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The anomalous spin Hall conductivity in the holographic model of Dirac semimetals with two Dirac
nodes protected by the crystal symmetry has been elaborated. Such a system besides the chiral anomaly
possesses another anomaly that is related to the Z2 topological charge of the system. The holographic
model of the system contains matter action with two Uð1Þ-gauge fields as well as the appropriate
combination of the Chern-Simons gauge terms. We also allow for the coupling of two gauge fields via the
kinetic mixing parametrized by the coupling α. The holographic approach in the probe limit enables us to
obtain Hall conductivity. The aim of this work is to describe the phase transitions in the Z2 Dirac
semimetals between the topologically trivial and nontrivial phases. Interestingly the anomalous Hall
conductivity plays a role of the order parameter of this phase transition. The holographically found
prefactor of the Hall conductivity in the topologically nontrivial phase depends on the coupling α and the
Chern-Simons couplings.
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I. INTRODUCTION

Recently it has been argued that near the charge neutral-
ity point in two- and three-dimensional systems with Dirac
massless energy spectrum a strong interacting plasma (or
Dirac fluid) forms. The evidence of such kind of strong
interacting charged fluid was observed in experiments
indicating the violation of the Wiedemann-Franz law [1]
or the appearance of the viscous flow of charge carriers [2]
in the extremely clean graphene near the charge neutrality
point. On the theoretical side these facts initiated the
emergence of the holographic generalization of hydro-
dynamical approach to the aforementioned systems [3,4].
In order to quantitatively explain the experimental data on
the thermal conductivity of graphene, the holographic
model of strongly coupled plasma with two noninteracting
Uð1Þ-gauge currents was proposed [5]. Two fields
bounded, respectively, with the electron and hole currents
in graphene with Fermi energy coinciding with the Dirac
point have been introduced. They allowed for the nearly
perfect agreement with experiments.

The model has been further generalized [6] by allowing
for the interaction of two Uð1Þ-gauge currents via a
so-called kinetic mixing term with a nonzero coupling
constant between two fields. The thermoelectric and
magnetotransport properties of graphene have been studied.
The Hall effect has been found in the standard geometry
with the magnetic field perpendicular to the graphene plane,
with the electric field and temperature gradients lying in
the plane but being perpendicular to each other. The
dc-transport coefficients were calculated by the introduction
of the axionic field, which provides a momentum relaxation
mechanism related to the finite mobility of carriers. The
auxiliary Uð1Þ-gauge field played an important role and
affected the kinetic and transport coefficients via the param-
eter α, connected with the kinetic mixing term.
The holographic model with two interacting gauge cur-

rents predicts [6] that the increase of α-coupling constant
leads to the increase of the width of normalized thermal
conductivity with the parameter that bounds both Uð1Þ
charges. Moreover, the dependence of the Wiedemann-
Franz ratio on the α-coupling constant results in the changes
of thewidth of curves and their heights. This dependencewas
found to be valid for all charge densities. The dependence of
the Seebeck coefficient on the charge concentration for the
different values of mobilities was also studied, and a very
good agreement with the experimental data was achieved.
After the experimental discovery of the three-

dimensional analogs of graphene, the so-called Weyl and
Dirac semimetals [7], it became clear that besides the
relativistic massless spectrum the carriers in these systems
possess quantum anomalies. In the case of Weyl semimetals
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it is the chiral anomaly that at the quantum level shows up as
a nonconservation of the chiral charge. It has been also
revealed that the class of Dirac semimetals with two Dirac
nodes at the Fermi level separated inmomentum space along
the crystallographic rotation axis besides the chiral charge
possesses another topological charge and the corresponding
anomaly. The underlying symmetry and anomaly, after [8]
we call the Z2 anomaly and the corresponding systems
the Z2 Dirac semimetals. These anomalies are related to
chirality and spin degrees of freedom of charge carriers in
Dirac cones. The detailed physical discussion of these issues
can be found in [8]. While the positive longitudinal charge
magnetoconductivity has been predicted as an experimental
verification of the chiral anomaly in Weyl semimetals, the
positive longitudinal spin magnetoconductivity is the pro-
posed [9] smoking gun of theZ2 anomaly in the topological
Dirac semimetals.
The extension of the aforementioned analysis [5,6] of

