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The superconformal index of the N = 4 SU(N) supersymmetric Yang-Mills theory counts the 1/16-BPS
(Bogomol'nyi-Prasad-Sommerfield) states in this theory, and has been used via the AdS/CFT correspon-
dence to count black hole microstates of 1/16-BPS black holes. On one hand, this index may be related to the
Euclidean partition function of the theory on S> x S! with complex chemical potentials, which maps by the
AdS/CFT correspondence to a sum over Euclidean gravity solutions. On the other hand, the index may be
expressed as a sum over solutions to Bethe Ansatz (BA) equations. We show that the solutions to the BA
equations that are known to have a good large N limit, for the case of equal chemical potentials for the two
angular momenta, have a one-to-one mapping to (complex) Euclidean black hole solutions on the gravity
side. This mapping captures both the leading contribution from the classical gravity action (of order N?), as
well as nonperturbative corrections in 1/N, which on the gravity side are related to wrapped D3-branes.
Some of the BA solutions map to orbifolds of the standard Euclidean black hole solutions (which obey
exactly the same boundary conditions as the other solutions). A priori there are many more gravitational
solutions than Bethe Ansatz solutions, but we show that, by considering the nonperturbative effects, the

extra solutions are ruled out, leading to a precise match between the solutions on both sides.

DOI: 10.1103/PhysRevD.104.086026

I. INTRODUCTION AND SUMMARY

The AdS/CFT correspondence [1-4] maps black holes
in asymptotically anti-de Sitter (AdS) spacetimes to
coarse-grained descriptions of states in conformal field
theories (CFTs), such that the Bekenstein-Hawking entropy
of the black holes may be given a statistical mechanics
interpretation as a counting of CFT microstates. For general
nonsupersymmetric black holes we do not have good
methods to count these states in the strongly coupled
theories which map under the AdS/CFT correspondence
to weakly curved backgrounds (where the Bekenstein-
Hawking computation is valid). In the last few years,
considerable progress has been made [5-28] in perform-
ing this counting for 1/16-BPS (Bogomol’nyi-Prasad-
Sommerfield) black holes in type IIB string theory on
AdSs x S5, which map to 1/16-BPS states in the N' = 4
SU(N) supersymmetric Yang-Mills (SYM) theory on S°
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(this followed related results in other backgrounds, starting
with [29] and including [30-48]).

The counting of 1/16-BPS states is based on computing
the superconformal index [49,50], which is a sum over
these states with chemical potentials for four of the five
charges carried by the black holes [the black holes carry
three global symmetry charges R, ; ; in the Cartan algebra
of the SU(4), symmetry, and two angular momenta J , in
AdSs]. It is not possible to directly relate the index to the
number of BPS states with given charges, both because the
index is insensitive to one of the charges, and because it
counts states with a factor of (—1)F, so there can be
cancellations between bosonic and fermionic states.
Indeed, when the index was first computed in the large
N limit with real chemical potentials [50], a mismatch
was found between the value of the index and the expect-
ation from black holes. However, this discrepancy does not
arise for generic complex chemical potentials [6,7]," and
in various limits the index was successfully matched

Tt was already shown in AdS, [32] how the index with
complex chemical potentials captures the Bekenstein-Hawking
entropy of BPS black holes.
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(at leading order in the large N limit) with the expectation
from the black hole solutions.

More precisely, the superconformal index is a grand-
canonical partition function, and one would expect its
Legendre transform [51] to agree—at leading order—with
the black hole entropy. This is indeed the case if one
performs the Legendre transform with respect to the four
available chemical potentials. This was shown both directly
in the large N limit [7], as well as going through a Cardy-
like limit that retains states with charges much larger than
the central charge [6].

In this paper we do not discuss the black hole microstate
counting, but instead we aim to understand better the
interpretation (on the gravity side) of the superconformal
index as a Euclidean partition function, hoping that this
better understanding will also be useful in the future for the
microstate counting problem. In general, as we review in
Sec. 11, the superconformal index is related to the Euclidean
partition function of the theory on $° x S!, with specific
background fields related to the chemical potentials appear-
ing in the index (which can be real or complex), which
ensure that supersymmetry is preserved [52-54]. The
AdS/CFT correspondence tells us that this partition func-
tion should be described in the large N limit on the gravity
side in terms of a sum over all asymptotically AdSs x S°
solutions of type IIB string theory that satisfy appropriate
boundary conditions (related to the background fields). Up
to now, only specific solutions, which give the leading
contribution to the partition function for certain chemical
potentials, were considered; however, the full answer on the
gravity side includes all of these solutions, and also the
fluctuations around these solutions, including both pertur-
bative contributions in 1/N (from supergravity fields) and
nonperturbative contributions (from wrapped D-branes).
And moreover, different solutions dominate for different
values of the chemical potentials.

We would like to ask whether the sum over Euclidean
gravity solutions and the fluctuations around them can be
reproduced by a direct computation of the index. There are
several different methods that have been used to compute
the index in the large N limit. One is the so-called Cardy
limit [6,55-57], a sort of “high-temperature” limit taken on
the chemical potentials in which the integral expression of
the index considerably simplifies, and that can then be
easily followed by the large N limit. Another one is the
Bethe Ansatz method [7], described below. A third method
is the saddle-point approximation applied to a nonanalytic
extension of the index integral formula [15,17,24]. A fourth
method is an expansion of the index integral formula
around a complexified Gross-Witten-Wadia model [22,26].

In this paper we focus on the Bethe Ansatz method [7],
which is valid when the chemical potentials for the angular
momenta obey specific relations; we discuss in this paper
only the simplest case when this method applies, which is
for equal chemical potentials for the two angular momenta.

In this method the index is written as a sum over solutions
to Bethe Ansatz equations (BAEs) (at least when these
solutions are discrete). Some of the known solutions to
these equations give contributions which in the large N
limit resemble our expectations from the gravity side; there
is a leading term (in the logarithm of the contribution to the
partition function) of order N 2 then power-law corrections
in 1/N, and then nonperturbative corrections of order e,
This raises a natural question—can we identify the sum
over Bethe Ansatz solutions in the CFT computation of the
index, with the sum over gravitational solutions? A priori
there is no reason for such a matching of individual terms in
the sum (as opposed to the full partition function); in
particular, it has not been shown on the gravity side that the
partition function localizes to a discrete sum over solutions,
analogous to the Bethe Ansatz result. However, we will
show that there is in fact a precise matching between the
two sides.

In one direction, we show that every solution to the
Bethe Ansatz equations which is known to have a good
large N limit, may be identified with a specific Euclidean
solution on the gravity side. These solutions are either
Euclidean black holes (belonging to one of the two
branches of known supersymmetric black hole solutions),
or Z,, orbifolds of Euclidean black holes which satisfy the
same boundary conditions. The matching involves both
the leading contribution of order N? to the logarithm of the
partition function, as well as the form of the nonperturba-
tive corrections, which on the gravity side arise from
wrapped D3-branes.

In the other direction, we note that a priori there are
many more gravitational solutions with the correct boun-
dary conditions than Bethe Ansatz solutions, and that if we
naively sum over all solutions on the gravity side we obtain
divergences, since the real part of their actions is not
bounded from below. However, our supersymmetric
Euclidean solutions are all complex valued, and it is not
obvious what the rules for including such solutions in the
gravitational theory are. We use (as previous works do) a
specific prescription for evaluating the action of the
complex solutions (at leading order in 1/N) by analytic
continuation. However, it is not clear when this analytic
continuation is valid, since various poles may be encoun-
tered when one tries to explicitly continue the relevant
contours in the gravitational path integral (to the extent that
such a path integral description makes sense to begin with).
And moreover, when we analytically continue only the
leading contribution to some solution, we risk having
subleading terms become dominant over the leading ones
[for instance, a nonperturbative correction of the form
eV g negligible for real a, but becomes dominant when
Re(a?) < 0]. We suggest a specific prescription for which
solutions should be included in the path integral, namely
that solutions for which the nonperturbative contributions
from wrapped D3-branes are exponentially large (rather
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than exponentially suppressed) should not be included.
With this (reasonable but not rigorously derived) prescrip-
tion, we find a precise one-to-one match between the
solutions on both sides.

The wrapped D3-brane solutions mentioned above,
which give nonperturbative corrections on the gravity side
matching the Bethe Ansatz solutions, wrap an S8 inside the
S° and an S' in the AdSs coordinates. In addition to these,
there are also other Euclidean wrapped D3-branes that
preserve supersymmetry, which wrap an S! inside the $°
and an S3 in the AdSs coordinates. These additional D3-
branes are not related to nonperturbative terms in the Bethe
Ansatz contribution of the Hong-Liu solutions, but they
still give corrections to the gravitational partition function.
The interpretation of these corrections in the Bethe Ansatz
expansion will be discussed elsewhere [58]. In this paper,
whenever we mention wrapped D3-branes without indicat-
ing their type, we will always be referring to the first type of
D3-brane solutions.

Our analysis in this paper focuses on the Eucllidean path
integral, but along the way, we have also found new
supersymmetric Lorentzian probe D3-brane configurations
in the BPS black hole backgrounds (and complexification
thereof) that generalize the giant and dual giant graviton
configurations in AdSs [59-61]. It would be interesting to
analyze how these configurations affect the counting of
black hole microstates, and in particular if they may be
related to any multicenter black hole solutions in AdS, but
this lies beyond the scope of this work.

After reviewing the superconformal index, the parti-
tion function, and their relation in Sec. II, we review in
Sec. I1I the Bethe Ansatz method and the known solutions
(found in [33,62]), and we compute their perturbative
and nonperturbative contributions to the index in the large
N limit. In Sec. IV we review the known black hole
solutions using the consistent truncation to a 5D super-
gravity theory, and in particular the Euclidean super-
symmetric black hole solutions. We show that the action
of some of these solutions agrees (at leading order in 1/N)
with the Bethe Ansatz results, but that more solutions
exist on the gravity side. In Sec. V we lift the Euclidean
black hole solutions to 10D, and compute the nonpertur-
bative contributions to the partition function from
wrapped Euclidean D3-branes in these backgrounds. In
Sec. VI we describe the prescription mentioned above
for keeping only the solutions whose nonperturbative
corrections from wrapped D3-branes are small, and we
show that these solutions match precisely to a subclass of
the Bethe Ansatz solutions, including both the leading
term and the form of the nonperturbative corrections.
Finally, in Sec. VII we show that some specific orbifolds
of Euclidean black hole solutions also contribute to the
same Euclidean partition function (since they have the
same boundary conditions), and that the orbifold solu-
tions which satisfy our criterion precisely match with the

remaining Bethe Ansatz solutions. Appendix A contains
reference material, Appendices B-D contain details
on field theory and gravity computations, while in
Appendix E we present the new Lorentzian D3-brane
giant graviton configurations.

A. Future directions

There are many open questions left by our analysis.
Some of them are as follows:

(1) The rules of the AdS/CFT correspondence in the
presence of complex sources (such as the back-
ground metric or gauge fields) are not clear. A
commonly used method is to take results for the
classical action on the gravity side computed for real
sources, and to analytically continue them to com-
plex sources, where the result may also be inter-
preted as related to a complex gravity solution (with
complex boundary conditions related to the complex
sources). Analytic continuations of this type may be
dangerous, both because poles or other features may
be encountered when shifting the contours where the
gravitational fields are valued, and because sublead-
ing contributions for real sources may become
dominant for some complex-valued sources. In this
paper we discuss in detail an example of the latter
problem, and suggest a prescription in which only
(complex) gravitational solutions which do not have
any instabilities related to nonperturbative contribu-
tions becoming large should be included. It would be
useful to find a rigorous justification for this pre-
scription by carefully analyzing the analytic contin-
uations that are involved.

(2) Our results suggest that, as the Bethe Ansatz
prescription does on the CFT side, the gravita-
tional computation of the supersymmetric partition
function on §3 x S' may perhaps be localized to a
discrete sum over supersymmetric gravity solutions.
It would be interesting to perform such a localiza-
tion on the gravity side, at least in the supergra-
vity approximation and perhaps along the lines of
[63—65], and to see if it reproduces the results we
found in this paper.

(3) In this paper we only compared the leading ex-
ponents in the contributions of various solutions to
the path integral—both for the classical gravity
solutions (contributing to the logarithm of the
partition function at order N?) and for the non-
perturbative corrections coming from D3-branes.
From the Bethe Ansatz we can also find the
subleading contributions to the logarithm of the
partition function, of order log(N) (already consid-
ered in [21]) and of order 1, and we seem to find no
further perturbative corrections in 1/N. It would be
interesting to reproduce these corrections from one-
loop fluctuations around our gravitational solutions,
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and to confirm that higher-loop corrections are
absent on the gravity side. In the case of the D3-
branes, we can again compute on the field theory
side also the coefficients of the exponentials that we
matched, and it would be interesting to match those
with multiplicities of D3-brane solutions on the
gravity side.

(4) So far there is no classification of all solutions to
the Bethe Ansatz equations for the SU(N) N =4
SYM theories, and for finite N there are cer-
tainly additional solutions beyond the ones we
analyzed, including continuous families of solutions
[16,66,67]. It would be interesting to classify all the
solutions, and to understand whether some of the
other solutions might have an interpretation as
classical gravity solutions as well.

There are also many possible generalizations of our

analysis:

(1) We analyzed only the case of equal chemical
potentials for the two angular momenta, since in
this case the Bethe Ansatz computation of the index
is the simplest. The Bethe Ansatz computation
works whenever the ratio between the two angular
momenta is rational [20,68], but for general rational
values, extra parameters appear in the sum over
Bethe Ansatz solutions, and the number of these
parameters is of order N, so that in the large N limit
there is an exponentially large number of terms
appearing in the sum. On the other hand, on the
gravity side nothing drastic seems to change when
the chemical potentials are not equal (or even when
their ratio is not rational), though some of the details
of our analysis may be modified. This suggests
that the extra parameters should be summed over
before matching to the gravity side in order to still
have a matching between the two sides. It would be
interesting to perform these sums and to match the
Bethe Ansatz results to a sum over gravity solutions
also for other ratios of chemical potentials. Note that
it is not obvious if this should be possible or not;
even if the gravity computation localizes as men-
tioned above, it is not guaranteed that the same sum
over solutions will appear on the gravity side as on
the field theory side (only the full partition function
has to match). However, our results suggest that such
a mapping may be possible also for general ratios of
the angular momenta chemical potentials.

(2) Many of our computations, both on the field theory
side (using the Bethe Ansatz) and on the gravity
side, may be generalized to general theories with 4D
N = 1 superconformal symmetry. Indeed, the lead-
ing contributions from both sides have been matched
in some other cases [14,20]. It would be interesting
to check if also in these other cases, the full sum over
Bethe Ansatz solutions may be matched in the large

N limit to a sum over gravitational solutions, as we
found for the N' =4 SYM theories. It may also be
possible to generalize the analysis to supersymmet-
ric S9! x §! partition functions of d-dimensional
superconformal field theories in other dimensions
(perhaps starting from [44,69,70]).

(3) Nonperturbative corrections to the Euclidean parti-
tion function coming from wrapped branes, similar
to the ones we found, presumably exist for all
black hole solutions in any dimension. It would
be interesting to evaluate these contributions and,
where possible, to match them to the field theory
side.” Of course, this requires lifting these black hole
solutions—which are often found in truncations
of the gravitational theory to a lower-dimensional
theory—to 10D or 11D (depending on the case). It
would also be interesting to understand if there are
other cases where these contributions “destabilize”
some complexified solutions of the gravity equations
of motion, as we found.

Last but not least, it would be interesting to under-
stand the implications of our analysis (which is purely in
Euclidean signature) to the counting of 1/16-BPS black
hole microstates.

II. THE SPHERE PARTITION FUNCTION
AND THE INDEX

A. The sphere thermal partition function

In this paper we would like to match the partition
function of N'=4 SU(N) SYM on S x S', which is
closely related to the superconformal index, with the
gravitational partition function of its holographic dual,
type IIB string theory on a spacetime which is asymptoti-
cally AdSs x S°. We will begin in this section with the field
theory side by describing the precise relation between the
partition function and the superconformal index.

Using NV = 1 notation, the field content of the N' =4
SYM theory consists of a vector multiplet and three chiral
multiplets X, Y, Z, all in the adjoint representation of
the gauge group, with a superpotential proportional to
W = Tr(X[Y, Z]). The R symmetry is SU(4),: going to the
Cartan U(1)*, we choose a basis of generators R , 3 each
giving R charge 2 to a single chiral multiplet and zero to the
other two, in a symmetric way. In addition, local operators
(or, equivalently, states in the theory on S?) are labeled by
two angular momenta J, 5, which are half-integer, and each
rotates an R? € R* in which $? is embedded. We define the
fermion number as F = 2J;. Note that all fields in the
theory (and thus all states) have integer charges under R ; 3
and obey

2Nonperturbative corrections to the contribution to the super-
conformal index (or other supersymmetric partition functions)
coming from AdSs have been studied, e.g., in [71-73].
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F = 2.]1’2 = R1‘2’3 (mOd 2) (21)

We can add chemical potentials for each of these five
charges, and the thermal partition function of the theory on
S§? can then be expressed as a trace over the Hilbert space of
the theory as

Z — Tr(e_ﬂH+ZiﬂQi‘li+%EaﬁcbaRa)’ (2.2)

2zin
{917923¢17q)27q)3} - {Ql +71792 +

for any integers n;, n,, m;, m,, my whose sum is even.
As usual, we can think of (2.2) as a Euclidean
partition function’ on Sy x §* where the Euclidean

time direction f; has periodicity f (up to a zero-point
energy that we will discuss below). The chemical
potentials Q; and ®, can be thought of as background
holonomies (on the thermal circle) of gauge fields
coupled to the conserved currents (whose charges are
the angular momenta and the R charges). For example,
the @, are equivalent to background fields Af = é'd)a
for the gauge fields coupled to the currents of R,. In
principle, the chemical potentials in (2.2) can be real or
complex, as long as the partition function (2.2) con-
verges; the inverse temperature  can also be complex,
though then the geometrical Euclidean interpretation is
less clear.

For the chemical potentials related to the angular
momenta, the background fields in question are really
off-diagonal components of the metric; for an angular
momentum involving a shift in an angular coordinate ¢
of $3, we can think of them as 9ip components of this
metric, proportional to (iQ;). This can also be thought
of as a different complex structure for the fibration of
the Euclidean time circle over the sphere [54]. When Q
is purely imaginary, the modification in the metric is
real, while otherwise the metric becomes complex.

In this case we can also implement the chemical
potentials in a different way. Since wave functions of
states with angular momentum J have angular depend-
ence e“? on an angular variable ¢, we can alternatively
keep the original S* metric on the sphere, but we use a
different identification around the time circle,

(tg. @) ~ (tg + f. ¢ — iPQ). (2.4)

3Actually, there could be a proportionality constant Zgi, ¢ =
e CPL:.®a) 7 where Z is as in (2.2), coming from background
dependent counterterms. For our purposes this distinction can be
ignored, as explained below.

where f is the inverse temperature, H is the Hamiltonian on
S3 in the absence of background fields (related to the
operator dimension by the state/operator correspondence),
and Q; (with i=1,2) and ®, (with a =1,2,3) are
chemical potentials. The % for the R charges comes from
our convention that the J; are half-integers, while the R, are
integers. With this convention, given (2.1), the partition

function (2.2) is periodic under shifts
2ri 2ri 2ri 2ri
mnz’q)l N n;ml @+ ”;m27®3 N ﬂ;m3} (23)

which leads to the very same factor of ¢/* in the trace
(2.2). We will call this the “coordinate shift realization”
of the chemical potentials, while the previous imple-
mentation is the “metric realization.”

When Q is purely imaginary, using (2.4) is a reasonable
alternative description, equivalent to modifying the metric,
but otherwise we need to be careful in how to interpret the
identification (2.4) [together with the standard (27z) perio-
dicity of ¢]. A consistent way to implement this realization
for general complex Q is to define a new angular coordinate

¢ = ¢+ iQtg (2.5)
such that the new coordinate ¢ still has a 27 periodicity, and
it can be taken to be real (even when Q is complex), while
the other identification is simply (g, ) ~ (tg + f. ¢). This
defines the coordinate range of ¢ and #g for the “coordinate
shift realization” of the chemical potentials. Note that in
general the original coordinate ¢ of the S* is complex now
(in particular since # may also be complex, so that tg which
runs from 0 to f is also complex), but ¢ is real. The metric
in the new coordinate ¢ is generally complex. Indeed, the
metric in this new coordinate is essentially the same as the
metric in the first approach discussed above. In this
framework we know the range of the coordinates even
when Q and $ are complex, and this will be useful when we
discuss holography below.

B. The superconformal index

The superconformal index is defined for general 4D
N = 1 superconformal field theories; in the N’ =4 SYM
theory it counts (with sign) 1/16 BPS states on S°
preserving one complex supercharge Q, which we choose
to be associated with a specific U(1); symmetry with
charge r = (R; + R, + R3)/3. The superconformal index
keeps track of some combinations of the R charges and the
two angular momenta J;,. It is useful to introduce two
flavor generators q; , = 5 (R » — R3) that commute with Q
and the N =1 superconformal subalgebra containing it.

