔ2�0τ̌. In a more permutation-invariant way, they can be
written as

1st case∶
X3
a¼1

½mΔa�τ̌ − 2τ̌ þ 1 ¼ 0

2nd case∶
X3
a¼1

½mΔa�0τ̌ − 2τ̌ − 1 ¼ 0: ð3:46Þ

The second case is also equivalent to
P

3
a¼1½mΔa�τ̌ − 2τ̌ þ 2 ¼ 0.

In the first case, with a little bit of algebra we find the large N limit

logðIfm;n;rgÞ ¼ − πiN2

m
½mΔ1�τ̌½mΔ2�τ̌½mΔ3�τ̌

τ̌2
þ logðNÞ − logðIUð1ÞÞ 1st case

− logðτ̌Þ þ πim
12

− log
h
det
�
1þ b−1N

N B−1C
	i

þOðNe−NÞ:
ð3:47Þ

Here IUð1Þ is the index of the free Uð1Þ theory (3.11) specialized to σ ¼ τ, that we can also write as

IUð1Þjσ¼τ ¼ ðq; qÞ2∞
Y3
a¼1

Γ̃ðΔa; τ; τÞ: ð3:48Þ

In (3.47) the first term is of orderOðN2Þ, the second term is of orderOðlogðNÞÞ, all other terms11 are of orderOð1Þ, and the
corrections are exponentially small. In the second case we similarly find12

logðIfm;n;rgÞ ¼ − πiN2

m
½mΔ1�0τ̌½mΔ2�0τ̌½mΔ3�0τ̌

τ̌2
þ logðNÞ − logðIUð1ÞÞ 2nd case

− logðτ̌Þ þ πi − πim
12

− log
h
det
�
1þ b−1N

N B−1C
	i

þOðNe−NÞ:
ð3:49Þ

Here we used the 2πi ambiguity of the logarithm and the fact that eπimn2−πimn ¼ 1.

11In this paper we have not explicitly computed the determinant, which we leave for future work, however see a partial analysis in
Sec. III D.

12Notice that both in (3.47) and (3.49), bN stands for bNð½mΔ�τ̌; τ̌Þ.
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Our result is compatible with previous works on the
subject. In particular, the leading contribution from special
subfamilies of HL solutions already appeared in [15,16],
while the correction at order OðlogðNÞÞ was already found
in [21], both for the basic solution as well as for the
fm; n; 0g subfamily of HL solutions.

C. Nonperturbative corrections

The terms that we reported in the large N limit
expressions (3.47) and (3.49) are the leading OðN2Þ

contribution and the perturbative corrections (notice
that the determinant gives rise to both perturbative and
nonperturbative corrections). Here we would like to esti-
mate the nonperturbative corrections OðNe−NÞ. More
precisely, we will compute the leading exponent—or
instanton action—that controls the nonperturbative cor-
rections, while leaving a more detailed analysis for
future work.
In (3.47) and (3.49), the missing terms are

logðIfm;n;rgÞ ¼
�
3.47

3.49

�
þ 2N logððq̌n; q̌nÞ∞Þ − ðN − 1Þ log

�
1�

X3
a¼1

G
�
0;
½mΔa�τ̌
τ̌=n

;−
n
τ̌

��

−
X3
a¼1

"
N log

�
θ0

�½mΔa�τ̌
τ̌=n

;−
n
τ̌

��
−m

X∞
k¼0

log

 
ψðkþ1þ½mΔa�τ̌

τ̌=n Þ
ψðk−½mΔa�τ̌

τ̌=n Þ

!#
; ð3:50Þ

where the two equation numbers and the� signs in the first line correspond to the first and second case, respectively. These
nonperturbative corrections are needed in order to make the right-hand sides of (3.47) and (3.49) an analytic function of the
chemical potentials for finite N, even though ½mΔa�τ̌ are not analytic functions. By expanding the various functions above
using the formulas in Appendix A, we find that the nonperturbative corrections have three kinds of exponents:

exp

�
2πiN
m

k
½mΔa�τ̌ − l

τ̌

�
; exp

�
2πiN
m

k
−½mΔa�τ̌ − 1 − l

τ̌

�
; exp

�
−
2πiN
m

k
τ̌

�
; ð3:51Þ

for integers k ≥ 1 and l ≥ 0. All these exponents can be written as products of

exp

�
2πiN
m

½mΔa�τ̌
τ̌

�
; exp

�
−
2πiN
m

½mΔa�τ̌ þ 1

τ̌

�
; exp

�
−
2πiN
m

1

τ̌

�
: ð3:52Þ

In the first case of parameter space, taking into account the
relation (3.46) among the chemical potentials, one finds
that in fact all exponents can be written as products of

exp

�
2πiN
m

½mΔa�τ̌
τ̌

�
for a ¼ 1; 2; 3: ð3:53Þ

Notice that because of the property (3.40) of the function
½ �τ, all nonperturbative corrections are exponentially small
in the large N limit. In the second case of parameter space,
instead, all exponents can be written as products of

exp

�
−
2πiN
m

½mΔa�0τ̌
τ̌

�
for a ¼ 1; 2; 3: ð3:54Þ

Again, all nonperturbative corrections are exponentially
small.

D. Perturbative corrections

The perturbative corrections (i.e., the perturbative expan-
sion in 1=N) to the leading OðN2Þ contribution to
logðIfm;n;rgÞ come from the terms in (3.47) and (3.49).

We were not able to evaluate the determinant explicitly,
however we collected some evidence that—at least in the
case m ¼ 1—the determinant is of order Oð1Þ plus non-
perturbative corrections of order Oðe−NÞ, but without
further perturbative corrections of orderOð1=NÞ or smaller.
We thus conjecture that the series of perturbative correc-
tions stops at order Oð1Þ.
Our strategy is to expand

− log

�
det

�
1þ B−1C

bNN

��
¼
X∞
l¼1

ð−1Þl
l

Tr

��
B−1C
bNN

�
l
�

ð3:55Þ

and compute the first few terms on the right-hand side. The
details of the computation are in Appendix B 4. At first
order, in the large N limit we find

TrðB−1CÞ
bNN

¼ 1� τ̌

�
1 −

X3
a¼1

Gð0;Δa; τÞ
�
þOðe−NÞ;

ð3:56Þ
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where the � signs refer to the first and second case of
parameter space, respectively. At second order the compu-
tation becomes considerably more involved, and we only
performed it in the case m ¼ 1, i.e., for the T-transformed
solutions. Setting τ̌ ¼ τ þ r, in the large N limit we find

TrðB−1CB−1CÞ
b2NN

2
¼ 1

2

X3
a;b¼1

�
γ̃

�½Δa�τ̌ þ ½Δb�τ̌
τ̌

;−
1

τ̌

�

− γ̃

�½Δa�τ̌ − ½Δb�0τ̌
τ̌

;−
1

τ̌

��
þOðe−NÞ:

ð3:57Þ

Here we introduced the function

γ̃ðu; τÞ≡ 1

2πi
∂u logðΓ̃ðu; τ; τÞÞ; ð3:58Þ

see also (B49). Both at first and second order (for m ¼ 1),
the perturbative series in 1=N stops at order Oð1Þ, the only
large N corrections being nonperturbative.

E. The universal superconformal index

It is interesting to consider also a special case of the
superconformal index (2.6), which is a simpler and more
universal object. This is constructed by only using charges
in the N ¼ 1 superconformal subalgebra,13 and it is
defined as

J ðp; qÞ ¼ Tr½e−πire−βfQ;Q̄ge2πiσðJ1þr
2
Þe2πiτðJ2þr

2
Þ�; ð3:59Þ

where r is the superconformal R symmetry in the N ¼ 1
subalgebra. Since different states in the same supermultip-
let have R charges that differ by integers and the super-
chargeQ has charge r ¼ 1, J has all the good properties of
a supersymmetric index. When the R charges are rational,
this index will have some periodicity in the σ, τ plane.
For N ¼ 4 SYM, this special case corresponds to

choosing

Δ1 ¼ Δ2 ¼ Δ3 ≡ Δ ¼ σ þ τ − 1

3
: ð3:60Þ

To simplify even further we will take σ ¼ τ, which means
2τ − 3Δ ¼ 1. The corresponding index

J ðqÞ ¼ Tr½e−πire−βfQ;Q̄ge2πiτðJ1þJ2þrÞ� ð3:61Þ

is periodic under τ → τ þ 3, and it is defined for ImðτÞ > 0.
As in Sec. III B we are interested in the contribution14

from HL solutions fm; n; rg, in a large N limit in which

m, r are kept fixed while n → ∞. This means applying the
restriction (3.60) to the large N expressions (3.47) and
(3.49) in the first and second region of parameter space,
respectively. One easily computes

½mΔ�τ̌ ¼

8><
>:

undefined if mþ 2r ¼ 0 mod 3
2τ̌−1
3

if mþ 2r ¼ 1 mod 3

2τ̌−2
3

if mþ 2r ¼ 2 mod 3

: ð3:62Þ

The undefined case arises because for these chemical
potentials mΔ happens to sit precisely on one of the
images of Lτ̌ under integer shifts. For mþ 2r ¼ 1 mod
3 the solution sits in the first case of parameter space,
according to (3.45), while for mþ 2r ¼ 2 mod 3 it sits in
the second case. It follows that the leading behavior of the
index is

logðIfm;n;rgÞ

≃

8>><
>>:

undefined if mþ 2r ¼ 0 mod 3

− πiN2

27m
ð2τ̌−1Þ3

τ̌2
if mþ 2r ¼ 1 mod 3 ð1st case Þ

− πiN2

27m
ð2τ̌þ1Þ3

τ̌2
if mþ 2r ¼ 2 mod 3 ð2nd caseÞ

:

ð3:63Þ

The undefined case should be interpreted as the fact that
there are two exponentially large competing contributions
to Ifm;n;rg (coming from the first and second case
solutions when we slightly shift the chemical potentials
in one direction or the other) with the same absolute
value, but with a relative phase that oscillates very
rapidly.

IV. FIVE-DIMENSIONAL BLACK HOLES

In this section we review the gravitational solutions
that contribute to the S1 × S3 partition function of the
N ¼ 4 SYM theory, for supersymmetric values of the
chemical potentials, and compare their contributions to
what we obtained from the index. Since we work at large
N on the field theory side, the gravitational side is
semiclassical and its partition function should be a sum
over all the classical solutions that satisfy the appro-
priate boundary conditions for our chemical potentials.15

Our field theory computation is independent of
the ’t Hooft coupling constant; on the gravity side it
will be useful to work at large ’t Hooft coupling,
where we can approximate type IIB string theory by

13All choices are physically equivalent.
14The contribution from the T-transformed solutions f1; N; rg

was already analyzed in [7].

15With perturbative corrections given by the fluctuations
around them, which we will not consider in this work, and with
nonperturbative corrections that we will discuss in the next
section.
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type IIB supergravity,16 and just look for appropriate
solutions of this theory, which are asymptotically
AdS5 × S5.
The rules of the AdS=CFT correspondence tell us how to

find gravitational solutions when the chemical potentials in
(2.2) correspond to real boundary conditions for the bulk
fields in Euclidean space. Unfortunately, as discussed
below, for generic values of the chemical potentials this
is not consistent with (2.8), so for most supersymmetric
configurations some of the chemical potentials are com-
plex, and we do not know what are the rules for construct-
ing solutions dual to such complex chemical potentials. We
will begin by dealing with this issue in the most naïve
possible way, by assuming that one can analytically
continue the results computed for real fields (with real
boundary conditions) to complex fields (with complex
boundary conditions).17 We will find that this will lead
to some problems, and we will suggest how to resolve them
in the following sections.
In general, finding ten-dimensional black hole solutions

is complicated. Luckily, type IIB supergravity has several
known consistent truncations, with known black hole
solutions that satisfy our boundary conditions. The most
general black hole solution has two angular momenta J1, J2
and three electric charges Q1, Q2, Q3, where we defined
Qa ¼ Ra=2. The simplest consistent truncation is to 5D
N ¼ 2 minimal gauged supergravity, which contains just a
single gauge field, and which can be used to describe
solutions with Q1 ¼ Q2 ¼ Q3 ≡Q (or, equivalently, with
equal chemical potentials Φ1 ¼ Φ2 ¼ Φ3). In this section
we use this truncation to consider these solutions, further
limiting ourselves, for simplicity, to the case of equal
angular momenta J1 ¼ J2 ≡ J (or, equivalently, Ω1 ¼ Ω2).
A detailed discussion of generalizations to black holes with
more generic charges (or chemical potentials) is left to
Appendices C and D. The analysis of this section mostly
follows [5].

A. Black hole solutions

The bosonic fields of 5D N ¼ 2 minimal gauged
supergravity are the metric gμν and a Uð1Þ gauge field
Aμ. The bosonic Lagrangian is18

L ¼ ðRþ 12g2Þ � 1 − 2

3
F ∧ �F þ 8

27
F ∧ F ∧ A; ð4:1Þ

such that the radius of the vacuum AdS5 solution is 1=g. In
the following we will set the dimensionful constant g to 1.
Specializing to the case of equal angular momenta a ¼ b,
the black hole solutions found in [88] in asymptotically
global AdS5 (with boundary R × S3) are given by

ds2 ¼ −
ð1þ r2Þ

Ξa
dt2 −

2q
Ξaρ

2
νϖ þ ft

Ξ2
aρ

4
ϖ2 þ ρ2

Δr
dr2

þ ρ2

Ξa
ðdθ2 þ sin2ðθÞdϕ2 þ cos2ðθÞdψ2Þ;

A ¼ 3q
2ρ2Ξa

ϖ − αdt; ð4:2Þ

where we defined

ν ¼ aðsin2ðθÞdϕþ cos2ðθÞdψÞ; ϖ ¼ dt − ν;

Δr ¼
ρ4ð1þ r2Þ þ q2 þ 2a2q

r2
− 2m; ρ2 ¼ r2 þ a2;

ft ¼ 2ðmþ a2qÞρ2 − q2; Ξa ¼ 1 − a2: ð4:3Þ

The coordinates ϕ, ψ have period 2π (with the fermions
antiperiodic under this shift), while θ ∈ ½0; π=2�. The
solution depends on three parameters ða; q;mÞ (and on
α, which is arbitrary in Lorentzian signature).
The black hole has an outer horizon at the largest positive

root of ΔrðrþÞ ¼ 0, denoted by rþ. One can then solve for
m and find

m ¼ ðr2þ þ a2Þ2ð1þ r2þÞ þ q2 þ 2a2q
2r2þ

; ð4:4Þ

which can be used to eliminate m and use rþ instead.
The horizon is a Killing horizon generated by the Killing

vector field

V ¼ ∂
∂tþΩ

∂
∂ϕþ Ω

∂
∂ψ ; ð4:5Þ

where

Ω ¼ aðr2þ þ a2Þð1þ r2þÞ þ aq
ðr2þ þ a2Þ2 þ a2q

: ð4:6Þ

Evaluating the surface gravity, the Hawking temperature is

T ≡ 1

β
¼ r4þ½1þ 2ðr2þ þ a2Þ� − ða2 þ qÞ2

2πrþ½ðr2þ þ a2Þ2 þ a2q� : ð4:7Þ

The electrostatic potential at the horizon is

16The field theory analysis tells us that the result should be the
same for any value of the ’t Hooft coupling, and thus it should be
independent of the string scale, but we do not know how to see
this directly on the gravity side.

17More precisely, the results are computed for a real metric, but
for Euclidean charged black holes there is an imaginary gauge
field. This still leads to a real action.

18The Lagrangian used in [88,89] is related to the one used
here by λthere ¼ −g2 and Athere ¼ 2ffiffi

3
p A. The normalization used

here has the advantage that A couples canonically to the super-
conformal R-symmetry current, however recall that the R charges
of scalar gauge-invariant operators are multiples of 2=3.
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Φ≡ {VAjrþ − {VAj∞ ¼ 3qr2þ
2½ðr2þ þ a2Þ2 þ a2q� : ð4:8Þ

For our purposes we would like to continue these
solutions to Euclidean signature and to compactify the
Euclidean time direction, such that the boundary is S1β × S3.
Following [5], these solutions can be analytically continued
to real Euclidean solutions by rotating t → −itE, if we also
take a → iã. In terms of the original a, which is now purely
imaginary, and the real-valued m and q, one finds that the
Euclidean metric is real, A is purely imaginary (if α ∈ R),
{VA is real, β is real, and Φ is real, while Ω is purely
imaginary. We assume that we can rotate the integration
over the gauge fields from real to imaginary fields without
encountering any problems.
Expansion near the horizon.—In the Euclidean solutions

we need to periodically identify the Euclidean time
direction tE, and make sure that the solutions are smooth
when this cycle shrinks at the horizon. We expand the
metric around r≳ rþ, setting R2 ¼ r − rþ. The near-
horizon metric takes the following form:

ds2 ¼ hRR

�
dR2 þ R2

�
2π

β
dtE

�
2
�
þ hθθdθ2

þ hϕϕðdϕþ iΩdtEÞ2 þ hψψðdψ þ iΩdtEÞ2
þ 2hϕψðdϕþ iΩdtEÞðdψ þ iΩdtEÞ: ð4:9Þ

Here hRR, hθθ, hϕϕ, hψψ , hϕψ , Ω are functions of R and θ
with nonvanishing limits for R → 0, which depend on the
parameters a, q, rþ. The limit of Ω is the value given
in (4.6).
We see that the geometry is smooth around rþ if we

make the following identifications of the coordinates:

ðtE;ϕ;ψÞ ≅ ðtE þ β;ϕ − iΩβ;ψ − iΩβÞ
≅ ðtE;ϕþ 2π;ψÞ ≅ ðtE;ϕ;ψ þ 2πÞ: ð4:10Þ

Moreover, the Killing vector field V in (4.5) is the one that
generates rotations of the circle that shrinks. The identi-
fications (4.10) take the same form as (2.4), so we
anticipate that the chemical potentials for the angular
momenta will be realized, in our coordinate system for
the black hole solutions, by modifying the coordinate
identifications rather than by changing the CFT metric.
Regularity of the gauge field at r ¼ rþ requires (in a

gauge that is regular at the horizon)

{VAjrþ ¼ 0 ⇒ α ¼ Φ; ð4:11Þ

because the Wilson line around the shrinking circle should
be trivial at r ¼ rþ.
Now that we have smooth Euclidean solutions with the

identification (4.10), we can compute their on shell action.