transport in graphene towards three-dimensional Dirac
systems was provided in [10]. The hydrodynamical model
of the Dirac Z2 semimetal was studied in the theory with
two interacting gauge fields. The implementation of chiral
anomaly and Z2 topological charge [11] was taken into
account, where the topological charge was described by the
anomaly term in the additional gauge field sector. The
existence of Z2 topological charge modifies equations and
leads to the appearance of the new kinetic coefficients
connected with vorticity and magnetic field of the aux-
iliary field.
In [12] the magnetotransport coefficients were found for

the five-dimensional Chern-Simons generalization of the
presented holographic model. The model in question
enables one to describe the holographic Dirac semimetals
with Z2 symmetry and leads to the positive longitudinal
magnetoconductivity, at large B fields, with a small region
around B ¼ 0 characterized by a negative magnetocon-
ductivity, being in agreement with some experimental data.
One also should remark that the model with two coupled
vector fields was used in a generalization of p-wave
superconductivity for the holographic model of ferromag-
netic superconductivity [13].
The holographic model of Weyl semimetal, which

encoded the axial charge dissipation effect, was elaborated
on in [14,15]. It has been revealed that varying the mass
parameter the model underwent a sharp crossover at a small
temperature from a topologically nontrivial state to a trivial
one. The holographic renormalization group flow was a
helpful device in the interpretation of the results, leading to
the restoration of the time reversal symmetry at the end
point of the renormalization flow in the trivial phase.

A. Motivation of the paper

The main motivation standing behind our studies is
to envisage how the quantum phase transition from a
topologically nontrivial to trivial phase looks like for the

Dirac Z2 semimetals. It will be the key point to visualize
the role of the auxiliaryUð1Þ-gauge field and especially the
coupling between the two gauge fields in question in
the studied process. Our holographic model possesses
the Chern-Simons and kinetic mixing terms, binding
various combinations of Uð1Þ-gauge field strengths with
the adequate coupling constants. The topologically non-
trivial Z2 Dirac semimetal phase will be characterized by
the appearance of spontaneous Hall conductivity. The
results can be interpreted in terms of the holographic
renormalization group flow.
In order to obtain the Hall effect in a topologically trivial

system one needs the magnetic field or to break the time
reversal symmetry by other means. One of the proposals,
presented in [14], is to have a closer look at the Weyl
semimetal with two Weyl nodes of left and right chirality,
separated in the wave vector space by a spatial vector bμ (in
the present convention bμbμ > 0). This separation causes
the breaking of time reversal symmetry. In the presence of
massive fermionsM the parameter b separatingWeyl nodes
along the z direction in momentum space gets modified to
the effective value beff , which for the linear spectrum and
for b > M becomes beff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 −M2

p
, while for jbj < M

the quantum phase transition to the gapfull state appears.
The resulting gap is given by Δ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − b2

p
. The holo-

graphic model of the described system is provided by the
action [14]

S ¼
Z

dx5
ffiffiffiffiffiffi
−g

p �
Rþ 12

L2
−
1

4
FμνFμν −

1

4
Fð5Þ
μν Fð5Þμν

þ α

3
ϵμνρδτAð5Þ

μ ðFð5Þ
νρ F

ð5Þ
δτ þ 3FνρFδτÞ

− ðDμΦÞ†DμΦ −m2Φ†Φ
�
; ð1Þ

where the axial Uð1Þ symmetry is represented by the gauge

field Að5Þ
μ bounded to the field strength Fð5Þ

μν . This field is
anomalous and it is the source of the Chern-Simons part of
the above action.
To better understand the above holographic action of the

Weyl semimetal and its later generalization to the Dirac
semimetal we shall present here some results on the
anomalous Hall effect in a condensed matter lattice of,
e.g., simple cubic symmetry (with lattice constant a ¼ 1)
described by the Weyl Hamiltonian with two nodes at the
points kW ¼ ð0;�by; 0Þ