086026-5



AHARONY, BENINI, MAMROUD, and MILAN

PHYS. REV. D 104, 086026 (2021)

The superconformal index [49,50] is then defined by the
4
trace

I(p,q.y1.y2) = Tr'[(=1)F e plitiks glatsks yli 2]
(2.6)

over the Hilbert space on S°, where by Tr' we mean the
trace in the convention where the contribution of the
vacuum is 1. Here p, g, y;, are fugacities, and it is con-
venient to introduce chemical potentials o, 7, A; , such that
p= eZm'o" q= 6271'[1', Vi = €2ﬂiA1_2_ (27)
The index is well-defined for |p|, |¢| < 1, namely for
Im(s), Im(z) > 0. Given (2.1), the index is a single-valued
function of the fugacities (2.7); i.e., it is periodic under
integer shifts of the chemical potentials ¢, 7, A, and A,. By
standard arguments [74], the index only counts states
annihilated by Q and Q and is thus independent of S.
For the purpose of relating the partition function (2.2) to
the superconformal index, note that, in order to preserve the
specific supercharge Q mentioned above on Sj x %, the

chemical potentials in (2.2) have to satisfy [5]

ﬁ(l+QI+Q2—(I)1—Q)2—®3):2mn, nEZ (28)
In addition, in order for (2.2) to have the interpretation of
computing a thermal partition function, we must have
antiperiodic boundary conditions for the fermions (and in
particular for the supercharge) around the thermal cycle,
and this requires 7 to be odd [5]. We will choose n = 1, but
this does not affect anything because of the periodicity (2.3)
of the chemical potentials.

Our specific conserved supercharge has the algebra [50]

_ 1
Thus, we can write the partition function (2.2) as
7 — Tr(e—ﬂ{Q,Q}+Ziﬂ<9i—1>Jf+%Zaﬂ(<I>a—1>Ra), (2.10)

and using the relation (2.8) between the chemical potentials
one finds

7 — Tr(e—ﬁ{Q,Q}eniRgeziﬂ(gi—l)(h%&)

X eﬂ(d)l_])RI;R3 eﬂ((b2_l)R2;R3).

(2.11)

*Often the powers in the index are written as p’i+¥g/>+2r.
Compared to this convention, we have swallowed a power
of pq into y; and y, in order to obtain a single-valued function.
The relation of our variables to those of [50] is p = t3x|there,

q= t3/x|there’ Y1 = t2U|Lhere? Y2 = tzw/v|there'

For the charge assignments of our theory, the factor 7% is
equivalent to (—1)F. Note also that in the new expression,
since (R; — R3) and (R, — R;) are even and J; + 3 R; is an
integer, the periodicities of the remaining four chemical
potentials are reduced to (2zi/f). Defining new chemical
potentials for the four independent charges that, given (2.8),
we have access to, namely

_ P -1) -1 (@ -1
2ni 2mi a 2mi
fora=1,2, (2.12)

one finally finds that
Z =Tr((-1)F e~ PlQ.Q} p27io(J1+5Rs) p27it(Jr+5R;)
X eZyzz’AlqleZIriAzqz)7

= e BT (0,7, A, Ay), (2.13)
where 7 is the superconformal index (2.6) defined above,
and E, (which is related to the charges of the ground state
on %) is called here the Casimir energy.” This relation
between the thermal partition function (2.2) [when (2.8)
holds] and the index will enable us to relate the index
that we compute in the field theory, to computations of the
S' x 8% partition function using the gravitational dual.
Note that, in general, E, is scheme dependent. The
authors of [75] argued that supersymmetry dictates (if a
supersymmetric regularization is used) a specific choice of
renormalization scheme which fixes the value of E; to a
specific value Egygy depending on the chemical potentials,
which is then called the supersymmetric Casimir energy. In
[5] a localization computation verified (2.13) when (2.8)
applies and found the supersymmetric Casimir energy.
Both of these papers relied on coupling the theory to
curved space using the R multiplet. Recently, it was argued
that for theories with an anomalous U(1), symmetry (in the
sense of nonconservation of the current in the presence of a
background field, as in NV = 4 SYM) this coupling induces
supercurrent anomalies, see [76-82]. They suggest that
additional counterterms should be added to the action in
order to restore supersymmetry. These counterterms could
change the value of E. A similar argument was made in
[83], where it was suggested that in order to regularize the
theory in a supersymmetric and diffeomorphism invariant
way one should add an additional counterterm to the action.
This changes (2.13) to Z = e #W e PEsusy T where W is the
additional counterterm and Egygy is the same as before.
We will avoid this discussion by considering the ratio
between the partition function and the contribution of the
vacuum, which equals the index Z in every consistent
scheme. On the gravity side we realize this through

’If our renormalization scheme requires additional counter-
terms, they would appear similarly to E.
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“background subtraction,” namely regularizing the gravi-
tational action by subtracting the contribution coming from
empty thermal AdS, and we compare the result of this
regularization to the computation of the index.’

III. FIELD THEORY ANALYSIS

We are interested in the superconformal index (2.6) of
the four-dimensional N = 4 supersymmetric Yang-Mills
theory with gauge group SU(N).

Bethe Ansatz formulation.—The index is independent of
the gauge coupling, and thus can be computed exactly
[49,50,85,86] in terms of a certain contour integral.
However, in order to extract the large N limit, it is

|

KO N 00 (uji + A7)0 ()i + A7)0 (1

convenient to consider the so-called Bethe Ansatz formula
[68,87]. In this paper we will mainly be interested in the
case of two equal angular fugacities:

(3.1)

p=q & o=T1.

In this case the Bethe Ansatz formula reads’

I(q,y1,3) =ky Y Z(i:A,0)H (a3 A, 7)™

neBAEs

(3.2)

The sum is over the solution set {@i} to a system of
transcendental equations, dubbed here BAEs. Defining the
Bethe Ansatz (BA) operators

—A - Az;T)

Qi(u;A,7) = 3.3

( ) jzlgo(uij+A1;7)90(”ij+A2;7)90(”ij_Al - A7) (33)

fori =1,..., N, the BA equations are given by Q;= (=DM fori=1,...,.N (3.6)
1= Qi fori=1,....N—1. (3.4) and dubbed “reduced Bethe Ansatz equations,” actually

N contribute to the index. Notice that [[Y, Q; =1 identi-

The quasielliptic function 0, is defined in Appendix A,
while u;; = u; — u;. The unknowns are the “complexified
SU(N) holonomies” u; living on a torus of modular
parameter 7, namely with identifications
uj~u;+l~u;+7 fori=1,...,

N-1, (3.5)

while uy is fixed by the constraint ¥ | u; = 0. The BAEs
(3.4) are invariant under such shifts. In fact, a stronger
property holds: Q; are invariant under shifts of the
components of the antisymmetric tensor u;; by 1 or z,

even relaxing the condition that u;; = u; — u;.

It was proven in [68] that only the solutions that are not
invariant under any nontrivial element of the Weyl group of
SU(N) (namely, only solutions with all ; different on the
torus) actually contribute to the sum in (3.2). Moreover, it
was shown in [67] that only the solutions to a more
restrictive set of equations,

®Note that background subtraction is believed to give the same
results for the ratio we compute as a more precise computation
using holographic renormalization in the bulk, as in [69] (see also
[84] for an alternative scheme). With the specific regularization
used there, E, matches the usual Casimir energy in a free CFT,
see also Appendix A of [75] (and our footnote 19).

"This expression was derived in [68] assuming that the Bethe
Ansatz equations have isolated solutions. It has been noticed in
[16,66,67] that for the N' = 4 SYM theory, the equations can also
have continuous families of solutions. In this case the expression
of their contributions should likely be modified. In this paper we
will ignore the contributions of those continuous families, leaving
their study to future work.

cally. We stress that from each solution in terms of u;;
on the torus, one gets up to N? solutions in terms of u;,
related by a shift of the “center of mass” of the first N — 1
components. Some of those, however, could be equivalent
up to the Weyl group action, and thus the exact multiplicity
should be determined by a case-by-case analysis.

The prefactor in (3.2) is

1 ((g; (])OOF(AI,T r)F(A2;T’T) N-1
= < F(A, + Ayt 7) ) . (37)

where (z;¢), is the g-Pochhammer symbol while
[(u; 0, 7) is the elliptic gamma function, defined in
Appendix A. The function Z is given by

l—N[fu i+ AT o)l + AT, 7)
iy f‘ uu + A+ Ay, T)l—‘(u,-j;r, 7)

(3.8)

and it coincides [using (A16)] with the integrand of the
standard integral formula for the superconformal index.
Finally, H is a Jacobian defined as

_ Lalog(Qi/QN)
= det |:277,'i Ou;

.....

Here we introduced the (N — 1) x (N —
Aj; for later convenience.

Notice that Q;, ky, Z, and H are all invariant under
integer shifts of 7z, A, and A,, implying that the super-
conformal index (3.2) is a single-valued function of the

1) Jacobian matrix
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fugacities. This is also apparent from the Hamiltonian
definition (2.6), as already noted.

The superconformal index of the N'=4 SYM theory
with gauge group U(N) is related to the one for gauge
group SU(N) by the simple relation

Tuywy = ZoyZsuwy (3.10)

where

I'(Ay;0,7)(Ay;0,7)
Zuy(P4-y1532) = (P P)eo (43 D)oo T+ Aro.1)
1 2-,0,

(3.11)

is the index of the free N =4 U(1) theory.

Hong-Liu solutions.—The full set of solutions to (3.6) is
not known (see also footnote 7); however, a large set was
found in [33,62] and we will refer to them as Hong-Liu
(HL) solutions. They are labeled by three integers:

{m,n,r} suchthat N=m-n, 0<r<n. (3.12)
The solutions are
Gk r
=y, = . — . 3.13
;=1 u+m+n<r+m) (3.13)

Here we have decomposed the index j =0, ..., N — 1 into
theindices ] =0, ..., m — landk = 0,...,n—1.Moreover,
@i is a constant chosen in such a way to solve the SU(N)
constraint (but recall that what enters in all formulas are the
differences u;; = u; — u;). Notice that these solutions are in
one-to-one correspondence with subgroups of Zy x Zy of
order N. It turns out that each HL solution has multiplicity N
(besides the N! coming from permutations of u;s), corre-
sponding to the inequivalent solutions to the SU(N)
constraint.

The BAEs (3.6) are invariant under SL(2, Z) modular
transformations of the torus, namely under the generators

’

1+ 1 T -1/t T 1T
T: S: C:

, .
uru uu/t U+ —u

(3.14)

It follows that the HL solutions form orbits under PSL(2, Z),
completely classified by the integer d = ged(m, n, r). The
action of PSL(2, Z) is given by

T:{m,n,r}— {m,n,r+ m},

mn  m(n—r)

S:{m,n.r} v {gcd(n,r), } (3.15)

ged(n, r) ged(n, r)

where the last entry of {m', n’, '} is understood mod r’.

A. Contributions of Hong-Liu solutions

We will compute the contribution of each of the HL
solutions (3.13) to the sum in (3.2). While H will remain
somehow implicit, we will be able to obtain a very explicit
expression for Z.

It is convenient to rewrite u;; as

(3.16)

Uij = U(j k) (jaka) = Vjija + Wik,

with j,j»=0,....m—1 and k{,k, =0,...,n—1, as
well as

_ _h—h
Vjij, = Vj, = Vj, = m
k1 - k2 r
Wklkz = Wkl - sz = 0 (T + E) . (317)
We also define
fj — eZm'v,-’ Z:k — 27wy (318)

1. Elliptic gamma functions

To evaluate the contribution to the index, we need to
compute

N
Ya = Zlog (T(uij + As7,7))|3.16)»
i#]

m—1 n-—1 .
Z Z log (I'(v},;, + Wik, + A57.7))
J1:J2=0 ki #k;

m—1

+n Z log (T'(v;,;, + As7,7))
J1#)2

for A € {0,A,A,,A; + A,}. Notice that while exp(y, ) is
well defined, y, is only defined modulo 27zi. We set

(3.19)

y = s, (3.20)
When A is a generic complex number, one easily verifies

the shift property

B f‘(A+nil;T,T)
—Nlog(lw) (3.21)

We will use this relation in the following. It follows
that ya41 = 7a.

The case A # 0.—Our strategy is to expand the func-
tions appearing in (3.19) inside a common domain of
convergence, and then manipulate and resum the expan-
sions. As long as we obtain exact expressions, the latter will
be valid on the full domain of analyticity, possibly up to
ambiguities by 2zi from the logarithms [such ambiguities
disappear when considering exp(y,)]. The details of the
computation are in Appendix B 1. Defining
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t=mr+r and §= e 2"/%, (3.22)
we obtain the exact expression8
N2 (t=mA)(t—mA -1 (t—mA-1) zim 1
A=y 37 6 ( A_§>
— Nlog (I'(A;7,7)) — Nlog <90 (A;A >> +m Z log< (]C(Z?Z?) . (3.23)

The function w(u) appearing here is defined in Appendix A.

The expression we obtained will be convenient when taking the large N limit; however, if we are interested in an explicit
exact expression, even the remaining infinite sum can be computed exploiting the modular formula (A19). We obtain the
following9:

_ N2(F-mA)(f-mA=3)(F-mA-1) zim [ A 1
ra = 32 6 \"7"7
NA
+ 7imQ(mA;%/n,t/n) — (N — m)log <90 (—,—?))
¥
- ~ T 7
—Nlog (I'(A;7,7)) + mlog <F<mA;—,—)). (3.24)
n'n

Here Q(u;z,7) is a cubic polynomial in u, defined in (A20).
The case A = 0.—This case requires a separate treatment, which can be found in Appendix B 2. We obtain

v

N2 (% 2)(4:—1) ﬂim%—l—Nlog(%

= l—
Yo = 32 6

) + 2N10g{ (3.25)

G|

Notice that we could have obtained this expression directly as the A — 0 limit of (3.23). To do that, we need the following
asymptotic behaviors, easy to derive:

NA N o
90( ® ;_§> S0 (1= 2mNSS) (g )2,

T T
N 1 1
NPT R — (3.26)
1= (g:9)%
It follows that
_ - NA n (¢:9) ¥
—Nil_l‘}‘(l) log [F(A T, 7)90< —;)} = 2Nlog [(Z]" ,)1) ] + Nlog <N) (3.27)

The last sum in (3.23) is regular at A = 0: most terms cancel out, and one uses y(0) = ™/!2,

¥Taking the exponential of the right-hand side, one verifies that it is invariant under mA — mA + 1, performed in all terms but the
first one in the second line [while if we do not take the exponential, we are left with —zimn® — N log(—1) plus possible multiples of 2i
from the branch cuts of the logs]. It follows that the right-hand side satisfies the shift property (3.21).

One can verify that under r — r 4 n, which corresponds to ¥ — 7 + n, the quantity y, gets shifted by maxi w (which is
always a multiple of 2zi) plus possible multiples of 2zi from the branch cuts of the logs. It follows that exp(y, ) is invariant, as it should.
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2. The Jacobian

The Jacobian was defined in (3.9). It is convenient to
introduce an auxiliary chemical potential A; defined by

3

ZAQ—G—TGZ

a=1

(3.28)

(and then set 6 = 7), in order to make manifest the action of
the Weyl group of SU(3)—the global symmetry contained
in SU(4), that commutes with the preserved supercharges
0, Q. We can then rewrite the BA operators (3.3) as

_ —27112]14,] f[ ﬂ

Llljl

uji + A7)
3.29
(uij+Apit)’ (329)
With a few manipulations that we report in Appendix B 3,
the (N —1) x (N — 1) Jacobian matrix A;; can be com-
pactly written as

Aij = NbyB;; + Cjj. (3.30)
Here
b 4+1§:2A+1+90 B, 1
= - - m [Q——
! %a:l ‘ ’ 7 ' 7 ’
Bij =6 + 1.
3
Cij = Z[g(uizv, Ayit) +Gujy, Ayit)
a=1
= Gluij. Agi7) = G(0, Ay 7)), (3.31)

with i, j=1,...,N — 1, where the function G(u, A;7) is
defined in Appendlx A. Notice that det(B) =N and
|

(B‘l)ij =6;;—1/N. To compute the determinant, we
factorize A and obtain

log(H) = log(det(A)) = Nlog(N) + (N — 1) log(by)

1
+ log [det (1] erxB‘lC)}

The last term of this expression is still rather implicit,
however this will be good enough to compute the large
N limit.

(3.32)

3. Total contribution

We denote the total contribution of the HL solution
{m,n, r} to the index as
Zimnry =N -N'-xyZ(us A, 0)H(u; A, 7) 7 51). (3.33)
The factor N - N! takes into account the multiplicity of the
solution {m, n, r}: indeed N! comes from the Weyl group
action that permutes the eigenvalues u;, while N comes
from the inequivalent choices of sets of points {u;} on the
torus that give rise to the same u;;s, as discussed after
(3.13). Such N inequivalent choices correspond to shifts of
the center of mass of the first N — 1 holonomies, and can be
parametrized, for (7J, IAc) # (m,n), as

Gk r
=u+—+-(t+— |+
m n m
withZ; =0,....m—1land?, =0, ...,n — 1. As discussed
before, all these solutions give exactly the same contribu-

tion to Z and H.
Using that T'(u+ A, + Ay;0,7) =T(—u + As;0,7)
and putting everything together, we eventually find

Z/ﬂlf"‘lxﬂz

v (334

?v->%

G
“

10g(Zpn,ry) = P(mA, 7) +1log(N) + 2log [(( )) } Nlog(¥) — (N —1)log(by)

2 NA, . y ()

+ > —Nlog|0y(~*: —log(I'(Ag; 7, 7)) —l—mz log i (3.35)

+2im (ZmAu 2%+ g) ~log [det(n + ’%’B—lc)} .
Recall that ¥ = mz + r and § = e 2*/*. Here P(mA, %) is the contribution of order N>:
N2 3 (¥ —mA A, =DE-mA,-1) ¥F-D(E-1
P(mA, %) =2 [Z FomA,)(Ezm = JE-mA, =) HE {)2(7 )}. (3.36)
T

a=1

086026-10



GRAVITY INTERPRETATION FOR THE BETHE ANSATZ ...

PHYS. REV. D 104, 086026 (2021)

B. The large N limit

We proceed to compute the large N limit of (3.35).
Clearly, this depends on how we scale m, n, r with N. In
this paper10 we consider BA solutions {m, n, r} with m, r
fixed and n — oo.

There are various terms in (3.35) that are exponentially
suppressed in the limit and go to zero. For instance,
Nlog ((¢";4")s) ~ —NG" for n — oo, and thus this term
is of order O(Ne™") and goes to zero. It turns out that when
the electric chemical potentials A,_; ;3 are in a particular
range, namely

0< ]Im(va“> < ]hn(—i),
T T

many other terms are exponentially
O(Ne™). We have the following:

(3.37)

suppressed as

Wiog| 00 (V52 =3) | ~ NG+ (/5 0,

k14mA, -
Zlog< :,(k = )>> ~-NY [@ (@/54)"

t/n k=0

k —mA
_#S)Z] é”k -0,

NA, n - Y~ \n
wo(0.%5%=2) ~ a3 - (@/51) = 0

(3.38)

On the other hand, the quantity log[det(1 + B~'C/byN)] is
of order O(1). To see that, notice from (3.31) that the matrix
C has entries of order 1, the matrix 3~!C has entries of order
1, by is of order 1, and hence the matrix £ = B~!C/byN
has entries of order 1/N. It follows that all traces Tr(E”) are
of order 1 (or higher powers of 1/N), and so is
log[det(1 + &)] = 32, L(=1)" I Tr(E7). We will study
the Jacobian in more detail in Sec. Il D below.

We conclude that in the range (3.37) it is relatively
simple to take the large N limit—and the only term that
contributes at order O(N?) is P. The range (3.37) corre-
sponds to mA, lying within an open strip in the complex
plane, bounded by the line £; through 0 and ¥ on the right,
and by the line through —1 and 7 — 1 on the left (see Fig. 1).
From (3.23) and as noticed in footnote 8, y, is invariant if
we shift mA — mA + 1 in all terms but N log (T'(A; 7,7));
similarly by in (3.31) is invariant under that shift. We can
exploit this fact to push mA, towards the range (3.37).

%Other large N limits may also be considered, and we have not
checked all the possibilities. However, our matching to the
gravitational side suggests that any other limit does not corre-
spond to black hole solutions with an action of order N>.

T—1
T T+ 1
-1

aViva
FIG. 1. Fundamental strips for [A], and [A],. The function [A],
is the restriction of A mod 1 to the region Im(—1/7) >
Im(A/7) > 0 (in yellow, on the left), while [A]. is the restriction
of A mod 1 to the region 0 > Im(A/7) > Im(1/7) (in purple, on
the right). We dubbed L, the blue line through 0 and 7.

To that purpose, we introduce the periodic discontinuous
function [A], defined as

A], = <z|z —A mod 1,]Im<—%> > 11m<§> > o)
orin(2) ez in(-1).

