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We employ the “complexity equals action” conjecture to investigate the action growth rate for the
charged and neutral AdS black branes of a holographic toy model consisting of Einstein-Maxwell theory in
(dþ 1)-dimensional bulk spacetime with d − 1 massless scalar fields, which is called Einstein-Maxwell-
axion theory. From the holographic point of view, the scalar fields source a spatially dependent field theory
with momentum relaxation on the boundary, which is dual to the homogeneous and isotropic black branes.
We find that the growth rate of the holographic complexity within the Wheeler-DeWitt patch saturates the
corresponding Lloyd bound at the late-time limit. Especially for the neutral AdS black branes, it will be
shown that the complexity growth rate at late time vanishes for a particular value of the relaxation parameter
βmax where the temperature of the black hole is minimal. Then, we investigate the transport properties of the
holographic dual theory in the minimum temperature. A nonlinear contribution of the axion field kinetic
term in the context of the k-essence model in the four-dimensional spacetime is considered as well. We also
study the time evolution of the holographic complexity for the dyonic AdS black branes in this model.
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I. INTRODUCTION

The AdS=CFT correspondence [1–3], as the most
important realization of the holographic principle [4,5],
relates a gravity theory in an asymptotically anti–de Sitter
(AdS) spacetime in the bulk to a conformal field theory
(CFT) without gravity living on the boundary of this
spacetime. It suggests nontrivial connections between
different areas of physics—in particular, between general
relativity and quantum information theory. One of the
outstanding developments in this correspondence is the
seminal work of Ryu and Takayanagi [6,7], which provides
a holographic dictionary for the calculation of the entan-
glement entropy of the boundary theory. According to this
proposal, the entanglement entropy of the boundary theory
is equivalent to the area of a certain minimal surface in the
bulk geometry. In other words, the dynamics of the bulk
spacetime emerges from the quantum entanglement of the
boundary theory [8]. However, the entanglement entropy

may not be enough to probe the degrees of freedom in black
hole interiors, since the volume of a black hole continues
growing even if spacetimes reach thermal equilibrium [9].
It is believed that quantum complexity is the correct
quantity, which can continue to grow even after reaching
thermal equilibrium, similar to the growth of black hole
interiors.
In the framework of quantum information theory,

quantum complexity is defined by the minimal number
of quantum gates needed to build a target state from
a reference state [10,11]. However, the AdS=CFT cor-
respondence provides two proposals to compute the com-
plexity of states in the boundary quantum field theory
of two-sided AdS black holes. The first one is the
“complexity ¼ volume” (CV) conjecture, which assumes
that the quantum complexity of the CFT on the boundary
is dual to the maximum volume of the Einstein-Rosen
bridge—i.e., V—in the bulk spacetime [12,13]:

CV ∼
V

GlAdS
; ð1:1Þ

where lAdS is the radius of curvature of the AdS spacetime
and G is the Newton constant. The second proposal is the
“complexity ¼ action” (CA) conjecture, which states that
the quantum complexity on the boundary is associated with
the gravitational action evaluated on a region of theWheeler-
DeWitt (WDW) patch in the bulk spacetime [14,15]:
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CA ∼
IWDW

πℏ
: ð1:2Þ

Moreover, when theWDWpatch, besides space- or timelike
boundaries, includes null boundary surfaces [16] which can
join with each other, the strategy of the CA conjecture has
been suggested in Ref. [17].
In general, holographic complexity has been suggested

in Ref. [18] for the eternal two-sided AdS black holes on
the gravity side. From the field theory point of view, this
geometry is dual to a thermofield double state as follows:

jψTFDi ¼
1ffiffiffiffi
Z

p
X
j

e−Ej=ð2TÞe−iEjðtLþtRÞjEjiLjEjiR; ð1:3Þ

where L and R refer to the two copies of the boundary
CFTs. The entanglement between the L and R copies is due
to the Einstein-Rosen bridge that connects two regions.
Since the complexity is conjectured to grow with time and
this property is also shared with the Einstein-Rosen bridge,
in Refs. [18,19], it was conjectured that the complexity
could be identified with the volume of the maximal
codimension-1 surface that ends to the boundary times
tL and tR.
The growth rate of the holographic complexity is one of

the noticeable outcomes in the CA conjecture that asserts
the late-time growth rate is proportional to 2M=π, inde-
pendent of the boundary curvature and the spacetime
dimensions [14,15]. It was also suggested that this quantity
has an upper bound which is proportional to the total
energy of the system:

_C ≤
2E
πℏ

; ð1:4Þ

where this inequality is known as the Lloyd bound [20]
derived from the Margolus-Levitin theorem [21] under the
assumption that each gate will evolve from a generic state
into an orthogonal state. In the gravitational picture, the
mass of the black hole,M, is regarded as the energy, E. The
generalizations of this bound for charged and rotating black
holes, respectively, are given in Refs. [15,22] as follows:

dIWDW

dt
≤ 2½ðM − μQÞ − ðM − μQÞgs�;

dIWDW

dt
≤ 2½ðM −ΩJÞ − ðM −ΩJÞgs�; ð1:5Þ

where μ and Ω are the chemical potential and angular
velocity of the black holes, respectively. Q and J are the
black hole charge and angular momentum, respectively.
Intuitively, these conserved charges impose a tighter bound
because they provide a barrier to the rapid complexifica-
tion, and consequently, some energy is tied up in non-
computing degrees of freedom. The subscript gs denotes
the ground state of the black hole. However, it is known

[14,20] that this proposal is violated at least at early times in
holographic theories [23–26], and in sufficiently exotic
computational setups in nonholographic theories as well
[27–29]. The late-time violation of this bound has been
considered for holographic models in Refs. [25,26,30–34].
Different aspects of holographic complexity such as sub-
region complexity [35–38], UV divergencies of complexity
[22,39–42], higher-derivative gravities [34,43–48], and
Einstein-Maxwell-dilaton gravity [25,26,49,50] have been
studied in both the CV and CA conjectures. Attempts to
define the complexity more rigorously in quantum field
theory and in a continuous way, where interestingly their
results in different setups match with results from holog-
raphy, can be found in Refs. [51–57].
Holographic correspondence has also provided us a

powerful tool to study the behavior of strongly correlated
materials in condensed matter (CM) physics [58–60],
which can be mapped to the classical bulk gravity.
Especially, much attention has been paid to the holographic
description of systems with momentum relaxation. Such
systems with broken translational symmetry are needed to
give a realistic description of materials in many CM
systems [61–66]. Since momentum is conserved in a
system with translational symmetry, a constant electric
field can generate a charge current without current dis-
sipation in the presence of a nonzero charge density. Thus,
the conductivity of the system would become divergent at
zero frequency. In more realistic CM materials, the
momentum is not conserved due to impurities or a lattice
structure, leading to a finite dc conductivity. There are
various ways to achieve momentum dissipation, such as
periodic potentials, lattices, and breaking diffeomorphism
invariance [67–74]. However, there are two well-known
strategies to produce momentum dissipation by the inclu-
sion of matter fields that break the translational invariance
in the dual field theory: the case of scalar fields [EMA
(Einstein-Maxwell-axion) theory] that linearly depend on
the horizon coordinates as given in Ref. [72], and the case
of massive gravity theories which present a broken diffeo-
morphism invariance in the bulk as done in Ref. [75].
As the main purpose of this paper, we employ the CA

conjecture to study holographic complexity and its time
evolution in EMA theory with momentum relaxation by
following the approach used in Ref. [23]. In particular, we
compute these quantities for the charged and neutral
AdSdþ1 black branes and investigate the Lloyd bound
for these solutions. Though one can also employ the CV
conjecture to study the evolution of the holographic
complexity, it has some unsatisfactory elements that make
CA a more interesting option. For instance, in the CV
picture, we need to introduce an arbitrary length scale by
hand, while in CA this is not necessary; also, in the CV
picture one must find the volume of a maximal slice in the
bulk, while CA associates with the boundary state on the
entire WDW patch and is easier to work with than a special
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maximal volume. The CA conjecture can also satisfy the
Lloyd complexity growth bound in very general cases
[14,15]. In fact, CA inherits all the nice features of CV
duality and none of the unsatisfactory elements.
We provide an analytical discussion for the effects of