HðkÞ ¼ dxðkÞσx þ dyðkÞσy þ dzðkÞσz; ð2Þ

with dxðkÞ ¼ γx sinðkxÞ, dyðkÞ ¼ γyðcosðkyÞ − cosðbyÞÞþ
γmðM þ 2 − cosðkxÞ − cosðkzÞ, and dzðkÞ ¼ γz sinðkzÞ.
The parameter M denotes the fermion mass [16]. The
band structure along the z axis for kx ¼ kz ¼ 0, γx ¼ γy ¼
γz ¼ −γm ¼ −1 is shown in the left panel of Fig. 1.
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For M ¼ 0 one deals with massless fermions. Valence and
conduction bands touch each other at Weyl points at
by ¼ �1. For the critical value of the mass, Mcr ≈ 0.46,
the two bands touch each other at the single point at ky ¼ 0,
and effective distance vanishes beff ¼ 0. For larger M the
system develops real gap and becomes topologically
trivial with a vanishing Berry curvature and vanishing
Hall conductivity. The right panel of the figure shows
the anomalous Hall conductivity [17] σAHE ¼ σxz ¼
e2
ℏ

1
N

P
λ;k Ωλ

xzfλðkÞ, where λ enumerates the filled bands,
fλðkÞ is the equilibrium Fermi distribution function, Ωλ

xz is
the xz component of the Berry curvature tensor of the band
λ, and N is the number of unit cells in a crystal. The right
panel of Fig. 1 shows the dependence of the Hall conduc-
tivity due to the Berry curvature on the mass term M. The
conductivity vanishes for M > Mcr signaling the transition
from topologically nontrivial to trivial material. The con-
ductivity of the half-filled band and for M ¼ 0 is given by
the exact formula σAHE ¼ e2

ℏ 2by [18]. The inset shows the
detailed behavior close to M ¼ Mcr for a number of
temperatures.
The nonequilibrium effects in Dirac semimetals with Z2

topological charge [8] require a suitable generalization of
the above model, which has been done in [11,12]. Two
different gauge fields were introduced, one of them coupled
to charge of fermions and the other related to spin degrees
of freedom. The low energy Hamiltonian describing inter
alia two materials argued to be Dirac semimetals and
possessing Z2 charge, namely Cd3As2 and Na3Bi, is
provided by the relation [8]

H ¼ aðτxσzkx − τykyÞ þ bðkÞτz þOðk3Þ; ð3Þ

where a and bðkÞ are in general k dependent constants,
Oðk3Þ denotes terms of higher order in k, τi are Pauli
matrices acting on orbital degrees of freedom, while σi are

Pauli matrices in the spin sector. It is seen that at low energy
the z component of spin is a good quantum number, as the
operator σz commutes with the low energy part of the
Hamiltonian (3). In Dirac Z2 semimetals the separated
cones differ by spin degrees of freedom. On the holo-
graphic side the model requires suitable generalizations;
this is a subject of the present paper.
Neglecting the higher order corrections in a wave vector

in the Hamiltonian (3), describing a Dirac semimetal with
two Dirac cones protected by the rotational symmetry of
the crystal, one obtains

H ¼ aðτxσzkx − τykyÞ þ bðkÞτz: ð4Þ

As the Hamiltonian in question commutes with spin
operator σz, its eigenvalues can be labeled by the eigen-
values of σz, i.e., s ¼ �1. This fact enables us to conclude
that the Hamiltonian for each spin projection implies

Hs ¼ aðsτxkx − τykyÞ þ bðkÞτz; ð5Þ

being a 2 × 2 matrix. Using the standard low energy form
[9] for bðkÞ ¼ m0 −m1k2z −m2ðk2x þ k2yÞ in the continuous
limit one notices that Hs for each spin eigenvalue s ¼ ↑;↓
contributes two Weyl nodes at kC2

W ¼ ð0; 0; C2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=m1

p Þ,
where C2 ¼ �1 denotes the Z2 charges of the Dirac points.
Diagonalizing the Hamiltonian (5) one notes that the
spectrum does nor depend on the spin quantum number
s. To get the spectrum shown in Fig. 2 we have put
kx ¼ ky ¼ 0 and expanded bðkÞ near each of the nodes

to the linear order in kz. One finds EC2

� ð0; 0; kzÞ ¼
∓ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
m0m1

p ðkz − C2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=m1

p Þ: the expression is plotted
in the figure for m0 ¼ m1 ¼ 1. In equilibrium the nodes are
at Eð0; 0; kzÞ ¼ 0; the additional shifts mimic the Z2

chemical potential difference in nonequilibrium with
EðkzÞ → EC2

ðkzÞ − μC2
.