This gives the image of A under an integer shift that sets it
between £, — 1 on the left and £, on the right (see Fig. 1
for a picture of this domain, in yellow), while it remains
undefined if A € £, + Z. In other words, [A], is defined by

the conditions
1 A
]Im(——) > ]Im(Q) > 0.
T T

(3.40)

(3.39)

[Al, =A mod I,

We also define
(3.41)

which gives the image of A under an integer shift that sets it
between L, on the left and £, + 1 on the right, whenever A
does not lie on £, 4+ Z. These functions satisfy

[A+1=[al.,  [A+d], =
(-4l = —[A], -1 =-[A]..

T

[A] + 7,
(3.42)

In particular, > 3_| A, — 2t € Z implies [A;], = 27— 1—
[A] + A,],, and multiplying by m also implies

[mAs]; =2 — 1 — [mA| + mA,];. (3.43)

The strategy is thus to perform integer shifts of the mA s

in the arguments of y, and by in such a way that we land

inside the range (3.37). This is always possible as long as

none of the mA, is exactly on the line £; or one of its

images under integer shifts. This allows us to write the
contribution from the HL solution {m, n, r} as

086026-11
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log(Z) = P([mAl;, ) + log(N) + 2log [%] — Nlog(¥) — (N — 1) log[by([mAl;, %)]
+ i:l {—N log [90 (n[m%A”]% ; —g)} —log (T(Ay;7,7)) +m kzo.; log <%>]
a= = n
+ % (Z[mAa}% -2+ %) —log [det (1] + MS‘IC)] : (3.44)

Note that no shift has been done within the matrix C in the last term. Because of the constraint (3.28) between A, and 7 that
defines A, the functions P and by simplify. Notice that, in general, Im(—2/%) > Im(([mA]; 4+ [mA,];)/¥) > 0, and
therefore one should distinguish between two cases in parameter space:

Istcase: [mA]; + [mA,]; = [mA| + mA,];

3

2ndcase: [mA]; + [mA,]; = [mA| + mA,); — 1. (3.45)

The second case is equivalent to [mA]} + [mA,]i = [mA| + mA,J.. In a more permutation-invariant way, they can be
written as

3
Istcase: Z[mAa]% -2t+1=0
a=1
3
2ndcase: Y [mA,J,—2f—1=0. (3.46)

a=1

The second case is also equivalent to > 3_ [mA,]; —2¢ +2 = 0.

In the first case, with a little bit of algebra we find the large N limit

log(Zynry) = — %’VZWM +log(N) —log(Zy)) Istcase
. - (3.47)
—log(%) + %4t — log [det (ﬂ + bNilB_'C)} + O(Ne™).
Here Z ) is the index of the free U(1) theory (3.11) specialized to ¢ = 7, that we can also write as
3 ~
Tulor = (¢:0)% [ [T(Aui7.7). (3.48)

a=1

In (3.47) the first term is of order O(N?), the second term is of order O(log(N)), all other terms'" are of order O(1), and the
corrections are exponentially small. In the second case we similarly find"

log(Zynry) = —%WM +1og(N) —log(Zy)) 2nd case

| ’ (3.49)
—log(¥) + #i — %2 —log [det (1] + %B"Cﬂ + O(Ne™).

Here we used the 27i ambiguity of the logarithm and the fact that ™ ~mimn —

"In this paper we have not explicitly computed the determinant, which we leave for future work, however see a partial analysis in
Sec. III D.
"’Notice that both in (3.47) and (3.49), by stands for by([mAl;, ).
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Our result is compatible with previous works on the
subject. In particular, the leading contribution from special
subfamilies of HL solutions already appeared in [15,16],
while the correction at order O(log(N)) was already found
in [21], both for the basic solution as well as for the
{m,n,0} subfamily of HL solutions.

C. Nonperturbative corrections

The terms that we reported in the large N limit
expressions (3.47) and (3.49) are the leading O(N?)
|

3.47

log(I{m,n.r}) = (3 49

) + 2N log((g"

#)) - (N~ 1)log [uzg(

-3 e (k- 2)) - S ()|

contribution and the perturbative corrections (notice
that the determinant gives rise to both perturbative and
nonperturbative corrections). Here we would like to esti-
mate the nonperturbative corrections O(Ne™). More
precisely, we will compute the leading exponent—or
instanton action—that controls the nonperturbative cor-
rections, while leaving a more detailed analysis for
future work.
In (3.47) and (3.49), the missing terms are

)

(3.50)

i/n

where the two equation numbers and the =+ signs in the first line correspond to the first and second case, respectively. These
nonperturbative corrections are needed in order to make the right-hand sides of (3.47) and (3.49) an analytic function of the
chemical potentials for finite N, even though [mA_]; are not analytic functions. By expanding the various functions above

using the formulas in Appendix A, we find that the nonperturbative corrections have three kinds of exponents:

2xiN A
exp ( m k[m
m

3

als — f) (2m'N —[mA,]; =1 - f) < 2rwiN k)
, exp k : , exp | — -1,
m T m

(3.51)

T

for integers k > 1 and £ > 0. All these exponents can be written as products of

In the first case of parameter space, taking into account the
relation (3.46) among the chemical potentials, one finds
that in fact all exponents can be written as products of

2ziN [mA,);
P w7

) fora=1,2,3. (3.53)

Notice that because of the property (3.40) of the function
[],, all nonperturbative corrections are exponentially small
in the large N limit. In the second case of parameter space,
instead, all exponents can be written as products of

(3.54)

< 27iN [mA, ]}
P\—————~+—
m

T) fora=1,2,3.

Again, all nonperturbative corrections are exponentially
small.

D. Perturbative corrections

The perturbative corrections (i.e., the perturbative expan-
sion in 1/N) to the leading O(N?) contribution to
log(Zy.n,ry) come from the terms in (3.47) and (3.49).

2ziN [mA,); + 1

27iN [mA,); ]
exp — ), exp | —
m T m

(3.52)

. ) ( 2m'N1)
- s exp{ — < -
T m 7T
[

We were not able to evaluate the determinant explicitly,
however we collected some evidence that—at least in the
case m = l—the determinant is of order O(1) plus non-
perturbative corrections of order O(e™), but without
further perturbative corrections of order O(1/N) or smaller.
We thus conjecture that the series of perturbative correc-
tions stops at order O(1).
Our strategy is to expand

5] 55

(3.55)

and compute the first few terms on the right-hand side. The
details of the computation are in Appendix B 4. At first
order, in the large N limit we find

—1 3
leiV< ZQOA”’

N > + O(e™),

(3.56)

a=1
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where the + signs refer to the first and second case of
parameter space, respectively. At second order the compu-
tation becomes considerably more involved, and we only
performed it in the case m = 1, i.e., for the T-transformed
solutions. Setting 7 = 7 4 r, in the large N limit we find

Tr(B-'cB~'C) 1 i (1Ad]e +[Ap] 1
b]ZVNZ - 2u.h:1 14 ¥ s Ty

Here we introduced the function

1 -
¥(u;7) ==—09,log(I'(u;7,7)), (3.58)
2xi
see also (B49). Both at first and second order (for m = 1),
the perturbative series in 1/N stops at order O(1), the only
large N corrections being nonperturbative.

E. The universal superconformal index

It is interesting to consider also a special case of the
superconformal index (2.6), which is a simpler and more
universal object. This is constructed by only using charges
in the =1 superconformal subalgebra,13 and it is
defined as
j(P, q) — Tr[e—ﬂire—ﬂ{Q,Q} 627'[1'0‘(]1-5-%)627[[‘[(]24'%)} , (359)
where r is the superconformal R symmetry in the V' = 1
subalgebra. Since different states in the same supermultip-
let have R charges that differ by integers and the super-
charge Q has charge r = 1, J has all the good properties of
a supersymmetric index. When the R charges are rational,
this index will have some periodicity in the o, 7 plane.

For NV =4 SYM, this special case corresponds to
choosing

764—’[—1

: (3.60)

To simplify even further we will take ¢ = 7, which means
27 —3A = 1. The corresponding index

j(q) _ Tr[e—nire—/)’{Q,Q}eZHir(J]+Jz+r)] (361)
is periodic under 7 — 7 + 3, and it is defined for Im(z) > 0.

As in Sec. III B we are interested in the contribution'*
from HL solutions {m,n,r}, in a large N limit in which

All choices are physically equivalent.
YThe contribution from the T-transformed solutions {1,N,r}
was already analyzed in [7].

m, r are kept fixed while n — oo. This means applying the
restriction (3.60) to the large N expressions (3.47) and
(3.49) in the first and second region of parameter space,
respectively. One easily computes

undefined if m+2r=0 mod 3
(mA], = 2%3‘1 if m42r=1 mod3. (3.62)
2i=2 ifm+2r=2 mod3

3

The undefined case arises because for these chemical
potentials mA happens to sit precisely on one of the
images of L£; under integer shifts. For m +2r = 1 mod
3 the solution sits in the first case of parameter space,
according to (3.45), while for m + 2r = 2 mod 3 it sits in
the second case. It follows that the leading behavior of the
index is

10g(Z (p.n.ry)
undefined  if m+2r=0 mod 3
- _%QZI)} if m+2r=1 mod3 (lIstcase)
—mN GHIY if 427 =2 mod 3 (2ndcase)
(3.63)

The undefined case should be interpreted as the fact that
there are two exponentially large competing contributions
to Zyy,,y (coming from the first and second case
solutions when we slightly shift the chemical potentials
in one direction or the other) with the same absolute
value, but with a relative phase that oscillates very
rapidly.

IV. FIVE-DIMENSIONAL BLACK HOLES

In this section we review the gravitational solutions
that contribute to the S' x S° partition function of the
N =4 SYM theory, for supersymmetric values of the
chemical potentials, and compare their contributions to
what we obtained from the index. Since we work at large
N on the field theory side, the gravitational side is
semiclassical and its partition function should be a sum
over all the classical solutions that satisfy the appro-
priate boundary conditions for our chemical potentials.15
Our field theory computation is independent of
the 't Hooft coupling constant; on the gravity side it
will be useful to work at large 't Hooft coupling,
where we can approximate type IIB string theory by

With perturbative corrections given by the fluctuations
around them, which we will not consider in this work, and with
nonperturbative corrections that we will discuss in the next
section.
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type 1IB supergravity,16 and just look for appropriate
solutions of this theory, which are asymptotically
AdSs x S°.

The rules of the AdS/CFT correspondence tell us how to
find gravitational solutions when the chemical potentials in
(2.2) correspond to real boundary conditions for the bulk
fields in Euclidean space. Unfortunately, as discussed
below, for generic values of the chemical potentials this
is not consistent with (2.8), so for most supersymmetric
configurations some of the chemical potentials are com-
plex, and we do not know what are the rules for construct-
ing solutions dual to such complex chemical potentials. We
will begin by dealing with this issue in the most naive
possible way, by assuming that one can analytically
continue the results computed for real fields (with real
boundary conditions) to complex fields (with complex
boundary conditions).'” We will find that this will lead
to some problems, and we will suggest how to resolve them
in the following sections.

In general, finding ten-dimensional black hole solutions
is complicated. Luckily, type IIB supergravity has several
known consistent truncations, with known black hole
solutions that satisfy our boundary conditions. The most
general black hole solution has two angular momenta J,, J,
and three electric charges Q4, Q,, O3, where we defined
O, = R,/2. The simplest consistent truncation is to 5D
N = 2 minimal gauged supergravity, which contains just a
single gauge field, and which can be used to describe
solutions with Q| = O, = O3 = Q (or, equivalently, with
equal chemical potentials ®; = @, = @3). In this section
we use this truncation to consider these solutions, further
limiting ourselves, for simplicity, to the case of equal
angular momenta J; = J, = J (or, equivalently, Q; = €,).
A detailed discussion of generalizations to black holes with
more generic charges (or chemical potentials) is left to
Appendices C and D. The analysis of this section mostly
follows [5].

A. Black hole solutions

The bosonic fields of 5D A =2 minimal gauged
supergravity are the metric gﬂ,, and a U(1) gauge field
A,. The bosonic Lagrangian i is'

"“The field theory analysis tells us that the result should be the
same for any value of the ’t Hooft coupling, and thus it should be
independent of the string scale, but we do not know how to see
th1s d1rect1y on the gravity side.

""More precisely, the results are computed for a real metric, but
for Euclidean charged black holes there is an imaginary gauge
field. This still leads to a real action.

3 The Lagrangian used in [88,89] is related to the one used
here by Apere = —¢° and Aypere = %A. The normalization used
here has the advantage that A couples canonically to the super-

conformal R-symmetry current, however recall that the R charges
of scalar gauge-invariant operators are multiples of 2/3.

2 8
EI(R+12g)*]—§FA*F+ FAFAA,

- (4.1)

such that the radius of the vacuum AdS; solution is 1/g. In
the following we will set the dimensionful constant g to 1.
Specializing to the case of equal angular momenta a = b,
the black hole solutions found in [88] in asymptotically
global AdSs (with boundary R x S°) are given by

1 2 2 2
ds? = - ;r )dzZ—E Z2m+ J;; 2+Z—rdr2
2
+ 27 (62 + sin?(0)dgp? + cos(8)dy?),
3
A= & ad, (4.2)
2p%E,
where we defined
v = a(sin?(0)de + cos*(0)dy ), w=di—v
4 1 r2 2 2 2
A s );CI+ D
fi=2m+a’q)p’-q’. E,=l-a (4.3)

The coordinates ¢, y have period 2z (with the fermions
antiperiodic under this shift), while 6 € [0,7/2]. The
solution depends on three parameters (a,q,m) (and on
a, which is arbitrary in Lorentzian signature).

The black hole has an outer horizon at the largest positive
root of A,(r,) = 0, denoted by r,. One can then solve for
m and find

(P +a)?(1+13) +¢° +2a’q
m= 5,2 , (4.4)
+

which can be used to eliminate m and use r, instead.
The horizon is a Killing horizon generated by the Killing
vector field

0 0 0
V= —+Qa¢+9— (4.5)
where
2 2
Q:a(r++a )(1+r+)+aq (46)

(ri +a*)? + a’q
Evaluating the surface gravity, the Hawking temperature is

_ A +2(r2 + a?)] - (@ + q)z‘ 47)

1
T _
p 2zr, (12 + a®)* + a*q]

The electrostatic potential at the horizon is

086026-15



AHARONY, BENINI, MAMROUD, and MILAN

PHYS. REV. D 104, 086026 (2021)

3qr
2((r3 +a*)? +a’q]

D= lVAlrJr - lVAloo =

(4.8)

For our purposes we would like to continue these
solutions to Euclidean signature and to compactify the
Euclidean time direction, such that the boundary is S; x S5,

Following [5], these solutions can be analytically continued
to real Euclidean solutions by rotating ¢ — —itg, if we also
take a — ia. In terms of the original a, which is now purely
imaginary, and the real-valued m and ¢, one finds that the
Euclidean metric is real, A is purely imaginary (if a € R),
1yA is real, f is real, and ® is real, while Q is purely
imaginary. We assume that we can rotate the integration
over the gauge fields from real to imaginary fields without
encountering any problems.

Expansion near the horizon.—In the Euclidean solutions
we need to periodically identify the Euclidean time
direction ti, and make sure that the solutions are smooth
when this cycle shrinks at the horizon. We expand the
metric around r 2 r,, setting R*> =r—r,. The near-
horizon metric takes the following form:

2 2
dsz = hRR <dR2 + R2 <Fﬂth> > + hggdez

+ 2hy, (dp + iQdtg) (dy + iQadtg). (4.9)
Here hgg, hgo, hpgs Pyys gy Q are functions of R and 6
with nonvanishing limits for R — 0, which depend on the
parameters a, g, r,. The limit of € is the value given
in (4.6).

We see that the geometry is smooth around r, if we
make the following identifications of the coordinates:

(IE’¢7W) = (IE+ﬁ’¢_ lQﬂ’V/— lQﬂ)

= (tg. ¢ + 27, y) = (tg, .y + 27).  (4.10)
Moreover, the Killing vector field V in (4.5) is the one that
generates rotations of the circle that shrinks. The identi-
fications (4.10) take the same form as (2.4), so we
anticipate that the chemical potentials for the angular
momenta will be realized, in our coordinate system for
the black hole solutions, by modifying the coordinate
identifications rather than by changing the CFT metric.

Regularity of the gauge field at r = r, requires (in a
gauge that is regular at the horizon)

wAl,, =0 = a=09, (4.11)

because the Wilson line around the shrinking circle should
be trivial at r = r,.

Now that we have smooth Euclidean solutions with the
identification (4.10), we can compute their on shell action.

As usual in holography, this requires a regularization for
large r, and the computation was done in [5] using
background subtraction'® (which assigns vanishing action
to AdSs). It has the form

p ari
I = m—(r2 +a*)? - :
SUGRA Eg ( + ) (ri 4 02)2 + 6126]

(4.12)

Note that Igygra satisfies the so-called quantum statistical
relation
Isugra = PE — S — 2pQJ — DO, (4.13)
where E is the energy and S is the entropy of the black hole.
As mentioned above, for supersymmetric solutions we
generally need the action for complex values of the
chemical potentials, and we assume that we can extend
the results above by analyticity to the full space of complex
parameters (a,q,r,). As discussed in Sec. I A, in the
continued solutions ¢ and y are complex, but their tilded
versions (2.5) obey standard identifications and remain real
(but with a complex metric). A priori it is not clear whether
the path integral with complex chemical potentials indeed
receives contributions from such analytically continued
bulk solutions or not, and we will return to this issue below.
Expansion near the boundary—In order to precisely
identify which chemical potentials the Euclidean solutions
above correspond to, we need to analyze the behavior of the
solutions near the boundary. The asymptotic r — oo limit
of the metric (4.2) can be written as

o _dP 50
ds®> = o T dSipgry + O(#), (4.14)
where Z,7? = r? and
dspgy = dif + d0? +sin*(0)d¢? + cos*(0)dy*  (4.15)

is the round metric on Sj x § but still with the twisted
identifications (4.10). So, as expected from the discussion
of Sec. I A on the “coordinate shift realization” of the
chemical potentials, the CFT metric remains the same, and
the parameter Q affects the boundary only through the
identifications (4.10). In addition, we find that the gauge
field near the boundary r — o is

Apary = i1, (4.16)

“The on shell action was computed more carefully using
holographic renormalization in [69], and was found to have an

extra constant term [y = fE; = 2% where I, is the action of

324Gy’
thermal AdSs.
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corresponding to a chemical potential for the U(1) global
symmetry.

Shifted chemical potentials.—Note that shifts of Q by
%Z do not change the global identification:

(tE’ ¢’ l//) = (tE +ﬂv¢ - I<Q + 27”2)/}’

§
.

= (tg + B p — iQ + 202,y — iQP
+27TZ) = (tE +ﬂ’¢ - lgﬁvl//_ lQﬁ)?
(4.17)

and thus they do not change the behavior of our solutions
near the boundary. Thus, we actually found a family of
black hole backgrounds with the same boundary metric and
topology but with different bulk metrics (corresponding to
the shifted values of Q). Noting that solutions with angular
momenta J, and J, have wave functions e~*/19=¥/2¥ and
thus acquire a factor ¢/1*#*/2%# under the identification
(4.17), and, comparing to (2.2), we see that our black hole
configurations contribute to the partition function with
Q =Q, =Q. (4.18)
The CFT partition function itself is periodic under shifts of
Q by %, and this arises on the gravity side from summing

over all these shifted solutions.

Similarly, if we consider a configuration with some
charges R|, R, R;, recalling that the gauge field couples to
|

ZS'XS3(Qlﬂ Q2’ ®1’(D27(D3) =

ny,ny.my,my,m3EZL

where the sum runs over all integers ny, n,, m;, n,, ms
whose sum is even, in order for the periodicity to be
consistent also with the behavior of fermions in the bulk, as
in the QFT discussion around (2.3).

B. Supersymmetry

The solutions described above, as well as their analytic
continuations to complex parameters, are supersymmetric
if their parameters are related as

(4.21)

This gives a two-parameter family of solutions in terms of
(a, m). In terms of the equivalent set of parameters (a, r. ),
the supersymmetry condition becomes

o~ Isuara (€ i, Qo+ @y +E5my D425y D3+ )

r= (R, + R, + R3)/3, the boundary condition (4.16)
gives us a factor of ¢®/(Ri+R+Rs)/3 when we go around
the circle. So these black holes contribute to the partition
function (2.2) with

(4.19)

Note that since scalar operators in the bulk (which are
periodic under the shift around the Euclidean circle) have R
charges which are multiples of 2/3, shifts of ® by %Z

correspond to large gauge transformations near the boun-
dary (this is consistent also with the behavior of fermions,
which are antiperiodic under the shift). So, as in our
discussion above of the chemical potentials for angular
momenta, configurations that differ by these shifts all
contribute to the same partition function (2.2).

All in all, if we consider the partition function (2.2)
with these values of Q; and @, it gets contributions
from all the solutions with Q = Q, —|—%Z and with

O =30, +%Z. In Appendices C and D we consider

more general bulk solutions, with not necessarily
equal angular momenta or U(1) charges (and correspond-
ing chemical potentials). In this context, contributions to
(2.2) for specific values (equal or not) of the chemical
potentials come from a S-parameter infinite series of
gravitational solutions, in which each of Q;, Q,, @,
®,, and ®; may be independently shifted by %Z.