the strength of momentum relaxation on the desired
quantities. The results show that the Lloyd bound is
saturated only at the late-time limit, and there is an upper
bound on the strength of the momentum relaxation in each
sector, which provides a minimum temperature for the
gravitational system to have positive energy. This specific
value of the relaxation parameter also motivates us to
investigate the characteristic properties of the strongly
correlated materials in CM physics [76]. In fact, we study
the thermal conductivity and diffusivity of strongly coupled
theories which are holographically dual to the EMA theory
[77–79]. Inspired by the strange metals characterized by a
minimum Planckian relaxation timescale τL, it has been
proposed in Ref. [76] that there is a universal bound for the
diffusivities in the incoherent limit DT ≥ v2BτL, where vB is
a characteristic velocity of the so-called butterfly velocity
[78]. We will show that the diffusion constant in the EMA
theory saturates this bound in the corresponding minimum
temperature. In addition, we examine the effect of the
nonlinear contribution of the scalar field kinetic term [80–
82] on the complexity growth rate in four-dimensional
spacetime. This theory is known as the k-essence model of
dark energy [80], in which the acceleration of the Universe
(both at early and late times) can be driven by the kinetic
energy instead of the potential energy of the scalar field.
The time evolution of the holographic entanglement
entropy and complexity under a thermal quench has been
recently studied for EMA theory in Ref. [83], in the context
of the CV conjecture.
The structure of this paper is organized as follows: in

Sec. II, we review the EMA theory with momentum
relaxation and study the time evolution of the holographic
complexity for charged/neutral AdSdþ1 black branes. In the
context of the CA conjecture, we consider the WDW patch
that includes null sheets bounding the bulk and joint terms,
and investigate how the holographic complexity approaches
the late-time limit on them. We will also investigate the
transport properties of the dual theory in CM physics from a
holographic point of view. In Sec. III, we study the dyonic
AdS black branes in the presence of the nonlinear kinetic
term in the k-essence model. In calculating the growth rate,
the contribution of the Maxwell surface term to the action
will be considered, as well. Finally, Sec. IV is dedicated to a
brief summary and concluding remarks.

II. EMA THEORY WITH MOMENTUM
RELAXATION

In order to have momentum relaxation and finite
conductivity, it is essential to construct holographic models
with broken translational symmetry. Thus, we consider a

model in which the Einstein-Maxwell action in (dþ 1)-
dimensional spacetime is supplemented by d − 1 massless
scalar fields that break the translational invariance of the
boundary theory in the context of the AdS=CFT duality
[72]. This theory is known as the EMA theory in Horndeski
theories of modified gravity [84,85]. Scalar axion fields
enter the bulk action only through the kinetic term
∂μψ I , and the sources are linear in the boundary—i.e.,

ψ ð0Þ
I ∝ βIixi, where β represents the strength of the momen-

tum relaxation.
The action of this holographic model in the bulk is

described by Ref. [72]

Ibulk ¼
1

16πG

Z
M
ddþ1x

ffiffiffiffiffiffi
−g

p �
R − 2Λ

−
1

4
FμνFμν −

1

2

Xd−1
I

ð∂ψ IÞ2
�
; ð2:1Þ

whereG is a (dþ 1)-dimensional gravitational constant and
Λ ¼ −dðd − 1Þ=2L2 is a cosmological term. The action
includes the field strength Fμν ¼ ∂μAν − ∂νAμ of a Uð1Þ
gauge fieldAμ andd − 1massless scalar fieldsψ I . Themodel
admits the homogeneous and isotropic charged AdSdþ1

black brane solutions of radius Lwith nontrivial scalar field
sources. They are described by the following ansatz:

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2δijdxidxj;

A ¼ AtðrÞdt; ψ I ¼ βIixi; ð2:2Þ

where i labels the d − 1 spatial xi directions and I is an
internal index that labels the d − 1 scalar fields. Substituting
ansatz (2.2) into the equations of motion derived from the
action (2.1), we find that

fðrÞ ¼ r2 −
β2

2ðd − 2Þ −
m0

rd−2
þ q2

r2ðd−2Þ
;

AtðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd − 1Þ
d − 2

r
q

�
1

rd−2h

−
1

rd−2

�
; ð2:3Þ

where

β2 ≡ 1

d − 1

Xd−1
i

β⃗i · β⃗i;

β⃗i · β⃗j ¼
X
I

βIiβIj ¼ β2δij ∀ i; j: ð2:4Þ

Note that for the AdS radius, we set L ¼ 1 in the rest of
the paper.
The mass parameter m0, which is proportional to the

energy density of the brane, is computed from fðrhÞ ¼ 0 as
follows:
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m0 ¼ rdh

�
1þ q2

r2ðd−1Þh

−
1

2ðd − 2Þ
β2

r2h

�
; ð2:5Þ

where rh is the location of the event horizon. This is related
to the mass of the brane with Ref. [86]

M ¼ ðd − 1ÞVd−1

16πG
m0: ð2:6Þ

Here, Vd−1 is the dimensionless volume of the relevant
spatial geometry. The parameter q is related to the charge of
the brane through Gauss’s law with

Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd − 1Þðd − 2Þp

Vd−1

16πG
q: ð2:7Þ

The Hawking temperature and the entropy of the branes are
given by

T ¼ f0ðrhÞ
4π

¼ 1

4π

�
drþ −

β2

2rh
−
ðd − 2Þq2

rd−1h

�
;

S ¼ Vd−1

16πG
4πrðd−1Þh : ð2:8Þ

Since the blackening factor in Eq. (2.3) has two real roots,
rþ and r− (where rþ > r−), corresponding to the outer and
inner horizons in which fðrþÞ ¼ fðr−Þ ¼ 0, we can define
a chemical potential for both of them as follows:

μþ ¼ ∂M
∂Q

����
V;S

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd − 1Þ
d − 2

r
q

rd−2þ
;

μ− ¼ ∂M
∂Q

����
V;S

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðd − 1Þ
d − 2

r
q

rd−2−
: ð2:9Þ

Various features of the thermodynamics of this solution
have been extensively studied in Ref. [87].

A. Complexity of charged black
branes via the CA conjecture

We use the CA conjecture [Eq. (1.2)] to compute the
holographic complexity for the charged AdSdþ1 black
branes in the EMA theory. The essential ingredient in this
method is to evaluate the action on a WDW patch [14,15].
However, we follow the method of Ref. [23], in which the
action in the WDW patch includes not only the bulk theory
and the Gibbons-Hawking-York (GHY) boundary term
[88,89], but also boundary segments of joint terms due
to the intersection of the timelike, spacelike, and null
boundaries [16]. This will be the general strategy followed
in the rest of the paper. The contribution of the GHY
surface terms is

Ibdy ¼
1

8πG

Z
B
ddx

ffiffiffi
γ

p
K −

1

8πG

Z
B0
dλdd−1θ

ffiffiffi
γ

p
κ; ð2:10Þ

where K is the trace of the extrinsic curvature
Kμν ¼ −γρμγσν∇ðρnσÞ, γμν is the induced metric on the
boundary, and nμ is the outward-pointing unit normal
vector to the boundary. κ is the surface term for the
null segments, which measures the failure of the null
generators to be affinely parametrized and which is
assumed to vanish—i.e., it does not have any contribution
to CA for null segments.
The joint actions are given by

Ijoint ¼
1

8πG

Z
Σ
dd−1x

ffiffiffi
σ

p
ϱþ 1

8πG

Z
Σ0
dd−1x

ffiffiffi
σ

p
a; ð2:11Þ

in which ϱ appears when we have the intersection of
timelike or spacelike boundaries, the so-called Hayward
terms [16], while a is required when one or both of the
intersecting boundaries belong to null surfaces [17]. The
general rules for the construction of the former joint terms
could also be found in Refs. [17,36]. In particular, for
timelike normals ti, spacelike normals ni and auxiliary unit
vectors t̂i and n̂i, ϱ is given by