-2

-1

 0

 1

 2

-3 -2 -1  0  1  2  3

E
+

/-
(k

)

kya

M=0

M=1.0

M=0.46

 0

 0.4

 0.8

 1.2

 1.6

 2

 0  0.2  0.4  0.6  0.8  1

σA
H

E

M/Mcr

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.25  0.3  0.35  0.4  0.45  0.5

k T=0.001
0.02
0.05
0.10

M

0.20

FIG. 1. Left panel shows the changes of the energy spectrum of the Weyl semimetal plotted for kx ¼ kz ¼ 0 with increasing the
fermionic massM. In the right panel we show the dependence of the anomalous Hall effect on the mass parameter rescaled by its critical
value for a half-filled band. The full line represents analytical formula 2

ffiffiffiffiffiffiffiffiffiffiffi
1 − x

p
. Note that σAHE vanishes when the system develops the

gap in the spectrum. The inset illustrates the detailed behavior of σAHE close to the critical value of M for a number of temperatures.
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Taking the spin degeneracy into account, one finds in
each of the nodes (differing by the value of Z2 charge)
fermions with spin up or down and with chirality (þ) or
(−). The eigenvalues of the Z2 charge operator [8,9] are
related to the chiralities χ� ¼ �1 of the spin up and down
electrons by C2 ¼ ðχ↑ − χ↓Þ=2. It follows that the node
with Z2 charge C2 ¼ þ1 has spin and chirality ð↑;þ1Þ,
ð↓;−1Þ, while that with C2 ¼ −1 is composed of fermions
with (spin, chirality) quantum numbers ð↑;−1Þ, ð↓;þ1Þ.
Using the above phenomenological picture we propose

the holographic description of the Dirac semimetal. To this
end, and in analogy to the chirality in Weyl semimetals
[14,15] where the axial current j5 is related to the axial
charge ρ5, to treat the corresponding “axial part of the
current between the nodes” we introduce two fields. The
first denoted by Fμν is standard Maxwell Uð1Þ-gauge field,
and the other, which we call Bμν in the following, plays the
role analogous to F5

μν present in Weyl semimetals, where
the charge and chirality are the only relevant quantum
numbers. In principle, we could introduce F5

μν and spin
tensor field [19] together with additional field playing the
role of Fμν in spin sector and use all four fields to calculate
transport properties of the system. Such procedure, which
would allow us to calculate, e.g., the inverse spin Hall effect
is beyond the scope of the present paper. Thus in the
analyzed Dirac semimetal, the field Bμν is the analog of the
field F5

μν in the Weyl semimetals with axial current.
However, in our approach the Z2 charge related current
is induced by electromagnetic gauge field Fμν. The
calculated below anomalous Hall effect is related to the
spin degrees of freedom and is more properly called an
anomalous spin Hall effect. The word “anomalous” is
related to the fact that it is intimately related to the vector

b and not due to the magnetic field B, which also breaks
time reversal symmetry. The magnetic field in Dirac
semimetals with separated Dirac nodes is another source
of the Hall effect and spin Hall effect, e.g., in the presence
of spin dependent scatterings.
In the presence of external electric field E there is a shift

of the nodes with a given Z2 charge in energy and with
applied magnetic field the spin current proportional to the
B field is expected to appear in the system. The separation
of the nodes in wave vector space in the presence of the
electric field contributes to the appearance of standard
Drude current along the field and additional spin current
perpendicular to the node separation vector b, unless E is
along b.
In what follows we shall also focus on the role of the