Assuming that all of these complexified solutions contrib-
ute to the partition function, in the supergravity approxi-
mation we can write

(4.20)

qg=—a>+ (1 +2a)r> Fir (r2 —r?), (4.22)
where 72 = 2a + a* and the F signs correspond to the two
branches of a square root. For the upper sign, the expres-
sion above equals

g=—(a—ir)*(1—iry). (4.23)
We refer to the corresponding family of SUSY solutions as
the first branch. On the other hand, for the lower sign the
expression is obtained by sending i — —i, and we call it the
second branch. In the following we will focus on the first
SUSY branch (4.23), but we will sometimes mention also
the results for the second branch.

In the supersymmetric cases, parametrized by (a,r,),
the chemical potentials become
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3ir (1 —iry)
-, }
2(r2 +iry) /
(r2 +iar.)(1 —iry)
(ri+ir)(a=iry)

 2z;ia(a—iry)(r? +iry)
B (r? = 3iar,)(r? - ri) ’

Q=

(4.24)

They satisfy

A1 4+2Q - 2®) = 2xi. (4.25)
In the Euclidean solutions there is a globally well-defined
Killing spinor, which changes sign when going around the
Euclidean time cycle, whenever we have (+2zi) on the
right-hand side. This is consistent with (4.25) and its
counterpart on the second branch. Note that except in
the special case ® = % we cannot have @ and f real and
also Q imaginary in supersymmetric solutions.

In order to relate to the index, following the discussion of
Sec. II, we can map the chemical potentials of our
gravitational configurations to index parameters using
(2.12) (on both branches), namelyzo

6,=1 :'B—(Q_l), A, =

4.26
2mi ( )

Such a gravitational configuration contributes to the index
with Aj = A, = A3 = A, The index parameters on the
first branch are given by

a(l-a) ala—ir,)

—r = T N = DT g0
%= % r2 =3iar, g r2 = 3iar, (4.27)
Note that they satisfy

2t,-3A,=1 (on 1stbranch). (4.28)

Thus, one combination of (a,r,) controls 7,, A, while
another one controls . On the second SUSY branch, the
chemical potentials satisty 2z, —3A, = —1. The on shell
action (4.12) becomes

in? ala—ir,)? in? A3
I == =2 (429
SUGRA 2 (1-a)(r2=3iar,) 2 7 (4.29)

The rightmost expression is valid on both branches. Notice
that it does not depend on f.

C. Comparison to field theory results

We can rewrite the on shell action (4.29) in terms of the
field theory variables. We should reinstate dimensions
using the relation (at leading order in 1/N)

*Recall that @, = @, = @y =2, justifying the slightly
different definition of A, with respect to (2.12).

1 8¢ 2N?
gGs & 7

where a = c is the field theory central charge, while G5 is
the five-dimensional Newton constant. Thus the logarithm
of the classical contribution of these solutions to the
partition function is (in the first branch)

1 in? A} A3
0g(Z) SUGRA 7G; 2 2 7 _Tf,
miN? (27, — 1)

= 4.31
27 72 ( )

g
This is exactly the contribution (3.63) of the basic Bethe
Ansatz solution {1, N,0} that falls in the first case. Note
that, indeed, (4.28) ensures that our parameters always
satisfy the field theory conditions for this first case,
namely A, = [Ag}fg.
Similarly, the value of A, that we obtain on the second
branch of solutions, which is A, = (27,4 1)/3, always
satisfies the condition for the second case in our analysis of
the basic Bethe Ansatz solution, A, = [Ag]’fq, and also the

action of our solution is consistent with this case,

A miN? (27, +1)?
log(Z) = —Isucra = —miN? —2g = - e > )
75 27 75

(4.32)

which coincides with the contribution (3.63) of the solution
{1.N,2} (if we make the identification 7, = ¥ = 7 4 2).
So, the gravity results agree nicely with the basic Bethe
Ansatz solution. Moreover, recall from our discussion
above that shifts of Q and ®, which correspond to shifts
of 7, and A, by integers, give new solutions which also
contribute to the same index. However, we need to still
satisfy the constraint (4.28). So, if we start (for instance)
from some value of 7, and A, which satisfies (4.28) on the
first branch, we can shift 7, — 7, +3nand Ay — A, + 2n
and obtain another solution contributing to the same index;
it is easy to see that the contribution of this is precisely that
of the shifted Bethe Ansatz solution {1, N,3n}—which is
in the “first case.” Moreover, starting from the same
values, if we shift 7, > 7, +3n—1, A; > A, +2n we
obtain a SUSY solution on the second branch which also
contributes to the same index, and which precisely repro-
duces the contribution of the shifted Bethe Ansatz solution
{1, N, 3n — 1}—which is in the “second case.” So, the sum

*'Note that n here can be positive or negative. In our analysis
of shifted Bethe Ansatz solutions we took r =0, ...,N —1 and
assumed that r does not scale with N. However, our analysis there
works equally well for negative » which does not scale with N, by
identifying it with (N + r).
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over gravitational solutions contributing to the same index
precisely reproduces the sum over two thirds of the Bethe
Ansatz solutions with m = 1. The leftover solutions are
problematic since they lie on Stokes lines, as discussed in
Sec. I E, but as in that section, this problem does not arise
for generic (unequal) chemical potentials.

However, before we declare success in our matching
with the Bethe Ansatz solutions with m = 1 (the solutions
with m > 1 will be discussed later in Sec. VII), we should
be more careful. So far in this subsection we only
considered shifts of the solutions which retain equality
of the angular momenta and of the U(1) charges. How-
ever, the most general solution has three different chemical

potentials—parametrized by A, , = 2% (®, — 1)—and two
different angular chemical potentials o, 7,. Each of these
can be shifted independently by integers without affecting
the boundary conditions, so we should sum over all

9

ZSIXS3 (U, T, A], AQ) =

ny.ng.my,my€Z
se{+1,—1}

However, the only shifts that show up in the Bethe Ansatz
computation of the field theory index are the specific ones
discussed above, which are related to the {1, N, r} family.

One may wonder whether these new shifts correspond to
as yet undiscovered BA solutions, or if they might cancel
after appropriate resummation. This does not seem to be the
case. Indeed, the contribution of some shifted backgrounds
to the partition function actually diverges exponentially
with the size of the shift, so they had better not contribute
for some reason. Specifically, consider starting from the
equal chemical potential case, and shift to A, ; = Aj + n,
A%z = Ag + n, Agﬁ = Ag — 2n, consistently with (4.34).
We then have for large |n|:

2 2n® 2
Re(Isucra) = #N”Im =y + O(n*).
7

(4.36)

So, the contribution e~’svera from these backgrounds to the
partition function would diverge, either for very positive or
for very negative n.

In the next sections we will suggest a resolution to the
problem: that most of the shifted solutions (which are
all complex valued) should not be included in the sum
over solutions, because they are unstable towards the
condensation of D3-branes, and that when evaluating the
gravitational partition function, only stable contributions
should be considered. Presumably this criterion can be
justified by a careful analysis of the analytic continuation to

“This is shown for various cases in Appendices C and D, and
we assume here that the general form holds.

E e~ Isucra (o+ny,74+ny Ay+my Ay +my ,6+T—A 1 = Ay —s+n1+ny—ny—my)

these additional solutions as well, if they are supersym-
metric. The action of the more general solutions is”

A (A LA

a2 2915925¢3

Isucra (6. Ty Ay 1. Byn, Ays) = mIN* ———=,
04Ty

(4.33)

and they are supersymmetric whenever

(1st/2nd branch).
(4.34)

Gg‘l’Tg—A _Ag,Z_Ag,?;:i]’

g,1

So we have two four-parameter families of shifted solutions
that all seem to contribute to the index (even when we
happen to evaluate it for 6 =7 and A; = A, = Aj).
Namely, it appears that in the supersymmetric case we
should have contributions from supergravity of the form

(4.35)

|
complex-valued solutions—in particular through the study
of Lefschetz thimbles—but we will not attempt to do this
here. We will show below that with that criterion, the
acceptable shifted solutions (for arbitrary chemical poten-
tials) precisely match the m = 1 shifted solutions that
contribute to the index.

V. WRAPPED D3-BRANES

Up to now we considered the classical on shell action of
our Euclidean solutions. In general, the action receives
quantum corrections coming from loops of the gravity
fields in these backgrounds. However, we can also have
additional nonperturbative corrections coming from
wrapped D-branes. It turns out (see Appendix C 3) that
wrapped Euclidean D3-branes can be added to our back-
grounds while still preserving the same supersymmetry,
and without changing the boundary conditions, so that they
give nonperturbative corrections to the contributions dis-
cussed in the previous section. In this section we compute
those corrections for a specific class of wrapped D3-branes
and analyze their consequences.

A. Uplift to ten dimensions

In order to analyze configurations with D-branes, we
must first find the 10D solution that corresponds to our 5D
black holes. Luckily, [90] discusses the embedding of 5D
supergravity with U(1)? gauge symmetry—the so-called
STU model—into 10D type IIB supergravity, and the uplift
of solutions of the former into the latter. In our context we
view the action (4.1) as the U(1)? action with all three
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gauge fields taken to be equal.23 The uplift of solutions with
unequal angular momenta or charges is described in
Appendices C and D.

The 10D metric for the equal-charge solutions is given
by [90]

dslo—dss+z<dﬂa +ﬂa<d¢a+2A> > (5.1)

a=1

where ds? is the 5D solution (4.2), A is the gauge field in
(4.2), and we write the S° in a way that is natural when it is
embedded in C? with coordinates z, = u, e, obeying the
constraint 3 + u3 + 3 = 1, such that for A = 0 we have
in (5.1) the round metric on S°. Note that despite the mixing
in the last term, the determinant of this metric is the product
of the determinant of ds? times that of the $° metric.

The only other 10D field turned on is the self-dual
5-form flux, which is given by

with

G( = —46

u)|»—

3
Z 12) A dp, A #sF,  (5.3)

where F = dA, ¢s) is the volume form of dsg, and x5 is the
5D Hodge dual with respect to that metric. From (4.2) we
see that

3qr

3q
F=—o— 1 v
pH(l—a?) )

d dt —v) — ———-dv.
rA( 20— v

(5.4)

In order to evaluate the D3-brane action we need to write
F(5) = dC), where the potential Cyy) is defined up to
gauge transformations. In this case, the exact form of Cy)
can be chosen to be

2 20 2
Clay = Md tAdr A dp A dy + - Zﬂgdqsa <*5F—§A A F>
1 , 2 2 2
5( pid(p3) —pu3d(ui)) A | de +§A A | d, +§A A | dos +§A
1 1
+ gd(ﬂ%) Ndpy Ndps NA+ gd(ﬂ%) A dpy A dpsy N A. (5.5)
Locally, we can write
2

since the left-hand side is closed thanks to the equation of motion of A, in terms of the following 2-form on 5D spacetime:

(3 +2a)q

—— dt Nv—
2E.p

@2 =

The expression in (5.5) is not smooth at the horizon, so one
might need to add suitable total-derivative terms in order to
fix that, without modifying the integrations over D3-brane
world volumes that are discussed below. An alternative
gauge-equivalent choice for C ) is presented in (C48).
Note that in the 10D solution the 5D gauge fields become
geometrical, and in the asymptotic behavior of the solutions
(5.1), given the boundary condition (4.16), the chemical
potentials are realized using the off-diagonal components
of the metric, while the angular coordinates ¢, still have the

HSee also (2.11) of [90]. Comparing to (4.1) we see that
Apere = \/_Ahere, and Al =2Ape (i=1.2,3). The scalar
fields in the U(1)? supergravity are all trivial when the charges
are equal.

there

3q cos(20)
=2

(adt A (dp — dy) + dop A dy). (5.7)

I
standard identifications. Thus, these chemical potentials
(unlike the ones for the angular momenta) are realized in
our solutions using the “metric realization.” If desired, we
can think of these coordinates as “tilded coordinates” as in
(2.5), and define new coordinates

¢a ¢a - an? (5 8)
which have the original metric appearing in their 10D
boundary condition but obey twisted identifications
under tg — 15 + f.

B. The brane action

Consider now a Euclidean D3-brane in the background
(5.1), whose world volume wraps a maximal S* inside the
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S° given (say) by u; = 0, and a maximal S' inside the S* on
the horizon in AdSs given (say) by r = r,, 0 = n/2 (Where
the y direction shrinks) such that the brane wraps the ¢
direction. We can consider such an embedding either in the
Lorentzian or in the Euclidean solution; in the Euclidean
solution some combination of the time circle and the ¢
circle shrinks at the horizon, but we can still take our
brane to sit at a fixed time and wrap the ¢ direction.
This configuration is supersymmetric, as we show in
Appendix C 3.
The action of a D3-brane is given in general by

%r~g@#@?/WMﬁ®@w$PMM7
(5.9)

where gp; is the induced metric on the D3-brane world
volume, P[C (4] is the pull back of the 4-form C4 to the
world volume, and the F sign refers to a brane/antibrane,
depending on conventions. Note that in our case the AdS
radius (which we previously denoted by 1/¢ and set to one)
is given by

1
E = 4xg,N()?,

(5.10)
so the prefactor in (5.9) is given by N/2x%

Let us compute each of the two terms in (5.9), for generic
(not necessarily supersymmetric) solutions. The second
term is quite simple, as only the $d(u3) A depy A dps N A
term in (5.5) contributes in this configuration. It factorizes
into the integral of $A on the S' in AdSs, and the integral of
d(u3) A dp, A dghs on the S* in S°. The first integral gives

T
— — — v
3/ 2(r2 +a®)(1-a?) Jg

- nqa
A+ =-a?)’ (5.11)

while the second integral just gives 477

Even though the metric induced on the D3-brane from
(5.1) is not diagonal between the S' and the S* in the D3-
brane world volume, its form implies that the determinant
of the induced metric on the D3-brane is the product of the
determinant of the S* metric (coming from the S3 coor-
dinates) and of g4, in (4.2) [not including the extra
contribution to this from the second term in (5.1)], as
we discuss around equation (D24). The integral of the first
determinant is just Vol(S?) = 2z2%. On the other hand, the
component g, on the D3-brane evaluates to

[ A+ a4 a*q P
W e -ah)

(5.12)

Therefore, choosing a specific sign for the square root,

2 2\2 2
/d“x\/—det(gm) _ g @) tay

P a)(1-a)

(5.13)

The sign is chosen in such a way that in the background of a
real and causally well-behaved Lorentzian black hole, for
which a, g are real (with a®> < 1) and r, is sufficiently
large, the contribution from (5.13) to the path-integral
measure exp(iSpz) in bounded in absolute value. Notice
that the Wick rotation ¢ — —it of the black hole metric has
no effect on the Euclidean D3-brane action, because such a
brane does not wrap the time direction. The full D3-brane
action is

(rt + a*)? + d%q
ri(ri +a*)(1-a?

SD3 = _ﬁ |:—47T3i

+ 473

qa
el 314)

where, as before, the & sign refers to a brane/antibrane.

The D3-brane action considerably simplifies when the
black hole background is supersymmetric; as we show in
Appendix C3, this is because the branes preserve all
supersymmetries of the background. On the first branch
where the SUSY condition (4.23) is obeyed, and choosing
the upper plus sign in (5.14), we obtain

a—ir A
t = 2N,
Ty

Sps = 27N (5.15)

a —

where in the last step we used the expressions (4.27) for the
chemical potentials.

We have computed the on shell action of similar branes
in the case of two different angular momenta, as reported in
Appendix C, and of three different charges, as reported in
Appendix D. The result leads us to assume that in the
general case of chemical potentials (og, 74, Ag,a), there are
supersymmetric D3-branes that wrap either the ¢ or the y
circle in AdSs (and sit at @ = 7 or 8 = 0, respectively) and
an S inside S$° for which yu, =0 (a = 1, 2, 3), and that
their actions are

Aga
SPy = 2aN 22,

A
Shy = 27N =22,
: ‘,

Istbranch).
o (1stbranch)
(5.16)

On the second branch of solutions, the parameters of the
background obey (4.23) but with i — —i. It turns out that
the on shell action (5.14) simplifies when choosing the
lower minus sign. This is because the branes that are
supersymmetric in the two branches of solutions must have
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opposite charge (corresponding to swapping branes with
antibranes). This also follows from the analysis of super-
symmetry in Appendix C 3. Repeating the same compu-
tation as above we then find

A A
Sg3 =-2aN-—2%, S¥,=-2zN—%  (2ndbranch).
Gg Tg

(5.17)

The contribution of the Euclidean D3-brane configura-
tions to the partition function is exp(—Isygra + iSp3)
where Isygra is the on shell action of the background
black hole solution. Note the relative factor of i that appears
in our Euclidean solutions since the branes do not extend in
the time direction, and therefore they do not get a factor of i
from the Wick rotation to Euclidean time, as noticed earlier.
Similarly, we can consider branes wrapping any positive
integer linear combinations of these cycles, and we would
have in the exponent the sum of the corresponding D3-
brane actions.

The analysis above makes sense when the D3-branes
decrease the contribution of the solution to the partition
function, since otherwise considering an arbitrary number
of D3-branes will increase their contribution without a
bound. We interpret the latter cases as unstable, perhaps to
condensation of these D3-branes that would take us to
some other background. Thus, we consider a gravitational
background to be stable only if every D3-brane satisfies™*

Im(Sp;) > O, (5.18)

and we suggest that only these backgrounds should be
included in the analysis. Note that the equal-charge back-
grounds happen to always satisfy this condition for all their
D3-branes, so they are always stable, but generic solutions,
including solutions related to the equal-charge case by
shifts, do not. We will show in the next section that for these
stable solutions the D3-brane contributions precisely match
with the nonperturbative corrections to the Bethe Ansatz
solutions computed in Sec. Il C, and we will analyze the
precise implications of the stability condition (5.18).
Note that for real supersymmetric solutions we expect
the action to be bounded from below, so that finding D3-
branes that decrease the action would be impossible.
However, once we continue to complex solutions this is
no longer the case, which is why we have to impose the
condition (5.18) for every D3-brane. A similar condition on

**Here we are referring to the D3-branes described above, that
wrap an S% in §° and an S' in the AdSs coordinates. We have
found additional SUSY D3-branes that wrap an S' in S° and the
whole $? at the horizon in the AdSs coordinates, and such branes
can induce additional instabilities [see (D35) for their on shell
action]. Their interpretation will be discussed elsewhere [58].

complex configurations was recently suggested in a similar
context in [22].

VI. STABLE GRAVITY SOLUTIONS
AND THE INDEX

Let us now find the stable gravitational backgrounds that
contribute to the partition function with boundary con-
ditions given by chemical potentials (6 = 7, A, 3), so that
we can compare them to the field theory analysis of Sec. III.
The gravitational solutions have chemical potentials
(6474, Ay 4) (@ = 1,2,3), which could be any integer shift
of the ones labeling the index, as long as they satisfy the
SUSY constraint (4.34). Recall that the index is para-
metrized by o, 7, Ay, A,, and that we defined in Sec. III an
auxiliary chemical potential Ay such that A; + A, + Az —
o — 7 is an integer; from the gravity point of view, A3
(defined from the third chemical potential) always satisfies
this condition (on both branches of supersymmetric sol-
utions) thanks to (4.34), so we can identify also A3 on the
gravity side with the index parameter defined in Sec. III (up
to some integer shift).

We shall start by considering gravitational backgrounds
in the first branch. Consider the stability condition (5.18)
arising from having the union of three branes, one at
1y = 0, one at u, = 0, and one at u3 = 0, all wrapping the
¢ circle, and from a similar configuration which wraps the
y circle instead. The action is the sum of the individual
brane actions (5.16), so using (4.34) on the first branch, the
two conditions are

~1 -1
Hm(r'q > >0, Im ("9 ) >0. (6.1
Oy Ty

Now, remember that the gravitational chemical potentials
are just integer shifts of the ones in the CFT, so they share
the same imaginary part. Using this we can rewrite (6.1) as

Im(z) > Im(z)Re(z, — 6,) > —Im(7). (6.2)
Recalling that 7, — o6, is an integer, this can be satisfied
only if 7, = ,. Thus, the only stable gravitational back-
grounds have 7, = o, in the bulk as well.

Next, consider the stability conditions arising from a
single brane wrapping the y cycle at u, = 0, and from the
union of two branes wrapping the other two cycles, y;, = 0
and p. = 0 with a, b, c all different. Using (4.34), the two
conditions are

BFor 7, — 0, = *l it seems from (6.2) that we are on the
boundary of the region of stability. However, recalling that this
condition comes from the sum of the conditions for stability of
three different D3-branes, for generic values of the chemical
potentials at least one of these three D3-branes would lead to an

instability.
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A -1-A
]Im(ﬂ> > 0, ]Im(—g‘a> >0, (6.3)
Ty Ty

and hence
A
]Im(—l> > Hm(ﬂ) > 0.
Ty Ty

We see that we only have a stable solution when A, =
[Ay4l:, (@=1,2,3), and not for any other shift of the A,.