ϱ ¼ arccoshjt1 · t2jsignðϱÞ ¼ −signðt1 · t2Þsignðn̂1 · t2Þ;
ϱ ¼ arccoshjn1 · n2jsignðϱÞ ¼ −signðn1 · n2Þsignðn1 · t̂2Þ;
ϱ ¼ arcsinhjϵt1 · n2jϵ ¼ −signðn2 · n̂1Þ: ð2:12Þ

However, these are not relevant here, since all of the joints
that we consider in the WDW patches involve at least one
null surface. The latter ones are also defined appropriately
in the next subsection. There is also a counterterm action
for the null surfaces as

Ict ¼
1

8πG

Z
B0
dλdd−1θ

ffiffiffi
γ

p
Θ log ðlcΘÞ; ð2:13Þ

which is introduced to ensure reparametrization invariance
on the null boundaries. Θ is the expansion parameter that is
related to the induced metric as

Θ ¼ ∂λ log
ffiffiffi
γ

p
; ð2:14Þ

and lc is an arbitrary length scale. A precise definition of
parameters, boundary metrics, and comprehensive discus-
sions of these actions are given in Ref. [17]. In brief, the
total action is defined by

Itot ¼ Ibulk þ Ibdy þ Ijoint þ Ict: ð2:15Þ

Of course, there may be a boundary term for the Maxwell
field in this action that does not change the equations
of motion, but it affects the variational principle for the
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Maxwell field, and one should change the boundary
conditions consistently [90]. We will consider the contri-
bution of such a term for charged geometries in the next
section.
Due to the presence of null boundaries in the total action,

it is more convenient to introduce the ingoing and outgoing
coordinates

v ¼ tþ r�ðrÞ; u ¼ t − r�ðrÞ; ð2:16Þ

where r� is a tortoise coordinate defined as

r�ðrÞ ¼
Z

dr
fðrÞ ð2:17Þ

with asymptotic behavior

lim
r→∞

r�ðrÞ ¼ r�∞: ð2:18Þ

WDW patch: In order to study the evolution of complex-
ity for the action (2.15), we draw the Penrose diagram of
the causal structure of the charged AdS black brane
described by Eq. (2.3) in Fig. 1. Following Ref. [23],
the corresponding WDW patch is denoted by the shaded

region, which is bounded by the light sheets sent from the
two asymptotic time slices tL and tR. Without loss of
generality, we choose the symmetric configuration for the
time slices—i.e., tL ¼ tR ≡ t=2. In the next subsection, we
evaluate the gravitational action on this patch as the
boundary time increases.
The patch includes two UV cutoff surfaces near the

asymptotic boundary regions at r ¼ rmax which are denoted
by red dashed lines in Fig. 1. In fact, the null boundaries of
the WDW patch begin from the UV cutoff surface at r ¼
rmax and go through the bulk spacetime. There are two
meeting points in the bulk which come from the intersect-
ing future boundaries at r ¼ r1m and past boundaries at
r ¼ r2m. The time evolution of the WDW patch can be
encoded in the time dependence of these points. These
satisfy the following relations:

t
2
þ r�∞ − r�ðr1mÞ ¼ 0;

t
2
− r�∞ þ r�ðr2mÞ ¼ 0; ð2:19Þ

in which, by using Eq. (2.17), their time evolution is
given by

dr1m
dt

¼ fðr1mÞ
2

;
dr2m
dt

¼ −
fðr2mÞ
2

: ð2:20Þ

The null boundaries of the right sector of the corresponding
WDW patch are

B1∶
t
2
¼ r�ðrÞ − r�∞; B2∶ −

t
2
¼ r�ðrÞ − r�∞: ð2:21Þ

These equations are important in the study of the time
evolution of the total action [Eq. (2.15)].
From a holographic point of view [58], it has been

proposed in Ref. [23] that this black hole geometry with
Uð1Þ symmetry is dual to a charged thermofield double
state:

jψCTFDi ¼
1ffiffiffiffi
Z

p
X
j;l

e−Ej−μQl=ð2TÞe−iEjðtLþtRÞ

× jEj;−QliLjEj;QliR; ð2:22Þ

where, comparing with the state in Eq. (1.3), in addition to
the temperature T, this state has a chemical potential μ and
electric charge Q. The density matrix of the corresponding
grand canonical ensemble characterized by T and μ is
obtained by tracing out the states in its boundary.

1. The growth rate of complexity

In the following, we compute the growth rate of the
holographic complexity on the WDW patch associated with
a charged AdS black brane—see Fig. 1. In this regard, we
consider the time dependence of the total action in
Eq. (2.15). In the symmetric configuration of the WDW

FIG. 1. Penrose diagram of the WDW patch for a charged AdS
black brane in symmetric configuration (tL ¼ tR). r → 0 is the
singular surface, and r → ∞ is the asymptotic boundary surface.
The red dashed lines correspond to UV cutoff surfaces at
r ¼ rmax, and r1m; r2m are the meeting points of null boundaries
in the bulk.
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patch, we can perform the calculations only for the right side
of the Penrose diagram—or regions I, II, and III as depicted
in Fig. 1—and then multiply the result by a factor of 2.

Bulk action.—The Ricci scalar tensor and the kinetic terms
of axion fields in this background are given by

R ¼ −dðdþ 1Þ þ ðd − 1Þβ2
2r2

;

−
1

2

Xd−1
I

ð∂ψ IÞ2 ¼ −
ðd − 1Þβ2

2r2
; ð2:23Þ

where the contribution of the β2 term in the scalar action is
canceled by its contribution from the Einstein-Hilbert
action; thus, from the action (2.1) we have

Ibulk ¼ 2ðIIbulkþ IIIbulkþ IIIIbulkÞ

¼Vd−1

8πG

�Z
rþ

r1m

�
t
2
þ r�∞− r�ðrÞ

�
þ2

Z
rmax

rþ
ðr�∞− r�ðrÞÞ

þ
Z

rþ

r2m

�
−
t
2
þ r�∞−r�ðrÞ

��
IðrÞdr

¼ I0bulkþ IbulkðtÞ; ð2:24Þ

where the integrand IðrÞ is

IðrÞ ¼ rd−1
�
−2dþ ðd − 2Þq2

2r2ðd−1Þ

�
; ð2:25Þ

and I0bulk is the time-independent part of the bulk action,
and only the first and third terms depend on the time
through Eq. (2.19).

Boundary surface action.—If we choose affine parametri-
zation for the null normals, then the null surface term
vanishes (κ ¼ 0); thus, we only need to consider the GHY
term coming from the surface at UV cutoff on the right side
of the WDW patch. The trace of the extrinsic curvature for
ansatz (2.2) is given by

K ¼ 1

2

�∂rfðrÞffiffiffiffiffiffiffiffiffi
fðrÞp þ 2ðd − 1Þ

r

ffiffiffiffiffiffiffiffiffi
fðrÞ

p �
: ð2:26Þ

Following Ref. [23], we define future-directed normal
vectors to evaluate K:

r ¼ ϵ∶ t ¼ tμdxμ ¼ −
drffiffiffiffiffiffiffiffiffiffiffiffi
−fðϵÞp ;

r ¼ rmax∶ s ¼ sμdxμ ¼
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fðrmaxÞ
p : ð2:27Þ

Therefore, we obtain the contribution of the surface action
in Eq. (2.10) for the charged AdS solution [Eq. (2.3)] as

Ibdy ¼ 2Ir¼rmax
bdy ¼ rd−1Vd−1

8πG

�
∂rfðrÞ þ

2ðd − 1Þ
r

fðrÞ
�

× ðr�∞ − r�ðrÞÞ
����
r¼rmax

: ð2:28Þ

As is obvious, the cutoff term at r ¼ rmax is independent of
the time, so the boundary term has no contribution to the
time evolution of the holographic complexity.