coupling constant between fields Fμν and Bμν. The cou-
pling α between the aforementioned gauge fields, in the
considered action (6), provides an additional degree of
freedom. Physically it could be related to the scattering
processes. Contrary to the low-energy physics described by
the free particle Hamiltonian, the holographic approach
takes strong interactions into account.
The paper is organized as follows. In Sec. II we present

the basic assumptions and equations of motion for the
model in question. Section III is devoted to the Hall
conductivity caused by the elaborated gauge fields. In
Sec. IV, we derive the equations constituting the description
of the longitudinal conductivity. Section V is dedicated to
the numerical solutions of the underlying equations of
motion, paying special attention to the role of the α-
coupling constant and the influence of Chern-Simons terms
on the physics of the studied phenomena. Section VI
concludes our studies. In the Appendix we present some
comments concerning the boundary currents in the under-
lying theory.

II. HOLOGRAPHIC MODEL

Topological semimetals being novel quantum states of
matter can be classified in main two groups [20–22]. The
first one, in which the Dirac points fall out at time reversal
invariant momenta in the first Brillouin zone and the other
one for which the Dirac points happen in pairs, separated in
momentum space along a rotation axis. The latter one is
characterized by a nontrivial Z2 topological invariant,
leading to the emergence of Fermi arc surface states,
connecting projections of the node locations on the
Brillouin surface. In [8] it was revealed that this kind of
Dirac semimetals exhibited, in addition to the chiral, the Z2

quantum anomaly. For the sake of completeness we add
that each of the above groups of semimetals can break the
Lorentz invariance and be further considered as being of
type I or type II. Type II semimetals are characterized by the
overtilted Dirac cones [23] and the existence of electron
and hole pockets and thus finite density of states at the
Dirac/Weyl point. In type I systems the cone can also be

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1.5 -1 -0.5  0  0.5  1  1.5

E
(0

,0
,k

z)

kz

C2=+1; μ2= -0.2

C2= -1; μ2=+0.2

FIG. 2. The spectrum of electrons in Dirac semimetal with two
separated Dirac cones shifted in energy by the Z2 chemical
potentials �μ2. Two Dirac nodes harbor different Z2 charges C2

as indicated. As is visible from Eq. (5) both spin directions lead to
the same spectrum, which is thus spin degenerated.
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tilted, but the density of states vanishes at the node. Besides
the above systems a special class of topologically nontrivial
materials, a so-called nodal line semimetals [24] exists in
which nodes appear along the closed line in the wave
vector space.
The quantum model in question was described in terms

of AdS/CFT correspondence [12], where the bulk action
describing the system with chiral anomaly and Z2 topo-
logical charge was studied in the context of magnetic
conductivity. The key point in our model is the various
combinations of gauge Chern-Simons terms mimicking the
quantum properties of the system in question, i.e., relations
among the indexes for spin, Z2 charge, and chirality in
topological semimetals.
The action is provided by

SZ2
¼

Z
dx5

ffiffiffiffiffiffi
−g

p �
Rþ 12

L2
−
1

4
FμνFμν −

1

4
BμνBμν

−
α

4
FμνBμν þ α1

3
ϵμνρδτAμFνρFδτ

þ α2
3
ϵμνρδτBμBνρBδτ þ

α3
3
ϵμνρδτAμFνρBδτ

þ α4
3
ϵμνρδτBμFνρBδτ

�
: ð6Þ

The existence of the kinetic mixing term α has its origin
in the cosmology where the two fields are interpreted as
visible and dark sectors. The cosmological data related to
the abundance of visible and dark matter in the Universe
constrain the value of α to be much less than unity (α ≪ 1).
In the studies of thermal transport properties of graphene
the two fields were introduced as a representation of two
sorts of carriers existing at finite temperature at the charge
neutrality point [5] and shown to lead to quantitatively
correct holographic description of the thermal conductivity
of the graphene. The mixing between two fields studied in
[6] allowed for additional improvements. The condensed
matter applications do not lead to such a strong constraint
on its value as cosmological arguments. However, even
though the calculations show that jαj < 2, we generally
consider here 0 < α ≤ 1. We adopt this limitation in the
present work. Moreover, it turns out that the conservation
law of the vector current requires that α1 ¼ α3 ¼ 0 (see the
Appendix).
The transport properties of the model (6) have been

