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We perform canonical quantization of gravity in the background of a Schwarzschild black hole in the
generalized Regge-Wheeler gauge proposed in Kallosh and Rahman [Quantization of gravity in the black
hole background, Phys. Rev. D 104, 086008 (2021)]. We find that the Hamiltonian at the quadratic level is
unitary and ghost-free. Two canonical degrees of freedom are associated with Zerilli-Moncrief and
Cunningham-Price-Moncrief functions of the metric perturbations. The l < 2 part of the Hamiltonian
vanishes. This quantization with the unitary Hamiltonian for gravity is valid also in Minkowski space in
spherical coordinates.
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I. INTRODUCTION

This article is a development based on a recent paper [1]
where we have performed a covariant (Lagrangian) quan-
tization of gravity in a black hole background in the Regge-
Wheeler setup [2–4]. The gauge-fixing condition in [1]
includes the Regge-Wheeler gauge for l ≥ 2 modes and a
certain background covariant gauge for l < 2 modes,
where the Regge-Wheeler gauge is not valid. We will refer
to the gauge in [1] covering all l modes as a “generalized
Regge-Wheeler gauge.”
The Feynman path integral for gravity, viewed as

quantum field theory (QFT), is defined by De Witt–
Faddeev–Popov [5,6] and takes a form, in absence of
sources,

Z
DhJχðg; hÞδðχαðg; hÞÞeiSðgþhÞ: ð1:1Þ

Here we integrate over the perturbations h in the back-
ground metric g. The gauge-fixing conditions are
χαðg; hÞ ¼ 0. The Jacobian designed to make this path
integral independent on the choice of the gauge-fixing
conditions can be presented with the help of the Faddeev-
Popov (FP) ghosts [6]

Jχ ¼
Z

DC̄αDCβe
i
R

d4xC̄αðxÞQα
βðg;hÞCβðxÞ: ð1:2Þ

The differential operator in the ghost action is defined by
the gauge variation of the gauge-fixing functions
δχα ¼ Qα

βξβ. For the choice of the gauge-fixing functions
made in [1], which in addition to the Regge-Wheeler gauge
for l ≥ 2 modes includes gauges for l < 2 modes, a
generalized Regge-Wheeler gauge, we have found that
the ghost actions do not have time derivatives in
Schwarzschild coordinates. We therefore predicted that
in the generalized Regge-Wheeler gauge [1] the canonical
Hamiltonian according to the rules for gauge theories [7–9]
is expected to be unitary.
In this paper we will present the quadratic in the

gravitational perturbations h part of the gravity
Hamiltonian in the spherical harmonic basis. Before doing
this we will perform the standard counting of physical
degrees of freedom in this case. The structure of the
Hamiltonian will confirm this counting.
The standard counting of physical degrees of freedom in

gauge theories in the QFT context of the Feynman path
integral is the same in either Lagrangian or Hamiltonian
quantization, and it is also gauge independent, if performed
correctly. The general counting formula is formulated for
the number of gauge field components equal to nþ k in the
case of k gauge symmetries. The total number of physical
degrees of freedom is

n − k: ð1:3Þ

This final counting formula in QFT is valid for any
choice of gauge fixing, but the procedure is different for
unitary and pseudo-unitary gauges. For example, in
four dimensions the metric has nþ k ¼ 10 components
and there are k ¼ 4 gauge symmetries; the counting
is n − k ¼ ð10 − 4Þ − 4 ¼ 2.
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In QFT in the class of unitary gauges Hamiltonians have
manifestly ghost-free underlying Hilbert spaces. There are
ðp�; q�Þ variables in Faddeev’s theorem [7] as described in
[1]. This means that all n − k physical states have a positive
definite metric. The S matrix is unitary.