Joint action.—According to the WDW patch in Fig. 1, there
are different joint contributions at the intersection of null
boundarieswith thesurfaces atr ¼ rmax andwitheachother at
r1m and r2m. It has been shown in Ref. [39] that the null joint
contributions at the UV cutoff surfaces have no time depend-
ence, so we need only to consider the last two joining points.
Assume that k1 and k2 are the null vectors associatedwith two
past null boundaries intersecting at r2m which are defined by

K1 ¼ ξ

�
−dtþ dr

fðrÞ
�
; K2 ¼ ξ

�
dtþ dr

fðrÞ
�
; ð2:29Þ

where ξ is a normalization constant for null vectors. Those for
null vectors associated with two future null boundaries
(intersecting at r1m), i.e., k̃1 and k̃2, are similar. Following
Ref. [17], the joint term is defined by a ¼ ln j − 1

2
k1 · k2j for

the first set and by ã ¼ ln j − 1
2
k̃1 · k̃2j for the second set; then,

the joint action (2.11) can be evaluated as

Ijoint ¼ −
Vd−1

8πG

�
ðr1mÞd−1 log

jfðr1mÞj
ξ2

þ ðr2mÞd−1 log
jfðr2mÞj

ξ2

�
;

ð2:30Þ
where the time dependence of this contribution comes
from Eq. (2.20).

Counterterm action.—In order to remove the ambiguity
associated with the normalization of the null vectors, we
need to add this boundary term to the action. Thus, we
define the affine parameter λ ¼ r=ξ such that the total
action with the counterterm does not depend on the
parametrization of the null surfaces. In this parametrization,
the expansion [Eq. (2.14)] takes the form Ref. [23]

Θ ¼ ðd − 1Þξ
r

: ð2:31Þ

Therefore, the counterterm action in Eq. (2.13) becomes

Ict ¼ 2ðIfuturect þ Ipastct Þ ¼ ðd − 1ÞVd−1

4πG

×

�Z
rmax

r1m

rd−2 log
ðd − 1Þlcξ

r
dr

þ
Z

rmax

r2m

rd−2 log
ðd − 1Þlcξ

r
dr

�
: ð2:32Þ
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Again, this contribution depends on the time through
Eq. (2.20).

2. The late-time behavior

Now, we can determine the rate of change of the
holographic complexity by considering all of the above
contributions:

dCA
dt

¼ d
dt

ðδIbulk þ Ijoint þ IctÞ; ð2:33Þ

where δIbulk ≡ Ibulk − I0bulk. Henceforth, we will set πℏ ¼ 1
in the CA conjecture in Eq. (1.2) for simplicity. Thus, the
growth rate of the holographic complexity yields

dCA
dt

¼ðd−1ÞVd−1

16πG

�
2q2

rd−2
− rd−2fðrÞ logðd−1Þ2l2

cjfðrÞj
r2

�
r1m

r2m

:

ð2:34Þ

At late times, the future (past) corner approaches the inner
(outer) horizon, such that due to the conditions fðrþÞ ¼
fðr−Þ ¼ 0, the second term vanishes. This leaves the result

dCA
dt

����
t→∞

¼ ðd − 1ÞVd−1

16πG

�
2q2

rd−2

�
r¼r−

r¼rþ

¼ ðM − μþQÞ − ðM − μ−QÞ; ð2:35Þ

where we have substituted from Eqs. (2.7) and (2.9). The
results in this limit are consistent with the calculations in
Refs. [15,22] for the charged black holes without consid-
ering the joint and the counterterm actions directly.
For the complexity growth rate of the charged AdS black

brane obtained in Eq. (2.35), it seems that in the Q → 0
limit it vanishes, but as we know from general charged
black holes, the Q → 0 limit corresponds to r− → 0, so we
have μ−Q → 2M while μþQ → 0. Therefore, in this limit
we recover the case of neutral AdS branes for the Lloyd
bound—i.e., dCA=dt ¼ 2M.

B. Complexity of neutral AdS black branes

For the neutral black branes, it is sufficient to insert
q ¼ 0 into ansatz (2.3). Therefore, the mass parameter m0,
which is proportional to the energy density of the brane, is
computed from fðrhÞ ¼ 0, where rh is the position of the
event horizon:

m0 ¼ rdh

�
1 −

1

2ðd − 2Þ
β2

r2h

�
; ð2:36Þ

and this is related to the mass of the brane with

M ¼ ðd − 1ÞVd−1

16πG
m0: ð2:37Þ

Also, the Hawking temperature and the entropy for this
solution are given by

T ¼ f0ðrÞ
4π

����
r¼rh

¼ 2dr2h − β2

8πrh
; S ¼ Vd−1

16πG
4πrðd−1Þh :

ð2:38Þ

WDW patch: The causal structure of a two-sided neutral
AdS black brane with a single horizon is described by the
Penrose diagram in Fig. 2. The corresponding WDW patch
is denoted by the shaded region bounded by the light sheets
sent from the two asymptotic time slices tL and tR. We
choose the symmetric configuration for the time slices—
i.e., tL ¼ tR ≡ t=2. In the next subsection, we evaluate the
total action [Eq. (2.15)] on this patch as the boundary time
increases.
In this patch, rm is the point at which the past light sheets

from the left and right boundaries intersect before hitting
the past singularity at some critical time tc in the symmetric
configuration

tc
2
¼ r�∞ − r�ð0Þ: ð2:39Þ

It also contains a cutoff surface near the future singularity at
r ¼ ϵ and two surfaces near the asymptotic boundary
regions at r ¼ rmax. These surfaces are specified by the
dashed red lines in Fig. 2. The boundaries B1 and B2 are
given by Eq. (2.21).

1. The growth rate of complexity

In the following, we compute the growth rate of the
holographic complexity on the WDW patch associated with
a two-sided AdS black brane for times t > tc—see Fig. 2.
In this regard, we consider the time dependence of the total
action in Eq. (2.15). In the symmetric configuration of the
WDW patch, we can perform the calculations only for the

FIG. 2. Penrose diagram of the WDW patch of a neutral AdS
black brane in symmetric configuration (tL ¼ tR).
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right side of the Penrose diagram or regions I, II, and III,
and then multiply the result by a factor of 2.

Bulk action.—The bulk contribution comes from the action
(2.1) by omitting the Maxwell term. Therefore, according
to the relations in Eq. (2.23), for t > tc we have

Ibulk ¼ 2ðIIbulk þ IIIbulk þ IIIIbulkÞ

¼ −
dVd−1

4πG

�Z
rh

ϵ

�
t
2
þ r�∞ − r�ðrÞ

�

þ 2

Z
rmax

rh

ðr�∞ − r�ðrÞÞ

þ
Z

rh

rm

�
−
t
2
þ r�∞ − r�ðrÞ

��
rd−1dr

¼ I0bulk −
dVd−1

4πG

Z
rm

ϵ

�
t
2
þ r�∞ − r�ðrÞ

�
rd−1dr:

ð2:40Þ

Clearly, only the second term depends on the time.

Boundary surface action.—If we choose affine parametri-
zation for the null normals, then the null surface term
vanishes (κ ¼ 0); thus, we only need to consider the GHY
term coming from the regulator surface at the future
singularity and the surface at the UV cutoff. Therefore,
we obtain the contribution of the surface action in
Eq. (2.10) for the neutral AdS solution as

Ibdy ¼ 2ðIr¼ϵ
bdy þ Ir¼rmax

bdy Þ

¼ −
dVd−1

8πG

�
ð2rd − rdhÞ −

2ðd − 1Þrd−2 − drd−2h

2dðd − 2Þ β2
�

× ððt=2þ r�∞ − r�ðrÞÞjr¼ϵ − ðr�∞ − r�ðrÞÞjr¼rmax
Þ:

ð2:41Þ

As seen, the cutoff term at r ¼ rmax is independent of the
time, so we can rewrite Eq. (2.41) as

Ibdy ¼ I0bdy −
dVd−1

8πG

�
ð2rd − rdhÞ−

2ðd− 1Þrd−2 − drd−2h

2dðd− 2Þ β2
�

× ðt=2þ r�∞ − r�ðrÞÞ
����
r¼ϵ

; ð2:42Þ

where I0bdy is independent of the time and has no con-
tribution to the growth rate.