As usual in holography, this requires a regularization for
large r, and the computation was done in [5] using
background subtraction19 (which assigns vanishing action
to AdS5). It has the form

ISUGRA ¼ πβ

4Ξ2
a

�
m − ðr2þ þ a2Þ2 − q2r2þ

ðr2þ þ a2Þ2 þ a2q

�
:

ð4:12Þ

Note that ISUGRA satisfies the so-called quantum statistical
relation

ISUGRA ¼ βE − S − 2βΩJ − βΦQ; ð4:13Þ

where E is the energy and S is the entropy of the black hole.
As mentioned above, for supersymmetric solutions we

generally need the action for complex values of the
chemical potentials, and we assume that we can extend
the results above by analyticity to the full space of complex
parameters ða; q; rþÞ. As discussed in Sec. II A, in the
continued solutions ϕ and ψ are complex, but their tilded
versions (2.5) obey standard identifications and remain real
(but with a complex metric). A priori it is not clear whether
the path integral with complex chemical potentials indeed
receives contributions from such analytically continued
bulk solutions or not, and we will return to this issue below.
Expansion near the boundary.—In order to precisely

identify which chemical potentials the Euclidean solutions
above correspond to, we need to analyze the behavior of the
solutions near the boundary. The asymptotic r → ∞ limit
of the metric (4.2) can be written as

ds2 ¼ dr̂2

r̂2
þ r̂2ds2bdry þOðr̂0Þ; ð4:14Þ

where Ξar̂2 ¼ r2 and

ds2bdry ¼ dt2E þ dθ2 þ sin2ðθÞdϕ2 þ cos2ðθÞdψ2 ð4:15Þ

is the round metric on S1β × S3 but still with the twisted
identifications (4.10). So, as expected from the discussion
of Sec. II A on the “coordinate shift realization” of the
chemical potentials, the CFT metric remains the same, and
the parameter Ω affects the boundary only through the
identifications (4.10). In addition, we find that the gauge
field near the boundary r → ∞ is

Abdry ¼ iΦdtE; ð4:16Þ

19The on shell action was computed more carefully using
holographic renormalization in [69], and was found to have an
extra constant term I0 ¼ βE0 ¼ 3πβ

32g2G5
, where I0 is the action of

thermal AdS5.
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corresponding to a chemical potential for the Uð1Þ global
symmetry.
Shifted chemical potentials.—Note that shifts of Ω by

2πi
β Z do not change the global identification:

ðtE;ϕ;ψÞ ≅
�
tE þ β;ϕ − i

�
Ωþ 2πiZ

β

�
β;

ψ − i

�
Ωþ 2πiZ

β

�
β

�
;

¼ ðtE þ β;ϕ − iΩβ þ 2πZ;ψ − iΩβ

þ 2πZÞ ≅ ðtE þ β;ϕ − iΩβ;ψ − iΩβÞ;
ð4:17Þ

and thus they do not change the behavior of our solutions
near the boundary. Thus, we actually found a family of
black hole backgrounds with the same boundary metric and
topology but with different bulk metrics (corresponding to
the shifted values of Ω). Noting that solutions with angular
momenta J1 and J2 have wave functions e−iJ1ϕ−iJ2ψ and
thus acquire a factor eJ1ΩβþJ2Ωβ under the identification
(4.17), and, comparing to (2.2), we see that our black hole
configurations contribute to the partition function with

Ω1 ¼ Ω2 ¼ Ω: ð4:18Þ

The CFT partition function itself is periodic under shifts of
Ω by 2πi

β , and this arises on the gravity side from summing
over all these shifted solutions.
Similarly, if we consider a configuration with some

charges R1, R2, R3, recalling that the gauge field couples to

r ¼ ðR1 þ R2 þ R3Þ=3, the boundary condition (4.16)
gives us a factor of eΦβðR1þR2þR3Þ=3 when we go around
the circle. So these black holes contribute to the partition
function (2.2) with

Φ1 ¼ Φ2 ¼ Φ3 ¼
2

3
Φ: ð4:19Þ

Note that since scalar operators in the bulk (which are
periodic under the shift around the Euclidean circle) have R
charges which are multiples of 2=3, shifts of Φ by 3πi

β Z
correspond to large gauge transformations near the boun-
dary (this is consistent also with the behavior of fermions,
which are antiperiodic under the shift). So, as in our
discussion above of the chemical potentials for angular
momenta, configurations that differ by these shifts all
contribute to the same partition function (2.2).
All in all, if we consider the partition function (2.2)

with these values of Ωi and Φa, it gets contributions
from all the solutions with Ω ¼ Ω1 þ 2πi

β Z and with

Φ ¼ 3
2
Φ1 þ 3πi

β Z. In Appendices C and D we consider
more general bulk solutions, with not necessarily
equal angular momenta or Uð1Þ charges (and correspond-
ing chemical potentials). In this context, contributions to
(2.2) for specific values (equal or not) of the chemical
potentials come from a 5-parameter infinite series of
gravitational solutions, in which each of Ω1, Ω2, Φ1,
Φ2, and Φ3 may be independently shifted by 2πi

β Z.
Assuming that all of these complexified solutions contrib-
ute to the partition function, in the supergravity approxi-
mation we can write

ZS1×S3ðΩ1;Ω2;Φ1;Φ2;Φ3Þ ¼
X

n1;n2;m1;m2;m3∈Z
e−ISUGRAðΩ1þ2πi

β n1;Ω2þ2πi
β n2;Φ1þ2πi

β m1;Φ2þ2πi
β m2;Φ3þ2πi

β m3Þ; ð4:20Þ

where the sum runs over all integers n1, n2, m1, m2, m3

whose sum is even, in order for the periodicity to be
consistent also with the behavior of fermions in the bulk, as
in the QFT discussion around (2.3).

B. Supersymmetry

The solutions described above, as well as their analytic
continuations to complex parameters, are supersymmetric
if their parameters are related as

q ¼ m
1þ 2a

: ð4:21Þ

This gives a two-parameter family of solutions in terms of
ða;mÞ. In terms of the equivalent set of parameters ða; rþÞ,
the supersymmetry condition becomes

q ¼ −a2 þ ð1þ 2aÞr2þ ∓ irþðr2þ − r2�Þ; ð4:22Þ

where r2� ¼ 2aþ a2 and the∓ signs correspond to the two
branches of a square root. For the upper sign, the expres-
sion above equals

q ¼ −ða − irþÞ2ð1 − irþÞ: ð4:23Þ

We refer to the corresponding family of SUSY solutions as
the first branch. On the other hand, for the lower sign the
expression is obtained by sending i → −i, and we call it the
second branch. In the following we will focus on the first
SUSY branch (4.23), but we will sometimes mention also
the results for the second branch.
In the supersymmetric cases, parametrized by ða; rþÞ,

the chemical potentials become
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Φ ¼ 3irþð1 − irþÞ
2ðr2� þ irþÞ

; β ¼ 2πiaða − irþÞðr2� þ irþÞ
ðr2� − 3iarþÞðr2� − r2þÞ

;

Ω ¼ ðr2� þ iarþÞð1 − irþÞ
ðr2� þ irþÞða − irþÞ

: ð4:24Þ

They satisfy

βð1þ 2Ω − 2ΦÞ ¼ 2πi: ð4:25Þ

In the Euclidean solutions there is a globally well-defined
Killing spinor, which changes sign when going around the
Euclidean time cycle, whenever we have ð�2πiÞ on the
right-hand side. This is consistent with (4.25) and its
counterpart on the second branch. Note that except in
the special case Φ ¼ 1

2
, we cannot have Φ and β real and

also Ω imaginary in supersymmetric solutions.
In order to relate to the index, following the discussion of

Sec. II, we can map the chemical potentials of our
gravitational configurations to index parameters using
(2.12) (on both branches), namely20

σg ¼ τg ¼
βðΩ − 1Þ

2πi
; Δg ¼

βðΦ − 3
2
Þ

3πi
: ð4:26Þ

Such a gravitational configuration contributes to the index
with Δ1 ¼ Δ2 ¼ Δ3 ¼ Δg. The index parameters on the
first branch are given by

σg ¼ τg ¼
að1 − aÞ
r2� − 3iarþ

; Δg ¼ −
aða − irþÞ
r2� − 3iarþ

: ð4:27Þ

Note that they satisfy

2τg − 3Δg ¼ 1 ðon 1st branchÞ: ð4:28Þ

Thus, one combination of ða; rþÞ controls τg, Δg while
another one controls β. On the second SUSY branch, the
chemical potentials satisfy 2τg − 3Δg ¼ −1. The on shell
action (4.12) becomes

ISUGRA ¼ −
iπ2

2

aða − irþÞ3
ð1 − aÞ2ðr2� − 3iarþÞ

¼ iπ2

2

Δ3
g

τ2g
: ð4:29Þ

The rightmost expression is valid on both branches. Notice
that it does not depend on β.

C. Comparison to field theory results

We can rewrite the on shell action (4.29) in terms of the
field theory variables. We should reinstate dimensions
using the relation (at leading order in 1=N)

1

g3G5

¼ 8c
π

¼ 2N2

π
; ð4:30Þ

where a ¼ c is the field theory central charge, while G5 is
the five-dimensional Newton constant. Thus the logarithm
of the classical contribution of these solutions to the
partition function is (in the first branch)

logðZÞ ¼ −ISUGRA ¼ −
1

g3G5

iπ2

2

Δ3
g

τ2g
¼ −πiN2

Δ3
g

τ2g

¼ −
πiN2

27

ð2τg − 1Þ3
τ2g

: ð4:31Þ

This is exactly the contribution (3.63) of the basic Bethe
Ansatz solution f1; N; 0g that falls in the first case. Note
that, indeed, (4.28) ensures that our parameters always
satisfy the field theory conditions for this first case,
namely Δg ¼ ½Δg�τg.
Similarly, the value of Δg that we obtain on the second

branch of solutions, which is Δg ¼ ð2τg þ 1Þ=3, always
satisfies the condition for the second case in our analysis of
the basic Bethe Ansatz solution, Δg ¼ ½Δg�0τg , and also the
action of our solution is consistent with this case,

logðZÞ ¼ −ISUGRA ¼ −πiN2
Δ3

g

τ2g
¼ −

πiN2

27

ð2τg þ 1Þ3
τ2g

;

ð4:32Þ

which coincides with the contribution (3.63) of the solution
f1; N; 2g (if we make the identification τg ¼ τ̌ ¼ τ þ 2).
So, the gravity results agree nicely with the basic Bethe

Ansatz solution. Moreover, recall from our discussion
above that shifts of Ω and Φ, which correspond to shifts
of τg and Δg by integers, give new solutions which also
contribute to the same index. However, we need to still
satisfy the constraint (4.28). So, if we start (for instance)
from some value of τg and Δg which satisfies (4.28) on the
first branch, we can shift τg → τg þ 3n and Δg → Δg þ 2n
and obtain another solution contributing to the same index;
it is easy to see that the contribution of this is precisely that
of the shifted Bethe Ansatz solution f1; N; 3ng—which is
in the “first case.”21 Moreover, starting from the same
values, if we shift τg → τg þ 3n − 1, Δg → Δg þ 2n we
obtain a SUSY solution on the second branch which also
contributes to the same index, and which precisely repro-
duces the contribution of the shifted Bethe Ansatz solution
f1; N; 3n − 1g—which is in the “second case.” So, the sum

20Recall that Φ1 ¼ Φ2 ¼ Φ3 ¼ 2
3
Φ, justifying the slightly

different definition of Δg with respect to (2.12).

21Note that n here can be positive or negative. In our analysis
of shifted Bethe Ansatz solutions we took r ¼ 0;…; N − 1 and
assumed that r does not scale with N. However, our analysis there
works equally well for negative rwhich does not scale with N, by
identifying it with (N þ r).
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over gravitational solutions contributing to the same index
precisely reproduces the sum over two thirds of the Bethe
Ansatz solutions with m ¼ 1. The leftover solutions are
problematic since they lie on Stokes lines, as discussed in
Sec. III E, but as in that section, this problem does not arise
for generic (unequal) chemical potentials.
However, before we declare success in our matching

with the Bethe Ansatz solutions with m ¼ 1 (the solutions
with m > 1 will be discussed later in Sec. VII), we should
be more careful. So far in this subsection we only
considered shifts of the solutions which retain equality
of the angular momenta and of the Uð1Þ charges. How-
ever, the most general solution has three different chemical
potentials—parametrized by Δg;a ¼ β

2πi ðΦa − 1Þ—and two
different angular chemical potentials σg, τg. Each of these
can be shifted independently by integers without affecting
the boundary conditions, so we should sum over all

these additional solutions as well, if they are supersym-
metric. The action of the more general solutions is22

ISUGRAðσg; τg;Δg;1;Δg;2;Δg;3Þ ¼ πiN2
Δg;1Δg;2Δg;3

σgτg
;

ð4:33Þ
and they are supersymmetric whenever

σg þ τg − Δg;1 − Δg;2 − Δg;3 ¼ �1; ð1st=2nd branchÞ:
ð4:34Þ

So we have two four-parameter families of shifted solutions
that all seem to contribute to the index (even when we
happen to evaluate it for σ ¼ τ and Δ1 ¼ Δ2 ¼ Δ3).
Namely, it appears that in the supersymmetric case we
should have contributions from supergravity of the form

ZS1×S3ðσ; τ;Δ1;Δ2Þ ¼?
X

n1 ;n2 ;m1 ;m2∈Z
s∈fþ1;−1g

e−ISUGRAðσþn1;τþn2;Δ1þm1;Δ2þm2;σþτ−Δ1−Δ2−sþn1þn2−m1−m2Þ: ð4:35Þ

However, the only shifts that show up in the Bethe Ansatz
computation of the field theory index are the specific ones
discussed above, which are related to the f1; N; rg family.
One may wonder whether these new shifts correspond to

as yet undiscovered BA solutions, or if they might cancel
after appropriate resummation. This does not seem to be the
case. Indeed, the contribution of some shifted backgrounds
to the partition function actually diverges exponentially
with the size of the shift, so they had better not contribute
for some reason. Specifically, consider starting from the
equal chemical potential case, and shift to Δg;1 ¼ Δg þ n,
Δg;2 ¼ Δg þ n, Δg;3 ¼ Δg − 2n, consistently with (4.34).
We then have for large jnj:

ReðISUGRAÞ ¼ πN2 Im

�
2n3

τ2g

�
þOðn2Þ: ð4:36Þ

So, the contribution e−ISUGRA from these backgrounds to the
partition function would diverge, either for very positive or
for very negative n.
In the next sections we will suggest a resolution to the

problem: that most of the shifted solutions (which are
all complex valued) should not be included in the sum
over solutions, because they are unstable towards the
condensation of D3-branes, and that when evaluating the
gravitational partition function, only stable contributions
should be considered. Presumably this criterion can be
justified by a careful analysis of the analytic continuation to

complex-valued solutions—in particular through the study
of Lefschetz thimbles—but we will not attempt to do this
here. We will show below that with that criterion, the
acceptable shifted solutions (for arbitrary chemical poten-
tials) precisely match the m ¼ 1 shifted solutions that
contribute to the index.

V. WRAPPED D3-BRANES

Up to now we considered the classical on shell action of
our Euclidean solutions. In general, the action receives
quantum corrections coming from loops of the gravity
fields in these backgrounds. However, we can also have
additional nonperturbative corrections coming from
wrapped D-branes. It turns out (see Appendix C 3) that
wrapped Euclidean D3-branes can be added to our back-
grounds while still preserving the same supersymmetry,
and without changing the boundary conditions, so that they
give nonperturbative corrections to the contributions dis-
cussed in the previous section. In this section we compute
those corrections for a specific class of wrapped D3-branes
and analyze their consequences.

A. Uplift to ten dimensions

In order to analyze configurations with D-branes, we
must first find the 10D solution that corresponds to our 5D
black holes. Luckily, [90] discusses the embedding of 5D
supergravity with Uð1Þ3 gauge symmetry—the so-called
STU model—into 10D type IIB supergravity, and the uplift
of solutions of the former into the latter. In our context we
view the action (4.1) as the Uð1Þ3 action with all three

22This is shown for various cases in Appendices C and D, and
we assume here that the general form holds.
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gauge fields taken to be equal.23 The uplift of solutions with
unequal angular momenta or charges is described in
Appendices C and D.
The 10D metric for the equal-charge solutions is given

by [90]

ds210 ¼ ds25 þ
X3
a¼1

�
dμ2a þ μ2a

�
dϕa þ

2

3
A

�
2
�
; ð5:1Þ

where ds25 is the 5D solution (4.2), A is the gauge field in
(4.2), and we write the S5 in a way that is natural when it is
embedded in C3 with coordinates za ¼ μaeiϕa , obeying the
constraint μ21 þ μ22 þ μ23 ¼ 1, such that for A ¼ 0 we have
in (5.1) the round metric on S5. Note that despite the mixing
in the last term, the determinant of this metric is the product
of the determinant of ds25 times that of the S5 metric.
The only other 10D field turned on is the self-dual

5-form flux, which is given by

Fð5Þ ¼ Gð5Þ þ �Gð5Þ; ð5:2Þ

with

Gð5Þ ¼ −4ϵð5Þ þ
1

3

X3
a¼1

dðμ2aÞ ∧ dϕa ∧ �5F; ð5:3Þ

where F ¼ dA, ϵð5Þ is the volume form of ds25, and �5 is the
5D Hodge dual with respect to that metric. From (4.2) we
see that

F ¼ −
3qr

ρ4ð1 − a2Þ dr ∧ ðdt − νÞ − 3q
2ρ2ð1 − a2Þ dν: ð5:4Þ

In order to evaluate the D3-brane action we need to write
Fð5Þ ¼ dCð4Þ, where the potential Cð4Þ is defined up to
gauge transformations. In this case, the exact form of Cð4Þ
can be chosen to be

Cð4Þ ¼
2rρ2 cosð2θÞ

Ξ2
a

dt ∧ dr ∧ dϕ ∧ dψ þ 1

3

X3
a¼1

μ2adϕa ∧
�
�5F −

2

3
A ∧ F

�

−
1

2
ðμ21dðμ22Þ − μ22dðμ21ÞÞ ∧

�
dϕ1 þ

2

3
A

�
∧
�
dϕ2 þ

2

3
A

�
∧
�
dϕ3 þ

2

3
A

�

þ 1

3
dðμ22Þ ∧ dϕ2 ∧ dϕ3 ∧ Aþ 1

3
dðμ21Þ ∧ dϕ1 ∧ dϕ3 ∧ A: ð5:5Þ

Locally, we can write

�5F −
2

3
A ∧ F ¼ dαð2Þ ð5:6Þ

since the left-hand side is closed thanks to the equation of motion of A, in terms of the following 2-form on 5D spacetime:

αð2Þ ¼
ð3þ 2αÞq
2Ξaρ

2
dt ∧ ν −

3q cosð2θÞ
4Ξ2

a
ðadt ∧ ðdϕ − dψÞ þ dϕ ∧ dψÞ: ð5:7Þ

The expression in (5.5) is not smooth at the horizon, so one
might need to add suitable total-derivative terms in order to
fix that, without modifying the integrations over D3-brane
world volumes that are discussed below. An alternative
gauge-equivalent choice for Cð4Þ is presented in (C48).
Note that in the 10D solution the 5D gauge fields become

geometrical, and in the asymptotic behavior of the solutions
(5.1), given the boundary condition (4.16), the chemical
potentials are realized using the off-diagonal components
of the metric, while the angular coordinates ϕa still have the

standard identifications. Thus, these chemical potentials
(unlike the ones for the angular momenta) are realized in
our solutions using the “metric realization.” If desired, we
can think of these coordinates as “tilded coordinates” as in
(2.5), and define new coordinates

ϕ̂a ¼ ϕa −
2i
3
ΦtE; ð5:8Þ

which have the original metric appearing in their 10D
boundary condition but obey twisted identifications
under tE → tE þ β.

B. The brane action

Consider now a Euclidean D3-brane in the background
(5.1), whose world volume wraps a maximal S3 inside the

23See also (2.11) of [90]. Comparing to (4.1) we see that
Athere ¼ 2ffiffi

3
p Ahere, and Ai

there ¼ 2
3
Ahere (i ¼ 1; 2; 3). The scalar

fields in the Uð1Þ3 supergravity are all trivial when the charges
are equal.
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S5 given (say) by μ1 ¼ 0, and a maximal S1 inside the S3 on
the horizon in AdS5 given (say) by r ¼ rþ, θ ¼ π=2 (where
the ψ direction shrinks) such that the brane wraps the ϕ
direction. We can consider such an embedding either in the
Lorentzian or in the Euclidean solution; in the Euclidean
solution some combination of the time circle and the ϕ
circle shrinks at the horizon, but we can still take our
brane to sit at a fixed time and wrap the ϕ direction.
This configuration is supersymmetric, as we show in
Appendix C 3.
The action of a D3-brane is given in general by

SD3 ¼ −
1

gsð2πÞ3ðα0Þ2
Z

ðd4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgD3Þ

p ∓ P½Cð4Þ�Þ;

ð5:9Þ

where gD3 is the induced metric on the D3-brane world
volume, P½Cð4Þ� is the pull back of the 4-form Cð4Þ to the
world volume, and the ∓ sign refers to a brane/antibrane,
depending on conventions. Note that in our case the AdS
radius (which we previously denoted by 1=g and set to one)
is given by

1

g4
¼ 4πgsNðα0Þ2; ð5:10Þ

so the prefactor in (5.9) is given by N=2π2.
Let us compute each of the two terms in (5.9), for generic

(not necessarily supersymmetric) solutions. The second
term is quite simple, as only the 1

3
dðμ22Þ ∧ dϕ2 ∧ dϕ3 ∧ A

term in (5.5) contributes in this configuration. It factorizes
into the integral of 1

3
A on the S1 in AdS5, and the integral of

dðμ22Þ ∧ dϕ2 ∧ dϕ3 on the S3 in S5. The first integral gives

1

3

Z
S1
A ¼ −

q
2ðr2þ þ a2Þð1 − a2Þ

Z
S1
ν

¼ −
πqa

ðr2þ þ a2Þð1 − a2Þ ; ð5:11Þ

while the second integral just gives 4π2.
Even though the metric induced on the D3-brane from

(5.1) is not diagonal between the S1 and the S3 in the D3-
brane world volume, its form implies that the determinant
of the induced metric on the D3-brane is the product of the
determinant of the S3 metric (coming from the S5 coor-
dinates) and of gϕϕ in (4.2) [not including the extra
contribution to this from the second term in (5.1)], as
we discuss around equation (D24). The integral of the first
determinant is just VolðS3Þ ¼ 2π2. On the other hand, the
component gϕϕ on the D3-brane evaluates to

gϕϕ ¼
� ðr2þ þ a2Þ2 þ a2q
rþðr2þ þ a2Þð1 − a2Þ

�
2

: ð5:12Þ

Therefore, choosing a specific sign for the square root,

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgD3Þ

p
¼ −4π3i

ðr2þ þ a2Þ2 þ a2q
rþðr2þ þ a2Þð1 − a2Þ :

ð5:13Þ

The sign is chosen in such a way that in the background of a
real and causally well-behaved Lorentzian black hole, for
which a, q are real (with a2 < 1) and rþ is sufficiently
large, the contribution from (5.13) to the path-integral
measure expðiSD3Þ in bounded in absolute value. Notice
that the Wick rotation t → −itE of the black hole metric has
no effect on the Euclidean D3-brane action, because such a
brane does not wrap the time direction. The full D3-brane
action is