#degrees of freedomunitaryH ¼ n − k: ð1:4Þ

Meanwhile, in other gauges, for example, 4D Lorentz
covariant gauges in gravity, the Hamiltonians are “pseudo-
unitary” with underlying state spaces with negative-norm
ghost degrees of freedom [10,11]. In such a case the
counting goes as follows: there are nþ k states with
positive norm and 2k states with negative norm presented
by FP anticommuting ghosts, so the total counting, with the
account of negative norm states, is the same as in unitary
gauges

#degrees of freedompseudo-unitaryH ¼ nþ k − 2k ⇒ n − k:

ð1:5Þ

The S matrix is pseudo-unitary in a space of states with the
indefinite metric.
We will see that the quadratic in the h part of the gravity

Hamiltonian in spherical harmonic basis does support this
counting. In the class of gauges used in [1] the canonical
Hamiltonian is unitary, as predicted there.
The complete form of the Hamiltonian to all orders of h

is beyond the scope of this paper. However, in [1] we
have argued that the nonlinear couplings of ghosts to all
orders in h are free of time derivatives on ghosts. Therefore
one would expect that the nonlinear in h terms in H
will be consistent with the unitarity of the Hamiltonian
which will be deduced in this article at the level quadratic
in h.
The corresponding part of the action Sðgþ hÞ, quadratic

in h, is of the form

S ¼ 1

2

Z
hμνSμνλδðgÞhλδ: ð1:6Þ

Here SμνλδðgÞ is a differential operator depending on the
background metric g. The left-hand side of equations of
motion δS

δhμν
¼ 0 linear in h takes the form

Qμν ≡ δS
δhμν

¼ SμνλδðgÞhλδ: ð1:7Þ

One can restore the action in Eq. (1.6) from the information
available in Eq. (1.7).
In the spherical harmonic basis the 4D spacetime is split

into M ¼ M2 × S2 with coordinates ðxa; θAÞ, a ¼ 1, 2.
The 4D perturbations hμν are represented by 2D fields for

each ðl; mÞ [2–4]. The corresponding equations are known,
and we will use them as derived in [4] in Schwarzschild
coordinates. Once the quadratic Lagrangian is known, it is
possible to derive the relevant quadratic in h Hamiltonian.
For l ≥ 2 modes the corresponding quadratic Hamiltonian
was constructed byMoncrief in [12] where also the relevant
Regge-Wheeler [2] and Zerilli [3] equations were rederived
in the form of Hamiltonian equations of motion. The
Hamiltonian was derived in [12] in the absence of source
terms. For l < 2 the Hamiltonian was not studied, to the
best of our knowledge. In [12] it was explained that
the attention was restricted to modes with l ≥ 2 since
the modes with l < 2 are nonradiative and require a special
treatment.
Here we will use the known field equations (1.7) in the

form given in [4] in Schwarzschild coordinates, which
allow one to derive the Lagrangian in (1.6). From the
quadratic Lagrangian we derive a canonical quadratic part
of the Hamiltonian, with an account of the algebraic
constraints in our gauges. We will conclude that there
are no physical degrees of freedom suitable for quantization
at l < 2. Our definition of quantized degrees of freedom
involves the QFT quantization conditions in 2D space of
the form

½qðr; tÞ; pðr0; tÞ� ¼ iδðr − r0Þ: ð1:8Þ

The classical field equations for low multipoles in the
presence of sources are known to have nontrivial solutions.
For example, for the monopoles l ¼ m ¼ 0 there are
solutions such as h00tt ∼ δM

r , and they are known to affect
the black hole mass. However, there are no solutions of the
constraint equations compatible with the quantization
condition (1.8) for l < 2.
All our results are valid for any mass M of the

Schwarzschild black hole, and the limit to M ¼ 0 is
continuous. This means that they apply not only to the
quantization in the black hole background but also to
the unitary quantization of the gravitational field in the
Minkowski space background in spherical coordinates.