Joint action.—According to the WDW patch in Fig. 2, there
are different joint contributions at the intersection of the
null boundaries with surfaces at r ¼ ϵ and r ¼ rmax, and
with each other at rm. However, the joints at singular and
cutoff surfaces are independent of the time. Assuming that

k1 and k2 are given by the relations in Eq. (2.29), the joint
action [Eq. (2.11)] can be evaluated as

Ijoint ¼ −
Vd−1

8πG

�
rd−1 log

jfðrÞj
ξ2

�
r¼rm

: ð2:43Þ

The time evolution of this contribution is through the
implicit time dependence of rm with the equation

t
2
− r�∞ þ r�ðrmÞ ¼ 0: ð2:44Þ

Counterterm action.—Using the parameter expansion
introduced in Eq. (2.31), the counterterm action becomes

Ict ¼ 2ðIfuturect þ Ipastct Þ

¼ ðd − 1ÞVd−1

4πG

�Z
rmax

ϵ
þ
Z

rmax

rm

�
rd−2 log

ðd − 1Þlcξ

r
dr:

ð2:45Þ

It is clear that the cutoff bounds have no time dependence;
thus, in the limit ϵ → 0, the counterterm action depends on
the time through Eq. (2.44).

2. The late-time behavior

In the case of neutral branes, we should also consider the
contribution of boundary terms—that is, the growth rate for
t > tc is calculated from

dCA
dt

¼ d
dt

ðδIbulk þ δIbdy þ Ijoint þ IctÞ; ð2:46Þ

where δIbulk ≡ Ibulk − I0bulk and δIbdy ≡ Ibdy − I0bdy. From
Eqs. (2.40) and (2.42) for the bulk and boundary actions,

dIjoint
dt

¼ Vd−1

8πG

�
rdm þ 1

2
ðd − 2Þrdh

þ 1

2
ðd − 1Þðrdm − rdhÞ log

jfðrmÞj
ξ2

þ
�ðd − 1Þðrd−2h − rd−2m Þ

4ðd − 2Þ log
jfðrmÞj

ξ2
−
1

4
rd−2h

�
β2
�

ð2:47Þ

for the joint term, and the following for the counterterm
action:

dIct
dt

¼ ðd − 1ÞVd−1

16πG

�
ðrdm − rdhÞ −

ðrd−2m − rd−2h Þβ2
2ðd − 2Þ

�

× log
ðd − 1Þlcξ

rm
; ð2:48Þ

we obtain the growth rate of the holographic complexity in
the CA conjecture as
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dCA
dt

¼ ðd − 1ÞVd−1

8πG

�
rdh −

rd−2h β2

2ðd − 2Þ

þ 1

2
rd−2m fðrmÞ log

ðd − 1Þ2l2
cjfðrmÞj

r2m

�
; ð2:49Þ

or equivalently, from Eq. (2.37), it can be recast in the form

dCA
dt

¼ 2M þ Vd−1

16πG

�
ðd − 1Þrd−2m fðrmÞ

× log
ðd − 1Þ2l2

cjfðrmÞj
r2m

�
; ð2:50Þ

where the time dependence of the meeting point rm is
obtained from Eq. (2.44) and the definition of the tortoise
coordinate in Eq. (2.17) as

drm
dt

¼ −
fðrmÞ
2

: ð2:51Þ

One can observe that the result (2.50) does not satisfy the
Lloyd bound on the rate of quantum computation [20] for
t > tc, but at the late-time limit in which rm approaches rh
and fðrmÞ → 0, the contribution of the second term
vanishes, and this yields

dCA
dt

����
t→∞

¼ 2M; ð2:52Þ

which is consistent with the expected rate of growth at late
time in Refs. [14,15] even in the presence of momentum
relaxation. The joint and the counterterm contributions of
both charged and neutral solutions are sensitive to the
ambiguities of null boundaries through the normalization
constant ξ, but according to Eqs. (2.34) and (2.49), the
result for the total action is independent of that.
More specifically, the relation (2.36) yields a bound on

the value of β such that a larger value of β leads to a
negative value for the mass, which has no physical
interpretation. For the neutral branes studied in this section,
this maximum value is obtained from β2max ¼ 2ðd − 2Þr2h.
We investigate that for β ≤ βmax, the equation fðrÞ ¼ 0
always has a real positive root (single horizon rh) even
when m0 ¼ 0. Further, from the definition of temperature
in Eq. (2.38), this value then yields a finite temperature
T ¼ rh=2π in this case. In other words, the vacuum metric
(M ¼ 0) has the form of an AdS black hole such that in the
context of AdS=CFT, it can be interpreted in terms of an
entangled state of two copies of the CFT on a hyperbolic
plane [91]. The entangled state of two copies of the CFTon
a hyperbolic plane appearing above can then be understood
as a conformally transformed description of the global
vacuum state which entangles the CFT degrees of freedom
on the interior with those on the exterior of the sphere.

This result provides strong motivation to investigate
the vanishing of the complexity growth rate at some finite
temperature other than zero. For β ¼ βmax, this is a
minimum temperature given by Tmin ¼ rh=2π. Therefore,
from Eq. (2.52) we expect that the variation of the
complexity becomes zero at this temperature only in the
Lloyd limit. There is a similar discussion on the temper-
ature for the resistivity and conductivity of field theories
which are dual to EMA-dilaton theories in Ref. [92].
We also note that regardless of the unphysical values

obtained for the mass, in the case of T < Tmin or β > βmax,
we observe that the equation fðrÞ ¼ 0 has two real positive
roots and the geometry has a causal structure similar to that
encountered for the charged black holes. We have plotted
the behavior of the blackening factor fðrÞ in four dimen-
sions for different values of β in Fig. 3. The case that
happens here is denoted by the solid red curve in the figure.
Studying the complexity growth rate for this chargedlike
geometry similarly to what was done in the previous
subsection, we find that _CA vanishes at late times. It has
been shown in Ref. [39] that a similar thing happens in the
case of AdS black holes with hyperbolic geometry. For
temperatures below T ¼ 1=ð2πLÞ, the small hyperbolic
black holes (i.e., rh < L) have a causal structure similar to
that of charged AdS black holes, and the late-time limit of
_CA goes to zero. In fact, though we consider the AdS branes
with planar geometry in Eq. (2.3), for β ¼ βmax the neutral
brane metric behaves as well as a hyperbolic geometry (see
the Appendix).
To analyze the behavior of the time evolution of the

holographic complexity with more detail, we investigate
the time derivative of the action in Eq. (2.50) as a function
of time in the four-dimensional spacetime. The results are
depicted for some typical locations of the event horizon,
rh ¼ 1, 1.5, 2.5, in Fig. 4(a) and for some values of the

max

max

max

0.0 0.5 1.0 1.5 2.0

4

2

0

2

4

r

f
r

FIG. 3. The structure of the blackening factor for different
values of β with d ¼ 3 and rh ¼ 1. The solid red line corresponds
to β > βmax.

HOLOGRAPHIC COMPLEXITY FOR BLACK BRANES WITH … PHYS. REV. D 104, 086025 (2021)

086025-9



momentum relaxation constant, β ¼ 0, 1, 1.2, in Fig. 4(b).
For the sake of numerical precision, we first solve the
equation of rm in Eq. (2.51) numerically and then plot the
diagrams. We can see from Fig. 4 that as the time passes
from tc, the growth rate of the action violates the Lloyd
bound for all values of rh and β, while at large times t ≫ tc
it saturates the bound, i.e., _CA ¼ 2M. Although the general
behavior of the plots is the same, the curves behave
differently in each panel. For instance, in the left panel,
larger black holes saturate the bound sooner than smaller
ones, while all violate the bound with the same strength
(the curves have the same peak) in the initial times. In the
right panel, the larger values of β correspond to stronger
violations of the bound, and they saturate the bound at
somewhat later times. The other point that can be inferred
from Figs. 4(a) and 4(b) is that the rate of complexity
saturates the Lloyd bound from above at late times. It seems
to be consistent with the positive sign of the second term
in Eq. (2.50).