Recall from the analysis of Sec. III that this condition can
only be satisfied if the values of the chemical potentials are
in the “first case.” Thus, for any specific value of 7, if the
chemical potentials satisfy the conditions of the “first case”
then we have a single stable solution among all possible
shifts of the electric chemical potentials, and this solution
obeys A, = [Ag,a]fg such that its action (4.33) precisely

(6.4)

reproduces the contribution of the basic Bethe Ansatz
solution for 7 =7, On the other hand, if the chemical
potentials satisfy the “second case,” we do not find any
shifted solution within the first branch that is stable for
this z,,.

If we now consider gravitational solutions on the second
branch of (4.34), then an analogous stability analysis
implies that the only stable bulk solutions have 7, = o,
and A, , = [Ag,a]’ry. So if the chemical potentials satisfy the
“second case” condition we find here a single shifted
solution (with this 7,), and we can check that the action of
this solution (4.33) precisely reproduces the contribution of
the basic Bethe Ansatz solution for the second case with
7 = 7,. On the other hand, if the chemical potentials satisty
the “first case” condition, then we do not find any stable
solutions within the second branch.

The bottom line is that for each value of 7, and of A, (up to
integer shifts), we find precisely one stable gravitational
solution (on either the first branch or the second branch), and
the gravitational action precisely reproduces the value of the
basic Bethe Ansatz solution for 7 = 7, (which satisfies the
“first case” or the “second case” condition, respectively).
Now, recalling that 7, can take any value of the form 7, =
7 + r for any integer r, we recognize that the contribution of
that 7, is exactly that of the {1, N, r} solution to the Bethe
Ansatz equations with chemical potential 7. Thus, we have a
one-to-one correspondence between the stable shifted sol-
utions on the gravity side, and the m = 1 shifted solutions to
the Bethe Ansatz equations, with an exact match of the
leading action between the two sides.

Moreover, given the values of the A, ;s that we found,
the form of the exponentials in the nonperturbative cor-
rections that we found on the gravity side—of the form
eSps with Spy given by (5.16) and (5.17)—precisely match
with the exponentials that appeared in the corrections to the
corresponding Bethe Ansatz solutions in Sec. III C (in each

of the two cases). So our matching of the gravity side to the
index extends also to these nonperturbative corrections. It
would be interesting to match also the coefficients in front
of the exponentials in the various nonperturbative correc-
tions between the two sides, but this lies beyond the scope
of this paper.

VII. ORBIFOLDS AND m > 1 SOLUTIONS

So far we have found a precise match between stable
gravitational black hole solutions and the {m, n, r} Hong-
Liu solutions to the Bethe Ansatz equations with m = 1. It
is interesting to ask whether we can find gravitational
solutions that will agree with the m > 1 BA solutions. In
this section we show that we can construct orbifold
configurations that precisely agree with these solutions
(when m remains finite in the large N limit).

A clue to finding these solutions is the simple relation
between the leading-order action of the m > 1 solutions
and that of the basic {1, N, 0} solution; they are related by
taking t > t=mr+r, A, > mA,, and dividing the
action by m.

Consider the Euclidean black hole solutions with equal
charges and angular momenta, described in Sec. IV. In 5D,
the Euclidean solution with inverse temperature j and
chemical potentials Q and ® involves an identification of
the coordinates by

(IE7¢’W>E(IE+B7¢_iQB?W_iQB)’ (71)

and a gauge field given near the boundary by Apgy =
i®dtg, such that the holonomy around the cycle (7.1) at
infinity is i® . From the ten-dimensional point of view, as
discussed above, in our conventions the identifications of
the S° coordinates are not shifted, so we have

(tEv 457 v, ¢17 ¢27 ¢3)

E(tE+Bv¢_iQﬁ?U/—iQB7¢I’¢2’¢3)7 (72)

with off-diagonal metric components proportional at infin-
ity to %zﬁ). These can alternatively be described using the
hatted coordinates (?)a in (5.8) with an unmodified metric at
infinity, but with identifications where (}Sa is shifted by
—%i(i) p. The generalization to different charges and/or

angular momenta is straightforward, and the resulting
identification on the hatted coordinates is

(tEv ¢’ v, g,[\)l’é&Z’ &3) = ([E +ﬁ’ ¢ - lﬁlﬁvw - iQZﬁv
1 = i®1f. by — i s — iD3f).
(7.3)

On the other hand, in the (., ¢, ¢, ¢h3) coordinates—
see (2.5)—there is no shift under the identification (7.3)
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(such that these coordinates are real even when the
chemical potentials are complex), and the chemical poten-
tials are all realized through off-diagonal terms in the
behavior of the metric near the boundary.

Now, let us take this 10D background (starting from the
case of equal charges and angular momenta, for simplicity)
and perform on it a Z,, orbifold by identifying points
related by

p ~ B 2nr ~ B 2ar
(5. .y, b1 o ¢3)E( - iQ— ——— Y — Q- ——,
m m m m
W 2B 2ms ~ 2. p 2ms » 2. 27us
p-SL - g, el - g Sl ) (7.4)
3 m m 3 m 3 m m
for some integers r =0, ...,m — 1l and s =0, ...,2m — 1 (note that we allowed a larger range for s here, since shifting the

three angles ¢, by 27 acts as the identity on bosons but gives a minus sign to fermions, so it is a nontrivial operation).
Performing this identification m times brings us back to the identification (7.3), so (given that our solutions are all
independent of #g and of the angular coordinates) this is indeed a Z,, isometry of our original backgrounds, that we can
orbifold by in string theory. While in the hatted coordinates it is not obvious that the shifts in (7.4) are consistent with the

ranges of the coordinates when the chemical potentials are complex, if we use the real coordinates (g?ﬁ W, d1, ¢, p3) we find

that only the % and % terms in the shifts remain, consistent with these coordinates being real:

2xr

(IE’$7¢’¢1’¢27¢3)E< ﬁ &5—— ~—7

Thus, (7.4) is a consistent orbifold in string theory (we will
discuss its fixed points below).

If we consider the behavior of the orbifolds near the
boundary, then we see that the identifications (7.4) that we
perform in the orbifold background take exactly the same
form as our original identifications on some other black
hole solutions (7.2) [with tilded quantities substituted by
untilded ones, and in terms of hatted coordinates ¢, as in
(7.3)], if we identify

Thus, the orbifold background contributes to the sphere
partition function with these values of f, Q, and ®. Note
that the new background has

ﬁ( ® 2mr 1) 1

B pQ - 1) 1 r
9= g 2mm w T m
®-3) P@-E-39)
Ag:ﬁ( .2) 2 :_Ag_i7 (7'7)
3rxi 37z1m m m
which is equivalent to
f,=mr,4+r and A,=mA,+s. (7.8)

General orbifolds of this type will not preserve super-
symmetry even if the original background does; the con-
dition for preserving supersymmetry is that the Killing
spinor should be antiperiodic under the new identification

e

2xr 27s 2ns) (75)
m

|
(7.4) (note that the same Killing spinor can be used as in
the original background). This happens precisely when
2:(] — 3Ag is an odd integer, i.e., when

2r—=3s=m+ (2¢,—34A,) (mod2m). (7.9)
For any value of r we can find a unique s such that this is
satisfied” (moreover, recall that the “parent” black hole
solution satisfies 27, — 3&51 = +1). When this condition is
satisfied, the Z,, orbifold of the black hole background with
parameters (ﬁ 7, Ag) contributes to the index with these
parameters (f,7,,4,), since it has the same boundary
conditions as the other backgrounds contributing to
this index.

The integral of the supergravity action density over the
orbifolded background is 1/m times the action of the
original black hole background, due to the Z,, identifica-
tion. Thus, we conclude that in the classical gravity
approximation, the contributions of these orbifold back-
grounds to the logarithm of the index with parameters
(B.74.A,) are precisely 1/m times those of a black hole
with parameters (mff, mz, + r,mA, + s). This is precisely
the same as what we found for the Hong-Liu BA solutions
with parameters {m, N/m, r} [recall that the leading-order
contribution from the BA solutions is invariant under
shifting (mA,) by an integer]. Thus, we have an exact

*More precisely, this is true when m is not a multiple of 3. In
the more general case of unequal chemical potentials discussed
below, this restriction does not arise.
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match also for these solutions. Note that the quantization
condition for the 5-form flux on the orbifolded background
is satisfied only when N /m is an integer, so that exactly the
same values of m are allowed in the field theory and on the
gravity side.

Consider next the nonperturbative contributions from
D3-branes wrapped on the orbifolded background. Recall
that our D3-branes sit at the horizon and wrap, say, the ¢,
¢,, @5 directions, together with an extra coordinate on the
S§°. The position of the brane is such that the orbifold acts as
a Z,, shift within the world volume of the D3-brane, and
thus its action is 1/m times the action of the D3-brane on
the original background. On the first branch this was given
by 2zNA /%4 s0 we find that on the orbifolded background
the D3-brane action is given by Sp; = 2zN(mA, + s)/
m(mz, + r). This agrees with the nonperturbative correc-
tions found in Sec. III C if mA, + s = [mA ]

Of course, in the orbifolded backgrounds we still have
the freedom of shifting the various chemical potentials by
integers, and we need to perform a similar stability analysis
to that of the previous section. And moreover, the gener-
alization of the analysis above to different chemical
potentials is straightforward, but we then get separate
parameters r;, r, for the shifts of ¢ and y in (7.4), and
separate parameters s; and s, for the shifts of ¢; and ¢,
there (all in the range O, ..., m — 1), while the shift 55 of ¢
(in the range 0, ...,2m — 1) is uniquely determined by the
supersymmetry condition

mt,+r

Fi =8 =5y — sy =m+ (21, - 34,) (mod 2m).

(7.10)

So we need to generalize the analysis of Sec. VI to allow for
all these shifts. The generalization is straightforward and it
implies, for instance, that on the first branch the only stable

solutions are those obeying mA, , + s, = [mAg,a]mTy 4, for

alla = 1,2, 3, and that they obey 7, = 6,. Asin the m = 1
case, this leads to a precise agreement between the stable
solutions on the gravity side and the BA solutions, both for
the leading-order contribution to the logarithm of the index,
and for the form of the nonperturbative corrections dis-
cussed in the previous paragraph.

Finally, let us describe the fixed points of these general
orbifolds, in which the identifications may be written as

-~ p - 2mr, _ 2ar
(fE,¢aW,¢17¢2,¢3)%(lE+—a¢— l,ll/— 27471
m m m
2rs 2rs 2rs
— gy - s - 3>.
m m m
(7.11)

It is clear that there are no fixed points away from the
horizon. At the horizon we have one coordinate shrinking
to zero size, and the remaining coordinates ¢ and  form

(together with ) a round S3, while the S° coordinates ¢,
and y, form a round S° (recall that our gauge fields in 5D
supergravity vanish at the horizon). Generically all the
angular coordinates are shifted by the orbifold. However, if
(say) r; and one of the s, vanish, then the manifold where
r =r,, 8 = x/2 (such that the § circle shrinks) and where
i, = 1 (such that the two circles of the coordinates ¢, with
b # a, that are shifted, shrink as well) is fixed under the
orbifold action (7.11). This is a two-dimensional manifold
(parametrized by ¢ and ¢,), and near this fixed manifold
the orbifold acts on the transverse space as a supersym-
metric C*/Z,, orbifold.

Similarly, if three of the (|, r5, 51, 55, 53) vanish (includ-
ing at least one of the ;) we have a four-dimensional space
of fixed points (with a transverse C3/Z,, orbifold action),
and if four of them vanish we have a six-dimensional space
of fixed points (with a transverse C*/Z,, orbifold action).”’
Note that, due to (7.10), it is not possible for all five of these
numbers to vanish, consistent with the fact that a C/Z,,
orbifold cannot be supersymmetric.

When there are fixed points, the orbifolds have light
twisted sector states living there, while otherwise all
twisted sector states are heavy. Supersymmetry ensures
that these twisted sector states do not lead to tachyonic
instabilities. In principle the loops of the twisted sector
states (whether they are light or heavy) contribute pertur-
bative corrections to the supergravity action, and it would
be interesting to verify that their contributions are con-
sistent with the order O(1) contributions that we found
from the Bethe Ansatz approach.

Note that all of our orbifolds involve a shift action on the
Euclidean time circle. Thus, they are not related to any
AdSs x $°/7,, backgrounds, and their Lorentzian inter-
pretation is unclear.
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APPENDIX A: SPECIAL FUNCTIONS
We will use fugacities and chemical potentials related by

7= eZm’u’ p= e2m'0', q= eZm"r' (Al)

q-Pochhammer symbol.—We use the standard notations

(1 —2zq4")

s

n—1
(za), =[[(1-24",  (za)e =
e

0

T
f=}

for |¢| < 1. (A2)

The expression (z; ¢) ., admits the series expansion and the
plethystic representation

n(7) = €% (41 ¢) (A4)
with the Dedekind eta function, one obtains the modular
transformation properties of the g-Pochhammer symbol:

= V=ize1/(g; g)

(75 @)oo (AS)

where § = e 2%/7. The square root is taken with the

principal determination, recalling that Im(z) > 0. Finally,
we have the asymptotic behaviors

Z
l—-¢q
(A6)

(1-2)

for z = 0,

for g - 0,

(239) 0 ~ log[(z; q) ool ~ =

where f ~ g means that lim /g = 1.
Function 6,.—The elliptic theta function is defined as

(1—2¢")(1 —z7"g"").

s

O (u;7) = (2:9)00(4/2:9) o =

=~
Il
o

(A7)

This gives an analytic function on |g| < 1 with simple zeros
at 7z =g* for k € Z and no singularities. The infinite
product is convergent on the whole domain. We can also

0 n M © k . . .
I z give a plethystic definition
7" =ex —
- g, < ] -
12"+ (q/z
(a3 (i) =exp |- > I qag
k=1 I-q
respectively, where the first one converges on the whole
domain |g| < 1, while the second one converges for |z|,  which converges for |g| < |z| < 1.
|g| < 1. Noticing the relation The periodicity relations are
|
Oo(u + n + mz;7) = (=1)"me 2mimu—rimim=0)1g. (4. 7)  for n,m € Z
Oo(u;7) = Oy(7 — u; 1) = —e*™ 0y (—u; 7). (A9)
The modular properties are
1 14 zit
90(11;1' + 1) = Ho(u;r), 9() <% —;) = —ier(” Futs )—mu+ 90(1/! T) (A]O)
Function w.—Define, for Im(¢) < 0, the function
— 1 1 — g—27it 1 L e2mit) | — . 1 —2mitt All
w(t) = exp | tlog( )=t | = e | =3 (G5 ). (A11)
=1

The branch of the logarithm is determined by its series expansion log(l —z) =

—>% ,z%/¢, whereas Liy(z) =

o2 27/ is the dilogarithm. One can show that the branch cut discontinuities of the logarithm and the dilogarithm
cancel in the definition of y (), therefore the latter extends to a meromorphic function on the whole complex plane. Some

useful properties of y(¢) are
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WOy (=) = 10,
forn € Z.

€_2mt)nl//(t)
(A12)

wli+n) = (1-

In particular, from (A11), y(0) = &™/12.

Function T.—The elliptic gamma function is defined, in
terms of chemical potentials, as

ﬁ 11— pm+1q”+1/z
1 —p"q"z

m,n=0

C(u;0.7) = (A13)

This definition gives a meromorphic single-valued function
on |pl, |q| < 1, with simple zeros at z = p"™*!g"*! and
simple poles at z = p™"q¢™" for m, n > 0. The infinite
product is convergent on the whole domain. We can also
give a plethystic definition

P 0,7) _exp[zk

which converges for |pg| < |z| < 1.
The function satisfies the following periodicity relations:

& —(pg/2)*

i A9

['u;0,7) = f(u;r, c),
C(u+1;0,7) =T(ws06+1,7) =T(u;0,7+ 1) =T (u;0,7),
T(u+0;0,7) = 0y(u;7)T(u;6,7),
T(u+10,7) = 0y(u;0)1(u;0,7) (A15)
Moreover
C(u;0,0)0(6 +7—us0,7) = 1. (A16)

The elliptic gamma function has SL(3, Z) modular proper-
ties. For o, 7, 6/7, 0 +7 € C\R there is a “modular
formula” [91]:

B o) (4-c _l)
F(u;a,r) :e—m' U;0,7) _ _T’r’l T
Fssi-t.-)
I 1 ¢
_ ridtenn L7000 (A17)
Fizsi—2.-0)
where Q is the cubic polynomial
Q( ) w o+1-1 )
U,6,7) =—————1Uu
301 2071
6>+ +306r-30-37+1
+ u
6ot
(c+7—1)(6+7-07)
. Al
1207 ( )

In the degenerate case ¢ = 7 the inversion formula above is
not valid. For u € C\(Z +tZ), however, there is a
degenerate relation:

(A19)

The polynomial O reduces to

Qu—-27+1)2u(u+1)=2zQ2u+1) +17°)
1272 '

Qu;t,7) =

(A20)
The function y is defined in (A11). Using

Ouir.7) = (u+ )(L;jl_%)—i—%,
(A21)

Qu+ 1;7,7) —

one can check that both sides of (A19) are invariant
under u — u + 1.
Function G.—This function of u, A, 7 is defined as

1 0 Oo(A — u;7)
LA T) = ——log| ————< . A22
Glu &) 2niou o <6’0(A +u;7) (A22)
We can write the series expansion
()0 = (a/y))
Glu Air) = —— . (A23)
=1 q
which converges for |g| < |yz| <1 and |gq| < |y/z] < 1,

with z = €?* and y = ¢**. Such a domain could be too
restrictive; in that case, notice that G can be written as the
sum of two series, each one convergent in one of the two
domains, respectively.
We have

Glu,Ay7) = G(—u,As7) = =G(u, 7 — A7), (A24)
We also have modular properties, which follow from the
ones of fy:

Glu, At + 1) =G(u, A7),
g(z,é;—l)—1—2A—1+7Q(u,A;r). (A25)
vt 1

The periodicity properties are

Glu,Ay7) =G(u+1,A;57)
=G(u, A+ 1;7),

Glu,A+17;7) =2+ G(u, A;7).

=G(u+r1A;7)

(A26)

In particular, G is an elliptic function of «, and quasielliptic
of A.
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APPENDIX B: CONTRIBUTION OF domain of convergence, manipulate the expansions and
HONG-LIU SOLUTIONS then obtain exact expressions. By analytic continuation, the

In this Appendix we carry out the computations that latter will be valid everywhere.

lead to the contributions of the HL solutions to the

superconformal index, reported in Sec. IIT A. We will first 1. The case A #0

compute the quantity y,, and then the Jacobian H. Let us start with the generic case that A # 0. For
We proceed to explicitly evaluate the sum in (3.19) that

defines the function y,. As explained in the main text,

the strategy is to expand various functions in a common

lg|? < |y| < 1, we use the plethystic expansion to evaluate
the second summation in the second line of (3.19):

— — §/'I 4 14 5,‘2 2 —¢ 27
m—1 . m—1 o 1 5 y= a yyq
nzlog(r(v11/2+A;T’T)) :nZZE - s
i i =1 (1-¢")
1y =y g <f(mA; mr, mr))
=n — Afm NlOg — (B])
27 aa7 e
Here we introduced
m—1 2 B
App= Y ermilim)tim — {m m for £ =0 modm )
| m for £#0 mod m

J1#i2

We similarly expand the first summation:

58 \? $ln\¢ . —
m—1 n—1 _ m—1 n—1 (_fl 1) yf_ <12 2) y fqu
D I T e R S S - (B3)
J1j2=0 ki #ky J1J2=0 ki #ky £=1 (1-4")

This expansion converges if

ky —k
0 <Im(vj;, +wip, +A) = sz]Im(T) +Im(A) < 2Im(z) Y ki # k. (B4)

Taking into account the ranges of k , this is the case if

"= L) < Im(a) < nTH]Im(T). (B5)

For any value of n there exists a (small) domain of convergence that we can use to perform our manipulations.”® We find

n—1 oo <C,‘—‘))f - (é‘kzqz)f n—1
(B.3) = Z §sz 1 ;klzy (App+m)=m Z log(F'(mwy, x, + mA; mt, mr)). (B6)
ki #ky =1 (1-4") ik,
Putting the two terms together we obtain
n—1 -
- I'(mA;mz,

yYa=m Z log (I'(mwy x, + mA;mz, mz)) + N log <M> (B7)

e I'(Asz,7)

which, by analyticity, extends to the whole domain of definition of the functions. The sum in the first term on the right-hand
side can be evaluated using the “modular formula” (A19). Recall that I'(u; 7, ) is invariant under integer shifts of z, ¢, and
thus we can shift mz — mr + r. It is convenient to define 7 = mr + r. We obtain

28 . . . . . . .
Actually, since we are resumming over j;, j, at fixed k;, k,, the domain of convergence is even larger.