SD3 ¼ −
N
2π2

�
−4π3i

ðr2þ þ a2Þ2 þ a2q
rþðr2þ þ a2Þð1 − a2Þ

� 4π3
qa

ðr2þ þ a2Þð1 − a2Þ
�
; ð5:14Þ

where, as before, the � sign refers to a brane/antibrane.
The D3-brane action considerably simplifies when the

black hole background is supersymmetric; as we show in
Appendix C 3, this is because the branes preserve all
supersymmetries of the background. On the first branch
where the SUSY condition (4.23) is obeyed, and choosing
the upper plus sign in (5.14), we obtain

SD3 ¼ 2πN
a − irþ
a − 1

¼ 2πN
Δg

τg
; ð5:15Þ

where in the last step we used the expressions (4.27) for the
chemical potentials.
We have computed the on shell action of similar branes

in the case of two different angular momenta, as reported in
Appendix C, and of three different charges, as reported in
Appendix D. The result leads us to assume that in the
general case of chemical potentials ðσg; τg;Δg;aÞ, there are
supersymmetric D3-branes that wrap either the ϕ or the ψ
circle in AdS5 (and sit at θ ¼ π

2
or θ ¼ 0, respectively) and

an S3 inside S5 for which μa ¼ 0 (a ¼ 1, 2, 3), and that
their actions are

SϕD3 ¼ 2πN
Δg;a

σg
; SψD3 ¼ 2πN

Δg;a

τg
; ð1st branchÞ:

ð5:16Þ

On the second branch of solutions, the parameters of the
background obey (4.23) but with i → −i. It turns out that
the on shell action (5.14) simplifies when choosing the
lower minus sign. This is because the branes that are
supersymmetric in the two branches of solutions must have
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opposite charge (corresponding to swapping branes with
antibranes). This also follows from the analysis of super-
symmetry in Appendix C 3. Repeating the same compu-
tation as above we then find

SϕD3 ¼ −2πN
Δg;a

σg
; SψD3 ¼ −2πN

Δg;a

τg
; ð2nd branchÞ:

ð5:17Þ

The contribution of the Euclidean D3-brane configura-
tions to the partition function is expð−ISUGRA þ iSD3Þ
where ISUGRA is the on shell action of the background
black hole solution. Note the relative factor of i that appears
in our Euclidean solutions since the branes do not extend in
the time direction, and therefore they do not get a factor of i
from the Wick rotation to Euclidean time, as noticed earlier.
Similarly, we can consider branes wrapping any positive
integer linear combinations of these cycles, and we would
have in the exponent the sum of the corresponding D3-
brane actions.
The analysis above makes sense when the D3-branes

decrease the contribution of the solution to the partition
function, since otherwise considering an arbitrary number
of D3-branes will increase their contribution without a
bound. We interpret the latter cases as unstable, perhaps to
condensation of these D3-branes that would take us to
some other background. Thus, we consider a gravitational
background to be stable only if every D3-brane satisfies24

ImðSD3Þ > 0; ð5:18Þ

and we suggest that only these backgrounds should be
included in the analysis. Note that the equal-charge back-
grounds happen to always satisfy this condition for all their
D3-branes, so they are always stable, but generic solutions,
including solutions related to the equal-charge case by
shifts, do not. Wewill show in the next section that for these
stable solutions the D3-brane contributions precisely match
with the nonperturbative corrections to the Bethe Ansatz
solutions computed in Sec. III C, and we will analyze the
precise implications of the stability condition (5.18).
Note that for real supersymmetric solutions we expect

the action to be bounded from below, so that finding D3-
branes that decrease the action would be impossible.
However, once we continue to complex solutions this is
no longer the case, which is why we have to impose the
condition (5.18) for every D3-brane. A similar condition on

complex configurations was recently suggested in a similar
context in [22].

VI. STABLE GRAVITY SOLUTIONS
AND THE INDEX

Let us now find the stable gravitational backgrounds that
contribute to the partition function with boundary con-
ditions given by chemical potentials ðσ ¼ τ;Δ1;2;3Þ, so that
we can compare them to the field theory analysis of Sec. III.
The gravitational solutions have chemical potentials
ðσg; τg;Δg;aÞ (a ¼ 1; 2; 3), which could be any integer shift
of the ones labeling the index, as long as they satisfy the
SUSY constraint (4.34). Recall that the index is para-
metrized by σ, τ, Δ1, Δ2, and that we defined in Sec. III an
auxiliary chemical potential Δ3 such that Δ1 þ Δ2 þ Δ3 −
σ − τ is an integer; from the gravity point of view, Δg;3

(defined from the third chemical potential) always satisfies
this condition (on both branches of supersymmetric sol-
utions) thanks to (4.34), so we can identify also Δg;3 on the
gravity side with the index parameter defined in Sec. III (up
to some integer shift).
We shall start by considering gravitational backgrounds

in the first branch. Consider the stability condition (5.18)
arising from having the union of three branes, one at
μ1 ¼ 0, one at μ2 ¼ 0, and one at μ3 ¼ 0, all wrapping the
ϕ circle, and from a similar configuration which wraps the
ψ circle instead. The action is the sum of the individual
brane actions (5.16), so using (4.34) on the first branch, the
two conditions are

Im

�
τg − 1

σg

�
> 0; Im

�
σg − 1

τg

�
> 0: ð6:1Þ

Now, remember that the gravitational chemical potentials
are just integer shifts of the ones in the CFT, so they share
the same imaginary part. Using this we can rewrite (6.1) as

ImðτÞ > ImðτÞReðτg − σgÞ > −ImðτÞ: ð6:2Þ

Recalling that τg − σg is an integer, this can be satisfied
only if τg ¼ σg. Thus, the only stable gravitational back-
grounds have τg ¼ σg in the bulk as well.25

Next, consider the stability conditions arising from a
single brane wrapping the ψ cycle at μa ¼ 0, and from the
union of two branes wrapping the other two cycles, μb ¼ 0
and μc ¼ 0 with a, b, c all different. Using (4.34), the two
conditions are

24Here we are referring to the D3-branes described above, that
wrap an S3 in S5 and an S1 in the AdS5 coordinates. We have
found additional SUSY D3-branes that wrap an S1 in S5 and the
whole S3 at the horizon in the AdS5 coordinates, and such branes
can induce additional instabilities [see (D35) for their on shell
action]. Their interpretation will be discussed elsewhere [58].

25For τg − σg ¼ �1 it seems from (6.2) that we are on the
boundary of the region of stability. However, recalling that this
condition comes from the sum of the conditions for stability of
three different D3-branes, for generic values of the chemical
potentials at least one of these three D3-branes would lead to an
instability.
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Im

�
Δg;a

τg

�
> 0; Im

�
−1 − Δg;a

τg

�
> 0; ð6:3Þ

and hence

Im

�
−
1

τg

�
> Im

�
Δg;a

τg

�
> 0: ð6:4Þ

We see that we only have a stable solution when Δg;a ¼
½Δg;a�τg (a ¼ 1; 2; 3), and not for any other shift of the Δa.
Recall from the analysis of Sec. III that this condition can
only be satisfied if the values of the chemical potentials are
in the “first case.” Thus, for any specific value of τg, if the
chemical potentials satisfy the conditions of the “first case”
then we have a single stable solution among all possible
shifts of the electric chemical potentials, and this solution
obeys Δg;a ¼ ½Δg;a�τg such that its action (4.33) precisely
reproduces the contribution of the basic Bethe Ansatz
solution for τ ¼ τg. On the other hand, if the chemical
potentials satisfy the “second case,” we do not find any
shifted solution within the first branch that is stable for
this τg.
If we now consider gravitational solutions on the second

branch of (4.34), then an analogous stability analysis
implies that the only stable bulk solutions have τg ¼ σg
and Δg;a ¼ ½Δg;a�0τg . So if the chemical potentials satisfy the
“second case” condition we find here a single shifted
solution (with this τg), and we can check that the action of
this solution (4.33) precisely reproduces the contribution of
the basic Bethe Ansatz solution for the second case with
τ ¼ τg. On the other hand, if the chemical potentials satisfy
the “first case” condition, then we do not find any stable
solutions within the second branch.
The bottom line is that for eachvalue of τg, and ofΔa (up to

integer shifts), we find precisely one stable gravitational
solution (on either the first branch or the second branch), and
the gravitational action precisely reproduces the value of the
basic Bethe Ansatz solution for τ ¼ τg (which satisfies the
“first case” or the “second case” condition, respectively).
Now, recalling that τg can take any value of the form τg ¼
τ þ r for any integer r, we recognize that the contribution of
that τg is exactly that of the f1; N; rg solution to the Bethe
Ansatz equations with chemical potential τ. Thus, we have a
one-to-one correspondence between the stable shifted sol-
utions on the gravity side, and them ¼ 1 shifted solutions to
the Bethe Ansatz equations, with an exact match of the
leading action between the two sides.
Moreover, given the values of the Δg;as that we found,

the form of the exponentials in the nonperturbative cor-
rections that we found on the gravity side—of the form
eiSD3 with SD3 given by (5.16) and (5.17)—precisely match
with the exponentials that appeared in the corrections to the
corresponding Bethe Ansatz solutions in Sec. III C (in each

of the two cases). So our matching of the gravity side to the
index extends also to these nonperturbative corrections. It
would be interesting to match also the coefficients in front
of the exponentials in the various nonperturbative correc-
tions between the two sides, but this lies beyond the scope
of this paper.

VII. ORBIFOLDS AND m > 1 SOLUTIONS

So far we have found a precise match between stable
gravitational black hole solutions and the fm; n; rg Hong-
Liu solutions to the Bethe Ansatz equations with m ¼ 1. It
is interesting to ask whether we can find gravitational
solutions that will agree with the m > 1 BA solutions. In
this section we show that we can construct orbifold
configurations that precisely agree with these solutions
(when m remains finite in the large N limit).
A clue to finding these solutions is the simple relation

between the leading-order action of the m > 1 solutions
and that of the basic f1; N; 0g solution; they are related by
taking τ → τ̌≡mτ þ r, Δa → mΔa, and dividing the
action by m.
Consider the Euclidean black hole solutions with equal

charges and angular momenta, described in Sec. IV. In 5D,
the Euclidean solution with inverse temperature β̃ and
chemical potentials Ω̃ and Φ̃ involves an identification of
the coordinates by

ðtE;ϕ;ψÞ ≅ ðtE þ β̃;ϕ − iΩ̃ β̃;ψ − iΩ̃ β̃Þ; ð7:1Þ

and a gauge field given near the boundary by Abdry ¼
iΦ̃dtE, such that the holonomy around the cycle (7.1) at
infinity is iΦ̃ β̃. From the ten-dimensional point of view, as
discussed above, in our conventions the identifications of
the S5 coordinates are not shifted, so we have

ðtE;ϕ;ψ ;ϕ1;ϕ2;ϕ3Þ
≅ ðtE þ β̃;ϕ − iΩ̃ β̃;ψ − iΩ̃ β̃;ϕ1;ϕ2;ϕ3Þ; ð7:2Þ

with off-diagonal metric components proportional at infin-
ity to 2

3
iΦ̃. These can alternatively be described using the

hatted coordinates ϕ̂a in (5.8) with an unmodified metric at
infinity, but with identifications where ϕ̂a is shifted by
− 2

3
iΦ̃ β̃. The generalization to different charges and/or

angular momenta is straightforward, and the resulting
identification on the hatted coordinates is

ðtE;ϕ;ψ ; ϕ̂1; ϕ̂2; ϕ̂3Þ ≅ ðtE þ β̃;ϕ − iΩ̃1β̃;ψ − iΩ̃2β̃;

ϕ̂1 − iΦ̃1β̃; ϕ̂2 − iΦ̃2β̃; ϕ̂3 − iΦ̃3β̃Þ:
ð7:3Þ

On the other hand, in the ðϕ̃; ψ̃ ;ϕ1;ϕ2;ϕ3Þ coordinates—
see (2.5)—there is no shift under the identification (7.3)
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(such that these coordinates are real even when the
chemical potentials are complex), and the chemical poten-
tials are all realized through off-diagonal terms in the
behavior of the metric near the boundary.

Now, let us take this 10D background (starting from the
case of equal charges and angular momenta, for simplicity)
and perform on it a Zm orbifold by identifying points
related by

ðtE;ϕ;ψ ; ϕ̂1; ϕ̂2; ϕ̂3Þ ≅
�
tE þ

β̃

m
;ϕ − iΩ̃

β̃

m
−
2πr
m

;ψ − iΩ̃
β̃

m
−
2πr
m

;

ϕ̂1 −
2i
3
Φ̃

β̃

m
−
2πs
m

; ϕ̂2 −
2i
3
Φ̃

β̃

m
−
2πs
m

; ϕ̂3 −
2i
3
Φ̃

β̃

m
−
2πs
m

�
; ð7:4Þ

for some integers r ¼ 0;…; m − 1 and s ¼ 0;…; 2m − 1 (note that we allowed a larger range for s here, since shifting the
three angles ϕ̂a by 2π acts as the identity on bosons but gives a minus sign to fermions, so it is a nontrivial operation).
Performing this identification m times brings us back to the identification (7.3), so (given that our solutions are all
independent of tE and of the angular coordinates) this is indeed a Zm isometry of our original backgrounds, that we can
orbifold by in string theory. While in the hatted coordinates it is not obvious that the shifts in (7.4) are consistent with the
ranges of the coordinates when the chemical potentials are complex, if we use the real coordinates ðϕ̃; ψ̃ ;ϕ1;ϕ2;ϕ3Þwe find
that only the 2πr

m and 2πs
m terms in the shifts remain, consistent with these coordinates being real:

ðtE; ϕ̃; ψ̃ ;ϕ1;ϕ2;ϕ3Þ ≅
�
tE þ

β̃

m
; ϕ̃ −

2πr
m

; ψ̃ −
2πr
m

;ϕ1 −
2πs
m

;ϕ2 −
2πs
m

;ϕ3 −
2πs
m

�
: ð7:5Þ

Thus, (7.4) is a consistent orbifold in string theory (we will
discuss its fixed points below).
If we consider the behavior of the orbifolds near the

boundary, then we see that the identifications (7.4) that we
perform in the orbifold background take exactly the same
form as our original identifications on some other black
hole solutions (7.2) [with tilded quantities substituted by
untilded ones, and in terms of hatted coordinates ϕ̂a as in
(7.3)], if we identify

β ¼ β̃

m
; Ω ¼ Ω̃ −

2πir

β̃
; Φ ¼ Φ̃ −

3πis

β̃
: ð7:6Þ

Thus, the orbifold background contributes to the sphere
partition function with these values of β, Ω, and Φ. Note
that the new background has

τg ¼
βðΩ − 1Þ

2πi
¼

β̃ðΩ̃ − 2πir
β̃

− 1Þ
2πim

¼ 1

m
τ̃g −

r
m
;

Δg ¼
βðΦ − 3

2
Þ

3πi
¼

β̃ðΦ̃ − 3πis
β̃

− 3
2
Þ

3πim
¼ 1

m
Δ̃g −

s
m
; ð7:7Þ

which is equivalent to

τ̃g ¼ mτg þ r and Δ̃g ¼ mΔg þ s: ð7:8Þ

General orbifolds of this type will not preserve super-
symmetry even if the original background does; the con-
dition for preserving supersymmetry is that the Killing
spinor should be antiperiodic under the new identification

(7.4) (note that the same Killing spinor can be used as in
the original background). This happens precisely when
2τg − 3Δg is an odd integer, i.e., when

2r − 3s ¼ mþ ð2τ̃g − 3Δ̃gÞ ðmod 2mÞ: ð7:9Þ

For any value of r we can find a unique s such that this is
satisfied26 (moreover, recall that the “parent” black hole
solution satisfies 2τ̃g − 3Δ̃g ¼ �1). When this condition is
satisfied, theZm orbifold of the black hole background with
parameters ðβ̃; τ̃g; Δ̃gÞ contributes to the index with these
parameters ðβ; τg;ΔgÞ, since it has the same boundary
conditions as the other backgrounds contributing to
this index.
The integral of the supergravity action density over the

orbifolded background is 1=m times the action of the
original black hole background, due to the Zm identifica-
tion. Thus, we conclude that in the classical gravity
approximation, the contributions of these orbifold back-
grounds to the logarithm of the index with parameters
ðβ; τg;ΔgÞ are precisely 1=m times those of a black hole
with parameters ðmβ; mτg þ r;mΔg þ sÞ. This is precisely
the same as what we found for the Hong-Liu BA solutions
with parameters fm;N=m; rg [recall that the leading-order
contribution from the BA solutions is invariant under
shifting ðmΔgÞ by an integer]. Thus, we have an exact

26More precisely, this is true when m is not a multiple of 3. In
the more general case of unequal chemical potentials discussed
below, this restriction does not arise.
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match also for these solutions. Note that the quantization
condition for the 5-form flux on the orbifolded background
is satisfied only when N=m is an integer, so that exactly the
same values of m are allowed in the field theory and on the
gravity side.
Consider next the nonperturbative contributions from

D3-branes wrapped on the orbifolded background. Recall
that our D3-branes sit at the horizon and wrap, say, the ϕ,
ϕ2, ϕ3 directions, together with an extra coordinate on the
S5. The position of the brane is such that the orbifold acts as
a Zm shift within the world volume of the D3-brane, and
thus its action is 1=m times the action of the D3-brane on
the original background. On the first branch this was given
by 2πNΔ̃g=τ̃g, so we find that on the orbifolded background
the D3-brane action is given by SD3 ¼ 2πNðmΔg þ sÞ=
mðmτg þ rÞ. This agrees with the nonperturbative correc-
tions found in Sec. III C if mΔg þ s ¼ ½mΔg�mτgþr.
Of course, in the orbifolded backgrounds we still have

the freedom of shifting the various chemical potentials by
integers, and we need to perform a similar stability analysis
to that of the previous section. And moreover, the gener-
alization of the analysis above to different chemical
potentials is straightforward, but we then get separate
parameters r1, r2 for the shifts of ϕ and ψ in (7.4), and
separate parameters s1 and s2 for the shifts of ϕ1 and ϕ2

there (all in the range 0;…; m − 1), while the shift s3 of ϕ3

(in the range 0;…; 2m − 1) is uniquely determined by the
supersymmetry condition

r1 þ r2 − s1 − s2 − s3 ¼ mþ ð2τ̃g − 3Δ̃gÞ ðmod 2mÞ:
ð7:10Þ

Sowe need to generalize the analysis of Sec. VI to allow for
all these shifts. The generalization is straightforward and it
implies, for instance, that on the first branch the only stable
solutions are those obeying mΔg;a þ sa ¼ ½mΔg;a�mτgþr for
all a ¼ 1; 2; 3, and that they obey τg ¼ σg. As in the m ¼ 1

case, this leads to a precise agreement between the stable
solutions on the gravity side and the BA solutions, both for
the leading-order contribution to the logarithm of the index,
and for the form of the nonperturbative corrections dis-
cussed in the previous paragraph.
Finally, let us describe the fixed points of these general

orbifolds, in which the identifications may be written as

ðtE; ϕ̃; ψ̃ ;ϕ1;ϕ2;ϕ3Þ ≅
�
tE þ

β̃

m
; ϕ̃ −

2πr1
m

; ψ̃ −
2πr2
m

;ϕ1

−
2πs1
m

;ϕ2 −
2πs2
m

;ϕ3 −
2πs3
m

�
:

ð7:11Þ
It is clear that there are no fixed points away from the
horizon. At the horizon we have one coordinate shrinking
to zero size, and the remaining coordinates ϕ̃ and ψ̃ form

(together with θ) a round S3, while the S5 coordinates ϕa

and μa form a round S5 (recall that our gauge fields in 5D
supergravity vanish at the horizon). Generically all the
angular coordinates are shifted by the orbifold. However, if
(say) r1 and one of the sa vanish, then the manifold where
r ¼ rþ, θ ¼ π=2 (such that the ψ̃ circle shrinks) and where
μa ¼ 1 (such that the two circles of the coordinates ϕb with
b ≠ a, that are shifted, shrink as well) is fixed under the
orbifold action (7.11). This is a two-dimensional manifold
(parametrized by ϕ̃ and ϕa), and near this fixed manifold
the orbifold acts on the transverse space as a supersym-
metric C4=Zm orbifold.
Similarly, if three of the ðr1; r2; s1; s2; s3Þ vanish (includ-

ing at least one of the ri) we have a four-dimensional space
of fixed points (with a transverse C3=Zm orbifold action),
and if four of them vanish we have a six-dimensional space
of fixed points (with a transverse C2=Zm orbifold action).27