C. Thermal diffusivity of neutral
branes at minimal temperature

From the holographic point of view in Ref. [15], black
holes are regarded as the fastest computers in the sense that
they saturate the complexification Lloyd bound [Eq. (1.4)].
In this regard, the scrambling time is a measure of how long
it takes for information to spread through the system of N
degrees of freedom [77,93]. The rate of scrambling in a
chaotic system is determined by a Lyapunov time, τL ∼
ℏ=ð2πkBTÞ [77]. Quantum mechanics puts a bound on this
exponent, and it has been shown in Refs. [78,79,94] that the
black holes saturate this bound. However, a fast computer
should interact strongly, so a good candidate is a strongly
coupled CFT in the context of the AdS/CMT. A class of
such strongly coupled theories in quantum CM physics is
the notion of strange metals with specific transport proper-
ties [95]. Now, the question is whether the chaos properties
of black holes and many-body systems are connected to the
transport coefficient.

It was proposed in Refs. [76,96] that one can reformulate
the Kovtun‐Son‐Starinet bound (the bound on the ratio of
shear viscosity to entropy density) [97] in terms of the
diffusion constant asD ∼ vB2τL, where vB is a characteristic
velocity of the theory known as the butterfly velocity. For
any holographic theory with a classical gravity dual, both the
Lyapunov time and the butterfly velocity can be extracted
from the properties of a black hole horizon [78,79]. On the
other hand, thermal diffusivity provides a natural candidate
to relate to many-body chaos, such that the relationship

DT ≥ vB2τL ð2:53Þ

is a generic low-temperature property of the homogeneous
holographic lattice models [98]. Indeed, it is a universal
piece of the diffusivity matrix that we can generically relate
to the chaos exponents at infrared fixed points. It is defined
as follows:

DT ≡ κ

cρ
; ð2:54Þ

where κ is the open circuit thermal conductivity and cρ is the
thermodynamic specific heat at fixed density ρ. Though
the thermal diffusion for neutral black holes in the four-
dimensional EMA model with momentum relaxation has
been recently studied slightly in Ref. [99], we consider this
concept ingeneral dimensions.On theother hand,we find that
there is a minimum temperature for which the complexity
growth ratevanishes, just likewhat happens in the case ofAdS
black holes with hyperbolic geometry in Ref. [39]. Therefore,
it would be of interest to investigate the behavior of the
transport parameters for these models at T ¼ Tmin.
In the momentum relaxation model, Tmin corresponds to

βmax, for which the mass of the black hole becomes zero.
Thus, we can recast the growth rate of the holographic
complexity in Eq. (2.52) as

_CA ¼ 2M ¼ 2ðd − 1Þ
d − 2

SðT − TminÞ; ð2:55Þ
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FIG. 4. The action growth rate on the WDW patch vs t for different values of (a) rh, and (b) β.
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where S and T are the entropy and the temperature of
neutral AdS black branes given in Eq. (2.38). Now,
following Ref. [98], we can calculate the thermal conduc-
tivity and the specific heat, respectively, from

κ ¼ 4π
f0ðrÞr2ðd−2Þ
ðf0ðrÞrd−2Þ0

����
r¼rh

and cρ ¼ T
∂s
∂T ; ð2:56Þ

where s ¼ S=Vd−1 is the entropy density and we set
16πG ¼ 1 in the rest of this section and the Appendix.
Substituting the blackening factor [Eq. (2.3)] with q ¼ 0
and Eq. (2.38) into Eq. (2.56) then yields

κ ¼ 4πrd−2h
ð−2dr2h þ β2Þ

2dðd − 3Þr2h − ðd − 1Þβ2 ;

cρ ¼ 4πðd − 1Þrd−1h
ð2dr2h − β2Þ
ð2dr2h þ β2Þ : ð2:57Þ

Now, if one inserts these parameters into Eq. (2.54), the
diffusion constant is given by

DT ¼ 1

ðd − 1Þrh
ð2dr2h þ β2Þ

ððd − 1Þβ2 − 2dðd − 3Þr2hÞ
: ð2:58Þ

For the minimum value of the temperature where
β2max ¼ 2ðd − 2Þr2h, the above transport parameters are
reduced to

κ ¼ 4πrd−2h ; cρ ¼ 4πrd−1h ; DT ¼ 1

rh
: ð2:59Þ

The calculations for the AdS hyperbolic black holes are left
to the Appendix. From the relationsin Eqs. (2.59) and (A8),
one can find that irrespective of the dimension of space-
time, we have the same expressions for these quantities in
both solutions at the minimum temperature. In particular,
the diffusion constants are independent of the spacetime
dimensions and are proportional to the inverse of the
horizon radius. Such an effect has long been similarly
established in Ref. [100]—that the dc transport coefficients
of conserved quantities is related to the horizon via the
membrane paradigm.
As previously mentioned, there is a deep connection

between the transport coefficients and the chaos parameters
of any holographic geometry. Moreover, these parameters
can be extracted by analyzing a shockwave propagating on
the black hole horizon [78,79,96]. In units ℏ ¼ kB ¼ 1, the
Lyapunov time is given by τL ∼ ð2πTÞ−1, and the butterfly
velocity can be calculated in the near horizon of the
isotropic metric [Eq. (2.2)] as [101,102]

v2B ¼ fðrÞ0
2ðd − 1Þr

����
rh

¼ 2dr2h − β2

4ðd − 1Þr2h
; ð2:60Þ

where we have used the blackening factor [Eq. (2.3)] with
q ¼ 0 for neutral blackbranes.At theminimum temperature,
or equivalently β2max ¼ 2ðd − 2Þr2h, this velocity becomes

vB ¼
ffiffiffiffiffiffiffiffiffiffiffi
1

d − 1

r
¼

ffiffiffi
2

d

r
vSchB ; ð2:61Þ

where vSchB is the value of the butterfly velocity for an AdS-
Schwarzschild black brane in dþ 1 dimensions [78]. As
shown, the velocity in EMA theory at this special point is
lower than its counterpart in Einstein gravity for d ≥ 3. The
diffusion constant in Eq. (2.59), together with parameters vB
and τL at the minimal temperature Tmin ¼ rh=2π, respects
the bound in Eq. (2.53)—i.e.,

DT

τLv2B
¼ ðd − 1Þ ≥ 1: ð2:62Þ

As is obvious, they saturate the bound only for d ¼ 2 in
three-dimensional spacetime.

III. THE GROWTH RATE OF COMPLEXITY IN
THE k-ESSENCE SECTOR

The previous studies can be generalized to the case in
which the kinetic term for the scalar fields can have
nonlinear contributions. Such a case can be implemented
by the so-called k-essence models [80], in which the
mentioned kinetic term is generalized to be a function
Pðψ ; ð∂ψÞ2Þ. A simple case contained in this setup is that
the scalar fields apart from the standard kinetic term
possess a kinetic nonlinear contribution given by the higher
powers of the kinetic term. In this section, we are going to
study the growth rate of complexity for the dyonic AdS
black branes in this holographic model from the CA
proposal. However, for later convenience we will consider
the four-dimensional bulk spacetime.
The action of the nonlinear EMA theory was studied in

Refs. [81,82] and is given by

Ibulk ¼
1

16πG

Z
M
d4x

ffiffiffiffiffiffi
−g

p �
R − 2Λ −

1

4
FμνFμν

−
X2
I¼1

ðχI þ γχkI Þ
�
; ð3:1Þ

where χI ¼ 1
2
∂μψ I∂μψ I, and γ is the coupling of the

nonlinear axionic term. The AdS black brane solution
of this model is described by the ansatz in Eq. (2.2).
Therefore, the blackening factor and the axionic scalar
fields are

fðrÞ ¼ r2 −
β2

2
þQ2

e þQ2
m

4r2
−
2m0

r
þ γ

β2k

2kð2k − 3Þr2ðk−1Þ ;