II. COUNTING GRAVITY PHYSICAL DEGREES
OF FREEDOM IN THE SPHERICAL

HARMONIC BASIS

The ansatz of Regge-Wheeler for the metric perturba-
tions hμν with spherical harmonics of definite parity is
given in [2–4]. In our recent paper [1] it was adapted
for the purpose of quantization following the formalism
and notations in [4]. In particular, we have presented
the gauge symmetry transformations to all orders in h.
The background metric in Schwarzschild coordinates is
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gμνdxμdxν ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2ðxÞdΩ2
2;

fðrÞ ¼ 1 −
2GM
r

: ð2:1Þ

The 2D fields representing all components of hμν in 4D
include the following:

hlmðþÞ
ab ; jlmðþÞ

a ; KlmðþÞ; GlmðþÞ l > 1; even;

ð2:2Þ

hlmð−Þ
a ; hlmð−Þ

2 l > 1; odd; ð2:3Þ

h1mðþÞ
ab ; j1mðþÞ

a ; K1mðþÞ l ¼ 1; even; ð2:4Þ

h1mð−Þ
a l ¼ 1; odd; ð2:5Þ

h00ðþÞ
ab ; K00ðþÞ l ¼ 0; even: ð2:6Þ

The gauge symmetries are also expanded in spherical
harmonics. In the form given in our recent paper [1] these
are

ξl>1 even ⇒ fξlmðþÞ
a ; ξlmðþÞg; ð2:7Þ

ξl>1 odd ⇒ fξlmð−Þg; ð2:8Þ

ξl¼1 even ⇒ fξ1mðþÞ
a ; ξ1mðþÞg; ð2:9Þ

ξl¼1 odd ⇒ fξ1mð−Þg; ð2:10Þ

ξl¼0 even ⇒ fξ00ðþÞ
a g: ð2:11Þ

The gauge symmetry parameters ξlmðþÞ
a , ξlmðþÞ, ξlmð−Þ can

be regarded as scalar and vector fields on M2.
The counting of physical degrees of freedom in these five

sectors is as follows:
(1) l > 1 even∶ nþ k ¼ 7; k ¼ 3 ⇒ nþ k − 2k ¼

7 − 2 · 3 ¼ 1,
(2) l > 1 odd∶ nþ k ¼ 3; k ¼ 1 ⇒ nþ k − 2k ¼

3 − 2 · 1 ¼ 1,
(3) l ¼ 1 even∶ nþ k ¼ 6; k ¼ 3 ⇒ nþ k − 2k ¼

6 − 2 · 3 ¼ 0,
(4) l ¼ 1 odd∶ nþ k ¼ 2; k ¼ 1 ⇒ nþ k − 2k ¼

2 − 2 · 1 ¼ 0,
(5) l ¼ 0 even∶ nþ k ¼ 4; k ¼ 2 ⇒ nþ k − 2k ¼

4 − 2 · 2 ¼ 0.
Thus we find that in the l ≥ 2 sector there is one even and
one odd physical degree of freedom for each ðl; mÞ. There
are no degrees of freedom for any of l < 2.

III. QUADRATIC LAGRANGIAN/HAMILTONIAN
FOR l ≥ 2 MODES

A. l ≥ 2 even

There are seven fields here, hlmðþÞ
ab ; jlmðþÞ

a ;
KlmðþÞ; GlmðþÞ. There are seven equations of motion for
these fields. Now we can add the three Regge-Wheeler
gauge-fixing conditions,

G ¼ ja ¼ 0: ð3:1Þ

The remaining four fields are hlmðþÞ
ab ; KlmðþÞ. We expect to

identify three constraints that will leave us with just one
canonical degree of freedom. These equations are accord-
ing to [4]

Qtt ¼ −
∂2

∂r2K −
3r − 5M

r2f
∂
∂rK þ f

r
∂
∂r hrr þ

ðλþ 2Þrþ 4M
2r3

hrr þ
μ

2r2f
K;

Qtr ¼ ∂2

∂t∂rK þ r − 3M
r2f

∂
∂t K −

f
r
∂
∂t hrr −

λ

2r2
htr;

Qrr ¼ −
∂2

∂t2K þ ðr −MÞf
r2

∂
∂rK þ 2f

r
∂
∂t htr −

f
r
∂
∂r htt þ

λrþ 4M
2r3

htt −
f2

r2
hrr −

μf
2r2

K;