Note that, due to (7.10), it is not possible for all five of these
numbers to vanish, consistent with the fact that a C=Zm
orbifold cannot be supersymmetric.
When there are fixed points, the orbifolds have light

twisted sector states living there, while otherwise all
twisted sector states are heavy. Supersymmetry ensures
that these twisted sector states do not lead to tachyonic
instabilities. In principle the loops of the twisted sector
states (whether they are light or heavy) contribute pertur-
bative corrections to the supergravity action, and it would
be interesting to verify that their contributions are con-
sistent with the order Oð1Þ contributions that we found
from the Bethe Ansatz approach.
Note that all of our orbifolds involve a shift action on the

Euclidean time circle. Thus, they are not related to any
AdS5 × S5=Zm backgrounds, and their Lorentzian inter-
pretation is unclear.
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APPENDIX A: SPECIAL FUNCTIONS

We will use fugacities and chemical potentials related by

z ¼ e2πiu; p ¼ e2πiσ; q ¼ e2πiτ: ðA1Þ

q-Pochhammer symbol.—We use the standard notations

ðz; qÞn ¼
Yn−1
k¼0

ð1 − zqkÞ; ðz; qÞ∞ ¼
Y∞
k¼0

ð1 − zqkÞ

for jqj < 1: ðA2Þ

The expression ðz; qÞ∞ admits the series expansion and the
plethystic representation

ðz; qÞ∞ ¼
X∞
n¼0

ð−1Þnqnðn−1Þ
2

ðq; qÞn
zn ¼ exp

�
−
X∞
k¼1

1

k
zk

1 − qk

�
;

ðA3Þ

respectively, where the first one converges on the whole
domain jqj < 1, while the second one converges for jzj,
jqj < 1. Noticing the relation

ηðτÞ ¼ e
πiτ
12 ðq; qÞ∞ ðA4Þ

with the Dedekind eta function, one obtains the modular
transformation properties of the q-Pochhammer symbol:

ðq̃; q̃Þ∞ ¼
ffiffiffiffiffiffiffi
−iτ

p
e

πi
12
ðτþ1=τÞðq; qÞ∞; ðA5Þ

where q̃ ¼ e−2πi=τ. The square root is taken with the
principal determination, recalling that ImðτÞ > 0. Finally,
we have the asymptotic behaviors

ðz; qÞ∞ ∼ ð1 − zÞ for q → 0; log½ðz; qÞ∞� ∼ −
z

1 − q

for z → 0; ðA6Þ

where f ∼ g means that lim f=g ¼ 1.
Function θ0.—The elliptic theta function is defined as

θ0ðu; τÞ ¼ ðz; qÞ∞ðq=z; qÞ∞ ¼
Y∞
k¼0

ð1 − zqkÞð1 − z−1qkþ1Þ:

ðA7Þ

This gives an analytic function on jqj < 1with simple zeros
at z ¼ qk for k ∈ Z and no singularities. The infinite
product is convergent on the whole domain. We can also
give a plethystic definition

θ0ðu; τÞ ¼ exp

�
−
X∞
k¼1

1

k
zk þ ðq=zÞk

1 − qk

�
; ðA8Þ

which converges for jqj < jzj < 1.
The periodicity relations are

θ0ðuþ nþmτ; τÞ ¼ ð−1Þme−2πimu−πimðm−1Þτθ0ðu; τÞ for n;m ∈ Z

θ0ðu; τÞ ¼ θ0ðτ − u; τÞ ¼ −e2πiuθ0ð−u; τÞ: ðA9Þ

The modular properties are

θ0ðu; τ þ 1Þ ¼ θ0ðu; τÞ; θ0

�
u
τ
;−

1

τ

�
¼ −ieπi

τ ðu2þuþ1
6
Þ−πiuþπiτ

6 θ0ðu; τÞ: ðA10Þ

Function ψ.—Define, for ImðtÞ < 0, the function

ψðtÞ ¼ exp

�
t logð1 − e−2πitÞ − 1

2πi
Li2ðe−2πitÞ

�
¼ exp

�
−
X∞
l¼1

�
t
l
þ 1

2πil2

�
e−2πitl

�
: ðA11Þ

The branch of the logarithm is determined by its series expansion logð1 − zÞ ¼ −
P∞

l¼1 z
l=l, whereas Li2ðzÞ ¼P∞

l¼1 z
l=l2 is the dilogarithm. One can show that the branch cut discontinuities of the logarithm and the dilogarithm

cancel in the definition of ψðtÞ, therefore the latter extends to a meromorphic function on the whole complex plane. Some
useful properties of ψðtÞ are
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ψðtÞψð−tÞ ¼ e−πiðt2−1=6Þ; ψðtþ nÞ ¼ ð1 − e−2πitÞnψðtÞ
for n ∈ Z: ðA12Þ

In particular, from (A11), ψð0Þ ¼ eπi=12.
Function Γ̃.—The elliptic gamma function is defined, in

terms of chemical potentials, as

Γ̃ðu; σ; τÞ ¼
Y∞

m;n¼0

1 − pmþ1qnþ1=z
1 − pmqnz

: ðA13Þ

This definition gives a meromorphic single-valued function
on jpj, jqj < 1, with simple zeros at z ¼ pmþ1qnþ1 and
simple poles at z ¼ p−mq−n for m, n ≥ 0. The infinite
product is convergent on the whole domain. We can also
give a plethystic definition

Γ̃ðu; σ; τÞ ¼ exp

�X∞
k¼1

1

k
zk − ðpq=zÞk

ð1 − pkÞð1 − qkÞ
�
; ðA14Þ

which converges for jpqj < jzj < 1.
The function satisfies the following periodicity relations:

Γ̃ðu;σ; τÞ ¼ Γ̃ðu; τ;σÞ;
Γ̃ðuþ 1;σ; τÞ ¼ Γ̃ðu;σþ 1; τÞ ¼ Γ̃ðu;σ; τþ 1Þ ¼ Γ̃ðu;σ; τÞ;
Γ̃ðuþ σ;σ; τÞ ¼ θ0ðu; τÞΓ̃ðu;σ; τÞ;
Γ̃ðuþ τ;σ; τÞ ¼ θ0ðu;σÞΓ̃ðu;σ; τÞ: ðA15Þ

Moreover

Γ̃ðu; σ; τÞΓ̃ðσ þ τ − u; σ; τÞ ¼ 1: ðA16Þ

The elliptic gamma function has SLð3;ZÞ modular proper-
ties. For σ, τ, σ=τ, σ þ τ ∈ CnR there is a “modular
formula” [91]:

Γ̃ðu; σ; τÞ ¼ e−πiQðu;σ;τÞ Γ̃ðuτ ; στ ;− 1
τÞ

Γ̃ðu−τσ ;− 1
σ ;−

τ
σÞ

¼ e−πiQðu;σ;τÞ Γ̃ðuσ ;− 1
σ ;

τ
σÞ

Γ̃ðu−στ ;− σ
τ ;−

1
τÞ
; ðA17Þ

where Q is the cubic polynomial

Qðu; σ; τÞ ¼ u3

3στ
−
σ þ τ − 1

2στ
u2

þ σ2 þ τ2 þ 3στ − 3σ − 3τ þ 1

6στ
u

þ ðσ þ τ − 1Þðσ þ τ − στÞ
12στ

: ðA18Þ

In the degenerate case σ ¼ τ the inversion formula above is
not valid. For u ∈ CnðZþ τZÞ, however, there is a
degenerate relation:

Γ̃ðu; τ; τÞ ¼ e−πiQðu;τ;τÞ

θ0ðuτ ;− 1
τÞ
Y∞
k¼0

ψðkþ1þu
τ Þ

ψðk−uτ Þ : ðA19Þ

The polynomial Q reduces to

Qðu; τ; τÞ ¼ ð2u− 2τþ 1Þð2uðuþ 1Þ− 2τð2uþ 1Þ þ τ2Þ
12τ2

:

ðA20Þ

The function ψ is defined in (A11). Using

Qðuþ 1; τ; τÞ −Qðu; τ; τÞ ¼ ðuþ 1Þðuþ 1 − 2τÞ
τ2

þ 5

6
;

ðA21Þ

one can check that both sides of (A19) are invariant
under u → uþ 1.
Function G.—This function of u, Δ, τ is defined as

Gðu;Δ; τÞ ¼ 1

2πi
∂
∂u log

�
θ0ðΔ − u; τÞ
θ0ðΔþ u; τÞ

�
: ðA22Þ

We can write the series expansion

Gðu;Δ; τÞ ¼
X∞
l¼1

ðzl þ z−lÞðyl − ðq=yÞlÞ
1 − ql

; ðA23Þ

which converges for jqj < jyzj < 1 and jqj < jy=zj < 1,
with z ¼ e2πiu and y ¼ e2πiΔ. Such a domain could be too
restrictive; in that case, notice that G can be written as the
sum of two series, each one convergent in one of the two
domains, respectively.
We have

Gðu;Δ; τÞ ¼ Gð−u;Δ; τÞ ¼ −Gðu; τ − Δ; τÞ: ðA24Þ

We also have modular properties, which follow from the
ones of θ0:

Gðu;Δ; τ þ 1Þ ¼ Gðu;Δ; τÞ;

G
�
u
τ
;
Δ
τ
;−

1

τ

�
¼ τ − 2Δ − 1þ τGðu;Δ; τÞ: ðA25Þ

The periodicity properties are

Gðu;Δ; τÞ ¼ Gðuþ 1;Δ; τÞ ¼ Gðuþ τ;Δ; τÞ
¼ Gðu;Δþ 1; τÞ;

Gðu;Δþ τ; τÞ ¼ 2þ Gðu;Δ; τÞ: ðA26Þ

In particular, G is an elliptic function of u, and quasielliptic
of Δ.
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APPENDIX B: CONTRIBUTION OF
HONG-LIU SOLUTIONS

In this Appendix we carry out the computations that
lead to the contributions of the HL solutions to the
superconformal index, reported in Sec. III A. We will first
compute the quantity γΔ, and then the Jacobian H.
We proceed to explicitly evaluate the sum in (3.19) that

defines the function γΔ. As explained in the main text,
the strategy is to expand various functions in a common

domain of convergence, manipulate the expansions and
then obtain exact expressions. By analytic continuation, the
latter will be valid everywhere.

1. The case Δ ≠ 0

Let us start with the generic case that Δ ≠ 0. For
jqj2 < jyj < 1, we use the plethystic expansion to evaluate
the second summation in the second line of (3.19):

n
Xm−1

j1≠j2

log ðΓ̃ðvj1j2 þ Δ; τ; τÞÞ ¼ n
Xm−1

j1≠j2

X∞
l¼1

1

l

�
ξj1
ξj2

	
l
yl −

�
ξj2
ξj1

	
l
y−lq2l

ð1 − qlÞ2

¼ n
X∞
l¼1

1

l
yl − y−lq2l

ð1 − qlÞ2 Al;m ¼ N log

�
Γ̃ðmΔ;mτ; mτÞ

Γ̃ðΔ; τ; τÞ
�
: ðB1Þ

Here we introduced

Al;m ≡ Xm−1

j1≠j2

e2πiðj1−j2Þl=m ¼
�
m2 −m for l ¼ 0 mod m

−m for l ≠ 0 mod m
: ðB2Þ

We similarly expand the first summation:

Xm−1

j1;j2¼0

Xn−1
k1≠k2

logðΓ̃ðvj1j2 þ wk1k2 þ Δ; τ; τÞÞ ¼
Xm−1

j1;j2¼0

Xn−1
k1≠k2

X∞
l¼1

�
ξj1 ζk1
ξj2 ζk2

	
l
yl −

�
ξj2 ζk2
ξj1 ζk1

	
l
y−lq2l

lð1 − qlÞ2 : ðB3Þ

This expansion converges if

0 < Imðvj1j2 þ wk1k2 þ ΔÞ ¼ k1 − k2
n

ImðτÞ þ ImðΔÞ < 2ImðτÞ ∀ k1 ≠ k2: ðB4Þ

Taking into account the ranges of k1;2, this is the case if

n − 1

n
ImðτÞ < ImðΔÞ < nþ 1

n
ImðτÞ: ðB5Þ

For any value of n there exists a (small) domain of convergence that we can use to perform our manipulations.28 We find

ðB:3Þ ¼
Xn−1
k1≠k2

X∞
l¼1

�
ζk1y
ζk2

	
l
−
�
ζk2q

2

ζk1y

	
l

lð1 − qlÞ2 ðAl;m þmÞ ¼ m
Xn−1
k1≠k2

logðΓ̃ðmwk1k2 þmΔ;mτ; mτÞÞ: ðB6Þ

Putting the two terms together we obtain

γΔ ¼ m
Xn−1
k1≠k2

log ðΓ̃ðmwk1k2 þmΔ;mτ; mτÞÞ þ N log

�
Γ̃ðmΔ;mτ; mτÞ

Γ̃ðΔ; τ; τÞ
�
; ðB7Þ

which, by analyticity, extends to the whole domain of definition of the functions. The sum in the first term on the right-hand
side can be evaluated using the “modular formula” (A19). Recall that Γ̃ðu; τ; σÞ is invariant under integer shifts of τ, σ, and
thus we can shift mτ → mτ þ r. It is convenient to define τ̌≡mτ þ r. We obtain

28Actually, since we are resumming over j1, j2 at fixed k1, k2, the domain of convergence is even larger.

AHARONY, BENINI, MAMROUD, and MILAN PHYS. REV. D 104, 086026 (2021)

086026-28



m
Xn−1
k1≠k2

log

�
Γ̃
�
k1 − k2

n
τ̌ þmΔ;mτ; mτ

��
¼ −πim

Xn−1
k1≠k2

Q
�
k1 − k2

n
τ̌ þmΔ; τ̌; τ̌

�

−m
Xn−1
k1≠k2

log

�
θ0

�
k1 − k2

n
þmΔ

τ̌
;−

1

τ̌

��
þm

Xn−1
k1≠k2

X∞
k¼0

log

�
ψðkþ1þmΔ

τ̌ þ k1−k2
n Þ

ψðk−mΔ
τ̌ þ k2−k1

n Þ

�
: ðB8Þ

Here Q is the cubic polynomial (A20). Let us evaluate the sums in the second line. For the first sum we use the plethystic
expansion (A8) of θ0, valid for 0 < ImðmΔ=τ̌Þ < Imð−1=τ̌Þ. It is convenient to define the variables

ζ̃k ¼ e2πimwk=τ̌ ¼ e2πik=n; ỹ ¼ e2πimΔ=τ̌; q̌ ¼ e−2πi=τ̌: ðB9Þ

Then

−m
Xn−1
k1≠k2

log

�
θ0

�
k1 − k2

n
þmΔ

τ̌
;−

1

τ̌

��
¼ m

Xn−1
k1≠k2

X∞
l¼1

1

l

�
ζ̃k1
ζ̃k2

	
l
ỹl þ

�
ζ̃k2
ζ̃k1

	
l
ỹ−lq̌l

1 − q̌l

¼ m
X∞
l¼1

1

l
ỹl þ ỹ−lq̌l

1 − q̌l
Al;n ¼ N log

�
θ0ðmΔ

τ̌ ;− 1
τ̌Þ

θ0ðNΔ
τ̌ ;− n

τ̌Þ
�
: ðB10Þ

For the second sum, we use the expansion (A11) valid in the same range:

m
Xn−1
k1≠k2

X∞
k¼0

log

�
ψðkþ1þmΔ

τ̌ þ k1−k2
n Þ

ψðk−mΔ
τ̌ þ k2−k1

n Þ

�
¼ m

Xn−1
k1≠k2

X∞
k¼0

X∞
l¼1

�
1

l

�
k −mΔ

τ̌
ỹl

−
kþ 1þmΔ

τ̌

�
q̌
ỹ

�
l
�
þ 1

l

�
k2 − k1

n
þ 1

2πil

�
ðỹl − ðq̌=ỹÞlÞ

��
ζ̃k1
ζ̃k2

�
l
q̌kl: ðB11Þ

Then we conclude that the following sum vanishes:

Bl;n ¼
Xn−1
k1≠k2

ðk1 − k2Þe2πilðk1−k2Þ=n ¼ 0: ðB12Þ

Therefore

ðB:11Þ ¼ m
X∞
k¼0

X∞
l¼1

�
1

l

�
k −mΔ

τ̌
ỹl −

kþ 1þmΔ
τ̌

ðq̌=ỹÞl
�
þ 1

2πil2
ðỹl − ðq̌=ỹÞlÞ

�
q̌klAl;n

¼
X∞
k¼0

"
m log

 
ψðnðkþ1þmΔÞ

τ̌ Þ
ψðnðk−mΔÞ

τ̌ Þ

!
− N log

 
ψðkþ1þmΔ

τ̌ Þ
ψðk−mΔ

τ̌ Þ

!#
: ðB13Þ

Finally we put all terms together. The expression simplifies using

N log ðΓ̃ðmΔ;mτ; mτÞÞ ¼ −πiNQðmΔ; τ̌; τ̌Þ

− N log

�
θ0

�
mΔ
τ̌

;−
1

τ̌

��
þ N

X∞
k¼0

log

�
ψðkþ1þmΔ

τ̌ Þ
ψðk−mΔ

τ̌ Þ
�
: ðB14Þ

We obtain
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γΔ ¼ −πim
Xn−1

k1;k2¼0

Q
�
k1 − k2

n
τ̌ þmΔ; τ̌; τ̌

�
− N log ðΓ̃ðΔ; τ; τÞÞ

− N log

�
θ0

�
NΔ
τ̌

;−
n
τ̌

��
þm

X∞
k¼0

log

 
ψðkþ1þmΔ

τ̌=n Þ
ψðk−mΔ

τ̌=n Þ

!
: ðB15Þ

The sum over k1, k2 can be performed exactly:

−πim
Xn−1

k1;k2¼0

Q
�
k1 − k2

n
τ̌ þmΔ; τ̌; τ̌

�
¼ −

πim
6

�
τ̌ −mΔ −

1

2

�
þ πi

N2

m

ðτ̌ −mΔÞðτ̌ −mΔ − 1
2
Þðτ̌ −mΔ − 1Þ

3τ̌2
: ðB16Þ

We thus obtain the exact expression in (3.23).

2. The case Δ= 0

The case Δ ¼ 0 requires a separate treatment. Using (A9), (A15), and (A16), we find

γ0 ¼ −
XN
i≠j

logðθ0ðuij; τÞÞjð3.16Þ;

¼ −
Xm−1

j1;j2¼0

Xn−1
k1≠k2

logðθ0ðvj1j2 þ wk1k2 ; τÞÞ − n
Xm−1

j1≠j2

logðθ0ðvj1j2 ; τÞÞ: ðB17Þ

The sum in the second term on the second line is computed as follows:

−n
Xm−1

j1≠j2

logðθ0ðvj1j2 ; τÞÞ ¼ −n
Xm−1

j1≠j2

�
log

�
1 −

ξj1
ξj2

�
þ 2

X∞
k¼1

log

�
1 −

ξj1
ξj2

qk
��

¼ −N logðmÞ þ 2n
X∞
k¼1

X∞
l¼1

1

l
Al;mqkl ¼ −N logðmÞ þ 2N log

� ðq; qÞ∞
ðqm; qmÞ∞

�
: ðB18Þ

We used that
P

m
j≠k log ð1 − e2πiðj−kÞ=mÞ ¼ m logðmÞ. The sum in the first term can be computed using the plethystic

expansion (A8) which converges for 0 < k1−k2
n ImðτÞ < ImðτÞ. This is not satisfied for all k1, k2, therefore we split the sum

using (A9) as follows:

−
Xm−1

j1;j2¼0

�Xn−1
k1>k2

logðθ0ðvj1j2 þ wk1k2 ; τÞÞ þ
Xn−1
k1<k2

logð−e2πiðvj1j2þwk1k2
Þθ0ð−vj1j2 − wk1k2 ; τÞÞ

�

¼ −2
Xm−1

j1;j2¼0

Xn−1
k1>k2

logðθ0ðvj1j2 þ wk1k2 ; τÞÞ −m2
Xn−1
k1<k2

logð−e2πiwk1k2 Þ;

¼ −2
Xn−1
k1>k2

1

l

ðζk1ζk2
Þl þ ðζk2ζk1

Þlql
1 − ql

ðAl;m þmÞ −
Xn−1
k1<k2

logðð−1Þm2

e2πim
2wk1k2 Þ;

¼ −2m
Xn−1
k1>k2

logðθ0ðmwk1k2 ;mτÞÞ −
Xn−1
k1<k2

logðð−1Þm2

e2πim
2wk1k2 Þ;

¼ −m
Xn−1
k1≠k2

logðθ0ðmwk1k2 ;mτÞÞ: ðB19Þ

In the last equality we used ð−1Þm2−m ¼ 1. The sum can be computed using the modular properties (A10):
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−m
Xn−1
k1≠k2

logðθ0ðmwk1k2 ;mτ þ rÞÞ

¼ −πim
Xn−1
k1≠k2

�
1

2
−
ðk1 − k2Þ2

n2
τ̌ −

1

6τ̌
−
τ̌

6

�
−m

Xn−1
k1≠k2

log

�
θ0

�
k1 − k2

n
;−

1

τ̌

��
;

¼ πiNðn − 1Þ τ̌ðτ̌ −
1
2
Þðτ̌ − 1Þ
3τ̌2

þ πimðn − 1Þ τ̌
6
− N logðnÞ þ 2N log

� ðq̌; q̌Þ∞
ðq̌n; q̌nÞ∞

�
: ðB20Þ

The computation of the sum in the second line is as in (B18). Finally, we use the modular properties (A5) of the
q-Pochhammer symbol to obtain

2N log

� ðq; qÞ∞
ðqm; qmÞ∞

ðq̌; q̌Þ∞
ðq̌n; q̌nÞ∞

�
¼ 2N log

� ðq; qÞ∞
ðq̌n; q̌nÞ∞

�
þ N logð−iτ̌Þ þ πiN

6

�
τ̌ þ 1

τ̌

�
: ðB21Þ

Recall that Imðτ̌Þ > 0, therefore logð−iτ̌Þ ¼ logðτ̌Þ − iπ=2 with the logarithm in its principal determination. Putting the
various pieces together we find (3.25).