studied earlier using the hydrodynamic and holographic
approaches [11,12]. We paid special attention to the chiral
anomaly and Z2 topological charge. The Chern-Simons
parameters αi have been shown to be directly related to the
corresponding chiral anomaly parameters Ci and to affect
the magnetotransport characteristics of the material by
introducing novel kinetic coefficients related, e.g., to the
chiral magnetic and chiral vortical effects. The ability of the
model (6) to provide the correct description of the magneto-
transport of the Dirac system in the hydrodynamic regime

[11,12] is the main motivation of its use to describe
anomalous Hall conductivity in the holographic approach
and the topological to trivial system phase transition with
increasing the mass M. Properties of the Dirac and Weyl
semimetals have been studied, for the noninteracting
systems, by means of standard condensed matter tech-
niques. On that level the Berry phase and the topology of
the Fermi surface are responsible for the monopolelike
singularity of the Berry connection that mimics the effect of
Chern-Simons terms and chirality [25].

A. Equations of motion

The main objective of our paper is the action provided by

S ¼ SZ2
þ
Z

dx5
ffiffiffiffiffiffi
−g

p ð−ðDμΦÞ†DμΦ −m2Φ†ΦÞ; ð7Þ

where the scalar field Φ appearing in (6) is charged under
Bμ gauge field, i.e.,

DμΦ ¼ ð∂μ − iqdBμÞΦ; ð8Þ

where qd is the charge connected with the auxiliary gauge
field. The scalar mass is chosen in such way that it fulfils
the Breitenlohner-Freedman limit, i.e., the bulk mass
satisfies the condition m2 ¼ −3.
In the holographic model the presence of gauge Chern-

Simons terms (gauge curvature) justifies the breakdown of
Uð1Þ-gauge symmetry. The four different terms are forced
by the charge and spin degrees of freedom in the considered
Z2 Dirac semimetal. In the calculations below we keep all
four coupling constants αi to have general nonzero values.
However, in the Appendix we elaborate on the conservation
of currents in the presence of an anomaly and show that
there exist constraints on the allowed values of these
parameters.
We also consider the symmetry breaking by the nonzero

mass term connected with a non-normalizable mode of the
charged scalar field. It is worthwhile to remark that the
aforementioned influence of Chern-Simons term and sym-
metry breaking by a nonzero value of gauged scalar field
was elaborated in [26].
In what follows, our convention is ϵtrxyz ¼ 1 and

Φ ¼ ϕðrÞ. The equation of motion for the Uð1Þ-gauge
fields with a scalar field charged under Bμ gauge field can
be written as

∇αFαβ þ α

2
∇αBαβ þ α1ϵ

βμνρδFμνFρδ þ
2

3
α3ϵ

βμνρδFμνBρδ

þ α4
3
ϵβμνρδBμνBρδ ¼ 0: ð9Þ

On the other hand, for the auxiliary Bμν field strength one
arrives at the relation
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∇αBαβ þ α

2
∇αFαβ þ α2ϵ

βμνρδBμνBρδ þ
2

3
α4ϵ

βμνρδBμνFρδ

þ α3
3
ϵβμνρδFμνFρδ − 2q2dϕ

2Bβ ¼ 0: ð10Þ

In the next step we can get rid of the terms with the
α-coupling constant and finally get

∇αFαβ þ α̃1
α̃
ϵβμνρδBμνBρδ þ

α̃2
α̃
ϵβμνρδFμνFρδ

þ α̃3
α̃
ϵβμνρδFμνBρδ ¼ 0; ð11Þ

where the coefficients α̃i are given, respectively, by

α̃1 ¼
α4
3
−
αα2
6

; α̃2 ¼ α1 −
αα3
6

;