Q♭ ¼ −
∂2

∂t2 hrr þ 2
∂2

∂t∂r htr −
∂2

∂r2 h̃tt −
1

f
∂2

∂t2K þ f
∂2

∂r2 K̃ þ 2ðr −MÞ
r2f

∂
∂t htr −

r − 3M
r2f

∂
∂r htt

−
ðr −MÞf

r2
∂
∂r hrr þ

2ðr −MÞ
r2

∂
∂rK þ λr2 − 2ð2þ λÞMrþ 4M2

2r4f2
htt −

λr2 − 2μMr − 4M2

2r4
hrr: ð3:2Þ

Here

λ ¼ lðlþ 1Þ; μ ¼ ðl − 1Þðlþ 2Þ: ð3:3Þ

The quadratic in the h Lagrangian can be restored from
these equations as explained in Eqs. (1.6) and (1.7).
One can proceed by defining for each of the four fields
their canonical momenta. For example, there is no time
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derivative on htt in the action; therefore ptt ¼ 0. The other
three coordinates in the form of Lðq; _qÞ do have time
derivatives; however, two more combinations of q’s and p’s
are constrained. Only one independent canonical degree of
freedom out of four is left.
The Hamiltonian of the related system starting with the

Arnowitt, Deser, Misner construction was derived in [12].
We skip the details of the derivation here starting with the
field equations (3.2) since the answer for the corresponding
Lagrangian can also be reconstructed from the Zerilli-
Moncrief function [3,12] which in the Regge-Wheeler
gauge is

Ψeven ¼
2r

lðlþ 1Þ
�
K þ 2f

Λ
ðfhrr − rK;rÞ

�
; l ≥ 2;

where Λ ¼ ðl − 1Þðlþ 2Þ þ 6M=r. The equation of
motion in the form of the Zerilli-Moncrief function Ψlm

even
as given in [4] is

ð□ − VevenÞΨeven ¼ Seven; ð3:4Þ

where □ ¼ gabDaDb is the Laplacian operator on M2,
Veven depends on r as well as onM and on l, and Seven is the
contribution from sources. We refer to details given in [4],
where also the relation between the Zerilli-Moncrief
function and the original Regge-Wheeler function is
explained. Equation (3.4) can be derived from the
Lagrangian of the form (1.6),

L ¼
X
l≥2;m

�
1

2
Ψevenð□ − VevenÞΨeven − ΨevenSeven

�
: ð3:5Þ

This can be rewritten in the form producing a quadratic part
of the Hamiltonian. With Ψeven ≡Qeven and its canonically
conjugate Peven, and in the absence of sources,

Hl≥2;even ¼
1

2

X
l≥2;m

Z
½drfðPl;mÞ2even þ fðQl;m

;r Þ2even

þ VevenðQl;mÞ2even�; ð3:6Þ

where

Veven¼
1

Λ2

�
μ2
�
μþ2

r2
þ6M

r3

�
þ36M2

r4

�
μþ2M

r

��
: ð3:7Þ

This is an example of Faddeev’s theorem [7], which we
described in [1], where starting from the original con-
strained variables ðpi; qiÞwith constraints ϕαðp; qÞ one can
perform a canonical transformation with p0

α¼ χαðp;qÞ¼0
and q0α ¼ q0αðp�; q�Þ so that the independent set of
canonical variables is ðp�; q�Þ. In this particular case we
find just one set of ðp�; q�Þ, which are the Zerilli-Moncrief

function Ψ of the original variables, and its canonical
conjugate.