3. The Jacobian H

Given the BA operators Qi written as in (3.29), we compute

1

2πi
∂ logðQiÞ

∂uj ¼
XN
k¼1

∂uik
∂uj

�
−1þ

X3
a¼1

Gðuik;ΔaÞ
�
; ðB22Þ

where we defined the function (see also Appendix A)

Gðu;Δ; τÞ ¼ 1

2πi
∂
∂u log

�
θ0ð−uþ Δ; τÞ
θ0ðuþ Δ; τÞ

�
¼ −

1

2πi

�
θ00ðuþ Δ; τÞ
θ0ðuþ Δ; τÞ þ

θ00ð−uþ Δ; τÞ
θ0ð−uþ Δ; τÞ

�
ðB23Þ

with implicit dependence on τ (unless specified). This is an even function of u, namely Gð−u;ΔÞ ¼ Gðu;ΔÞ. Since
we treat u1;…; uN−1 as the independent variables while uN is fixed by the SUðNÞ constraint, we have
∂ujuik ¼ δij − δkj − δiN þ δkN . Therefore

1

2πi
∂ logðQiÞ

∂uj ¼ ðδij − δiNÞ
�
−N þ

XN
k¼1

X3
a¼1

Gðuik;ΔaÞ
�
þ
X3
a¼1

½GðuiN;ΔaÞ − Gðuij;ΔaÞ�: ðB24Þ

This leads to the following expression for the Jacobian matrix:

Aij ¼ −Nð1þ δijÞ þ
XN
k¼1

X3
a¼1

½δijGðuik;ΔaÞ þ GðukN;ΔaÞ�

þ
X3
a¼1

½GðuiN;ΔaÞ þ GðujN;ΔaÞ − Gðuij;ΔaÞ − Gð0;ΔaÞ�; ðB25Þ

where i; j ¼ 1;…; N − 1. Let us compute the following quantity:

ϒ≡XN
l¼1

Gðui1l;Δa; τÞ ¼
Xm−1

j¼0

Xn−1
k¼0

G
�
j1 − j
m

þ k1 − k
n

τ̌

m
;Δa; τ

�
: ðB26Þ

The sum over j is computed easily, using the series expansion (A23). One has to be careful about the domain of convergence
of the series. We sum over j with k fixed; however, there is no domain of Δa; τ such that the full series is convergent. One
can instead break the series of G in two, each one convergent in a different domain, and recombine the two pieces at the end.
Exploiting
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Xm−1

j¼0

e2πiðj1−jÞl=m ¼
�
m for l ¼ 0mod m

0 for l ≠ 0mod m
; ðB27Þ

we obtain

ϒ ¼ m
Xn−1
k¼0

G
�
k1 − k
n

τ̌; mΔa; τ̌

�
: ðB28Þ

Then we use the modular property (A25) and perform the
second sum. We obtain

ϒ ¼ N
2mΔa þ 1 − τ̌

τ̌
þ N

τ̌
G
�
0;
NΔa

τ̌
;−

n
τ̌

�
: ðB29Þ

Notice in particular that ϒ does not depend on i1 or
equivalently on ðj1; k1Þ. Moreover, ϒ is invariant under
mΔa → mΔa þ 1. Therefore,

Aij ¼ Nð1þ δijÞ
�
−4þ 1

τ̌

X3
a¼1

�
2mΔa

þ 1þ G
�
0;
NΔa

τ̌
;−

n
τ̌

���

þ
X3
a¼1

½GðuiN;ΔaÞ þ GðujN;ΔaÞ − Gðuij;ΔaÞ

− Gð0;ΔaÞ�: ðB30Þ
Here we recognize the expression in (3.30).

4. Perturbative corrections

We give some evidence that the term log½detð1þ
B−1C=bNNÞ� in (3.47) and (3.49) only leads to a contri-
bution of order Oð1Þ and to nonperturbative corrections in
the large N limit, but no 1=N perturbative corrections. In
order to do that, we expand

− log
�
det
�
1þ B−1C

bNN

��
¼
X∞
l¼1

ð−1Þl
l

Tr
��

B−1C
bNN

�
l
�

ðB31Þ
and compute the first few terms.
First order.—We compute TrðB−1CÞ. The two matrices

B and C are defined in (3.31) and have size ðN − 1Þ×
ðN − 1Þ. Using the fact that G is an even function, the trace
can be recast as

TrðB−1CÞ ¼
XN−1

i¼1

Cii −
1

N

XN−1

i;j¼1

Cij

¼
X3
a¼1

�
1

N

XN
i;j¼1

Gðuij;Δa; τÞ − NGð0;Δa; τÞ
�
:

ðB32Þ

The sum inside square brackets was already computed in
(B26)–(B29) and it equals ϒ, therefore

TrðB−1CÞ ¼ N
X3
a¼1

�
2½mΔa�τ̌ − τ̌ þ 1

τ̌

þ 1

τ̌
G
�
0;
½mΔa�τ̌
τ̌=n

;−
n
τ̌

�
− Gð0;Δa; τÞ

�
;

¼ N
τ̌ � 1

τ̌
þ N

X3
a¼1

�
1

τ̌
G
�
0;
½mΔa�τ̌
τ̌=n

;−
n
τ̌

�

− Gð0;Δa; τÞ
�
: ðB33Þ

In the first line we used that ϒ is invariant under integer
shifts of mΔa, while the � signs in the second line refer to
the first and second case of parameter space, respectively.
Then, using the large N behavior of G in (3.38) and

bNð½mΔ�τ̌Þ ¼ � 1

τ̌
þOðe−NÞ; ðB34Þ

we obtain the large N result

TrðB−1CÞ
bNN

¼ 1� τ̌

�
1 −

X3
a¼1

Gð0;Δa; τÞ
�
þOðe−NÞ

ðB35Þ
where, once again, the � signs refer to the first and second
case, respectively. We see that this quantity only receives
nonperturbative corrections at large N.
Second order.—We compute TrðB−1CB−1CÞ. Using C as

a symmetric matrix, with some lengthy algebra we obtain

TrðB−1CB−1CÞ

¼
XN−1

i;j¼1

ðCijÞ2−
2

N

XN−1

i;j;k¼1

CikCjkþ
1

N2

�XN−1

i;j¼1

Cij

�2

;

¼
X3
a;b¼1

�XN
i;j¼1

Gðuij;Δa;τÞGðuij;Δb;τÞ−ϒðΔa;τÞϒðΔb;τÞ
�
:

ðB36Þ
This expression is valid for any HL solution fm; n; rg.
However, evaluating the summation in the second line by
brute force is quite complicated and here we will content
ourselves with the T-transformed solutions, i.e., with the
case m ¼ 1.
We define the following quantity:

U ≡ X3
a;b¼1

XN
i;j¼1

Gðuij;Δa; τÞGðuij;Δb; τÞ; ðB37Þ

where uij is as in (3.16) but with m ¼ 1. Using the fact
that G is invariant under integer shifts of each of its
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arguments (see Appendix A), the modular transformation
formula (A25) and the constraint among ½mΔa�τ̌, we obtain

U ¼
X3
a;b¼1

XN
i;j¼1

Gðuij; ½Δa�τ̌; τ̌ÞGðuij; ½Δb�τ̌; τ̌Þ;

¼ N2
ðτ̌ � 1Þ2

τ̌2
þ 2ðτ̌ � 1Þ

τ̌2
X3
a¼1

XN
i;j¼1

G
�
uij
τ̌
;
½Δa�τ̌
τ̌

;−
1

τ̌

�

þ 1

τ̌2
X3
a;b¼1

XN
i;j¼1

G
�
uij
τ̌
;
½Δa�τ̌
τ̌

;−
1

τ̌

�
G
�
uij
τ̌
;
½Δb�τ̌
τ̌

;−
1

τ̌

�
;

ðB38Þ

where the � signs refer to the first and second case,
respectively. Using the series expansion of G in (A23) and
the same method we used to compute ϒ after (B26), the
summation on the second line gives

XN
i;j¼1

G
�
uij
τ̌
;
½Δa�τ̌
τ̌

;−
1

τ̌

�
¼ N2G

�
0;
N½Δa�τ̌

τ̌
;−

N
τ̌

�
:

ðB39Þ

The summation on the third line involves the object

Wab ≡
XN
i;j¼1

G
�
uij
τ̌
;
½Δa�τ̌
τ̌

;−
1

τ̌

�
G
�
uij
τ̌
;
½Δb�τ̌
τ̌

;−
1

τ̌

�
¼ 2

X∞
k;l¼1

ckaclb
XN
i;j¼1

��
z̃i
z̃j

�
kþl

þ
�
z̃i
z̃j

�
k−l
�
; ðB40Þ

where the coefficients cla are given by

cla ¼ ỹla − ðq̌=ỹaÞl
1 − q̌l

¼
X∞
r¼0

½ðq̌rỹaÞl − ðq̌rþ1=ỹaÞl�; ðB41Þ

and z̃i ¼ e2πiui=τ̌, ỹa ¼ e2πi½Δa�τ̌=τ̌, q̌ ¼ e−2πi=τ̌. The sum over i, j can be performed exploiting (B27), and we obtain

Wab ¼ 4N2
X∞
α;β¼0

cNðαþ1Þ
a cNðβþ1Þ

b þ 2N2
X∞
α;β¼0

XN−1

γ¼1

cNαþγ
a ðcNβþγ

b þ cNðβþ1Þ−γ
b Þ: ðB42Þ

The first sum can be performed exactly using

X∞
α¼1

cNα
a ¼ 1

2
G
�
0;
N½Δa�τ̌

τ̌
;−

N
τ̌

�
: ðB43Þ

Substituting back in Wab, in U and finally in the trace we obtain the expansion

TrðB−1CB−1CÞ ¼ 2N2

τ̌2
X3
a;b¼1

X∞
α;β¼0

XN−1

γ¼1

cNαþγ
a ðcNβþγ

b þ cNðβþ1Þ−γ
b Þ: ðB44Þ

Let us study, in the large N limit, the summations containing the two terms in parentheses separately. The second term
involves

χð2Þab ≡ X∞
α;β¼0

XN−1

γ¼1

cNαþγ
a cNðβþ1Þ−γ

b ;

¼
X∞
α;β¼0

XN−1

γ¼1

X∞
r;s¼0

½ðq̌rỹaÞNαþγ − ðq̌rþ1=ỹaÞNαþγ�½ðq̌sỹbÞNβþN−γ − ðq̌sþ1=ỹbÞNβþN−γ�: ðB45Þ

The fundamental property of ½Δa�τ̌ in (3.40) guarantees that jq̌j < jỹaj < 1, and similarly jq̌j < jỹbj < 1. Therefore the

defining sum of χð2Þab involves terms whose absolute value is smaller than a number smaller than 1, elevated to the powers

Nðαþ βÞ þ N. This implies that χð2Þab is of order Oðe−NÞ, and thus it only produces nonperturbative corrections. Next we
consider
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χð1Þab ≡ X∞
α;β¼0

XN−1

γ¼1

cNαþγ
a cNβþγ

b : ðB46Þ

By expanding out the coefficients cla as in (B41), one obtains four sums. One of them is

X∞
α;β¼1

XN−1

γ¼1

X∞
r;s¼0

ðq̌rỹaÞNαþγðq̌sỹbÞNβþγ

¼
X∞

α;β;r;s¼0

ðq̌rỹaÞNαðq̌sỹbÞNβ q̌
rþsỹaỹb − ðq̌rþsỹaỹbÞN

1 − q̌rþsỹaỹb
¼
X∞
l¼0

ðlþ 1Þq̌lỹaỹb
1 − q̌lỹaỹb

þOðe−NÞ: ðB47Þ

In the first equality we summed the finite geometric series in γ, while in the second equality we only kept the terms that are

finite in the largeN limit. The other three sums that constitute χð1Þab can be treated similarly. The result, up to nonperturbative
corrections, can be nicely expressed in terms of the function

γ̃ðu; τÞ≡ 1

2πi
∂u logðΓ̃ðu; τ; τÞÞ; ðB48Þ

which can be expanded as follows:

γ̃ðu; τÞ ¼
X∞
k¼0

ðkþ 1Þ
�

qkz
1 − qkz

þ qkþ2=z
1 − qkþ2=z

�
: ðB49Þ

One obtains

χð1Þab ¼ γ̃

�½Δa�τ̌ þ ½Δb�τ̌
τ̌

;−
1

τ̌

�
− γ̃

�½Δa�τ̌ − ½Δb�τ̌ − 1

τ̌
;−

1

τ̌

�
þOðe−NÞ: ðB50Þ

We can finally substitute into the trace, and obtain the second-order contribution

TrðB−1CB−1CÞ
b2NN

2
¼ 1

2

X3
a;b¼1

�
γ̃

�½Δa�τ̌ þ ½Δb�τ̌
τ̌

;−
1

τ̌

�
− γ̃

�½Δa�τ̌ − ½Δb�0τ̌
τ̌

;−
1

τ̌

��
þOðe−NÞ: ðB51Þ

Also at this order we see that there are only nonperturbative
corrections at large N.

APPENDIX C: SOLUTIONS WITH TWO
ANGULAR MOMENTA

In this Appendix we generalize our discussion in the main
body of the paper to black hole solutions with two different
angular momenta (and correspondingly two different chemi-
cal potentials for them), but still with three equal Uð1Þ
charges (and chemical potentials), so that the solutions can be
constructed using 5Dminimal gauged supergravity. We also
discuss the supersymmetry of those solutions, and the uplift
to 10D type IIB supergravity. Finally, we study the super-
symmetric embeddings of Euclidean D3-branes.
In Appendix E, as an aside, we will present supersym-

metric embeddings of Lorentzian D3-branes that generalize
the giant graviton and dual giant graviton solutions in empty
AdS5 [59–61] to Lorentzian black hole backgrounds.

1. 5D minimal gauged supergravity

The bosonic Lagrangian of 5D minimal gauged super-
gravity is (4.1), that we repeat here29:

L ¼ ðRþ 12g2Þ � 1 − 2

3
F ∧ �F þ 8

27
F ∧ F ∧ A; ðC1Þ

where A is the graviphoton potential, F ¼ dA is its field
strength, and we followed the notation of [5]. As in the
main text, we set the dimensionful coupling g to 1.
The authors of [89], generalizing previous work of

[88,92,93], constructed a four-parameter family of charged
and rotating black hole solutions:

29Given ap-formωðpÞ ¼ 1
p!ωμ1…μpdx

μ1…dxμp in d dimensions,
we define its Hodge dual in Lorentzian signature as �ωðpÞ ¼ffiffiffiffi−gp
p!ðd−pÞ!ω

ν1…νpϵν1…νpμ1…μd−pdx
μ1…dxμd−p where ϵ0…ðd−1Þ ¼1.

Then �2 ¼ ð−1Þpðd−pÞþ1, as well as �1 ¼ dvold and ωðpÞ ∧
�ωðpÞ ¼ 1

p!ωμ1…μpω
μ1…μpdvold.
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ds2 ¼ −
Δθ½ð1þ r2Þρ2dtþ 2qν�dt

ΞaΞbρ
2

þ 2qνw
ρ2

þ ft
ρ4

�
Δθdt
ΞaΞb

− w

�
2

þ ρ2dr2

Δr

þ ρ2dθ2

Δθ
þ r2 þ a2

Ξa
sin2ðθÞdϕ2 þ r2 þ b2

Ξb
cos2ðθÞdψ2;

A ¼ 3q
2ρ2

�
Δθdt
ΞaΞb

− w

�
− αdt; ðC2Þ

where

ν ¼ bsin2ðθÞdϕþ acos2ðθÞdψ ; w ¼ asin2ðθÞ dϕ
Ξa

þ bcos2ðθÞ dψ
Ξb

;

Ξa ¼ 1 − a2; Ξb ¼ 1 − b2; ft ¼ 2ðmþ abqÞρ2 − q2;

Δθ ¼ 1 − a2cos2ðθÞ − b2sin2ðθÞ; ρ2 ¼ r2 þ a2cos2ðθÞ þ b2sin2ðθÞ;

Δr ¼
ðr2 þ a2Þðr2 þ b2Þð1þ r2Þ þ q2 þ 2abq

r2
− 2m: ðC3Þ

The field strength can be written as

F ¼ 3qr
ρ4

dr ∧ w −
3q

ΞaΞbρ
4

�
rΔθdr −

a2 − b2

2
ð1þ r2Þ sinð2θÞdθ

�
∧ dt

−
3q sinð2θÞ

2ρ4
dθ ∧

�
a
r2 þ a2

Ξa
dϕ − b

r2 þ b2

Ξb
dψ

�
; ðC4Þ

while �5F − 2
3
A ∧ F ¼ dαð2Þ with

αð2Þ ¼
3q
2ρ2

�
Δθdt
ΞaΞb

− w

�
∧
�
νþ 2

3
αdt

�
−
3q cosð2θÞ
4ΞaΞb

ðdt ∧ ðbdϕ − adψÞ þ dϕ ∧ dψÞ: ðC5Þ

The coordinates are ðt; r; θ;ϕ;ψÞ, where θ ∈ ½0; π=2�while
ϕ, ψ have period 2π. The constant α is arbitrary in
Lorentzian space (it can be shifted by gauge transforma-
tions). The four parameters are ða; b; q;mÞ, and corre-
spondingly there are four independent conserved charges:
the energy E (associated to the Killing vector ∂

∂t), two
angular momenta J1;2 (associated to the Killing vectors ∂

∂ϕ
and ∂

∂ψ, respectively), and the electric charge Q. Setting
a ¼ b one recovers the solution in (4.2) which has
J1 ¼ J2 ≡ J.
The outer horizon is the largest positive root of

ΔrðrþÞ ¼ 0, and we denote it by rþ. This is a Killing
horizon generated by the Killing vector field

V ¼ ∂
∂tþ Ω1

∂
∂ϕþ Ω2

∂
∂ψ : ðC6Þ

Here Ω1;2 are the angular velocities at the horizon,
measured in a nonrotating frame at infinity. Evaluating
the surface gravity one determines the Hawking temper-
ature T ≡ 1=β. Besides, one defines the electrostatic
potential at the horizon, Φ ¼ {VAjrþ − {VAj∞, and the

entropy S, equal to a quarter of the horizon area.
Explicit expressions for the charges and chemical potentials
can be found in [5]. Those quantities satisfy the first law of
thermodynamics,

dE ¼ TdSþ Ω1dJ1 þΩ2dJ2 þΦdQ: ðC7Þ

It turns out to be convenient to trade the parameterm for rþ,
and thus use ða; b; q; rþÞ as the independent parameters.
Since rþ is a root of Δr, the relation

m ¼ ðr2þ þ a2Þðr2þ þ b2Þð1þ r2þÞ þ q2 þ 2abq
2r2þ

ðC8Þ

can be used to eliminate m in favor of rþ.
The analytic continuation to Euclidean signature, studied

in detail in [5,69], is obtained by rotating t → −itE, a → iã,
and b → ib̃. This yields a real Euclidean metric, though the
gauge field becomes imaginary. Regularity of such a metric
around r ¼ rþ requires us to compactify the Euclidean time
tE with a period equal to β, and more precisely it requires us
to identify
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ðtE;ϕ;ψÞ ≅ ðtE þ β;ϕ − iΩ1β;ψ − iΩ2βÞ
≅ ðtE;ϕþ 2π;ψÞ ≅ ðtE;ϕ;ψ þ 2πÞ: ðC9Þ

Notice that the Killing vector (C6) precisely generates
rotations of the Euclidean circle that shrinks at rþ.
Regularity of the gauge field at rþ, in a gauge which is
regular at the horizon, requires {VAjrþ ¼ 0, which implies