086026-28



GRAVITY INTERPRETATION FOR THE BETHE ANSATZ ... PHYS. REV. D 104, 086026 (2021)

leog{ < T+mA mr, mr)} :—mmZQ< ¥4+ A;%,%)

ky#ky ky#k,
A k+1+mA+k| —ky
oSl D] & S (), 9
K7k k7K, k=0 e

Here Q is the cubic polynomial (A20). Let us evaluate the sums in the second line. For the first sum we use the plethystic
expansion (A8) of 6, valid for 0 < Im(mA/¥) < Im(—1/%). It is convenient to define the variables

Ck — e2m’mwk/% _ e2m’k/n’ 5) —_ e2m’mA/%’ Z] _ e—2ﬂi/‘\f‘ (Bg)
Then
0\ 7 - o\l wp
il ki—ky mA 1 ot ey (3) 5+ (2) 5
_m210g|:90< —+ ~ ’_7>:|_m Z_ 2 v;
K17k, " vt it I-q
1Y+ 0 (m—ﬁ,—%)
= ———A,,=NI T U B10
m ; Z/p 1 _ é/ Og n) ( )

For the second sum, we use the expansion (Al1) valid in the same range:

U S\ )
m log( — 2 >—m [—
ky#ky k=0 ‘//(kTmA + %) > ¢
k+14mA G\ 1 (k—=k 1N\, o1 G\ s
SR N Ml - - 2k . (BI1
SR ) 4 (B g ) 6 - @) =) e

Then we conclude that the following sum vanishes:

n—1

Boy =Y (ki —ky)emicta=)/n — o, (B12)
ky#ky

Therefore

B =m> > E (k —mlge ktlimd <m)f’) 6 - @) A,

= = T T 2ril?
I n(k+14+mA) k+14+mA
y(=——) w(5"2)
= mlog| ——-—| — Nlog f:n . (B13)
; l < y/(n(k %mA)) ) ( l//(k 2 A)

Finally we put all terms together. The expression simplifies using

Nlog (T'(mA; mz, mz)) = —xiNQ(m

e

¥, %)

)] + NZIOg( k?::?). (B14)

‘We obtain
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n—1

ki — ko ~
YA = —7im E Q(ln T+mATT>—Nlog(F(A;T,T))
0

k) ey =
k+1+mA
NA )
— Nlog {9 < - )} +m» log - . (B15)
N Z l//(kf/nA)

The sum over k;, k, can be performed exactly:

n—1 2

-k 1 N2 (¥ —mA)(¥—mA =¥ —mA -1

—nim g Q( zf—l—mAr'r):—ﬂ<r—mA——)+m—(T mA)(E—m > )(T m ) (B16)
Vo n 6 2 m 3t

We thus obtain the exact expression in (3.23).

2. The case A=0
The case A = ( requires a separate treatment. Using (A9), (A15), and (A16), we find

:—ZlOg 90 ij»T |3l6

i#]
m—1 n—1 m—1
== > 10800,y + Wik3 7)) = Y 1og(00(v), 1,3 7). (B17)
J1:2=0 ki #ky J1#)a

The sum in the second term on the second line is computed as follows:

m—1 o .
-n Z log(6y(v),j,37)) = —n Z {log < Z > + ZZlog <1 —%qk>]
J1#)2 J1#)2 j»

= —Nlog(m) + 2n i iéAﬁqu — —Nlog(m) + 2N log {(("—Q)]. (B18)

4":q")
We used that > 7, log (1 — e?i=K/my — mlog(m). The sum in the first term can be computed using the plethystic

expansion (A8) which converges for 0 < “=%2TIm(z) < Im(z). This is not satisfied for all k,, k,, therefore we split the sum
using (A9) as follows:

- Z |:Z log 90 j]]2 + Wy kz,T) + Z log 2”’ U1112+Wklk2)90< ’Ujlj2 - Wklkz;T)):|
0

J1:J2=0 tky>ky ky <k,
m—=1 n-1
=2 Z Z log(6y(v;,j, + Wi k,: 7)) — m? Z log(—e*™ ™),
J1:J2=0 ki >k, Ky <ky
n—1 ékl —+ gﬁ ¢ n—1
Z _M (Af,m + m) _ Z IOg((—l)mzeZHimzwklkz),
k1 >k Ky <ky
n—1 n—1
=—2m Y log(fy(mwy, s mz)) = Y log((=1)"" 2™ u),
ki>k, ky <k,
n—1
= —m Z log(é’o(mwklkz; mr)) (B19)
ky#ky

2

In the last equality we used (—1)"~™ = 1. The sum can be computed using the modular properties (A10):
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n—1

-m Z log (6o (mwy, x,; mz + 1))
ki#k,
n—1
1 (ki —ky)*,
:—mmkz |:2— ) —T—* —mZIOg 90 g
17Ky ky#ka
x(x _ l X o 1 v v
N 1) §)2 + rim(n—1) % — Nlog(n) + 2N log [(( ?Z‘)” ] (B20)
T g

The computation of the sum in the second line is as in (B18). Finally, we use the modular properties (AS5) of the
g-Pochhammer symbol to obtain

]—I—Nlog(—zr) +TN (+%> (B21)

Wlog |4 Dss ] - 2Nlog[ ?)

(75 9) oo (¢;
(@"9™) 0 (475" o (@"54") o

Recall that Im(7) > 0, therefore log(—i%) = log(¥) — iz/2 with the logarithm in its principal determination. Putting the
various pieces together we find (3.25).

3. The Jacobian H

Given the BA operators Q; written as in (3.29), we compute

1 9log(0)  nduy
et <A VAP -1 , , B22
27i Ou; ; + Zg Uik (B22)
where we defined the function (see also Appendix A)
1 0 Oo(—u + A; 1 [6; A; 0, (—u + A;
Gl Arr) = —— DL jog (Qolzu T AT) L J6h(ut Ace) | Gp(—u + Acr) (B23)
27i Ou Oo(u+ A;7) 27i |Og(u + As7)  Og(—u+ As7)

with implicit dependence on 7z (unless specified). This is an even function of u, namely G(—u, A) = G(u, A). Since
we treat uy,...,uy_; as the independent variables while uy is fixed by the SU(N) constraint, we have
Oy Uik = 6;j — 6y — Oiy + Sy Therefore

1 0log(Q) Y :
5o, = (68— )| N+ Z Zg(uik’ A,) )+ Z[g(uiNa Ay) = Guij, AL)). (B24)
2ni Ou; p i —
This leads to the following expression for the Jacobian matrix:
N 3
A +5l] +ZZ 511g zk’ +g(ukN’ )]
k=1 a=1
3
+ Z[g(uﬂ\u Aa) + g(”jNv Aa) - g(uijv Aa) - g(07 Aa)]’ (B25)

a=1

where i, j = 1,...,N — 1. Let us compute the following quantity:

N m—1 n—1 j _] k —kT
T=)> Gu, Ayt :ZZQ(I - Ag,’r). (B26)
= j= 0

=1

The sum over j is computed easily, using the series expansion (A23). One has to be careful about the domain of convergence
of the series. We sum over j with k fixed; however, there is no domain of A, 7 such that the full series is convergent. One
can instead break the series of G in two, each one convergent in a different domain, and recombine the two pieces at the end.
Exploiting
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m—1 =
Y epsitimie/m — { . for £ =0modm (B27)
g 0 for £ #0mod m
we obtain
n—1 k k
YT=m g( — %, mAa;%>- (B28)
k=0

Then we use the modular property (A25) and perform the

second sum. We obtain
2mA 1— NA,
mAg -7 _g( ’f). (B29)

T

T=N

T T

Notice in particular that T does not depend on i; or
equivalently on (j;, k). Moreover, Y is invariant under
mA, - mA, + 1. Therefore,

3
Ai/ ( +61/ |: VZ<2mAa

.q

)
+Z ins Ba) + Gujns Dg) = Gluij Ay)
~G(0.A,)). (B30)

Here we recognize the expression in (3.30).

4. Perturbative corrections

We give some evidence that the term log[det(T +
B~'C/byN)] in (3.47) and (3.49) only leads to a contri-
bution of order O(1) and to nonperturbative corrections in
the large N limit, but no 1/N perturbative corrections. In

order to do that, we expand
—lc oo B—lc 4
—log|det| 1
oefoa(14 50| =5 (5 ]
(B31)

and compute the first few terms.

First order—We compute Tr(B7'C). The two matrices
B and C are defined in (3.31) and have size (N —1)x
(N — 1). Using the fact that G is an even function, the trace
can be recast as

N-1 1 N-1
Tr(B~'C) = Ci—— Cij
i=1 Ni,j:l '
3 1 N
- Z {N z:l Gluyj, Bai7) = NG(0. Agi)|.
a= L]j=
(B32)

The sum inside square brackets was already computed in
(B26)-(B29) and it equals Y, therefore

-1t+1

Tr(B-'C) = Ni: [%

A«

Il
=

~6(0.8,)] (B33)
In the first line we used that Y is invariant under integer
shifts of mA,, while the + signs in the second line refer to
the first and second case of parameter space, respectively.
Then, using the large N behavior of G in (3.38) and

1
by([mAly) = i% + O(e™), (B34)
we obtain the large N result
Tr(B7'C) | - , v
DwTa 1 if<1 - ;g(o, Aa,1)> + O(e™)
(B35)

where, once again, the =+ signs refer to the first and second
case, respectively. We see that this quantity only receives
nonperturbative corrections at large N.

Second order—We compute Tr(B~'CB~!C). Using C as
a symmetric matrix, with some lengthy algebra we obtain

Tr(B“CB"C)
2 N— 1 N—-1 2
= N Z ,kcjk+ﬁ(zlc,,> :
3 N
= Z [Z i Ay 1)G(ui; Ayt )—T(Aa;f)T(Ab,T)].

(B36)

This expression is valid for any HL solution {m,n,r}.
However, evaluating the summation in the second line by
brute force is quite complicated and here we will content
ourselves with the T-transformed solutions, i.e., with the
case m = 1.

We define the following quantity:

a.b—1

l]’Ab’ )7 (B37)

where u;; is as in (3.16) but with m = 1. Using the fact
that G is invariant under integer shifts of each of its
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arguments (see Appendix A), the modular transformation =~ where the =+ signs refer to the first and second case,
formula (A25) and the constraint among [mA,];, we obtain  respectively. Using the series expansion of G in (A23) and
the same method we used to compute T after (B26), the

30 summation on the second line gives
U= Z Z g(”l/? [Aa]{-;%)g(uu’ [Ab]%;%>?
ab=11i,j=1
FE1)?2 28t 1) S~ (i [A: 1 N fu (A1 N[A): N
:NZ(TV + v g Tl’ vaT’_T - ar. _N2 0 ar. __
# 7222:1;117 jzzlgrrr a0
LS st Bae 1o (Dol 1 (B39)
+%—zzzg<7, ¥ ;—g>g<?, ¥ ;—g>,
a,b=1ij=1
(B38)

~f v ~ [ee]
Ya v v
cf =t = Z §'va)" = (@ /3)7), (B41)
and z; = e/t §, = e27lAdi/T §j = ¢=27i/% The sum over i, j can be performed exploiting (B27), and we obtain
00 oo N-1
Wap = 4N Y cq @ Ve D on? N (NPT g P, (B42)
a,f=0 a.p=0 y=1
The first sum can be performed exactly using
- 1 NIA,l:, N
> et =500 M2k 8. (B43)
g 2 T T

Substituting back in W, in U and finally in the trace we obtain the expansion

2 2 3 o N-1
Z N fl+7 Nﬁ+7_|_ N(p+1)-y ) (B44)
a,b=1a,p=0 y=1

Tr(B-'CB~'C) =

Let us study, in the large N limit, the summations containing the two terms in parentheses separately. The second term
involves

D A@ TN = (@ 3N EN@ )N = (G 5NN, (B45)

The fundamental property of [A,]; in (3.40) guarantees that |§| < |9,| < 1, and similarly |G| < |¥,| < 1. Therefore the

defining sum of )(Elzh) involves terms whose absolute value is smaller than a number smaller than 1, elevated to the powers

N(a+ p) + N. This implies that )((fb) is of order O(e™), and thus it only produces nonperturbative corrections. Next we
consider
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o N-1
A= 3y e 46
a,p=0 y=1
By expanding out the coefficients ¢ as in (B41), one obtains four sums. One of them is
oo N-1 o
DD @IV (@ )N
ap=1 y=1 rs=0
© MIESS 5 (%rFsy 5 \N X (£ 1 pA Y
— Z (érya)N{l(éSj)h)N/}q YaYb er:{~ ~yayb) _ ( + v)fq~ y:zyb+0(e_1v). (B47)
a.p,r.s=0 - 9 "YaVp =0 1- q4 YaYb

In the first equality we summed the finite geometric series in y, while in the second equality we only kept the terms that are

finite in the large N limit. The other three sums that constitute y
corrections, can be nicely expressed in terms of the function

U B
73 7) =50, log(F(ui 7. 7))

which can be expanded as follows:

One obtains

Xab :}/

) ~<[Aa];:r[Abh_ 1) i

Ellh) can be treated similarly. The result, up to nonperturbative

We can finally substitute into the trace, and obtain the second-order contribution

BN 24| 4

a,b=

Also at this order we see that there are only nonperturbative
corrections at large N.

APPENDIX C: SOLUTIONS WITH TWO
ANGULAR MOMENTA

In this Appendix we generalize our discussion in the main
body of the paper to black hole solutions with two different
angular momenta (and correspondingly two different chemi-
cal potentials for them), but still with three equal U(1)
charges (and chemical potentials), so that the solutions can be
constructed using 5D minimal gauged supergravity. We also
discuss the supersymmetry of those solutions, and the uplift
to 10D type IIB supergravity. Finally, we study the super-
symmetric embeddings of Euclidean D3-branes.

In Appendix E, as an aside, we will present supersym-
metric embeddings of Lorentzian D3-branes that generalize
the giant graviton and dual giant graviton solutions in empty
AdS;5 [59-61] to Lorentzian black hole backgrounds.

(B43)
k k+2

1 g ;‘z i z q"+/2z/ Z> ' e

<M;_%> +O(eM). (B50)

R Gt | BTG

1. 5D minimal gauged supergravity
The bosonic Lagrangian of 5D minimal gauged super-

gravity is (4.1), that we repeat here®:

2
L:(R+1292)*1—§FA*F+§FAFAA, (C1)

27
where A is the graviphoton potential, F' = dA is its field
strength, and we followed the notation of [5]. As in the
main text, we set the dimensionful coupling g to 1.

The authors of [89], generalizing previous work of
[88,92,93], constructed a four-parameter family of charged
and rotating black hole solutions:

=1 H Hp ; ;
p) = p!a)ﬂl_“”pdx ...dx"r in d dimensions,

we define its Hodge dual in Lorentzian signature as *w(,)=
g

W\/__p)ywul b')eul.,.u,,m.../td_pdxm o odxtir €0...(d-1) = 1.

Then ** = (=1)?(4=P)*1 a5 well as *1 = dvol; and @, A

pa)’““"‘vdvold.

PGivena p-form e

where

— 1
*O(p) = 51Oy
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Ag[(1 + r?)pdt + 2quldt 2 Aydt 2 pldr?
452 — Bl +i)€ 2+ quldt quJrLi(HaH _W> Lo
Sa=ppP P P Sas Ar
2002 242 2 2
+2 4+ i—a sin?(0)d¢* + r i cos?(0)dy?,
Ay =a =b
3q (Aydt
A="T (2% ) — aar, (C2)
2p° \E,E),
where
d di
v = bsin®(0)d¢ + acos?(0)dy, w = asin®(6) _,—¢ + beos?(0) a
Za =p
2, =1-a?% 2, =1-10% fi=2(m+ abq)p* - ¢*,
Ay = 1 —a’cos?(0) — b?sin?(6), p* = r? + a*cos?(0) + b%sin®(6),
2 2 2 b2 1 2 2 2ab
o, @R P 2abg .
r
The field strength can be written as
3 2 _ 12
F_gdr/\w—%(rAgdr—a (1+r2) Sln(2¢9)d9> A dt
p E.Epp
3¢gsin(20 2 2 2 b2
—&E)dQA T g ), (C4)
2,0 —a =p
while #sF —2A A F = da) with
3 Apdt 2 3 20
ap) = 2—q2 <H o4t _ w> A (1/ + §o:dt> - q:f—sw (dt A (bdp — ady) + d A dy). (C5)
P Sa=h Sah

The coordinates are (7, r, 0, ¢, y), where 6 € [0, z/2] while
¢, w have period 2z. The constant o is arbitrary in
Lorentzian space (it can be shifted by gauge transforma-
tions). The four parameters are (a,b,q,m), and corre-
spondingly there are four independent conserved charges:
the energy E (associated to the Killing vector %), two

angular momenta J; , (associated to the Killing vectors %

and %, respectively), and the electric charge Q. Setting

a =b one recovers the solution in (4.2) which has
J 1 = J ) = J.

The outer horizon is the largest positive root of
A,(ry) =0, and we denote it by r,. This is a Killing
horizon generated by the Killing vector field

) P )
_9.9 %410, 9.
V=55 g,

(Co)
Here Q;, are the angular velocities at the horizon,
measured in a nonrotating frame at infinity. Evaluating
the surface gravity one determines the Hawking temper-
ature T =1/p. Besides, one defines the electrostatic
potential at the horizon, ® =1yA|, —i1yA|,, and the

entropy S, equal to a quarter of the horizon area.
Explicit expressions for the charges and chemical potentials
can be found in [5]. Those quantities satisfy the first law of
thermodynamics,

dE =TdS + Q,dJ, + Q,dJ, + ®dQ. (C7)
It turns out to be convenient to trade the parameter m for r .,

and thus use (a,b,q,r,) as the independent parameters.
Since r, is a root of A,, the relation

. (rX +a®)(r2 + b2)2(12+ r2) + q* + 2abgq (C8)
3

can be used to eliminate m in favor of r,.

The analytic continuation to Euclidean signature, studied
in detail in [5,69], is obtained by rotating t — —itg, a — ia,
and b — ib. This yields a real Euclidean metric, though the
gauge field becomes imaginary. Regularity of such a metric
around r = r, requires us to compactify the Euclidean time
tg with a period equal to #, and more precisely it requires us
to identify
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(tE7¢vW> = (tE +ﬂ?¢_ inﬂ?W_ lQZﬂ)

=~ (tg,p + 27, p) = (tg, p,w + 27).  (C9)
Notice that the Killing vector (C6) precisely generates
rotations of the Euclidean circle that shrinks at r,.
Regularity of the gauge field at 7., in a gauge which is
regular at the horizon, requires 1VA|,+ = 0, which implies

a=o. (C10)
The on shell action can then be computed for regular
Euclidean metrics, regularized using background subtrac-
tion (which assigns vanishing action to thermal AdSs). The

family of solutions can then be extended to generic
|

complex values of the parameters (a,b,q,r,), and the
on shell action Iqygra is extended analytically. It satisfies
the so-called quantum statistical relation

Isuora = P(E=TS —QJ, = Q,J, —®Q).  (Cl1)
a. Supersymmetry
The solutions (C2) become supersymmetric for
m=(14+a+b)g. (C12)

This gives a three-parameter family of complex (and,
generically, nonextremal) solutions in terms of (a,b, q).
The charges take the values

Eiﬂq(?)—&—ab—(l—&—a)bz—(l—i—b)az) B nq
 4l=-a)(1=-a®)(1=b)(1=-0%) Q_2(1 —a*)(1-p%)’
J, 7q(2a + b + ab) J, = 7nq(2b + a + ab) (C13)

T4l -a)(1-)(1-b2)

41 -a®)(1=b)(1=1%)’

and satisfy the linear supersymmetric relation £ = J; + J, + % Q. In the following it will be convenient to use (a, b, r. ) as
the independent parameters, and combining the change of variables (C8) with the SUSY condition (C12) one finds

g=-ab+ (1 +a+b)rk Fir (rA —r2) with r2=a+b+ ab. (C14)

Here r, is the position of the outer horizon for real supersymmetric and extremal solutions, i.e., for the Euclidean rotation of
Lorentzian BPS black hole solutions. The F signs come from the branch cut of a square root. For the upper sign, the
supersymmetry condition becomes

g=—(a—ir)(b—ir )(1—ir,) (1stbranch). (C15)

We refer to the corresponding family of solutions as the “first branch”. The “second branch,” which follows from the lower
sign, is obtained by sending i — —i. In the first branch, the chemical potentials take the values
2n(a—iry)(b—iry)(r? +ir,)
(rA=r)Q(1 +a+b)ry +i(r =3r%))°
(r2 +ibr.)(1—ir,)
(r2+ir)(b—iry)

~ 3Bir (1—iry) =
2(P+iry) N
(r? +iar,)(1 —ir,)

Q = s Q =
T2+ ir )(a—ir,) 2

(C16)

They satisfy the relation

B(1+Q, +Q, —2®) = +27i,  (Ist/2nd branch) (C17)

where the + sign depends on the branch. Following [5]*° and the discussion in Sec. II, we define new chemical potentials
Gy Tys Ag as

p p B (2
=—(Q -1), =—(Q, - 1), Aj=—(-D-1). C18
= g G T =g (@) 97 2mi \3 (C18)
In the first branch they are given by
___ la=Db=ir) a o lamird-ir) (b—1)(a—ir,) c19)
72l +a+b)ry —ri +3r%

Y 2i(l+a+b)ry —r24+3r2"° Tg:Zi(l+a+b)r+—r%+3rﬁ’

*The potentials @, w,, ¢ defined in [5] differ from ours by a simple rescaling.
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(while the values in the second branch are obtained sending
i — —i and changing the overall sign). These potentials
satisfy

o, +1,—3A, = %1 (1st/2nd branch). (C20)
In terms of them, the on shell action takes the very simple

form

in? Ag

— C21
2¢°Gs 0,7, (€21)

Isugra =

in both branches. Notice in particular that it does not
depend on f. Here, for clarity, we reinstated the coupling g
and the 5D Newton constant G5 that were previously set to
1. This expression generalizes (4.29).

b. Killing spinor
The solutions (C2) with the SUSY condition (C12)
admit a Killing spinor e. The Killing vector arising as a

bilinear of the Killing spinor is K = 2 + & + . The

spinor satisfies
£o€——(l—2a) Loe=Loe=—e,

ge=Lye=> (C22)

where L is the Lie derivative. The second equation implies
that e*™“ome = > o/me = —¢, namely, that e is antiperi-
odic along the two circles parametrized by ¢ and v, which
is a necessary condition for a spinor to be well defined since
the two circles shrink somewhere inside S°. The first
equation, combined with the gauge-field regularity con-
dition (C10) and the SUSY relation (C17) among the
chemical potentials, implies Lye = F %e, where V is the
Killing vector (C6) and F correspond to the first/second
branch. In turn this guarantees that e #“ve = —¢, and thus
that ¢ is antiperiodic along the Euclidean time circle that
shrinks at the horizon.