B. l ≥ 2 odd

There are three fields in this sector: hlmð−Þ
a ; hlmð−Þ

2 . In the
Regge-Wheeler gauge

hlmð−Þ
2 ¼ 0: ð3:8Þ

Equations of motion for the remaining two fields are

Pt ¼ −
∂2

∂t∂r hr þ
∂2

∂r2 ht −
2

r
∂
∂t hr −

λr − 4M
r3f

ht;

Pr ¼ ∂2

∂t2 hr −
∂2

∂t∂r ht þ
2

r
∂
∂t ht þ

μf
r2

hr:

Restoring the quadratic Lagrangian and using partial
integration one can identify one field that enters into the
Lagrangian without a time derivative: this is ht,

L ¼ ht

�
−

∂2

∂t∂r hr þ
1

2

∂2

∂r2 ht −
2

r
∂
∂t hr −

1

2

λr − 4M
r3f

ht

�

þ 1

2
hr

� ∂2

∂t2 hr þ
μf
r2

hr

�
: ð3:9Þ

Thus we find

pt ¼ 0; ð3:10Þ

pr ¼ ht;r − hr;t −
2

r
ht; ð3:11Þ

and there is a constraint for ht algebraically related
to pr,�
∂r þ

2

r

��
pr þ ht;r −

2

r
ht

�
− ht;rr þ

λr − 4M
r3f

ht ¼ 0:

ð3:12Þ

Therefore there is one independent degree of freedom
ðhr; prÞ. These are Faddeev’s ðp�; q�Þ variables, exactly
one set in agreement with the counting given above. One
can write the corresponding HamiltonianHðhr; prÞ and the
field equations.
On the other hand, the Hamiltonian for this system was

already derived in [12] in the framework of the Arnowitt,
Deser, Misner construction. The field equations were
derived in [13], where the corresponding Cunningham-
Price-Moncrief function was introduced. In the notation of
[4], this function is

Ψlm
odd ¼

2r
ðl − 1Þðlþ 2Þ

�
hlmt;r − hlmr;t −

2

r
hlmt

�
: ð3:13Þ
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This function in terms of canonical variables above
depends on ðpr; hrÞ. As in the even case discussed above
we are led to a single field equation for the Cunningham-
Price-Moncrief function

ð□ − VoddÞΨodd ¼ Sodd: ð3:14Þ

Here the expressions for Vodd and Sodd are given in [4],
where also the relation between the Cunningham-Price-
Moncrief function and the original Regge-Wheeler function
is explained. With Ψodd ≡Qodd the Hamiltonian is

Hl≥2;odd ¼
1

2

X
l≥2;m

Z �
drfðPl;mÞ2odd þ fðQl;m

;r Þ2odd

þ
�
lðlþ 1Þ

r2
−
6M
r3

�
ðQl;mÞ2odd

�
: ð3:15Þ

IV. QUADRATIC LAGRANGIAN/HAMILTONIAN
FOR l < 2 MODES

A. l= 1 even

Our six fields are h1mðþÞ
ab ; j1mðþÞ

a ; K1mðþÞ. We take a
gauge-fixing condition [1]

j1mðþÞ
a ¼ K1mðþÞ ¼ 0: ð4:1Þ

The remaining fields h1mðþÞ
ab in this gauge satisfy the field

equations

Qtt ¼ f
r
∂
∂r hrr þ

2ðrþMÞ
r3

hrr;

Qtr ¼ −
f
r
∂
∂t hrr −

1

r2
htr;

Qrr ¼ 2f
r

∂
∂t htr −

f
r
∂
∂r htt þ

rþ 2M
r3

htt −
f2

r2
hrr:

We can therefore reconstruct the Lagrangian of the form
(1.6) which will produce these equations,

L ¼ httQtt þ
� ∂
∂t htr

�
2f
r
hrr − htr

1

2r2
htr − hrr

f2

2r2
hrr:

ð4:2Þ

We now define q≡ htr; p≡ 2f
r hrr, and htt ≡ λ,

L ¼ _qpþ λQttðp; ∂rpÞ − q2
1

2r2
−
1

8
p2: ð4:3Þ

We integrate out the Lagrange multiplier and find

L ¼ _qp − q2
1

2r2
−
1

8
p2; ð4:4Þ

where

f
r
∂
∂r

rp
2f

þ 2ðrþMÞ
r3

rp
2f

¼ 0 ⇒ p;r þ FðrÞp ¼ 0: ð4:5Þ

The algebraic constraint which p has to satisfy contradicts
the commutation relation which has to be imposed for
quantization, as shown in Eq. (1.8). There is no solution of
the algebraic constraint (4.5) for the canonical momentum
pðt; rÞ that would be consistent with the quantization
condition; only p ¼ 0 is a consistent one. We conclude
there that there are no physical degrees of freedom left in
this sector,

Hl¼1;even ¼ 0: ð4:6Þ

This is in agreement with the counting we presented
above.