α ¼ Φ: ðC10Þ

The on shell action can then be computed for regular
Euclidean metrics, regularized using background subtrac-
tion (which assigns vanishing action to thermal AdS5). The
family of solutions can then be extended to generic

complex values of the parameters ða; b; q; rþÞ, and the
on shell action ISUGRA is extended analytically. It satisfies
the so-called quantum statistical relation

ISUGRA ¼ βðE − TS −Ω1J1 − Ω2J2 −ΦQÞ: ðC11Þ

a. Supersymmetry

The solutions (C2) become supersymmetric for

m ¼ ð1þ aþ bÞq: ðC12Þ

This gives a three-parameter family of complex (and,
generically, nonextremal) solutions in terms of ða; b; qÞ.
The charges take the values

E ¼ πqð3þ ab − ð1þ aÞb2 − ð1þ bÞa2Þ
4ð1 − aÞð1 − a2Þð1 − bÞð1 − b2Þ ; Q ¼ πq

2ð1 − a2Þð1 − b2Þ ;

J1 ¼
πqð2aþ bþ abÞ

4ð1 − aÞð1 − a2Þð1 − b2Þ ; J2 ¼
πqð2bþ aþ abÞ

4ð1 − a2Þð1 − bÞð1 − b2Þ ; ðC13Þ

and satisfy the linear supersymmetric relation E ¼ J1 þ J2 þ 3
2
Q. In the following it will be convenient to use ða; b; rþÞ as

the independent parameters, and combining the change of variables (C8) with the SUSY condition (C12) one finds

q ¼ −abþ ð1þ aþ bÞr2þ ∓ irþðr2þ − r2�Þ with r2� ¼ aþ bþ ab: ðC14Þ
Here r� is the position of the outer horizon for real supersymmetric and extremal solutions, i.e., for the Euclidean rotation of
Lorentzian BPS black hole solutions. The ∓ signs come from the branch cut of a square root. For the upper sign, the
supersymmetry condition becomes

q ¼ −ða − irþÞðb − irþÞð1 − irþÞ ð1st branchÞ: ðC15Þ
We refer to the corresponding family of solutions as the “first branch”. The “second branch,” which follows from the lower
sign, is obtained by sending i → −i. In the first branch, the chemical potentials take the values

Φ ¼ 3irþð1 − irþÞ
2ðr2� þ irþÞ

; β ¼ 2πða − irþÞðb − irþÞðr2� þ irþÞ
ðr2þ − r2�Þð2ð1þ aþ bÞrþ þ iðr2� − 3r2þÞÞ

;

Ω1 ¼
ðr2� þ iarþÞð1 − irþÞ
ðr2� þ irþÞða − irþÞ

; Ω2 ¼
ðr2� þ ibrþÞð1 − irþÞ
ðr2� þ irþÞðb − irþÞ

: ðC16Þ

They satisfy the relation

βð1þ Ω1 þ Ω2 − 2ΦÞ ¼ �2πi; ð1st=2nd branchÞ ðC17Þ
where the � sign depends on the branch. Following [5]30 and the discussion in Sec. II, we define new chemical potentials
σg, τg, Δg as

σg ¼
β

2πi
ðΩ1 − 1Þ; τg ¼

β

2πi
ðΩ2 − 1Þ; Δg ¼

β

2πi

�
2

3
Φ − 1

�
: ðC18Þ

In the first branch they are given by

σg ¼
ða − 1Þðb − irþÞ

2ið1þ aþ bÞrþ − r2� þ 3r2þ
; Δg ¼

ða − irþÞðb − irþÞ
2ið1þ aþ bÞrþ − r2� þ 3r2þ

; τg ¼
ðb − 1Þða − irþÞ

2ið1þ aþ bÞrþ − r2� þ 3r2þ
; ðC19Þ

30The potentials ω1, ω2, φ defined in [5] differ from ours by a simple rescaling.

AHARONY, BENINI, MAMROUD, and MILAN PHYS. REV. D 104, 086026 (2021)

086026-36



(while the values in the second branch are obtained sending
i → −i and changing the overall sign). These potentials
satisfy

σg þ τg − 3Δg ¼ �1 ð1st=2nd branchÞ: ðC20Þ

In terms of them, the on shell action takes the very simple
form

ISUGRA ¼ iπ2

2g3G5

Δ3
g

σgτg
ðC21Þ

in both branches. Notice in particular that it does not
depend on β. Here, for clarity, we reinstated the coupling g
and the 5D Newton constant G5 that were previously set to
1. This expression generalizes (4.29).

b. Killing spinor

The solutions (C2) with the SUSY condition (C12)
admit a Killing spinor ϵ. The Killing vector arising as a

bilinear of the Killing spinor is K ¼ ∂
∂t þ ∂

∂ϕ þ ∂
∂ψ. The

spinor satisfies

L∂∂t
ϵ ¼ i

2
ð1 − 2αÞϵ; L ∂∂ϕ

ϵ ¼ L ∂∂ψ
ϵ ¼ i

2
ϵ; ðC22Þ

where L is the Lie derivative. The second equation implies
that e2πL∂=∂ϕϵ ¼ e2πL∂=∂ψ ϵ ¼ −ϵ, namely, that ϵ is antiperi-
odic along the two circles parametrized by ϕ and ψ , which
is a necessary condition for a spinor to be well defined since
the two circles shrink somewhere inside S3. The first
equation, combined with the gauge-field regularity con-
dition (C10) and the SUSY relation (C17) among the
chemical potentials, implies LVϵ ¼ ∓ π

β ϵ, where V is the
Killing vector (C6) and ∓ correspond to the first/second
branch. In turn this guarantees that e−iβLVϵ ¼ −ϵ, and thus
that ϵ is antiperiodic along the Euclidean time circle that
shrinks at the horizon.
In order to construct the Killing spinor ϵ, it is convenient

to use orthotoric coordinates ðt; ξ; η;Φ;ΨÞ [94]. The
coordinate change is given by

r2 ¼ r2� þ ðaþ bÞm̃þ ðaþ bÞ2
2

m̃þ a2 − b2

2
m̃ξ; θ ¼ 1

2
arccosðηÞ;

ϕ ¼ t −
4ð1 − a2Þ
ða2 − b2Þm̃ ðΦ − ΨÞ; ψ ¼ t −

4ð1 − b2Þ
ða2 − b2Þm̃ ðΦþΨÞ; ðC23Þ

where we defined the new mass parameter31

m̃ ¼ m
ðaþ bÞð1þ aÞð1þ bÞð1þ aþ bÞ − 1: ðC24Þ

In these coordinates, supersymmetric black hole metrics are described by the simple vielbein

0E0 ¼ fðdt − ωÞ;

E1 ¼ 1

f1=2

ffiffiffiffiffiffiffiffiffiffi
η − ξ

F ðξÞ

s
dξ; E2 ¼ 1

f1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F ðξÞ
ðη − ξÞ

s
ðdΦþ ηdΨÞ;

E3 ¼ −
1

f1=2

ffiffiffiffiffiffiffiffiffiffi
η − ξ

GðηÞ

s
dη; E4 ¼ 1

f1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðηÞ
ðη − ξÞ

s
ðdΦþ ξdΨÞ; ðC25Þ

where F ðξÞ and GðηÞ are the cubic polynomials

GðηÞ ¼ −
4ð1 − η2Þ
ða2 − b2Þm̃ ½ð1 − a2Þð1þ ηÞ þ ð1 − b2Þð1 − ηÞ�;

F ðξÞ ¼ −GðξÞ − 4
1þ m̃
m̃

�
2þ aþ b
a − b

þ ξ

�
3

; ðC26Þ

while

31The extremality condition for supersymmetric solutions, namely rþ ¼ r�, simply reads m̃ ¼ 0 [5].
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f ¼ 24ðη − ξÞ
F 00ðξÞ þ G00ðηÞ ;

ω ¼ −
F 000 þ G000

48ðη − ξÞ2
��

F þ ðη − ξÞ
�
F 0

2
−
1

4

�
2þ aþ b
a − b

þ ξ

�
2

F 000
��

ðdΦþ ηdΨÞ þ GðdΦþ ξdΨÞ
�

þ F 000G000

288
½ðηþ ξÞdΦþ ηξdΨ� þ 2

m̃
dΨ: ðC27Þ

Explicitly, the function f takes the form

f ¼ −
m̃ða − bÞðη − ξÞ

ð2þ aþ bÞð1þ m̃Þ þ ða − bÞðηþ m̃ξÞ : ðC28Þ

One can also verify that, at the location ξþ of the outer
horizon r ¼ rþ, we have

F ðξþÞ ¼ 0: ðC29Þ

The metric is then ds2 ¼ −ðE0Þ2 þ ðE1Þ2 þ ðE2Þ2 þ
ðE3Þ2 þ ðE4Þ2. The gauge potential is

A ¼ 3ð1 − fÞ
2

dt − αdt

−
6ð1þ aÞð1þ bÞð1þ m̃Þf
ða − bÞ2ðaþ bÞm̃2ðη − ξÞ

× ½ðaþ b − ða − bÞηÞdΦþ ððaþ bÞη − ða − bÞÞdΨ�:
ðC30Þ

Using vielbein indices, the nonvanishing components of
the field strength are F01, F03, F12, F14, F23, F34, and
antisymmetrizations. The metric determinant is − detðgÞ ¼
ðη − ξÞ2=f2.
The Killing spinor equation of 5D minimal gauged

supergravity reads

�
∇μ − iAμ −

1

2
γμ −

i
12

ðγνρμ − 4δνμγ
ρÞFνρ

�
ϵ ¼ 0: ðC31Þ

We use the orientation γ01234 ¼ −i. Then we impose the
relation i

2
ðγ12 − γ34Þϵ ¼ ϵ, which implies the following

projectors:

iϵ ¼ −γ0ϵ ¼ −γ12ϵ ¼ γ34ϵ: ðC32Þ

One verifies that the following spinor solves (C31):

ϵ ¼ exp

�
i
2

�
ð3 − 2αÞt − 4ð1 − a2Þ

ða2 − b2Þm̃ ðΦ −ΨÞ

−
4ð1 − b2Þ
ða2 − b2Þm̃ ðΦþΨÞ

�� ffiffiffi
f

p
ϵ0; ðC33Þ

where ϵ0 is a constant spinor satisfying (C32). When
checking the Killing spinor equation, one encounters a
series of square roots. We started from a domain in which
all radicands in (C25) are positive, and then analytically
continued from there.

c. Killing spinor for equal angular momenta

Black hole solutions with equal angular momenta J1 ¼
J2 correspond to a ¼ b and have been discussed in the
main text. However, the orthotoric coordinates in (C23) are
singular for a ¼ b, and thus the a ¼ b limit must be taken
carefully. Following Sec. 4 of [94], we set32

b¼ aþ 4ð1− a2Þ
am̃

λ with m̃¼ m
2að1þ aÞ2ð1þ 2aÞ− 1;

Φ¼ λΦ̃; Ψ¼ λΨ̃; ξ¼ −
1

λ
ξ̃; ðC34Þ

and take λ → 0. The change of coordinates reduces to

r2 ¼ r2� þ 2að1þ aÞm̃þ 4ð1 − a2Þξ̃; θ ¼ 1

2
arccosðηÞ;

ϕ ¼ tþ Φ̃ − Ψ̃
2

; ψ ¼ tþ Φ̃þ Ψ̃
2

; ðC35Þ

with r2� ¼ 2aþ a2. The functions F and G behave as

GðηÞ ¼ G̃ðηÞ
λ

þOðλ0Þ; F ðξÞ ¼ F̃ ðξ̃Þ
λ3

þOðλ−2Þ;
ðC36Þ

with

G̃ðηÞ ¼ 1 − η2;

F̃ ðξ̃Þ ¼
�
1 −

4ξ̃

m̃

�
ξ̃2 þ 4

1þ m̃
m̃

�
am̃

2ð1 − aÞ þ ξ̃

�
3

: ðC37Þ

The function f and the 1-form ω reduce to

f ¼ 2ð1 − aÞξ̃
að1þ m̃Þ þ 2ð1 − aÞξ̃ ;

ω ¼
�
1

3f

�
F̃ 0ðξ̃Þ
2ξ̃

− 1

�
−
ð1þ m̃Þa2
4ð1 − aÞ2ξ̃

�
ðdΦ̃þ ηdΨ̃Þ: ðC38Þ

In these coordinates, the outer horizon r ¼ rþ is located at

ξ̃ ¼ ξ̃þ ¼ ða − irþÞðr2� − r2þÞ
4ð1 − aÞð1þ aÞ2 ðC39Þ

32In this case, the extremality condition is m ¼ 2að1þ aÞ2×
ð1þ 2aÞ, or more easily m̃ ¼ 0.

AHARONY, BENINI, MAMROUD, and MILAN PHYS. REV. D 104, 086026 (2021)

086026-38



on the first branch (while the value on the second branch is
obtained by sending i → −i), and one verifies that

F̃ ðξ̃þÞ ¼ 0: ðC40Þ

On the other hand, f vanishes at the horizon only in the
extremal BPS limit rþ → r�.
The vielbein (C25) reduces to

E0 ¼ fðdt − ωÞ; E1 ¼ −
1

f1=2

ffiffiffiffiffiffiffiffiffiffi
ξ̃

F̃ ðξ̃Þ

s
dξ̃;

E2 ¼ 1

f1=2

ffiffiffiffiffiffiffiffiffiffi
F̃ ðξ̃Þ
ξ̃

s
ðdΦ̃þ ηdΨ̃Þ;

E3 ¼ −
1

f1=2

ffiffiffiffiffiffiffiffiffi
ξ̃

G̃ðηÞ

s
dη; E4 ¼ −

1

f1=2

ffiffiffiffiffiffiffiffiffiffiffi
G̃ðηÞξ̃

q
dΨ̃:

ðC41Þ

In these coordinates the black hole solution reads

ds2 ¼ −f2ðdt − ωÞ2 þ 1

f

�
ξ̃

F̃
dξ̃2 þ F̃

ξ̃
ðdΦ̃þ ηdΨ̃Þ2

þ ξ̃

�
dη2

1 − η2
þ ð1 − η2ÞdΨ̃2

��
;

A ¼
�
3

2
ð1 − fÞ − α

�
dt −

3a2ð1þ m̃Þf
8ð1 − aÞ2ξ̃ ðdΦ̃þ ηdΨ̃Þ:

ðC42Þ

In this case, using vielbein indices, the nonvanishing
components of the field strength are F01, F12, F34 and
their antisymmetrizations.
One can check that the following spinor solves the

Killing spinor equation (C31):

ϵ ¼ exp

�
i
2
½ð3 − 2αÞtþ Φ̃�

� ffiffiffi
f

p
ϵ0; ðC43Þ

where ϵ0 is a constant spinor that satisfies the same
projections as in (C32).

2. Ten-dimensional type IIB supergravity

In order to discuss D3-brane embeddings, we need to
uplift the black hole solutions to 10D type IIB supergravity
on AdS5 × S5 [90,95]. It turns out that 5D minimal gauged
supergravity can be consistently embedded into AdS5 ×
SE5 for any Sasaki-Einstein 5-manifold SE5 [96]. This
general point of view is particularly useful when discussing
supersymmetry, so let us review it here.
The bosonic action of 10D type IIB supergravity

restricted to the metric GMN and the 5-form flux Fð5Þ (this
is a consistent truncation) is

SIIB ¼ 1

2κ210

Z
d10x

ffiffiffiffiffiffiffi
−G

p �
R10d −

1

480
FM1…M5

FM1…M5

�
;

ðC44Þ

supplemented by the self-duality condition Fð5Þ ¼ �Fð5Þ.
We reduce it on a Sasaki-Einstein manifold SE5, which in
general can be locally written as a Uð1Þ fibration over a
Kähler Einstein base B. We consider the ansatz:

ds210¼ ds25þds2ðBÞþðe9Þ2; e9 ¼ 1

3
ðdψ sþAþ2AÞ

Fð5Þ ¼ ð1þ�ÞGð5Þ; Gð5Þ ¼−4ϵð5Þ þ
2

3
J∧ �5F: ðC45Þ

Here B is a Kähler-Einstein 4-manifold, normalized such
that RKE ¼ 24 is its scalar curvature, with Kähler form J (so
that 1

2
J ∧ J ¼ dvolB is the volume form), and A is a

specific Uð1Þ connection on B with dA ¼ 6J. The result-
ing Sasaki-Einstein space has RSE ¼ 20. Then ds25 is the 5D
spacetime metric, ϵð5Þ is its volume form, �5 is the 5D
Hodge dual operator, A is the 5D graviphoton field, and
F ¼ dA is its field strength. Using

�Gð5Þ ¼ 2J ∧ J ∧ e9 −
2

3
F ∧ J ∧ e9; ðC46Þ

the Bianchi identity for Fð5Þ gives the 5D equation of
motion:

d �5 F ¼ 2

3
F ∧ F: ðC47Þ

The full expression for Fð5Þ, and a possible choice of
potential such that Fð5Þ ¼ dCð4Þ, are

Fð5Þ ¼ −4ϵð5Þ þ 2J ∧ J ∧ e9 −
2

3
F ∧ J ∧ e9 þ 2

3
J ∧ �5F;

Cð4Þ ¼ −4βð4Þ þ
1

9
Ã ∧ ½ð3J − FÞ ∧ e9 þ �5F�: ðC48Þ

Here βð4Þ is a 4-form such that ϵð5Þ ¼ dβð4Þ, while Ã is any

connection on the Kähler-Einstein base B such that dÃ ¼
6J (we could for instance choose A, but not necessarily).
Einstein’s equations give the 5D equation of motion

Rμν ¼ −4gμν þ
2

3
FμρFν

ρ −
1

9
gμνFρλFρλ: ðC49Þ

In turn, Eqs. (C47) and (C49) follow from the (bosonic part
of the) 5D supergravity action (C1).
One can similarly reduce the supersymmetry condition

from 10D to 5D [96]. Restricting to the metric and the 5-
form flux, the 10D dilatino variation vanishes automatically
while the gravitino variation reads

δεψM ¼ ∇Mεþ
i

16 · 5!
FP1…P5

ΓP1…P5ΓMε; ðC50Þ
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where ε is the 10D spinor. We decompose the 10D gamma
matrices as

ΓM ¼ fγμ ⊗ 1 ⊗ σ1; 1 ⊗ γ̂a ⊗ σ2g; ðC51Þ

where the index a ¼ 5, 6, 7, 8, 9 runs over the directions of
the Sasaki-Einstein 5-manifold, and in particular a ¼ 5, 6,
7, 8 runs over the directions of the Kähler-Einstein base B,
while σ1;2 are Pauli matrices. We take

γ01234 ¼ −i; γ̂56789 ¼ 1; Γ11 ≡ Γ0 � � �Γ9 ¼ 1⊗ 1⊗ σ3:

ðC52Þ

The 10D chiral spinor ε of type IIB supergravity satisfies
Γ11ε ¼ −ε (compatibly with our definition of �), in other
words σ3ε ¼ −ε. We thus decompose

ε ¼ ϵ ⊗ χ ⊗
�
0

1

�
: ðC53Þ

We assume we are using a vielbein that “diagonalizes” the
Kähler form of B, namely, such that J ¼ e56 þ e78. This
leads to the relations

FM1…M5
ΓM1…M5Γμε ¼ 40i½24þ 2ðγ̂56 þ γ̂78ÞFρλγ

ρλ�γμε;
FM1…M5

ΓM1…M5Γaε ¼ 40½24þ 2ðγ̂56 þ γ̂78ÞFρλγ
ρλ�γ̂aε:

ðC54Þ

Sasaki-Einstein manifolds admit a Killing spinor χ,

�
∇̂a þ

i
2
γ̂a

�
χ ¼ 0; ðC55Þ

where ∇̂ is the covariant derivative on SE5. With our choice
of vielbein, the spinor satisfies the projectors

γ̂56χ ¼ γ̂78χ ¼ iχ; γ̂9χ ¼ −χ; ðC56Þ

which imply ∂χ=∂ψ s ¼ i
2
χ. Substituting into the 10D

gravitino variation (C50) one obtains the gravitino variation
(C31) of 5D minimal gauged supergravity.
The case of S5.—Let us specialize the discussion to the

case of the Sasaki-Einstein manifold S5, which is a globally
defined Uð1Þ fibration over CP2. We use coordinates
ðρs; θs;φs; ζs;ψ sÞ and take the following vielbein:

e5 ¼ dρs; e6 ¼ 1

4
sinð2ρsÞðdζs − cosðθsÞdφsÞ; A ¼ 3 tanðρsÞe6 − dζs;

e7 ¼ 1

2
sinðρsÞdθs; e8 ¼ 1

2
sinðρsÞ sinðθsÞdφs; e9 ¼ 1

3
ðdψ s þAþ 2AÞ: ðC57Þ

The ranges of coordinates are ρs ∈ ½0; π
2
�, θs ∈ ½0; π�,

φs ∈ ½0; 2πÞ, ζs ∈ ½0; 4πÞ, ψ s ∈ ½0; 6πÞ with the
identifications

0
B@

ψ s

ζs

φs

1
CA ≃

0
B@

ψ s þ 6π

ζs

φs

1
CA ≃

0
B@

ψ s − 2π

ζs þ 4π

φs

1
CA ≃

0
B@

ψ s − 2π

ζs − 2π

φs þ 2π

1
CA:

ðC58Þ

The coordinates ðρs; θs;φs; ζs;ψ sÞ are related to the coor-
dinates ðμa;ϕaÞ (with a ¼ 1; 2; 3) of Sec. VA by33

μ1 ¼ sinðρsÞ cosðθs=2Þ; ϕ1 ¼ ð2ψ s þ ζs − 3φsÞ=6;
μ2 ¼ sinðρsÞ sinðθs=2Þ; ϕ2 ¼ ð2ψ s þ ζs þ 3φsÞ=6;
μ3 ¼ cosðρsÞ; ϕ3 ¼ ðψ s − ζsÞ=3: ðC60Þ

One can explicitly verify that the spinor

χ ¼ e
i
2
ψ sχ0 with iγ̂56χ0 ¼ iγ̂78χ0 ¼ γ̂9χ0 ¼ −χ0;

ðC61Þ

where χ0 is a constant spinor, solves the Killing spinor
equation (C55).
Notice that A is singular along the loci θs ¼ π (which is

μ1 ¼ 0), θs ¼ 0 (which is μ2 ¼ 0), ρs ¼ π
2

(which is
μ3 ¼ 0), as well as ρs ¼ 0. Therefore it will not be well
suited to describe the 4-form potential through (C48) when
discussing the embedding of Euclidean D3-branes and their
on shell action. Instead, we will take

Ã ¼ 3 tanðρsÞe6: ðC62Þ

This is well defined for all ρs < π=2, and will lead to
smooth limits as we take ρs → π=2.