In order to construct the Killing spinor e, it is convenient
to use orthotoric coordinates (z,&, 7, ®,¥) [94]. The
coordinate change is given by

b 2 2 _ b2
Pty P T e g areeos(n)
4(1 - a?) 4(1 - bz)
=t———F5-(P-Y), =t- D+VY), C23
where we defined the new mass parameter’’
m= - (C24)
(a+b)(1+a)(1+D)(1+a+Db)
In these coordinates, supersymmetric black hole metrics are described by the simple vielbein
0E° fldt — ),
n—g L F©
——d¢, —— 1 | —(dD + nd?¥),
-7\ e R ITEG
n—¢ 1L/ 9()
= ——dn, =— d® + &dV¥), C25
G 772\ -8 ) )
where F(£) and G(n) are the cubic polynomials
Al =)
Gn) == - [(1=a®)(1 +n) + (1= 6*)(1 = n)].
(a® = b%)
1+m(24a+b 3
=— —4 C26
FO) = -0 -4 L (2O ) (©26)

while

!The extremality condition for supersymmetric solutions, namely r, =r,, simply reads /i = 0 [5].
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F'(&)+G"(n)
- f///+g/// f-'/ 1/24a+b
el reaF
+ 5) 2?’”)} (d® + nd¥) + G(d® + ijd‘I’)}
f///g/// 2
+ ogg 1+ €)d® +ned¥] + — d¥. (C27)
Explicitly, the function f takes the form
m(a—b)(n—-¢§)
= ) C28
I = erarni+m+@-bhunrm

One can also verify that, at the location &, of the outer
horizon r = r., we have

F(e)=o. (C29)

The metric is then ds*> = —(E%)? + (E")? + (E?)*> +

(E*)? + (E*)?. The gauge potential is

3(1-1)
2

A= dt — adt

_6(1+a)(1+b)(1 +in)f
(a— ) (a+ b)m*(n—¢)
[(a+b—(a=b)n)d®+((a+b)n—(a-

X b))d¥).

(C30)

Using vielbein indices, the nonvanishing components of
the field Strength are FOI? F03, F12, F14, F23, F34, and
antisymmetrizations. The metric determinant is — det(g) =
(n=&)?*/f>.

The Killing spinor equation of 5D minimal gauged
supergravity reads

) 1 i, y
V,—iA, ==y, —— (rd — 46y

— 0.
2T 12 €

?)F (C31)

We use the orientation y°'?3* = —i. Then we impose the
relation £ (y'? —y*)e = ¢, which implies the following
projectors:

ie = =YY = —y%e = y*e. (C32)

One verifies that the following spinor solves (C31):

e—exp{l [(3 2a)1 %

(®-Y)

(C33)

where €, is a constant spinor satisfying (C32). When
checking the Killing spinor equation, one encounters a
series of square roots. We started from a domain in which
all radicands in (C25) are positive, and then analytically
continued from there.

c. Killing spinor for equal angular momenta

Black hole solutions with equal angular momenta J; =
J, correspond to a = b and have been discussed in the
main text. However, the orthotoric coordinates in (C23) are
singular for @ = b, and thus the @ = b limit must be taken
carefully. Following Sec. 4 of [94], we set™

4(1 - a2
M=) with = - -1,
am 2a(1+a)*(1+2a)

(C34)
and take 4 — 0. The change of coordinates reduces to

2 =124 2a(l + a)im + 4(1 - a®)é, QZEMCCOS(’?)’

d+ V¥

o-¥
p=t+—0! y=tt——,

2

(C35)

with 72 = 2a + a?. The functions F and G behave as

o =20 o). Fo T8+ op
(C36)

with

Gln) =11,

Fo=(1-5)p et (i) o)

The function f and the 1-form @ reduce to

2(1-a)k
a(l+m) +2(1 - a)é’
(1+

-l (5 ) -

In these coordinates, the outer horizon r = r, is located at

f=

] (d® + nd¥). (C38)

Cla=ir) (R =)

 4(1—a)(1 +a)?

(C39)

*In this case, the extremality condition is m = 2a(1 4 a)x
(1 4 2a), or more easily m = 0.
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on the first branch (while the value on the second branch is
obtained by sending i — —i), and one verifies that
FE)=o. (C40)
On the other hand, f vanishes at the horizon only in the
extremal BPS limit r, — r,.
The vielbein (C25) reduces to

[ E
e ()d‘f’

E° = f(dt - w), E'=—

1 |F@), - =
E? = 7 gg)(dd)—knd‘l’),
1 & | oy
E} = i %dn, E* = i \/ G(n)éd?.
(C41)

In these coordinates the black hole solution reads

2 = —f2(dt — w)? +% E d& + ? (d® + nd¥)?
2
+E(1‘ﬁ7 2+(1—n2)d‘i‘2>]’
S W L Ut L) Ve S

(C42)

In this case, using vielbein indices, the nonvanishing
components of the field strength are Fy;, Fi,, F34 and
their antisymmetrizations.

One can check that the following spinor solves the
Killing spinor equation (C31):

€ = exp {; (3 —2a)r + cb]}\/feo, (C43)

where €, is a constant spinor that satisfies the same
projections as in (C32).

2. Ten-dimensional type IIB supergravity

In order to discuss D3-brane embeddings, we need to
uplift the black hole solutions to 10D type IIB supergravity
on AdSs x $° [90,95]. It turns out that 5D minimal gauged
supergravity can be consistently embedded into AdSs x
SEs for any Sasaki-Einstein 5-manifold SEs [96]. This
general point of view is particularly useful when discussing
supersymmetry, so let us review it here.

The bosonic action of 10D type IIB supergravity
restricted to the metric Gy and the 5-form flux F's) (this
is a consistent truncation) is

1

10

B — 22 d"x
Kio

1

G50 s

-G [RIOd -
(C44)

supplemented by the self-duality condition Fs) = *F(s).
We reduce it on a Sasaki-Einstein manifold SEs, which in
general can be locally written as a U(1) fibration over a
Kihler Einstein base B. We consider the ansatz:

1
=—(dy;+A+2A)

ds3, =ds%+ds*(B) 3

+(€%)?,

2
F(S) = (1 + *)G(5)7 G(S) = —4€(5> +§J A xsF. (C45)
Here B is a Kihler-Einstein 4-manifold, normalized such
that Rgg = 24 is its scalar curvature, with Kéhler form J (so
that 3J A J = dvol is the volume form), and A is a
specific U(1) connection on B with d A = 6J. The result-
ing Sasaki-Einstein space has Rgg = 20. Then ds? is the 5D
spacetime metric, €s) is its volume form, x5 is the 5D
Hodge dual operator, A is the SD graviphoton field, and
F = dA is its field strength. Using
2
«G(s) =2J AT A€ —3FAIA ¢?,  (C46)
the Bianchi identity for Fs
motion:

) gives the 5D equation of

2
d*sF:§F/\F. (C47)
The full expression for F(s5), and a possible choice of
potential such that F(5) = dCy), are

2 2
Fs) :—45(5)—|—2J/\J/\€9—§F/\J/\69—|—§J/\*5F,

1-
Cay = =4y + g AN BT =F) A& +xsF]. (C48)

Here f34) is a 4-form such that €5y = df4), while Alis any
connection on the Kahler—Emstem base B such that dA =
6J (we could for instance choose A, but not necessarily).

Einstein’s equations give the 5D equation of motion

R;w = _4g/w + iFﬂpF ég;wFpﬂFpl-
In turn, Egs. (C47) and (C49) follow from the (bosonic part
of the) 5D supergravity action (C1).

One can similarly reduce the supersymmetry condition
from 10D to 5D [96]. Restricting to the metric and the 5-
form flux, the 10D dilatino variation vanishes automatically
while the gravitino variation reads

(C49)

Sy = Ve +——=Fp p T 1 Tye, (C50)

16 5!
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where ¢ is the 10D spinor. We decompose the 10D gamma
matrices as

M—{rr 180,11 Q7 ®0}. (C51)
where the index a = 5, 6, 7, 8, 9 runs over the directions of
the Sasaki-Einstein 5-manifold, and in particular a = 5, 6,

7, 8 runs over the directions of the Kihler-Einstein base B,
while o, ; are Pauli matrices. We take

01234 _ __; £56789 __ 1
b

14 ==L 7 =1

. F9 =1 ® 1 ® 03.
(C52)
The 10D chiral spinor € of type IIB supergravity satisfies

I';1e = —e (compatibly with our definition of x), in other
words o3¢ = —e. We thus decompose

0
8=€®x®<1>.

We assume we are using a vielbein that “diagonalizes” the
Kihler form of B, namely, such that J = ¢°° 4 ¢’3. This
leads to the relations

(C53)

Fy,.. MSFMI M‘F e =40i[24 + 2(A56 + }778) ﬁyp’l]
Fyg g, TMM5T e = 40[24 + 2(7%6 + §78)F ﬁyﬂﬂ]f/_

(C54)

Sasaki-Einstein manifolds admit a Killing spinor y,

{vg + %@} ¥ =0, (C55)

where V is the covariant derivative on SEs. With our choice
of vielbein, the spinor satisfies the projectors

Por=i"y=ix. Pr=-x

(C56)
which imply 9y/dw, =%y. Substituting into the 10D
gravitino variation (C50) one obtains the gravitino variation
(C31) of 5D minimal gauged supergravity.

The case of S°.—1Let us specialize the discussion to the
case of the Sasaki-Einstein manifold S°, which is a globally
defined U(1) fibration over CP2 We use coordinates
(ps, 05, 05, Cs, ) and take the following vielbein:

1
e’ = dp,, eb = Zsin( p,)(dls — cos(0,)dy,), A = 3tan(p,)e® — d¢,,
1 1 1
e = ESin(ps)de.v et = ESin(ps) Sin(es)d(pw g (dl//s + A+ 2A) (C57)
|
The ranges of coordinates are p, €[0.5], 6, € [0.7],  u; = sin(p,) cos(,/2), d1 = 2w, + & —30p,)/6,
€(0,2x), ¢, €]0,4n), €10,6z) with the
¢c€10.2n). & & 0.47) 0. 6) iy = sin(p)sin(0,/2), ¢ = 2y, + ¢+ 30,)/6,
H3 = COS(ps), ¢3 = (l//s - gr)/3 (C6O)
/8 y, + 671 v, — 2@ y, — 2@ One can explicitly verify that the spinor
Z.:s = Z.:s = CS + dr = Z.:s -2 iW ith ~78 ~9
=es with i i = = =0,
?, ?, ?, 0, + 27 X X0 7x0 = i77%%0 = 7’10 X0
(Co1)

(C58)

The coordinates (p,. 0y, ¢, ;. y,) are related to the coor-
dinates (4., ¢,) (with a = 1,2,3) of Sec. VA by™

#We can also introduce complex coordinates on CP? given by

H

wy = ((/’l ¢"> = tan( ) l<¢: (Pv) COS(HS/Z)’
H3

Wy, = ﬂ2 (¢2 #3) — tan( ) i(Es+w,)/2 sm(@ /2) (C59)
H3

then the Kéhler potential is K =
Kihler form is J = %881( .

log(1 + [w|* + |w,|?) while the

where y, is a constant spinor, solves the Killing spinor
equation (C55).

Notice that A is singular along the loci 8; = 7 (which is
w =0), ;=0 (which is u, =0), p, =% (which is
w3 = 0), as well as p, = 0. Therefore it will not be well
suited to describe the 4-form potential through (C48) when
discussing the embedding of Euclidean D3-branes and their
on shell action. Instead, we will take

A = 3tan(p,)e" (C62)
This is well defined for all p; < z/2, and will lead to
smooth limits as we take p, —» /2.
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Combining the five-dimensional analysis in space-
time with the one in the internal manifold, we conclude
that for the 10D uplift of complex supersymmetric (but
not necessarily extremal) black hole solutions with two
angular momenta, using the frames (C25) and (C57)
with the gauge field (C30), the Killing spinor ¢ takes the
form

:exp{é [ (3 —2a)t &_w(@—w)
.

2
42 b*) Teo.

Do+Y

(C63)

P
—

(d

where g, is a constant spinor, moreover

[ = ¢, % = —je, [P =T =T78¢ = je,

(Co4)

and obviously the same projections hold for &,. In the case
of black hole solutions with two equal angular momenta,
using the frames (C41) and (C57) with gauge field (C42),
the 10D Killing spinor takes the form

e = exp {; (3= 2a)t + & + ] } SFeo  (C65)

with exactly the same projections as above.

3. D3-brane embeddings

Let us discuss various types of supersymmetric embed-
dings of D3-branes in the black hole geometries, and
their on shell actions. Let ¢%!>3 be world volume coor-
dinates on the D3-brane, and X*(s) the embedding.
The supersymmetry (or k-symmetry) condition, in
|

t = const, z’ = const,

ps =0, 6, = const,

’1:_1’

@, = const,

the absence of world volume flux on the D3-branes, is
[97-100]

Q¢ = Fie, (C66)
where
1 en-%9xXm QXHa
:47 \/__h 80”1 80{14 eM'”l...eM4},4FMl,..M4. (C67)
Here @ =0, ..., 3 are world volume spacetime indices on
the brane, u = {t,...,y,} are spacetime indices in 10D,
while M =0, ..., 9 are vielbein indices in 10D. We take

€"123 = 1, then F in (C66) correspond to brane/antibrane
depending on conventions and world volume orientation.
Finally

OXH OXH2

halazz ay H M2
Oo™ Jo“

(C68)
is the induced metric on the D3-brane, while & = det(,).

Notice that the supersymmetry condition (C66)—(C67) is
valid for standard Lorentzian embeddings, as well as for
Euclidean embeddings upon analytic continuation. On the
other hand, once we discuss Euclidean embeddings, the
Wick rotation ¢ — —itg of the background metric does not
affect the D3-branes and their supersymmetry because they
do not wrap the time coordinate.

a. Equal angular momenta

Consider first the case, discussed in the main text, of
complex supersymmetric black hole solutions with two
equal angular momenta, namely, with a = b. Working with
the orthotoric coordinates of Sec. C 1 ¢ in spacetime and the
coordinates of (C57) on §°, we consider the embedding

® = const — ¢”, P =40,

gs = 627

55}

v, = o (C69)

This is a Euclidean D3-brane wrapping a spatial S! in AdSs (so far at generic radial position & and at @ = 7/2) as well as a
maximal $* C $3 located at z;/z, = constant in complex coordinates. We compute

Sll’l
a) p

(C70)

i 2
- l"0569 + —~F2569 .
N lf% \/ij ]

!1)

U‘nxh‘i'

Here o is the component of the 1-form @ in (C38) along d®. We see that, in general, this is not a supersymmetric

embedding. However at the horizon, located at & = &, , we have F (&, ) = 0. Choosing the sign of the square root in such a
way to match the analytic continuation of the Lorentzian expression (5.13), we find

[ _ isin(ZpS)fw&, and @ = F[056

6

(c71)
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for an embedding at the horizon, where the upper/lower
signs refer to the first/second branch of supersymmetric
solutions. Using the projectors (C64) we obtain O¢ = Fie,
thus the embedding is supersymmetric when placed at the
horizon. We also see that (depending on conventions) one
branch of solutions host a supersymmetric brane while the
other one a supersymmetric antibrane.

The embeddings we just described wrap a particular
family of S3s inside S°. However, recall that the uplift of 5D

t = const E=E,, n=-1,
ps_g’ 8‘_61, (ps:(’zv
With a little bit of algebra one finds
Vi = 4 S0 fs )f P and © = FIF.  (CT73)

Using the projectors (C64) we obtain ®e = Fie, thus the
embedding is supersymmetric.

On shell action.—Let us determine the on shell action
for the Euclidean embedding (C72). Using the change of
coordinates (C35) as well as the identifications (4.10) and
(C58), we conclude that ¢° has period 27, ¢! has range 7,
6% has (twisted) period 2z, while 6> has period 4z. The
D3-brane action (5.9) in our conventions reads

Sps = (d*ovV/~h F P[C,

nl),  (CT74)

N
2 2
|

in(0
/d40 —h = 16ﬂ3/smi S)fcoci .

&

do, = 4z’

minimal gauged supergravity into 10D type IIB on S°
breaks SO(6) = SU(4)g = U(1)g x SU(3) and is invari-
ant under SU(3). Therefore, there is a more general class of
embeddings in which the S° C §° is given by the linear
complex equation az; + bz, +cz3 =0 inside |z;]* +
|22]? + |23/ = 1 [101].

For instance, let us exhibit the embedding at y3 = 0 (and
at the horizon). This corresponds to

@ = const — o?, P =40,

(C72)

where P[C(4)] is the pull back of C4) to the brane world
volume, while the F sign refers to branes/antibranes.

Using the horizon location &, on the first branch, given
in (C39), one finds the values of the functions

L (a—ir )(ri+iry)
foslez, = 2(1—a?)(a+ir.)’ (C75)
as well as
LEaz(l +m)f a(l—ir+)(a—ir+)7 (C76)

20-a)E ... (I-d)(a+tir,)

which equals — %A@ and appears in the connection (C42).
Given the integration ranges, we obtain the integral of the
metric part:

(2a +a* +ir.)(a—iry)
(1-a’)(a+iry)

(C77)

Let us now move to the 4-form potential. Using (C48), the only term that contributes to the pull back is %;l AJ A A.

We compute

L 1
/P[C(4)] = —g/ sin(6!)de® A do' A do* A do® = 4x® «

Summing the two contributions using the upper minus sign
in (C74), we obtain

A
27N —2

Spy = 22N
a—1 7,

(C79)

as in Sec. V B, where in the second equality we used the
values (4.27) of the chemical potentials. Recall that this
result is obtained on the first branch.

—iry)(a—iry)
(1-a®)(a+iry)

(C78)

|

To obtain the on shell action on the second branch, we
should send i — —i in the expression of ¢ and then of 5+
and the formulas that follow. According to (C73), we
should also choose the lower sign in the expression of v/—A
in order to match the analytic continuation of the
Lorentzian expression. Moreover, we should take the lower
plus sign in (C74) because antibranes are supersymmetric
on the second branch, as follows from the x-symmetry
operator in (C73). Taking all of this into account, we obtain

086026-42



GRAVITY INTERPRETATION FOR THE BETHE ANSATZ ...

PHYS. REV. D 104, 086026 (2021)

j A
Spz = 27N 2 AL —2zaN -
a—1 7,

(C80)

on the second branch.

b. Generic angular momenta

The discussion in the general case is similar to the
previous one and the one in Sec. VB. We consider a
Euclidean D3-brane located at the black hole horizon
r=r,, wrapping the spatial S' in AdSs along ¢ at
0 =12, as well as the maximal S* C §° located at 3 = 0
(which is z3 = 0 in complex coordinates). By the same
argument that lead to (5.13), by evaluating the metric
component g,, in generic black hole solutions (C2) one
concludes that

2 2 2 b2 b
/d4x ~det(gng) = 4 J”’z)(”j )+2a q
ri(ri +b°)(1-a%)

(C81)

The sign of the square root has been chosen in such a way
that in the background of real and causally well-behaved
Lorentzian black holes, the contribution to exp(iSpz) is
bounded in absolute value. We will use this expression to
analytically continue the square root to complex metrics.