B. l= 1 odd

There are two fields: h1mð−Þ
a . We take a gauge-fixing

condition h1mð−Þ
r ¼ 0 [1]. In this gauge the remaining field

equation is

Pt ¼ ∂2

∂r2 ht −
2

r2
ht: ð4:7Þ

The Lagrangian that will generate this equation is

L ¼ 1

2
ht

� ∂2

∂r2 ht −
2

r2
ht

�
: ð4:8Þ

There is one field here where the Lagrangian LðqÞ does not
have the time derivative of this field, and therefore
p ¼ δL

_ht
¼ 0. There are no canonical variables here and

the Hamiltonian vanishes

Hl¼1;odd ¼ 0: ð4:9Þ

This is in agreement with the counting we presented above.

C. l= 0 even

There are four fields here: h00ðþÞ
ab ; K00ðþÞ. We take gauge-

fixing conditions K ¼ htr ¼ 0 [1]. The remaining field
equations are

Qtt ¼ f
r
∂
∂r hrr þ

rþ 2M
r3

hrr;

Qrr ¼ −
f
r
∂
∂r htt þ

2M
r3

htt −
f2

r2
hrr:

The Lagrangian that will generate these equations is
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L ¼ htt

�
f
r
∂
∂r hrr þ

ðrþ 2MÞ
r3

hrr

�
−

f2

2r2
h2rr: ð4:10Þ

There are two fields, q1, q2, but there are no time
derivatives in the Lagrangian, p1 ¼ p2 ¼ 0, no canonical
variables, and the Hamiltonian vanishes,

Hl¼0 ¼ 0: ð4:11Þ

This is again in agreement with the counting we pre-
sented above.

V. A SPECIAL ROLE OF l= 0, 1 IN
QUANTIZATION OF GRAVITY

Is there any relation between the well-known fact about
the absence of radiation from monopoles and dipoles in
gravity and the fact we observed here, that there are no
quantum physical degrees of freedom in monopoles and
dipoles when gravity is quantized in spherical harmonics
basis? The answer is yes, and it has to do with the tensor
nature of gravity, so that radiation starts with quadru-
poles l ≥ 2.
Regge-Wheeler ansatz for l ≥ 2 has ten functions

depending on the coordinates of M2 listed in
Eqs. (2.2)–(2.6). Here we show them in the matrix form
contracted with spherical functions:

hl>1μν ¼
 
hlmab Y

lm jlma Ylm
B

jlma Ylm
B r2KlmΩABYlm þ GlmYlm

AB

!ðþÞ

þ
 

0 hlma Xlm
B

hlma Xlm
B hlm2 Xlm

AB

!ð−Þ
: ð5:1Þ

The number gauge symmetries in all cases with l > 0 is the
same since ξμ is a vector

ξl>0μ ¼
 
ξlma Ylm

ξlmYlm
A

!ðþÞ
þ
 

0

ξlma Xlm
B

!ð−Þ
: ð5:2Þ

Therefore we find that instead of ten fields (even and odd)
as for l ≥ 2 we have eight fields (even and odd) for l ¼ 1,
no fields in red,

hl¼1
μν ¼

 
hlmab Y

lm jlma Ylm
B

jlma Ylm
B r2KlmΩABYlm

!ðþÞ

þ
 

0 hlma Xlm
B

hlma Xlm
B 0

!ð−Þ
: ð5:3Þ

Therefore from 10 − 2 ¼ 8 states we subtract a double set
of four symmetries, and find no degrees of freedom for
l ¼ 1 since 8 − 8 ¼ 0.