33We can also introduce complex coordinates on CP2 given by

w1 ¼
μ1
μ3

eiðϕ1−ϕ3Þ ¼ tanðρsÞeiðζs−φsÞ=2 cosðθs=2Þ;

w2 ¼
μ2
μ3

eiðϕ2−ϕ3Þ ¼ tanðρsÞeiðζsþφsÞ=2 sinðθs=2Þ; ðC59Þ

then the Kähler potential is K ¼ logð1þ jw1j2 þ jw2j2Þ while the
Kähler form is J ¼ i

2
∂∂̄K.
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Combining the five-dimensional analysis in space-
time with the one in the internal manifold, we conclude
that for the 10D uplift of complex supersymmetric (but
not necessarily extremal) black hole solutions with two
angular momenta, using the frames (C25) and (C57)
with the gauge field (C30), the Killing spinor ε takes the
form

ε ¼ exp

�
i
2

�
ð3 − 2αÞt − 4ð1 − a2Þ

ða2 − b2Þm̃ ðΦ −ΨÞ

−
4ð1 − b2Þ
ða2 − b2Þm̃ ðΦþΨÞ þ ψ s

�� ffiffiffi
f

p
ε0; ðC63Þ

where ε0 is a constant spinor, moreover

Γ09ε ¼ ε; Γ12ε ¼ −iε; Γ34ε ¼ Γ56ε ¼ Γ78ε ¼ iε;

ðC64Þ

and obviously the same projections hold for ε0. In the case
of black hole solutions with two equal angular momenta,
using the frames (C41) and (C57) with gauge field (C42),
the 10D Killing spinor takes the form

ε ¼ exp

�
i
2
½ð3 − 2αÞtþ Φ̃þ ψ s�

� ffiffiffi
f

p
ε0; ðC65Þ

with exactly the same projections as above.

3. D3-brane embeddings

Let us discuss various types of supersymmetric embed-
dings of D3-branes in the black hole geometries, and
their on shell actions. Let σ0;1;2;3 be world volume coor-
dinates on the D3-brane, and XμðσÞ the embedding.
The supersymmetry (or κ-symmetry) condition, in

the absence of world volume flux on the D3-branes, is
[97–100]

Θε ¼ ∓iε; ðC66Þ

where

Θ ¼ 1

4!

ϵα1…α4ffiffiffiffiffiffi
−h

p ∂Xμ1

∂σα1 …
∂Xμ4

∂σα4 e
M1

μ1…eM4
μ4ΓM1…M4

: ðC67Þ

Here α ¼ 0;…; 3 are world volume spacetime indices on
the brane, μ ¼ ft;…;ψ sg are spacetime indices in 10D,
while M ¼ 0;…; 9 are vielbein indices in 10D. We take
ϵ0123 ¼ 1, then ∓ in (C66) correspond to brane/antibrane
depending on conventions and world volume orientation.
Finally

hα1α2 ¼
∂Xμ1

∂σα1
∂Xμ2

∂σα2 Gμ1μ2 ðC68Þ

is the induced metric on the D3-brane, while h ¼ detðhαβÞ.
Notice that the supersymmetry condition (C66)–(C67) is

valid for standard Lorentzian embeddings, as well as for
Euclidean embeddings upon analytic continuation. On the
other hand, once we discuss Euclidean embeddings, the
Wick rotation t → −itE of the background metric does not
affect the D3-branes and their supersymmetry because they
do not wrap the time coordinate.

a. Equal angular momenta

Consider first the case, discussed in the main text, of
complex supersymmetric black hole solutions with two
equal angular momenta, namely, with a ¼ b. Working with
the orthotoric coordinates of Sec. C 1 c in spacetime and the
coordinates of (C57) on S5, we consider the embedding

t ¼ const; ξ̃ ¼ const; η ¼ −1; Φ̃ ¼ const − σ0; Ψ̃ ¼ σ0;

ρs ¼ σ1; θs ¼ const; φs ¼ const; ζs ¼ σ2; ψ s ¼ σ3: ðC69Þ

This is a Euclidean D3-brane wrapping a spatial S1 in AdS5 (so far at generic radial position ξ̃ and at θ ¼ π=2) as well as a
maximal S3 ⊂ S5 located at z1=z2 ¼ constant in complex coordinates. We compute

ffiffiffiffiffiffi
−h

p
¼ i

sinð2ρsÞ
6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F̃

fξ̃
− f2ω2

Φ̃

s
; Θ ¼ iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F̃
fξ̃
− f2ω2

Φ̃

q
"
fωΦ̃Γ0569 þ

ffiffiffiffiffi
F̃

fξ̃

s
Γ2569

#
: ðC70Þ

Here ωΦ̃ is the component of the 1-form ω in (C38) along dΦ̃. We see that, in general, this is not a supersymmetric
embedding. However at the horizon, located at ξ̃ ¼ ξ̃þ, we have F̃ ðξ̃þÞ ¼ 0. Choosing the sign of the square root in such a
way to match the analytic continuation of the Lorentzian expression (5.13), we find

ffiffiffiffiffiffi
−h

p
¼ � sinð2ρsÞfωΦ̃

6
and Θ ¼ ∓Γ0569 ðC71Þ
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for an embedding at the horizon, where the upper/lower
signs refer to the first/second branch of supersymmetric
solutions. Using the projectors (C64) we obtain Θε ¼ ∓iε,
thus the embedding is supersymmetric when placed at the
horizon. We also see that (depending on conventions) one
branch of solutions host a supersymmetric brane while the
other one a supersymmetric antibrane.
The embeddings we just described wrap a particular

family of S3s inside S5. However, recall that the uplift of 5D

minimal gauged supergravity into 10D type IIB on S5

breaks SOð6ÞR ≅ SUð4ÞR → Uð1ÞR × SUð3Þ and is invari-
ant under SUð3Þ. Therefore, there is a more general class of
embeddings in which the S3 ⊂ S5 is given by the linear
complex equation az1 þ bz2 þ cz3 ¼ 0 inside jz1j2 þ
jz2j2 þ jz3j2 ¼ 1 [101].
For instance, let us exhibit the embedding at μ3 ¼ 0 (and

at the horizon). This corresponds to

t ¼ const; ξ̃ ¼ ξ̃þ; η ¼ −1; Φ̃ ¼ const − σ0; Ψ̃ ¼ σ0;

ρs ¼
π

2
; θs ¼ σ1; φs ¼ σ2; ζs ¼ σ3; ψ s ¼ σ3: ðC72Þ

With a little bit of algebra one finds

ffiffiffiffiffiffi
−h

p
¼ � sinðθsÞfωΦ̃

4
and Θ ¼ ∓Γ0789: ðC73Þ

Using the projectors (C64) we obtain Θε ¼ ∓iε, thus the
embedding is supersymmetric.
On shell action.—Let us determine the on shell action

for the Euclidean embedding (C72). Using the change of
coordinates (C35) as well as the identifications (4.10) and
(C58), we conclude that σ0 has period 2π, σ1 has range π,
σ2 has (twisted) period 2π, while σ3 has period 4π. The
D3-brane action (5.9) in our conventions reads

SD3 ¼ −
N
2π2

Z
ðd4σ

ffiffiffiffiffiffi
−h

p ∓ P½Cð4Þ�Þ; ðC74Þ

where P½Cð4Þ� is the pull back of Cð4Þ to the brane world
volume, while the ∓ sign refers to branes/antibranes.
Using the horizon location ξ̃þ on the first branch, given

in (C39), one finds the values of the functions

fωΦ̃jξ¼ξ̃þ ¼ ða − irþÞðr2� þ irþÞ
2ð1 − a2Þðaþ irþÞ

; ðC75Þ

as well as

L≡ a2ð1þ m̃Þf
2ð1 − aÞ2ξ̃

����
ξ¼ξþ

¼ −
að1 − irþÞða − irþÞ
ð1 − a2Þðaþ irþÞ

; ðC76Þ

which equals − 4
3
AΦ̃ and appears in the connection (C42).

Given the integration ranges, we obtain the integral of the
metric part:

Z
d4σ

ffiffiffiffiffiffi
−h

p
¼ 16π3

Z
sinðθsÞ

4
fωΦ̃

����
ξ̃þ

dθs ¼ 4π3
ð2aþ a2 þ irþÞða − irþÞ

ð1 − a2Þðaþ irþÞ
: ðC77Þ

Let us now move to the 4-form potential. Using (C48), the only term that contributes to the pull back is 2
9
Ã ∧ J ∧ A.

We compute Z
P½Cð4Þ� ¼ −

L
8

Z
sinðσ1Þdσ0 ∧ dσ1 ∧ dσ2 ∧ dσ3 ¼ 4π3

að1 − irþÞða − irþÞ
ð1 − a2Þðaþ irþÞ

: ðC78Þ

Summing the two contributions using the upper minus sign
in (C74), we obtain

SD3 ¼ 2πN
a − irþ
a − 1

¼ 2πN
Δg

τg
ðC79Þ

as in Sec. V B, where in the second equality we used the
values (4.27) of the chemical potentials. Recall that this
result is obtained on the first branch.

To obtain the on shell action on the second branch, we
should send i → −i in the expression of q and then of ξ̃þ
and the formulas that follow. According to (C73), we
should also choose the lower sign in the expression of

ffiffiffiffiffiffi
−h

p
in order to match the analytic continuation of the
Lorentzian expression. Moreover, we should take the lower
plus sign in (C74) because antibranes are supersymmetric
on the second branch, as follows from the κ-symmetry
operator in (C73). Taking all of this into account, we obtain
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SD3 ¼ −2πN
aþ irþ
a − 1

¼ −2πN
Δg

τg
ðC80Þ

on the second branch.

b. Generic angular momenta

The discussion in the general case is similar to the
previous one and the one in Sec. V B. We consider a
Euclidean D3-brane located at the black hole horizon
r ¼ rþ, wrapping the spatial S1 in AdS5 along ϕ at
θ ¼ π

2
, as well as the maximal S3 ⊂ S5 located at μ3 ¼ 0

(which is z3 ¼ 0 in complex coordinates). By the same
argument that lead to (5.13), by evaluating the metric
component gϕϕ in generic black hole solutions (C2) one
concludes that

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgD3Þ

p
¼ −4π3i

ðr2þ þ a2Þðr2þ þ b2Þ þ abq
rþðr2þ þ b2Þð1 − a2Þ :

ðC81Þ

The sign of the square root has been chosen in such a way
that in the background of real and causally well-behaved
Lorentzian black holes, the contribution to expðiSD3Þ is
bounded in absolute value. We will use this expression to
analytically continue the square root to complex metrics.
In order to discuss supersymmetry of the embedding, it is

better to use the orthotoric coordinates of Sec. C 1 b in
spacetime and the coordinates of (C57) on S5. We thus
consider the embedding

t¼ const; ξ¼ ξþ; η¼−1; Φ¼ const−σ0; Ψ¼σ0;

ρs¼
π

2
; θs¼σ1; φs¼σ2; ζs¼σ3; ψ s¼σ3: ðC82Þ

Given the value of q in (C15), the location of the horizon in
orthotoric coordinates is

ξþ ¼ irþðaþ bþ 2Þ − a − a2 − b − b2

ða − bÞð1þ aþ b − irþÞ
ðC83Þ

on the first branch, while the value on the second branch is
obtained by sending i → −i. One then derives the follow-
ing useful identities:

F ðξþÞ ¼ 0; Gð�1Þ ¼ 0;

ωΦ − ωΨjη¼1 ¼ 0; ωΦ þ ωΨjη¼−1 ¼ 0: ðC84Þ

With them, one computes

ffiffiffiffiffiffi
−h

p
¼ � sinðθsÞfðωΦ − ωΨÞ

8
; Θ ¼ ∓Γ0789: ðC85Þ

In the first formula, the sign of the square root has been
chosen in such a way to match34 the analytic continuation
of (C81), leading to the� sign that refers to the first/second
branch of solutions. The second formula implies
Θε ¼ ∓iε, showing that the embedding is supersymmetric.
It also implies that branes with opposite charge are super-
symmetric on the two branches.
Computing the on shell action is easier in the original

coordinates of (C2) and for generic (not necessarily super-
symmetric) black hole backgrounds. We already computed
the Dirac-Born-Infeld part in (C81). The Wess-Zumino part
immediately follows from 1

3

R
S1 A. The full D3-brane on

shell action is

SϕD3 ¼ −
N
2π2

�
−4π3i

ðr2þ þ a2Þðr2þ þ b2Þ þ abq
rþðr2þ þ b2Þð1 − a2Þ

� 4π3
qa

ðr2þ þ b2Þð1 − a2Þ
�
; ðC86Þ

where the � sign refers to branes/antibranes. Substituting
the supersymmetric value of q on the two branches, and
considering branes (þ sign) on the first branch and
antibranes (− sign) on the second branch, we obtain

SϕD3 ¼ 2πN
a − irþ
a − 1

ð1st branchÞ;

SϕD3 ¼ −2πN
aþ irþ
a − 1

ð2nd branchÞ: ðC87Þ

These formulas reproduce the expressions in (5.16) and
(5.17), in the case that Δg;a ≡ Δg.
Next, consider a Euclidean D3-brane located at the black

hole horizon r ¼ rþ, wrapping the spatial S1 in AdS5 along
ψ at θ ¼ 0, as well as the S3 at μ3 ¼ 0. By evaluating the
metric component gψψ in generic black hole solutions (C2)
one concludes that

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgD3Þ

p
¼ −4π3i

ðr2þ þ a2Þðr2þ þ b2Þ þ abq
rþðr2þ þ a2Þð1 − b2Þ :

ðC88Þ

We will use this expression to perform analytic continu-
ations. In orthotoric coordinates, the embedding reads

34Notice that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgD3Þ

p
and

ffiffiffiffiffiffi
−h

p
are computed in different

coordinates. In order to compare them, one should include the
factor m̃ðb2 − a2Þ=8ð1 − a2Þ from the Jacobian of the coordinate
change from σ0 to ϕ.
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t¼ const; ξ¼ ξþ; η¼ 1; Φ¼ constþσ0; Ψ¼ σ0;

ρs¼
π

2
; θs¼ σ1; φs¼ σ2; ζs¼ σ3; ψ s¼ σ3:

ðC89Þ

One computes35

ffiffiffiffiffiffi
−h

p
¼ ∓ sinðθsÞfðωΦ þ ωΨÞ

8
; Θ ¼ ∓Γ0789: ðC90Þ

This implies Θε ¼ ∓iε, showing that the embedding is
supersymmetric.
Finally, we compute the D3-brane on shell action on

generic black hole backgrounds:

SψD3 ¼ −
N
2π2

�
−4π3i

ðr2þ þ a2Þðr2þ þ b2Þ þ abq
rþðr2þ þ a2Þð1 − b2Þ

� 4π3
qb

ðr2þ þ a2Þð1 − b2Þ
�
: ðC91Þ

Substituting the value (C15) of q on the two branches, and
choosing the upper/lower sign for branes/antibranes on the
first/second branch, we obtain

SψD3 ¼ 2πN
b − irþ
b − 1

ð1st branchÞ;

SψD3 ¼ −2πN
bþ irþ
b − 1

ð2nd branchÞ; ðC92Þ

which reproduce the expressions in (5.16) and (5.17).

c. More supersymmetric D3-branes

It turns out that there exists another class of Euclidean
supersymmetric D3-branes, located at the black hole
horizon, wrapping the full spatial S3 in AdS5 as well as
a maximal S1 ⊂ S5 (say at μ2 ¼ μ3 ¼ 0 for definiteness).
Considering the case of generic angular momenta (C2), one
finds

Z
D3

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgD3Þ

p
¼ −4π3i

ðr2þ þ a2Þðr2þ þ b2Þ þ abq
rþð1 − a2Þð1 − b2Þ ;

ðC93Þ

where the sign has been chosen so as to give a contribution
bounded in absolute value to the path-integral measure eiSD3
on real Lorentzian black hole backgrounds.
In order to compute the contribution from the Wess-

Zumino (WZ) term, we use the local expression (C5) for
�5F − 2

3
A ∧ F ¼ dαð2Þ. Using (C48), the only term in Cð4Þ

that contributes to the WZ term is 1
9
Ã ∧ ð�5F − 2

3
A ∧ FÞ.

The integral of the spacetime part is simply

Z
S3
dαð2Þ ¼ 4π2

3q
2ΞaΞb

: ðC94Þ

The integral of Ã along S1 should be computed carefully,
taking into account the possible gluing of patches. One
obtains

R
Ã ¼ 6π.

Combining the two contributions, we obtain

SD3 ¼ −
N
2π2

�
−4π3i

ðr2þ þ a2Þðr2þ þ b2Þ þ abq
rþð1 − a2Þð1 − b2Þ

∓ 4π3
q

ð1 − a2Þð1 − b2Þ
�
: ðC95Þ

On the first branch, where q ¼ −ða − irþÞðb − irþÞ×
ð1 − irþÞ, and choosing the upper minus sign for anti-
D3-branes, we obtain

SD3 ¼ −2πN
ða − irþÞðb − irþÞ
ða − 1Þðb − 1Þ ¼ −2πN

Δ2
g

σgτg

ð1st branchÞ: ðC96Þ

On the second branch, choosing the lower plus sign for D3-
branes, we obtain

SD3 ¼ 2πN
ðaþ irþÞðbþ irþÞ
ða − 1Þðb − 1Þ ¼ 2πN

Δ2
g

σgτg

ð2nd branchÞ: ðC97Þ

Let us also check that the embeddings are supersym-
metric. In terms of the orthotoric coordinates of Sec. C 1 b,
the embedding reads

t¼ const; ξ¼ ξþ; η¼ σ0; Φ¼ σ1; Ψ¼ σ2;

ρs ¼
π

2
; θs ¼ 0; φs ¼ −σ3; ζs ¼ σ3; ψ s ¼ σ3:

ðC98Þ

One computes

ffiffiffi
h

p
¼ �ðξþωΦ − ωΨÞ; Θ ¼ �Γ0349; ðC99Þ

where the sign of the square root has been chosen in
such a way to match the analytic continuation of (C93)
to the first/second branch of supersymmetric solutions.
The second formula implies Θε ¼ �iε, implying that
Euclidean anti-D3-branes are supersymmetric on the first
branch while D3-branes are supersymmetric on the
second branch.

35This time the Jacobian factor of the coordinate change from
σ0 to ψ is m̃ða2 − b2Þ=8ð1 − b2Þ.
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APPENDIX D: SOLUTIONS WITH THREE ELECTRIC CHARGES

In this Appendix we generalize the solution described in the main text to the case of three differentUð1Þ charges, but with
equal angular momenta. There are known nonsupersymmetric asymptotically locally AdS5 black hole solutions with three
different Uð1Þ charges and equal angular momenta [102] (see also [69,103]).36 They are classical solutions to the Uð1Þ3 5D
gauged supergravity action (which is a consistent truncation of 10D type IIB supergravity on S5)

S5D ¼ 1

16π

Z ��
Rþ 4

X3
I¼1

ðXIÞ−1 − 1

2
∂χ⃗2
�
� 1 − 1

2

X3
I¼1

ðXIÞ−2FI ∧ �FI −
1

6
jϵIJKjAI ∧ FJ ∧ FK

�
; ðD1Þ

where AI (with I ¼ 1, 2, 3) are Abelian gauge fields, FI ¼ dAI are their field strengths, χ⃗ ¼ ðχ1; χ2Þ are real scalar fields,
X1 ¼ exp ð− 1ffiffi

6
p χ1 − 1ffiffi

2
p χ2Þ, X2 ¼ exp ð− 1ffiffi

6
p χ1 þ 1ffiffi

2
p χ2Þ, X3 ¼ exp ð 2ffiffi

6
p χ1Þ such that X1X2X3 ¼ 1.