ψ1 ¼ βx1; ψ2 ¼ βx2: ð3:2Þ
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The Maxwell equation is easily solved by

A ¼ −
Qe

r
dtþQm

2
ðx1dx2 − x2dx1Þ; ð3:3Þ

where Qe and Qm are the electric and magnetic monopole
charges. The temperature and the entropy of the solution
are given by

T ¼ f0ðrþÞ
4π

¼ 1

4π

�
3rþ −

β2

2rþ
−
Q2

e þQ2
m

4r3þ
− γ

β2k

2kr2k−1þ

�
;

S ¼ V2

16πG
4πr2þ: ð3:4Þ

Also, the mass parameter is obtained from the condition
fðrþÞ ¼ 0, such that the mass of the solution becomes

M¼ 4V2

16πG
m0;

m0¼
Q2

eþQ2
m

8rþ
þ1

2
r3þ−

1

4
rþβ2−γ

β2k

2kþ1ð2k−3Þr2k−3þ
; ð3:5Þ

and rþ is the location of the event horizon. The extended
thermodynamics of the above solution has been studied in
Refs. [82,103]. We note also that in particular, for k ¼ 2 the
metric [Eq. (3.2)] behaves as a double-horizon black hole
(i.e., rþ and r−), so one can use the WDW patch in Fig. 1 to
compute the evolution of the holographic complexity of
state which is dual to this geometry.

A. The action growth rate

The total time derivative of the holographic complexity
for dyonic charged AdS solutions in this model is calculated
from Eq. (2.33). However, as mentioned in the previous
section, we can also consider the contribution of a boundary
term for the Maxwell field in the total action as [90]

IμQ ¼ η

Z
∂M

dΣμFμνAν; ð3:6Þ

which does not change the equations of motion. In general,
employing a Dirichlet boundary condition results in a well-
posed variational principle, but due to the boundary term
(3.6) we instead need to impose a Neumann boundary
condition for η ¼ 1, or a mixed boundary condition for
general η. A comprehensive discussion about this boundary
action is given in Ref. [90]. On the other hand, using the
Stokes theorem and the Maxwell equations, we can convert
the boundary term in Eq. (3.6) to the bulkMaxwell action as

IμQ ¼ η

2

Z
M

d4x
ffiffiffiffiffiffi
−g

p
FμνFμν: ð3:7Þ

Therefore, the boundary action (3.6) contributes in the
complexity growth rate through this bulk term.

Using similar discussion for the three bulk regions on the
WDW patch in Fig. 1, the complexity of the bulk action is
written as follows:

Ibulk þ IμQ ¼ V2

16πG

Z
WDW

drdtr2
�
−6 − γ

β4

2r4

− ð2η − 1ÞQ
2
e −Q2

m

2r4

�
; ð3:8Þ

where in four dimensions the volume of the boundary
surface becomes V2, then for the time evolution of the bulk
term we have

d
dt
ðδIBulkþ IμQÞ ¼

V2

8πG

�
r3− γ

β4

4r
− ð2η− 1ÞQ

2
e −Q2

m

4r

�����
r1m

r2m

:

ð3:9Þ

For the joints of null boundaries in r1m and r2m, we have

dIjoint
dt

¼−
V2

8πG

�
r3−

Q2
eþQ2

m

4r
− γ

β4

4r
þ rfðrÞ log jfðrÞj

ξ2

�����
r1m

r2m

;

ð3:10Þ

and also the contribution of the counterterm action becomes

dIct
dt

¼ V2

8πG

�
4m0−

Q2
eþQ2

m

2r
−
β4γ

2r
þβ2r−2r3

�
log

2lcξ

r

����
r1m

r2m

:

ð3:11Þ

As asserted in the previous section, the contribution of
the GHY boundary terms for cutoff surfaces on the WDW
patch in Fig. 1 is time independent; thus, we ignore them.
By combining the above results, we can determine the final
expression for the complexity growth rate as

dCA
dt

¼ V2

8πG

�ð1 − ηÞQ2
e þ ηQ2

m

2r
− rfðrÞ log 4l

2
cjfðrÞj
r2

�
r1m

r2m

:

ð3:12Þ

It is obvious that the normalization constant ξ and the
coupling of the nonlinear axionic action γ do not affect the
final result explicitly. Also, one can check that in the limit
γ → 0, Eqs. (3.9)–(3.11) give the results in the previous
subsection for the electrically (Qm ¼ 0) charged AdSdþ1

black branes when d ¼ 3. According to Eq. (3.9), for
η ¼ 1=2, the boundary and the bulk Maxwell terms cancel
each other and do not affect the gravitational action, in
spite of their geometric contribution in the background
[Eq. (3.2)] to the action.
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B. The late-time behavior

Since in the late-time limit the meeting points reach to
the horizons of the geometry on the WDW patch, as shown
in Fig. 1, the final result for the growth rate of complexity is

dCA
dt

����
t≫tc

¼ V2

16πG

�ð1 − ηÞQ2
e þ ηQ2

m

r

�
r−

rþ
: ð3:13Þ

The result shows that in the absence of the Maxwell
boundary term (i.e., η ¼ 0), the late-time behavior is
similar to the case of charged black branes in Eq. (2.35)
even in the presence of the magnetic charge. Also for
η ¼ 1, the late-time growth rate is only proportional to the
magnetic charge—i.e., it vanishes for electrically charged
black branes.
To better understand the full time dependence of

Eq. (3.12), it is straightforward to provide a numerical
study on the growth rate of complexity for the dyonic black
holes described by Eq. (3.2). In this respect, we have
plotted the ratio _CA=ð _CAÞLT for different values of γ,
Qe=Qm, and η in Figs. 5 and 6. Here, LT stands for the

late-time behavior, and ð _CAÞLT is given in Eq. (3.13). The
figures show that the bound is violated due to the fact that
_CA approaches the bound at very late times from above.
We see from Fig. 5(a) that irrespective of the behavior of

_CA at the initial times, the larger the value of the nonlinear
axionic term, the stronger the violation of the bound. In
contrast, by increasing the ratio between the electric and the
magnetic charges, the violation becomes weaker, as shown
in Fig. 5(b). This opposite behavior relative to these con-
stant parameters is expected due to the relations (3.2) and
(3.12). In other words, for a dominant electrical solution
(i.e., η < 1=2), the signs of the charge ratio and γ term are
different. Of course, we have checked that this opposition
also occurs for a dominant magnetic solution (η > 1=2).
We have checked that the behavior of _CA=ð _CAÞLT for
charged black branes, obtained in Eq. (2.34) via CA
conjecture, is very similar to the dotted plot shown in
Fig. 5(a) with γ ¼ 0 andQm ¼ 0. In Fig. 6, we illustrate the
effect of the boundary Maxwell action [Eq. (3.6)] with
coupling η. As observed, when one increases the value of η,
the Lloyd bound for these charged solutions is violated
from above drastically, just like what happens for the values
of the nonlinear axionic term in Fig. 5(a).