At l ¼ 0 Y00
AB ¼ X00

AB ¼ 0, the terms in red are absent,
but also at Y00

A ¼ X00
A ¼ 0, all blue terms are absent:

hl¼0
μν ¼

�
hlmab Y

lm 0

0 r2KlmΩABYlm

�ðþÞ
þ
�
0 0

0 0

�ð−Þ
;

ð5:4Þ

ξl¼0
μ ¼

�
ξlma Ylm

0

�ðþÞ
þ
�
0

0

�ð−Þ
: ð5:5Þ

We are left with four fields and two gauge symmetries, and
there are no degrees of freedom for l ¼ 0: 4 − 4 ¼ 0.

VI. QUANTIZATION OF GRAVITY IN SPHERICAL
HARMONICS BASIS IN THE FLAT BACKGROUND

The procedure of Lagrangian quantization performed in
[1] as well as the values of the unitary quadratic
Hamiltonians presented in this paper have a smooth limit
from the Schwarzschild background to a flat one. In
Schwarzschild coordinates this means that the limitM → 0
is regular.
In particular, the Zerilli-Moncrief function for l ≥ 2 in

the Regge-Wheeler gauge in the limit M → 0 is

Ψlm
even¼

2r
lðlþ1Þ

�
Kþ 2

ðl−1Þðlþ2Þðhrr−rK;rÞ
�
; l≥2:

ð6:1Þ

The Cunningham-Price-Moncrief function is

Ψlm
odd ¼

2r
ðl − 1Þðlþ 2Þ

�
hlmt;r − hlmr;t −

2

r
hlmt

�
; l ≥ 2:

ð6:2Þ

The quadratic part of the Hamiltonian in both cases is

Heven=odd ¼
1

2

X
l≥2;m

Z �
drðPl;mÞ2even=odd þ ðQl;m

;r Þ2even=odd

þ lðlþ 1Þ
r2

ðQl;mÞ2even=odd
�
: ð6:3Þ

Here Qeven=odd ¼ Ψeven=odd and Peven=odd is the correspond-
ing canonical conjugate. At the quadratic level these are the
only two physical states that appear in the unitary
Hamiltonian.
The higher order terms in each of the quantized actions,

at the black hole background, and in the flat background
still have to be constructed.
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VII. A COMMENT ON REGGE-WHEELER
AND TEUKOLSKY FORMALISM AND

GRAVITY WAVES

The Cunningham-Price-Moncrief (CPM) master func-
tion and the Zerilli-Moncrief (ZM) master function, which
were identified here as canonical variables in the gravity,
appear to play some role also in a more interesting case of
the Kerr black holes. Namely, as pointed out in a review
[14], there is a relation via Chandrasekhar transformation
between these functions and Teukolsky radial function.
Note that Teukolsky equations for the Weyl tensor com-
ponents use the expansion in terms of the spin-weighted
spheroidal harmonics. Such an expansion for the metric
starts with l ¼ 2.
There is also an interesting relation between the metric

perturbation far from the source and our canonical variables
in the generalized Regge-Wheeler gauge. Namely, accord-
ing to [14] the gravitational wave strain can be determined
directly from CPM and ZM functions of the metric.
Using the Chandrasekhar transformation between these
functions and Teukolsky radial function, and some
properties of ψ4 ¼ Cnm̄nm̄, the gravitational strain was
given as

rðhþ − ihxÞ ¼
X
l≥2

X
jmj≤l

D
2
ðΨlm

even − iΨlm
evenÞ−2Yl;mðθ;ϕÞ;

ð7:1Þ

where −2Yl;mðθ;ϕÞ is the spin-weighted spheroidal har-
monic. That equality holds in the limit r → ∞ (at fixed
u ¼ t − r�). Here the constant

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl − 1Þðlþ 1Þðlþ 1Þ

p
ð7:2Þ

is the Schwarzschild limit of the constant that appears in
the Teukolsky-Starobinsky identities. Clearly, the cases
l ¼ 0, 1 drop from the formula for the gravitational
waves. This is in agreement with the fact established in
this paper that these modes have no physical degrees of
freedom.