The solutions relevant to us are

ds25 ¼ ðH1H2H3Þ13
�
−
r2Y
f1

dt2 þ r4

Y
dr2 þ r2

4
ðσ21 þ σ22Þ þ

f1
4r4H1H2H3

�
σ3 −

2f2
f1

dt
�

2
�
;

XI ¼ ðH1H2H3Þ13
HI

;

AI ¼
�

2m
r2HI

sIcI − αI

�
dtþ ma

r2HI
ðcIsJsK − sIcJcKÞσ3 ≡ AI

tdtþ AI
ψσ3; ðD2Þ

where the σi are left-invariant 1-forms on a 3-sphere S3 parametrized by ðθ;ϕ;ψÞ37:

σ1 þ iσ2 ¼ e−iðϕþψÞð2dθ þ i sinð2θÞðdψ − dϕÞÞ; σ3 ¼ 2ðcos2ðθÞdψ þ sin2ðθÞdϕÞ; ðD3Þ

while in the definition of AI we took I, J, K all differently. The coefficients are radial functions:

HI ¼ 1þ 2ms2I
r2

;

f1 ¼ r6H1H2H3 þ 2ma2r2 þ 4m2a2½2ðc1c2c3 − s1s2s3Þs1s2s3 − s21s
2
2 − s22s

2
3 − s23s

2
1�;

f2 ¼ 2maðc1c2c3 − s1s2s3Þr2 þ 4m2as1s2s3;

f3 ¼ f1 − r6H1H2H3 þ 2ma2; ðD4Þ

and

sI ¼ sinhðδIÞ; cI ¼ coshðδIÞ; I ¼ 1; 2; 3: ðD5Þ

The solution therefore depends on five parameters38:m, a, δ1, δ2, δ3. Once again, rþ is the largest root of Y. A useful way to
relate it to m is by a change of coordinates to

R2 ¼ r2 þ 2ms21: ðD6Þ

Now Y becomes quadratic inm, and the relation betweenm and Rþ can be easily solved to produce a lengthy expression for
m in terms of Rþ that will be omitted here. It requires a branch choice for a square root, and this choice determines whether
we will be in the first or second branch.
To the horizon at r ¼ rþ we can associate entropy S, inverse temperature β, angular velocity relative to a nonrotating

frame at infinity Ω, and electrostatic potentials ΦI:

36The general black hole solutions with six independent charges—mass, two angular momenta, and three electric charges—have been
constructed in [104].

37We choose angular coordinates that agree with the body of the paper. They can be related to those of [69] by θthere ¼ 2θhere
and ϕthere ¼ ψhere − ϕhere, ψ there ¼ ψhere þ ϕhere.

38Despite their similar names, they are not identical to those of the single-charge case of Sec. IV when the charges are equal.
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S ¼ π2

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðrþÞ

p
; β ¼ 4πrþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðrþÞ

p �
dY
dr

����
r¼rþ

�
−1
;

Ω ¼ f2ðrþÞ
f1ðrþÞ

;

ΦI ¼ m
r2þHIðrþÞ

ð2sIcI þ 2aΩðcIsJsK − sIcJcKÞÞ: ðD7Þ

The energy E, angular momentum J, and electric charges
QI are

E ¼ E0 þ
1

4
mπð3þ a2 þ 2s1 þ 2s2 þ 2s3Þ;

QI ¼
1

2
mπsIcI;

J ¼ 1

2
maπðc1c2c3 − s1s2s3Þ; ðD8Þ

where E0 ¼ 3π
32

is the energy of empty AdS5 using holo-
graphic renormalization [69].
The solution can be rotated to Euclidean signature where

regularity determines the global identification

ðtE;ψ ;ϕÞ ≅ ðtE þ β;ψ − iΩβ;ϕ − iΩβÞ; ðD9Þ

and the gauge fixing to be αI ¼ ΦI , and thus the gauge
fields on the boundary are

AIjbdry ¼ iΦIdtE: ðD10Þ

The boundary metric is again that of S1 × S3, and Ω
appears only through the identification of coordinates.

Again, we can shift Ω or ΦI by 2πi=β to find new solutions
with the same boundary conditions.
The solution is supersymmetric if

a ¼ e−δ1−δ2−δ3 ¼
Y

I¼1;2;3

ðcI − sIÞ; ðD11Þ

and in that case we can define chemical potentials as the
deviation from their BPS values [69]

τg ¼
β

2πi
ðΩ − 1Þ; Δg;a ¼

β

2πi
ðΦa − 1Þ: ðD12Þ

One finds that they satisfy the constraint

2τg − Δg;1 − Δg;2 − Δg;3 ¼ �1 ð1st=2nd branchÞ:
ðD13Þ

Let us embed this black hole into a solution of 10D type
IIB supergravity, and ask what would be the contribution of
wrapped D3-branes similar to the ones considered before.
The uplift of this solution to 10D using [90] has the metric

ds210 ¼ Λ̃1=2ds25 þ Λ̃−1=2
X3
I¼1

ðXIÞ−1ðdμ2I þ μ2I ðdϕI þ AIÞ2Þ;

ðD14Þ

where Λ̃ ¼P3
I¼1 X

Iμ2I and ϕ1;2;3, μ1;2;3 (with
P

3
I¼1 μ

2
I ¼ 1)

are a parametrization of S5 as the phases and magnitudes of
three complex numbers μIeiϕI on the unit sphere in C3. Its
vielbeins are

e0 ¼ Λ̃1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH1H2H3Þ1=3r2Y

f1

s
dt; e1 ¼ Λ̃1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH1H2H3Þ1=3r4

Y

s
dr;

e2 ¼ Λ̃1=4 ðH1H2H3Þ1=6r
2

σ1; e3 ¼ Λ̃1=4 ðH1H2H3Þ1=6r
2

σ2;

e4 ¼ Λ̃1=4 ffiffiffiffiffi
f1

p
2ðH1H2H3Þ1=3r2

�
σ3 −

2f2
f1

dt

�
; e5 ¼ μ1

Λ̃1=4
ffiffiffiffiffiffi
X1

p ðdϕ1 þ A1Þ;

e6 ¼ μ2

Λ̃1=4
ffiffiffiffiffiffi
X2

p ðdϕ2 þ A2Þ; e7 ¼ μ3

Λ̃1=4
ffiffiffiffiffiffi
X3

p ðdϕ3 þ A3Þ; ðD15Þ

e8 ¼ Λ̃−1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3μ23 þ X1μ21

μ23X
1X3

s �
dμ1 þ

μ1μ2X1

X3μ23 þ X1μ21
dμ2

�
;

e9 ¼ Λ̃−1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX3μ23 þ X2μ22ÞðX3μ23 þ X1μ21Þ − μ21μ

2
2X

1X2

μ23X
3X2ðX3μ23 þ X1μ21Þ

s
dμ2: ðD16Þ
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When μ1 ¼ 0, the last two simplify to

e8 ¼ dμ1
Λ̃1=4

ffiffiffiffiffiffi
X1

p ; e9 ¼ Λ̃−1=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3μ23 þ X2μ22

μ23X
3X2

s
dμ2: ðD17Þ

There is also a self-dual 5-form flux Fð5Þ ¼ Gð5Þ þ �Gð5Þ in the ten-dimensional solution, which is given by39

Gð5Þ ¼
X3
I¼1

�
2XIðXIμ2I − Λ̃Þϵð5Þ þ

1

2ðXIÞ2 dðμ
2
I Þ ∧ ððdϕI þ AIÞ ∧ �5FI þ XI �5 dXIÞ

�
; ðD18Þ

where ϵð5Þ the volume form of the original 5D metric, and hence

�Gð5Þ ¼
X3
I¼1

�
2XIðXIμ2I − Λ̃Þ � ϵð5Þ −

Λ̃−2

2XI dX
I ∧ �̃5dðμ2I Þ þ

Λ̃−1=4

2ðXIÞ2 �̃5ðdðμ
2
I Þ ∧ ðdϕI þ AIÞÞ ∧ FI

�
; ðD19Þ

where �̃5 is the Hodge dual with respect to the metric on S5. At μ1 ¼ 0 the third term in �Gð5Þ simplifies to
dðμ22Þ ∧ ðdϕ2 þ A2Þ ∧ ðdϕ3 þ A3Þ ∧ F1, implying

Cð4Þ ¼
1

2
dðμ22Þ ∧ ðdϕ2 þ A2Þ ∧ ðdϕ3 þ A3Þ ∧ A1 þ other terms: ðD20Þ

Let us now consider the action of a D3-brane at r ¼ rþ, θ ¼ π
2
, μ1 ¼ 0, along the ϕ direction. We assume that the term

discussed above is the only one contributing to the brane action via the termZ
D3

P½Cð4Þ� ¼
Z
S3
μ2dμ2 ∧ dϕ2 ∧ dϕ3

Z
S1
A1
ϕσ3 ¼ 8π3

ma
r2þH1ðrþÞ

ðc1s2s3 − s1c2c3Þ: ðD21Þ

The contribution of the tension of the brane is proportional to
R
D3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgD3Þ

p
. The determinant of the induced metric is

detðgD3Þ ¼ gμ2μ2ðgϕϕgϕ2ϕ2
gϕ3ϕ3

− g2ϕϕ2
gϕ3ϕ3

− g2ϕϕ3
gϕ2ϕ2

Þ: ðD22Þ
Using

gϕϕ ¼ Λ̃1=2f1
r4ðH1H2H3Þ2=3

þ
X3
I¼1

μ2I ðAI
ϕÞ2

Λ̃1=2XI
; gϕϕ2

¼ μ22A
2
ϕ

Λ̃1=2X2
; gϕϕ3

¼ μ23A
3
ϕ

Λ̃1=2X3
;

gμ2μ2 ¼
μ22X

2 þ μ23X
3

Λ̃1=2μ23X
2X3

; gϕ2ϕ2
¼ μ22

Λ̃1=2X2
; gϕ3ϕ3

¼ μ23
Λ̃1=2X3

; ðD23Þ

we find

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgD3Þ

p
¼ iμ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðrþÞ

p
r2þH1ðrþÞ

: ðD24Þ

Note that the off-diagonal metric terms from the mixing of ϕI and AI cancel in the determinant, regardless of the details of
the 5D solution (and thus do so also in the single-charge solution discussed in the body of the paper).
Let us begin for simplicity from the case where two of the three charges are equal, namely, Q1 ≠ Q2 ¼ Q3.

Correspondingly we take δ2 ¼ δ3. Using the radial coordinate R defined in (D6), the supersymmetry condition (D11), an
additional change of parameters w2 ¼ 1þ R2þð1 − e4ðδ1þδ2ÞÞ in order to express Rþ in terms of w, and some help from
Mathematica, we find

m ¼ −
2e2δ1þ4δ2ð1 − wÞ2ðe2ðδ1þδ2Þ − wÞ

ðe2ðδ1þδ2Þ − 1Þ2ðe2ðδ1þδ2Þ þ 1Þðe4ðδ1þδ2Þ − e4δ2ð1 − wÞ þ e2ðδ1þδ2Þð1 − wÞ − 1Þ ; ðD25Þ

39There is a typo in the formula for Gð5Þ, Eq. (2.8), in [90]. See footnote 18 in [105].
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which reproduces the first branch of (D13). The second
branch is obtained by the other possible choice of w, i.e.,
by w → −w.
In principle, we need to fix the sign of theR

D3 d
4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgD3Þ

p
like in (5.13). However, this proved

to be quite technically challenging. Instead, let us initially
consider both possible signs, one with a brane and one with
an antibrane, and determine the correct sign by comparing
to the 1-charge case.
One can now move forward to compute the action of the

brane, and find

SD3 ¼−
N
2π2

Z
D3
ðd4x�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−detðgD3Þ

p
�P½Cð4Þ�Þ;

¼∓4πN

�
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðrþÞ

p
2r2þH1ðrþÞ

þ ma
r2þH1ðrþÞ

ðc1s2s3− s1c2c3Þ
�
;

¼∓2πN
ðe4δ2 þ 1Þðw− 1Þ

e4ðδ1þδ2Þ þ e4δ2ðw− 1Þ− e2ðδ1þδ2Þðw− 1Þ− 1
;

¼∓2πN
Φ1− 1

Ω− 1
¼∓2πN

Δg;1

τg
: ðD26Þ

This agrees with the general expectations described in the
main text for a D3-brane and a specific choice of branch for
the tension term.
A similar computation can be made for a D3-brane

located along μ2 ¼ 0, instead of μ1 ¼ 0 (but still keeping
the same two charges Q2 ¼ Q3). The relevant term in
Cð4Þ is

Cð4Þ ¼
1

2
dðμ21Þ ∧ ðdϕ1 þ A1Þ ∧ ðdϕ3 þ A3Þ ∧ A2

þ other terms; ðD27Þ

while the contribution of the induced metric is now
(choosing a branch for the square root as before)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgD3Þ

p
¼ −

iμ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðrþÞ

p
r2þH2ðrþÞ

: ðD28Þ

Using the same change of coordinates and some more help
from Mathematica, one finds the action of this brane to be

SD3 ¼ −
N
2π2

Z
D3
ðd4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgD3Þ

p
− P½Cð4Þ�Þ;

¼ 4πN

�
i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðrþÞ

p
2r2þH2ðrþÞ

þ ma
r2þH2ðrþÞ

ðc2s1s3 − s2c1c3Þ
�
;

¼ 2πN
w − 1

e2ðδ1þδ2Þ − 1
;

¼ 2πN
Φ2 − 1

Ω − 1
¼ 2πN

Δg;2

τg
: ðD29Þ

Both of these calculations agree with the one performed in
Sec. V for the case where the three charges are equal.
We have verified numerically that even when the three

charges are different, in a supersymmetric setting the action
of a brane like the ones discussed above with μI ¼ 0 has
action 2πNΔg;I=τg, as above. We have not been able to
derive this result analytically.
One can also look at another kind of wrapped D3-

brane—one that wraps an S3 ⊂ AdS5 and an S1 ⊂ S5, as
discussed for equal Uð1Þ charges in Sec. C 3 c. For
example, let us look at one located at μ1 ¼ 1, r ¼ rþ,
and wrapping θ, ϕ, ψ , ϕ1. In order to get the second to last
term in (D18) and the last term in (D19), Cð4Þ must include

Cð4Þ ¼
1

2
μ21 ∧ dϕ1 ∧

��5F1

X2
1

− A3 ∧ F2

�
þ other terms;

ðD30Þ

and the action of the brane (choosing a sign for the square
root that reproduces the single-charge solution) is

SD3 ¼ −
N
2π2

Z
D3
ðd4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgD3Þ

p
− P½Cð4Þ�Þ;

¼ −4πN
�
i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðrþÞ

p
þmc1s1

�
; ðD31Þ

which, for the two charges case δ2 ¼ δ3, results in

SD3 ¼ −2πN
ðw − 1Þ2

ðe2ðδ1þδ2Þ − 1Þ2 ;

¼ −2πN
ðΦ2 − 1ÞðΦ3 − 1Þ

ðΩ − 1Þ2 ¼ −2πN
Δg;2Δg;3

τ2g
: ðD32Þ

This is consistent with (C96) on the first branch,
when Δg;2 ¼ Δg;3.
Similarly for μ3 ¼ 1 we find

Cð4Þ ¼
1

2
μ23 ∧ dϕ3 ∧

��5F3

X2
3

− A2 ∧ F1

�
þ other terms;

ðD33Þ

with the action
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SD3 ¼ −
N
2π2

Z
D3
ðd4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgD3Þ

p
− P½Cð4Þ�Þ;

¼ −4πN
�
i
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f1ðrþÞ

p
þmc3s3

�
;

¼ −2πN
ðe4δ2 þ 1Þðw − 1Þ2

ðe2ðδ1þδ2Þ − 1Þðe4ðδ1þδ2Þ þ e4δ2ðw − 1Þ − e2ðδ1þδ2Þðw − 1Þ − 1Þ ;

¼ −2πN
ðΦ1 − 1ÞðΦ2 − 1Þ

ðΩ − 1Þ2 ¼ −2πN
Δg;1Δg;2

τ2g
; ðD34Þ

where again we assumed δ2 ¼ δ3 after the second line.
Taking into account the results in this section and in Sec. C 3 c, we make the natural conjecture that, in the general case of

three unequal charges and two unequal angular momenta, the on shell action of a supersymmetric Euclidean D3-brane
wrapping the S3 horizon at r ¼ rþ along the AdS5 coordinates and wrapping the S1 given by μa ¼ 1 inside S5, is

SD3 ¼ −2πN
Δg;bΔg;c

σgτg
ð1st branchÞ; SD3 ¼ 2πN

Δg;bΔg;c

σgτg
ð2nd branchÞ; ðD35Þ

where a, b, c are all different. We checked this claim numerically in various cases.

APPENDIX E: GIANT GRAVITONS ON BLACK HOLE BACKGROUNDS

As an aside, we can use the method of Appendix C 3 to exhibit new giant graviton and dual giant graviton solutions on
Lorentzian black hole backgrounds. These are supersymmetric Lorentzian D3-brane embeddings in the background of the
BPS (i.e., supersymmetric and extremal) black holes of minimal 5D gauged supergravity,40 and they generalize the giant
and dual giant graviton embeddings in pure AdS5 × S5 [59–61]. Giant and dual giant graviton embeddings in the near-
horizon limit of black hole solutions were found in [106,107].
Giant gravitons.—Using the orthotoric coordinates (C23) in AdS5, consider the embedding

t ¼ σ0; ξ ¼ const; η ¼ const; Φ ¼ const; Ψ ¼ const;

ρs ¼ const; θs ¼ σ1; φs ¼ σ2; ζs ¼ σ3; ψ s ¼ σ3 þ ð2α − 3Þσ0; ðE1Þ

where α is the gauge parameter appearing in the connection in (C2) and (C30), while σ0;1;2;3 are the world volume
coordinates. This is a Lorentzian D3-brane, sitting at an arbitrary position with constant coordinates (outside or at the black
hole horizon) in the spatial slices of AdS5, while wrapping a round S3 ⊂ S5 of radius sinðρsÞ and orbiting at the speed of
light along an orthogonal circle inside S5. Noticing that f ≥ 0 outside or at the horizon, we compute

ffiffiffiffiffiffi
−h

p
¼ f sinðθsÞsin4ðρsÞ

8
and Θ ¼ −Γ0789 þ cotðρsÞðΓ6789 − Γ0678Þ: ðE2Þ

Using the projectors (C64) we obtain Θε ¼ −iε, showing that the embedding is supersymmetric.
We stress that this result is valid for the full family of supersymmetric complex black hole solutions (C2) with SUSY

constraint (C12), although real Lorentzian metrics that are free of pathologies also satisfy the extremality condition m̃ ¼ 0.
Dual giant gravitons.—We were able to find dual giant graviton solutions only in the case with equal angular momenta,

i.e., with a ¼ b. Using orthotoric coordinates (C35) in AdS5, consider the embedding

t ¼ σ0; ξ̃ ¼ const; η ¼ σ1; Φ̃ ¼ σ2; Ψ̃ ¼ σ3;

ρs ¼ const; θs ¼ const; φs ¼ const; ζs ¼ const; ψ s ¼ ð2α − 3Þσ0: ðE3Þ
This is a LorentzianD3-brane, wrapping a spatialS3 inAdS5 around the black hole at arbitrary constant radius determined by ξ̃,
and orbiting at the speed of light along a maximal circle of S5. For a given choice of sign of the square root, we compute

40The supersymmetric embeddings we find are valid more generally in the complexified supersymmetric (not necessarily extremal)
black hole backgrounds and are smooth in the extremal limit.
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ffiffiffiffiffiffi
−h

p
¼
�
fωΦ̃ −

2

3
AΦ̃

�
ξ̃; Θ ¼ −Γ0349 þ

ffiffiffiffiffiffiffiffiffi
ξ̃ F̃
−hf

s
ðΓ0234 − Γ2349Þ: ðE4Þ

Using the projectors (C64) we obtainΘε ¼ −iε, showing that the embedding is supersymmetric. As before, this result is valid
for the full family of supersymmetric (not necessarily extremal) complex black hole solutions, and in particular for extremal
solutions characterized by m̃ ¼ 0. It would be interesting to generalize these supersymmetric embeddings to the case a ≠ b.
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