IV. CONCLUSIONS AND OUTLOOK

In this paper, we extended the study of holographic
complexity via AdS black branes with momentum relax-
ation into (dþ 1)-dimensional EMA theory by using the
CA conjecture. The momentum relaxation introduced by
linear massless axion fields in the bulk breaks the trans-
lational symmetry of the dual field theory and gives finite
conductivity. In this regard, to retain the homogeneity of the
bulk theory, the axion fields have been assumed to be a
linear function of the boundary spatial coordinates, with the
equal constant coefficients determining the strength of the
momentum relaxation. Particularly, we have investigated
the effects of this parameter on the holographic complexity
and its time evolution.
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FIG. 5. Lloyd bound violation for different values of γ and Qe=Qm with β ¼ 0.2, η ¼ 0.2, lc ¼ 1.
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FIG. 6. Lloyd bound violation for different values of η with
Qe=Qm ¼ 2, β ¼ 0.2, γ ¼ 5, lc ¼ 1.
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We computed the complexity for both the charged and
neutral branes as homogeneous and isotropic solutions of
the bulk theory. Following the approach in Ref. [23]
to evaluate the complexity on the WDW patch in each
sector, we considered the general GHY surface terms and
the contribution of joints and counterterms of the corre-
sponding null boundaries. The late-time behavior of the
growth rate of the holographic complexity was studied
for two solutions, and we found that it is always finite and
well defined, and satisfies the Lloyd bound in Eqs. (2.35)
and (2.52). It has been found in Ref. [14] that the action
growth rate at late times for neutral AdS black holes is
dIWDW=dt ¼ 2M, independent of the size of the black hole
and the spacetime dimension. We observed that the neutral
AdS black brane confirms this statement even in the
presence of momentum relaxation.
We also obtained an upper bound for the strength of

the momentum relaxation βmax, in the case of neutral
branes, such that for β > βmax the brane mass becomes
negative, which has no physical meaning. We studied the
time evolution of the complexity numerically in Fig. 3 for
different values of rh and β. The plots showed that in spite
of different rates, the complexity growth rates for different
sizes of the brane and different strengths of the momentum
relaxation saturate the Lloyd bound from above. An out-
standing outcome corresponding to βmax is that there is a
minimum temperature given by Tmin ¼ rh=2π, for which
the growth rate of complexity vanishes, in spite of the fact
that it should vanish at zero temperature for neutral AdS
branes. In a separate development, remarkable connections
have been pointed out between the dynamics of black holes
and the nature of quantum chaos in many-body quantum
systems in the context of holographic correspondence. We
computed the thermal conductivity and diffusivity for
neutral AdS black branes and hyperbolic black holes in
general dþ 1 dimensions as well. We have shown that at
the minimum temperature, the diffusion constants are
proportional to the inverse of the event horizon radius,
independent of the dimension of spacetime. Also, this
coefficient accompanied with the chaotic parameters
respected the corresponding bound in the CM physics
and saturated this bound at minimum temperature only in
the case of three dimensions.
In addition, we have studied a holographic model

including the nonlinear contribution of an axionic kinetic
term while preserving the homogeneity and isotropy of the
solutions. We assumed a particular branch of solutions that
has been described by a dyonic charged black brane with
momentum relaxation, and then calculated the rate of
complexity in this model. We have also considered a
boundary action for the Maxwell field in this model.
The Maxwell boundary term contributed as a bulk action
in the change of complexity, such that for η ¼ 1=2, the bulk
actions had no contribution in the complexity rate. The
results showed that even though the coupling of the

nonlinear term (γ) affects the contribution of different
actions in the total complexity, it does not change the
growth rate at late times as denoted in Eq. (3.13).
In the absence of a Maxwell surface term (η ¼ 0), the

growth rate vanished at late time for purely magnetic
charged branes, while for nonzero electric charges it gave
the known expression for general charged branes as in
Eq. (2.35). In contrast, for η ¼ 1 the behavior is reversed—
that is, the rate of growth is nonvanishing for pure
magnetically charged branes and vanishing for electrically
charged ones. The numerical investigation for the full
time dependence of the complexity in the CA proposal
is illustrated in Figs. 5 and 6. The results show that the
Lloyd bound is violated due to the fact that _CA approaches
the bound at very late times from above, even for different
values of γ, Qe=Qm, and η, of course with different rates.
It would be of interest to consider the effects of

momentum relaxation on the growth rate of complexity
in the case of charged dilatonic backgrounds. In general,
the action (2.1) in the presence of dilaton and axion fields
with momentum relaxation recasts as follows [92]:

I ¼ 1

16πG

Z
M
ddþ1x

ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∂ϕÞ2 þ VðϕÞ

−
1

4
ZðϕÞFμνFμν −

1

2

Xd−1
j

ð∂ψ jÞ2
�
: ð4:1Þ

Related discussions about the growth of the holographic
complexity for dilatonic metrics without axion fields have
been done in Ref. [25]. For instance, it has been shown in
Ref. [50] that the total rate of the holographic complexity at
late times is given by

dCA
dt

����
t→∞

¼ 2M − μQ −D; D≡ e2ϕQ2

2M
: ð4:2Þ

We suggest that adding the axionic action, as in Eq. (4.1),
will change the structure of the Lloyd bound of complexity
given in Eq. (4.2) by a term like D; however, we postpone
the study of this proposal for future works.
One can also study the complexity growth rate of a

nonrelativistic but isotropic boundary theory [104] which
is dual to a bulk geometry with momentum relaxation for
the Lifshitz and hyperscaling-violating metrics, as done in
Ref. [105] for Einstein-Maxwell-Dilaton theory without
momentum relaxation. Another proposal in the context of
CA conjecture for these holographic models is to inves-
tigate the complexity growth rate of AdS black branes at
a finite cutoff. The concept of this geometric cutoff at
r ¼ rc comes from the TT̄ deformation of a CFT in the
AdS=CFT dictionary [106,107], such that the coupling of
this operator removes the asymptotic region of the AdS
spacetime. In this regard, some efforts have been made in
Refs. [108–110].
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APPENDIX: THERMAL DIFFUSIVITY OF
HYPERBOLIC BLACK HOLES

In this appendix, we consider the thermodynamics and
transport properties of neutral AdS black holes in dþ 1
dimensions with hyperbolic geometry. Following the con-
vention in Ref. [39], the metric with spherical symmetry
takes the general form

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dΣ2
k;d−1; ðA1Þ

where the blackening factor is given by

fðrÞ ¼ r2

L2
þ k −

ωd−2

rd−2
; ðA2Þ

in which ω is the mass parameter and L denotes the AdS
curvature scale. dΣ2

k;d−1 is the (d − 1)-dimensional line
element of curvature k ¼ fþ1; 0;−1g so that the black
holes corresponding to k ¼ fþ1; 0;−1g have spherical,
planar, and hyperbolic horizons, respectively.
Here, we are interested in the case k ¼ −1, where

dΣ2
−1;d−1 ¼ dθ2 þ sinh2 θdΩ2

d−2 is the metric on a
(d − 1)-dimensional hyperbolic plane. The mass of the
black hole is given by

M ¼ ðd − 1ÞVd−1

16πG
rd−2h

�
r2h
L2

− 1

�
; ðA3Þ

where Vd−1 denotes the dimensionless volume of the
relevant spatial geometry and rh is the event horizon of

the black hole whose position is the largest root
of fðrhÞ ¼ 0.
The entropy and Hawking temperature of the black

hole are

S ¼ Ah

4G
¼ Vd−1

4G
rd−1h ;

T ¼ f0ðrÞ
4π

����
r¼rh

¼ 1

4πrh

�
d
r2h
L2

− ðd − 2Þ
�
: ðA4Þ

The minimum temperature for which the rate of growing
the holographic complexity vanishes is given by Tmin ¼
1

2πL. Therefore, one can rewrite its rate at the late-time
limit as

_CA ¼ 2M ¼ 2ðd − 1Þ
d

SðT − TminÞ: ðA5Þ

Now, we consider the thermal conductivity and diffu-
sivity for hyperbolic black holes at this minimal temper-
ature. From the definitions in Eq. (2.56) and the entropy
and temperature in Eq. (A4), we have

κ ¼ 4πrd−2h
ðdr2h − ðd − 2ÞL2Þ

dðd − 3Þr2h − ðd − 1Þðd − 2ÞL2
;

cρ ¼ 4πðd − 1Þrd−1h
ðdr2h − ðd − 2ÞL2Þ
ðdr2h þ ðd − 2ÞL2Þ : ðA6Þ

Also, Eq. (2.54) yields the diffusion constant

DT ¼−
1

ðd−1Þrh
dr2hþðd−2ÞL2

ðdðd−3Þr2h− ðd−1Þðd−2ÞL2Þ : ðA7Þ

Finally, we obtain the following expressions in the mini-
mum temperature for which L ¼ rh:

κ ¼ 4πrd−2h ; cρ ¼ 4πrd−1h ; DT ¼ 1

rh
: ðA8Þ
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