In order to discuss supersymmetry of the embedding, it is
better to use the orthotoric coordinates of Sec. C1b in
spacetime and the coordinates of (C57) on S°. We thus
consider the embedding

t=const, &£=¢&,, n=-1, ®=const—c’, Y=o,
T
Ps 257 95‘ :61’ Ps :629 gs :631 Vs :63' (CSZ)

Given the value of ¢ in (C15), the location of the horizon in
orthotoric coordinates is

¢ _iry(a+b+2)—a—-a*—-b-1D?
T (a=-b)(1+a+b—iry)

(C83)

on the first branch, while the value on the second branch is
obtained by sending i — —i. One then derives the follow-
ing useful identities:

F(,) =0, G(£1) =0,
C()(D - C()\{J|”:1 == 0, CUQ) + a)\{l|r]:_1 == 0 (C84)
With them, one computes

8 )

In the first formula, the sign of the square root has been
chosen in such a way to match™ the analytic continuation
of (C81), leading to the + sign that refers to the first/second
branch of solutions. The second formula implies
®¢ = Fie, showing that the embedding is supersymmetric.
It also implies that branes with opposite charge are super-
symmetric on the two branches.

Computing the on shell action is easier in the original
coordinates of (C2) and for generic (not necessarily super-
symmetric) black hole backgrounds. We already computed
the Dirac-Born-Infeld part in (C81). The Wess-Zumino part
immediately follows from % J: ¢ A. The full D3-brane on
shell action is

¢ _
Sps = —

N [_47[31_ (2 + a®)(rX + b?) + abq
27? ro(ri + %) (1 —a?)

qa
+ 473 :
TR (- a2>]

(C86)

where the + sign refers to branes/antibranes. Substituting
the supersymmetric value of g on the two branches, and
considering branes (+ sign) on the first branch and
antibranes (— sign) on the second branch, we obtain

a—1ir,

st =2aN (1stbranch),
sty = —2av 2T (2ndbranch). (C87)

These formulas reproduce the expressions in (5.16) and
(5.17), in the case that A, , = A,

Next, consider a Euclidean D3-brane located at the black
hole horizon r = r__, wrapping the spatial S' in AdSs along
w at @ = 0, as well as the $? at y; = 0. By evaluating the
metric component g,,, in generic black hole solutions (C2)
one concludes that

2 2 2 2
(ri +a*)(ri + b*) + abg
/= detlgny) = —di e
[ et = it S

(C88)

We will use this expression to perform analytic continu-
ations. In orthotoric coordinates, the embedding reads

#*Notice that \/— det(gp3) and /= are computed in different
coordinates. In order to compare them, one should include the
factor 7i(b* — a®)/8(1 — a?) from the Jacobian of the coordinate
change from ¢° to ¢.
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t=const, ¢=¢&., n=1, ®=const+c’, ¥=o",
/)s_%v 05261’ 903262’ 4’520-3’ Ws:O-3'
(C89)
One computes35
Voh =T sin(6;)f (0o + @y) ® = FI.  (C90)

8 ’

This implies ®¢ = Fie, showing that the embedding is
supersymmetric.

Finally, we compute the D3-brane on shell action on
generic black hole backgrounds:

v
SD3_

N[5, (R +a)(r +0%) +abg
27° ro(ri +a*)(1-0b?%)

+ 473

gb
pErel o

Substituting the value (C15) of g on the two branches, and
choosing the upper/lower sign for branes/antibranes on the
first/second branch, we obtain

.
Shy = 20N = aEs

(Istbranch),

b+ir,
b-1

§¥y = —2aN (2nd branch), (C92)

which reproduce the expressions in (5.16) and (5.17).

c. More supersymmetric D3-branes

It turns out that there exists another class of Euclidean
supersymmetric D3-branes, located at the black hole
horizon, wrapping the full spatial S* in AdSs as well as
a maximal S' C S5 (say at u, = pu3 = 0 for definiteness).
Considering the case of generic angular momenta (C2), one
finds

2 2\(,2 2
[ T = i N ) b,
D3 ry(1=a*)(1-5%

(C93)

where the sign has been chosen so as to give a contribution
bounded in absolute value to the path-integral measure e’Svs
on real Lorentzian black hole backgrounds.

In order to compute the contribution from the Wess-
Zumino (WZ) term, we use the local expression (C5) for
*sF —3A A F = da). Using (C48), the only term in C(4)

#This time the Jacobian factor of the coordinate change from
o® to y is m(a® — b*)/8(1 — b?).

that contributes to the WZ term is %;t A (xsF —3A A F).
The integral of the spacetime part is simply

3q
/3 d(l(z) = 47[22: = -
S —a—b

The integral of A along S' should be computed carefully,
taking into account the possible gluing of patches. One
obtains [ A = 6x.

Combining the two contributions, we obtain

(C94)

N 3. (11 +a*)(r} +0%) + abg
Sps = —4

22T -1 =)

P

(=)= ()

On the first branch, where g = —(a —ir,)(b —ir,) x
(I —ir,), and choosing the upper minus sign for anti-
D3-branes, we obtain

(a—ir)(b—iry)
N T ey N s

(Istbranch).

SD3 =
(C96)

On the second branch, choosing the lower plus sign for D3-
branes, we obtain

. . A2
Sps = 2xN (atir)(bir,) =2azN—~
(a=1)(b-1) 0,7,

(2nd branch). (C97)

Let us also check that the embeddings are supersym-
metric. In terms of the orthotoric coordinates of Sec. C 1 b,
the embedding reads

t=const, ¢E=¢&,, n=o", ®d=o', Y=o,
ps—g, 0,=0, @,=-0c°, (=0, y,=0
(C98)
One computes
Vi =+(E 0p —wg), O =£I%9  (C99)

where the sign of the square root has been chosen in
such a way to match the analytic continuation of (C93)
to the first/second branch of supersymmetric solutions.
The second formula implies ®e = +ie, implying that
Euclidean anti-D3-branes are supersymmetric on the first
branch while D3-branes are supersymmetric on the
second branch.
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APPENDIX D: SOLUTIONS WITH THREE ELECTRIC CHARGES

In this Appendix we generalize the solution described in the main text to the case of three different U(1) charges, but with
equal angular momenta. There are known nonsupersymmetric asymptotically locally AdSs black hole solutions with three
different U(1) charges and equal angular momenta [102] (see also [69,103]).”° They are classical solutions to the U(1)? 5D
gauged supergravity action (which is a consistent truncation of 10D type IIB supergravity on S°)

1 1 1< 1
1\— -2 IN-2 1 1 1 J K
Ssp = Ton [(R+4§ (x") —58;() 51§: (X')2F! A F —6|6,,K|A ANF' AF ] (D1)

where A’ (w1th I =1, 2, 3) are Abelian gauge fields, F/ = dA! are their field strengths, ¥ = (y,,x») are real scalar fields,
X! =exp (- \/6)(1 ﬁ)(2)’ X? =exp (- \/6)(1 —|—\/§;(2), X3 = exp(\/aj(l) such that X'X?X3 = 1.
The solutions relevant to us are

ds? = (H,H,H ——dt2 d S SR P AN
S5 = ( 2 3) |: f + r + 4 (01 +0-2) +4r4H1H2H3 03 fl
X! — (H\H,H5):
H; ’
;[ 2m
A= 2H, 161 % di + - 25 (CISJSK = si¢yck)o3 = Ajdt + A, 05, (D2)

where the o, are left-invariant 1-forms on a 3-sphere $° parametrized by (6, ¢, )"’
01 + ioy = e79V)(2d0 + isin(20) (dy — dg)), o3 = 2(cos?(0)dy + sin?(0)d¢), (D3)
while in the definition of A’ we took 1, J, K all differently. The coefficients are radial functions:

2
H =1+ ms,

fi=r H1H2H3 +2ma*r? + 4m?a?(2(c o3 — §152853)51 5283 — $753 — 5353 — 5357,
fr=2ma(cicrcy — 5185283)r* + dmPas| 5,53,

f3=f1—1°HH,H; + 2ma’, (D4)
and
s; = sinh(8;), c¢; = cosh(8;), I1=1,2,3. (DS)

The solution therefore depends on five parameters3 S m,a,é 1, 03, 03. Once again, r, is the largest root of Y. A useful way to
relate it to m is by a change of coordinates to

R? =12 + 2ms3. (D6)

Now Y becomes quadratic in m, and the relation between m and R, can be easily solved to produce a lengthy expression for
m in terms of R that will be omitted here. It requires a branch choice for a square root, and this choice determines whether
we will be in the first or second branch.

To the horizon at r = r, we can associate entropy S, inverse temperature 3, angular velocity relative to a nonrotating
frame at infinity Q, and electrostatic potentials ®’:

*The general black hole solutions with six independent charges—mass, two angular momenta, and three electric charges—have been
constructed in [104].
"We choose angular coordinates that agree with the body of the paper. They can be related to those of [69] by Opere = 20here

angggbthere_: I//he_re - ¢here’ Vihere = Where 1 ¢her_e- . .
“*Despite their similar names, they are not identical to those of the single-charge case of Sec. IV when the charges are equal.
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72 dy
:?\/fl(r+)v ﬁ:47”+\/f1(”+><

fz(r+)
Q= ,

f1(”+)
124

riHI(M)

-1
) 9
r=ry

(D7)

(2571 +2aQ(cpsysx — sic5¢k))-

The energy E, angular momentum J, and electric charges
Qy are

1
E=E, +Zm7r(3 +a® + 2s; + 25, + 253),

0= Emﬂslch

J= Emaﬂ(clczcg — 515253), (D8)
where E, = 57 is the energy of empty AdSs using holo-
graphic renormahzatlon [69].

The solution can be rotated to Euclidean signature where
regularity determines the global identification

(tEvll/7¢)E<tE+ﬂvw_lQﬁv¢_lQﬂ)’ (Dg)

and the gauge fixing to be a; =
fields on the boundary are

®,, and thus the gauge

A’|bdry = i®;dtg. (D10)
The boundary metric is again that of S' x §3, and Q
appears only through the identification of coordinates.

Again, we can shift Q or ®; by 2zi/f to find new solutions
with the same boundary conditions.
The solution is supersymmetric if

a=e 0 = H (cr = 1),

=123

(D11)

and in that case we can define chemical potentials as the
deviation from their BPS values [69]

p p
—(Q-1), Ajg=—(D,—1). D12
97 oz ( ) 4 2i ( ) (D12)
One finds that they satisfy the constraint
2t — Ay — Ay, — A 5 =+l (1st/2nd branch).
(D13)

Let us embed this black hole into a solution of 10D type
IIB supergravity, and ask what would be the contribution of
wrapped D3-branes similar to the ones considered before.
The uplift of this solution to 10D using [90] has the metric

d _ A1/2ds _|_A I/QZ XI d/.ll +,u[(d¢1 +A1) )

I=1
(D14)

where A = 373 X'p? and by 53, pty 03 (With Y5 3 = 1)
are a parametrization of S° as the phases and magnitudes of
three complex numbers ;e on the unit sphere in C3. Its
vielbeins are

(H\HHy)

13,2
e = /~\1/4\/(H1H21;3) ! Ydt, el = A4 r,
1
e = [\1/4(H1H+H3)1/6r6h o= ;\1/4(1‘11H+H3)]/6’62’
Al/4 ’
64—\/].71/32(63 fzdt) 5 — _ Hi (¢1+A,)’
2(H HyH3)'r f1 AV4/xt
e = RY h(dcbﬁA) el = 1/4\/_(d¢3+A3) (D15)
~ X3 2 Xl 2 X]
et = ATV ﬂ; +1 3ﬂ1 (dﬂl + 3ﬂ21ﬂ2 I 2dﬂ2>,
oz |8+ X200) (085 + X'h) — pisX'X? DI6
e = 2x3x2 X3 Xl Ho- ( )
H3 (XPu3 + X'p7)
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When p; = 0, the last two simplify to

d/,tl - X3/zt2 +X2//l2
68 = W, 69 =A 1/4 W(iﬂz (D17)
V 3

There is also a self-dual 5-form flux F(s) = G(s) + *Gs) in the ten-dimensional solution, which is given by’

3

Gs =) [2}(’ (XT3 = Negs) +
=1

2(X7)2 A7) A ((dpy + A1) A ossFT 4 X s dxl)} ’ (D18)

where €s5) the volume form of the original 5D metric, and hence

#5(d(uj) A (dpy +AT)) A F!|,

3 A2 1/4
~ A~ A~
[ (D19)

xGs) = Y _|2X1 (X1} = A) x e ——dXI A Fsd(u?) + ——rs XY

=1
where #5 is the Hodge dual with respect to the metric on S°. At pu; =0 the third term in *G(s) simplifies to
d(u3) A (dgy + A) A (dps + A%) A F', implying

1
Cuy = Ed(,u%) A (dgy + A%) A (dps + A®) A A + other terms. (D20)
Let us now consider the action of a D3-brane at r = r, =7, u; = 0, along the ¢ direction. We assume that the term
discussed above is the only one contributing to the brane action via the term
ma
PlCy] = ﬂzdﬂz A dpy N d¢3 Ayo3 = 81 5————(c1553 = 5162¢3). (D21)
D3 Hy(ry)

rs

The contribution of the tension of the brane is proportional to [;,; \/— det(gpz). The determinant of the induced metric is

_ 2 2
det(903) = Gyuous (99090, 90505 = T 955 — Igips Iibat)- (D22)
Using
AV2f, 2 i (Ag)? WA 1A
= (H H H;)Zﬂ By v A T o R voed
23X 13 13
oy = /"\1/2ﬂ%X2X3 ’ oy = A2y’ sy = A2x3’ (D23)
we find
iurn/ f1(ry)
—det(g TNV D24
( D3) 2 Hl (r+) ( )

Note that the off-diagonal metric terms from the mixing of ¢; and A’ cancel in the determinant, regardless of the details of
the 5D solution (and thus do so also in the single-charge solution discussed in the body of the paper).

Let us begin for simplicity from the case where two of the three charges are equal, namely, Q; # O, = 0s.
Correspondingly we take 6, = 3. Using the radial coordinate R defined in (D6), the supersymmetry condition (D11), an
additional change of parameters w?> = 1 + R% (1 — 64(6'+52)) in order to express R, in terms of w, and some help from
Mathematica, we find

2e251+452(1 _ W)2(62(61+§2) _ W)
N (26175 _ 1)2(206158) 4 1)(e401+6) — 42 (] — w) + 201+ (1 — ) — 1)

(D25)

FThere is a typo in the formula for Gs), Eq. (2.8), in [90]. See footnote 18 in [105].
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which reproduces the first branch of (D13). The second
branch is obtained by the other possible choice of w, i.e.,
by w — —w.

In principle, we need to fix the sign of the

Jps d*x+/—det(gps) like in (5.13). However, this proved
to be quite technically challenging. Instead, let us initially

consider both possible signs, one with a brane and one with
an antibrane, and determine the correct sign by comparing
to the 1-charge case.

One can now move forward to compute the action of the
brane, and find

N
sz—ﬁ/ (d*x £ v/~ det(gps) £ P[Ca).
- /D3

iVii(ry)  ma

2r3H (ry)  riH(ry)
(e +1)(w—1)

e} 01182) 1 o405 (w— 1) _ 62(51+62)(W _ 1) -1

1 A

= qZZHNiJ.
1 g

:¢47rN< (C1S253—S10203)>,

= F2zN

@,
= F2aN
F2zN5

(D26)
This agrees with the general expectations described in the
main text for a D3-brane and a specific choice of branch for
the tension term.

A similar computation can be made for a D3-brane
located along u, = 0, instead of x; = 0 (but still keeping
the same two charges O, = Q). The relevant term in
C(4) is

1
Clay = 5d(7) A (dpy +A) A (dps +A%) A A2

-+ other terms, (D27)

while the contribution of the induced metric is now
(choosing a branch for the square root as before)

\ /—det(gm) — _M_

P Hy(r) (D28)

Using the same change of coordinates and some more help
from Mathematica, one finds the action of this brane to be

N
Sps = _2_2/ (d*xy/=det(gp3) = P[Ca)]),
7 JD3

=4nN<i\/m +

) (023153 - 320103))

2 Hy(ry)  riHy(ry
w—1
=27 G 1
D, — 1 A
= 27N QZ : = 27N =22, (D29)

Ty

Both of these calculations agree with the one performed in
Sec. V for the case where the three charges are equal.

We have verified numerically that even when the three
charges are different, in a supersymmetric setting the action
of a brane like the ones discussed above with y; = 0 has
action ZﬂNAgJ/Tg, as above. We have not been able to
derive this result analytically.

One can also look at another kind of wrapped D3-
brane—one that wraps an S°> C AdSs and an S' C §°, as
discussed for equal U(1) charges in Sec. C3c. For
example, let us look at one located at y; =1, r=r_,
and wrapping 6, ¢, v, ¢;. In order to get the second to last
term in (D18) and the last term in (D19), C(4) must include

*sFy

1
Cu) :zﬂ% A dpy A < %

—Az A F2> + other terms,

(D30)

and the action of the brane (choosing a sign for the square
root that reproduces the single-charge solution) is

N
Sos = =5 [ (@ry/=detlgns) - PICis)
:—4ﬂN<é\/f1(r+)+mcls1>, (D31)
which, for the two charges case §, = 83, results in
B (w—1)?
Spy = —2zN (20122 _ )2
D, —1)(D; -1 A LA
— oy @2 3 ) oan 92793 (D32)
(Q-1) 7,

This is consistent with (C96) on the first branch,
when Ag,Z = Ag,3'
Similarly for y3 = 1 we find

*s
% —A, A F1> + other terms,

1
Cuay = 545 A dips A (
3

2
(D33)

with the action
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N
271'2 D3

= —4xN <é \/m + I’I’lC3S3> s

(e 4+ 1)(w—1)2

Sp3 = (d*x\/—det(gp3) — P[C4)]),

= —2 N )
& (62(51+52) _ 1)(64(51+52) 1 e (W _ 1) — ¢2(61+0,) (W — 1) _ 1)
D, —-1)(P, -1 A A
W Gl 2 ) _ —2aN =21 202 (D34)
Q-1) 7,

where again we assumed 6, = J5 after the second line.

Taking into account the results in this section and in Sec. C 3 ¢, we make the natural conjecture that, in the general case of
three unequal charges and two unequal angular momenta, the on shell action of a supersymmetric Euclidean D3-brane
wrapping the $* horizon at r = r, along the AdSs coordinates and wrapping the S' given by u, = 1 inside $°, is

A, A, A, A,
Sps = —2aN —22=9¢  (Istbranch),  Sp3 = 22N —22=%¢  (2nd branch), (D35)
Og4Tyg OgTyg

where a, b, ¢ are all different. We checked this claim numerically in various cases.

APPENDIX E: GIANT GRAVITONS ON BLACK HOLE BACKGROUNDS

As an aside, we can use the method of Appendix C 3 to exhibit new giant graviton and dual giant graviton solutions on
Lorentzian black hole backgrounds. These are supersymmetric Lorentzian D3-brane embeddings in the background of the
BPS (i.e., supersymmetric and extremal) black holes of minimal 5D gauged supergravity,40 and they generalize the giant
and dual giant graviton embeddings in pure AdSs x §° [59-61]. Giant and dual giant graviton embeddings in the near-
horizon limit of black hole solutions were found in [106,107].

Giant gravitons.—Using the orthotoric coordinates (C23) in AdSs, consider the embedding

t=o", & = const, n = const, ® = const, ¥ = const,

P, = const, 0, =o', @, = 02, { =03, w, =06 + (2a—3)d°, (E1)

where a is the gauge parameter appearing in the connection in (C2) and (C30), while ¢*!3 are the world volume
coordinates. This is a Lorentzian D3-brane, sitting at an arbitrary position with constant coordinates (outside or at the black
hole horizon) in the spatial slices of AdSs, while wrapping a round S* C $° of radius sin(p,) and orbiting at the speed of

light along an orthogonal circle inside S°. Noticing that f > 0 outside or at the horizon, we compute
. 9 . 4
N S sin( Sz):m (ps) and © = —T9 1 cot(p,) (678 — [0678), (E2)

Using the projectors (C64) we obtain ®e = —ig, showing that the embedding is supersymmetric.
We stress that this result is valid for the full family of supersymmetric complex black hole solutions (C2) with SUSY
constraint (C12), although real Lorentzian metrics that are free of pathologies also satisfy the extremality condition /2 = 0.
Dual giant gravitons.—We were able to find dual giant graviton solutions only in the case with equal angular momenta,
i.e., with a = b. Using orthotoric coordinates (C35) in AdSs, consider the embedding

t =0, & = const, n=co', d = 62, ¥ =53,
ps = const, 0, = const, @, = const, £, = const, v, = (2a—3)o". (E3)

This is a Lorentzian D3-brane, wrapping a spatial S° in AdSs around the black hole at arbitrary constant radius determined by £,
and orbiting at the speed of light along a maximal circle of S3. For a given choice of sign of the square root, we compute

“The supersymmetric embeddings we find are valid more generally in the complexified supersymmetric (not necessarily extremal)
black hole backgrounds and are smooth in the extremal limit.
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5 i =
\ /_h — <fwti> _ §Ati>> é, 0 = _r0349 + 5}‘3;(1—‘0234 _ 1—‘2349). (E4)
Using the projectors (C64) we obtain @¢ = —ig, showing that the embedding is supersymmetric. As before, this result is valid

for the full family of supersymmetric (not necessarily extremal) complex black hole solutions, and in particular for extremal
solutions characterized by /m = 0. It would be interesting to generalize these supersymmetric embeddings to the case a # b.
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