VIII. SUMMARY

In this article we have counted the number of physical
quantized degrees of freedom of Einstein gravity in the
spherical harmonic basis using the standard formula: this
number is given by n − k, where nþ k is the number of
components of gauge fields and the gauge theory has k
gauge symmetries. For example, in 4D the graviton has
nþ k ¼ 6þ 4 ¼ 10 components, and there are k ¼ 4
gauge symmetries. The number of physical degrees of
freedom is n − k ¼ ðnþ kÞ − 2k ¼ 10 − 8 ¼ 2.

In the spherical harmonic basis we have found that for
each l; m in l ≥ 2 sector there is 1 degree of freedom for
even parity states and 1 degree of freedom for odd parity
states. In the l < 2 sector of gravity we have found that
there are no physical degrees of freedom.
To construct the Hamiltonian we start with the Regge-

Wheeler formulation [2–4] of Einstein gravity in the
spherical harmonic basis in the background of a
Schwarzschild black hole. The part of the action Sðgþ hÞ
quadratic in perturbations hμν in Eq. (1.6) can be presented
in the spherical harmonic basis using the explicit form of
equations of motion linear in perturbations, as shown in
Eq. (1.7). We take these explicit expressions Qμν ¼ δSðg;hÞ

δhμν
,

which are linear in hμν, from [4], and reconstruct the
part of the action Sðgþ hÞ quadratic in perturba-
tions hμν. We impose the generalized Regge-Wheeler
gauge [1]. The action quadratic in fields we take
in Schwarzschild coordinates and proceed with
canonical quantization, defining canonical momenta and
constraints.
For l ≥ 2 fields the procedure leads to 1 independent

degree of freedom for even and 1 for odd modes in each
case with l; m, in agreement with the counting of physical
degrees of freedom. We conclude that up to a canonical
transformation such a Hamiltonian is equivalent to the one
presented in [12] where the corresponding canonical
variables are a Zerilli-Moncrief function [3,12] for
even modes and a Cunningham-Price-Moncrief function
[13] for odd modes. In [12] the modes with l < 2 were not
studied.
We apply our method also for l < 2 modes. In each

sector for l ¼ 1, even and odd cases, and for l ¼ 0 we first
reproduce the action from the explicit expressions Qμν ¼
δSðg;hÞ
δhμν

linear in hμν. We use the gauge-fixing condition for

low multipoles in [1] and identify the canonical variables
and constraints. In each case the conclusion is that there are
no independent unconstrained canonical variables
suitable for the quantized Hamiltonian. This is again in
agreement with the counting of degrees of freedom
performed earlier.
The original goal of this investigation was to develop a

consistent method of quantization of a gravitational field in
the background of a Schwarzschild black hole [1].
However, we found that in Schwarzschild coordinates
the limit M → 0 is regular, and therefore the quantization
procedure is valid in the Minkowski background as well. In
this paper we found the Hamiltonian describing unitary
evolution of gravitational perturbations in spherical coor-
dinates, which equally well applies to quantization of
gravity in Minkowski background as well as in the
Schwarzschild black hole background. The choice of the
generalized Regge-Wheeler gauge in [1] where the gravity
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Hamiltonian is unitary requires one to use the spherical
harmonic basis for the metric perturbations. This unitary

gauge is a Regge-Wheeler gauge GlmðþÞ ¼ jlmðþÞ
a ¼

hlmð−Þ
2 ¼ 0 for l ≥ 2. For l ¼ 1 it is j1mðþÞ

a ¼
K1mðþÞ ¼ h1mð−Þ

r ¼ 0, and for l ¼ 0 it is K00 ¼ h00tr ¼ 0.
In this generalized Regge-Wheeler gauge, the quadratic

part of the Hamiltonian for l < 2 modes is vanishing,
whereas for l ≥ 2 it is given in Eqs. (3.6) and (3.15) in the
black hole background and in Eq. (6.3) in the Minkowski
background.
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