α̃3 ¼
2

3
α3 −

αα4
3

; α̃ ¼ 1 −
α2

4
: ð12Þ

As mentioned earlier the conservation law of the vector
current requires α1 ¼ α3 ¼ 0 (for the detailed discussion of
the constraints on coupling constants, from the point of
view of gauge-current conservations, see the Appendix).
The same procedure of obtaining equations of motion

can be applied to the additional gauge field. It reveals the
following relation:

∇αBαβ þ β1
α̃
ϵβμνρδFμνFρδ þ

β̃2
α̃
ϵβμνρδBμνBρδ

þ β̃3
α̃
ϵβμνρδBμνFρδ − 2

q2dϕ
2Bβ

α̃
¼ 0; ð13Þ

where β̃i read

β̃1¼
α3
3
−
αα1
2

; β̃2¼ α2−
αα4
6

; β̃3¼
2

3
α4−

αα3
3

: ð14Þ

The scalar field equation charged under Bμ field fulfils the
following equation of motion:

∇μ∇μϕ − q2dϕBμBμ −m2ϕ ¼ 0: ð15Þ

In our consideration, as the background metric we take
the line element of anti–de Sitter (AdS)-Schwarzschild
five-dimensional black brane

ds2 ¼ r2ð−fðrÞdt2 þ dx2 þ dy2 þ dz2Þ þ dr2

r2fðrÞ ; ð16Þ

where fðrÞ ¼ 1 − r4
0

r4 and r0 is the radius of the black brane
event horizon, related to the Hawking temperature by
T ¼ r0=π. We shall work in the probe limit, neglecting
the spacetime metric tensor fluctuations.

III. ANOMALOUS SPIN HALL EFFECT IN THE
HOLOGRAPHIC DIRAC SEMIMETAL

To commence with, in this section we consider the case
when the Bμ field will constitute the background field and
onewill elaborate the Aμ field as the fluctuations on the spin
Uð1Þ-gauge field background. As in [8], we introduce the
vector field (in the present notation bμ), which in the weak
coupling description couples to the Dirac fermions. In what
follows, without loss of generality, we assume

b⃗ ¼ be⃗z; ð17Þ

and correspondingly, in the holographic model, take the z
component (Bz) of the background field. The background
field equations of motion are provided by

B00
z ðrÞ þ B0

zðrÞ
�
3

r
þ f0ðrÞ

fðrÞ
�
− 2

q2dϕ
2ðrÞBzðrÞ
r2fðrÞα̃ ¼ 0; ð18Þ

ϕ00ðrÞþϕ0ðrÞ
�
5

r
þf0ðrÞ
fðrÞ

�
−ϕðrÞ

�
q2dBzðrÞ2
r4fðrÞ þ m2

r2fðrÞ
�
¼0:

ð19Þ

The boundary conditions are given by the Dirac cones
separation parameter b and the fermion mass M parameter,
respectively

lim
r→∞

BzðrÞ ¼ b; lim
r→∞

rϕðrÞ ¼ M: ð20Þ

Note, that in this respect both Weyl and Dirac systems
are not distinguishable, both the nodes are separated by b.

A. Hall conductivity

Ourmain taskwill be to find theHall conductivity, using the
Kubo formula given by σxy¼limr→∞

1
iωhJx;Jyiretðω;k¼0Þ.

In the holographic approach the Green function can be
found by studying fluctuations of the gauge fields, dual to
the currents, around the considered background line
element, with respect to the in-falling boundary conditions
at the event horizon of the studied black brane spacetime.
Namely, one finds the mode equations with the solutions
equal to 1 at the boundary. For timelike momenta the
solution should have an asymptotic expression envisaging
the incoming wave at the event horizon, while for spacelike
momenta the solution ought to be regular at the horizon.
Only contributions from the boundary are taken into
account, surface terms corresponding to the event horizon
are dropped out. This part of the metric influences the
Green function in question only by boundary conditions
imposed on the bulk fields [27,28].
As in [14] the retarded correlation function can be

calculated having in mind the fluctuations of the adequate
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fields above given background. Let us consider Maxwell
Uð1Þ-gauge field fluctuations provided by the following:

δAx ¼ axðrÞe−iωt; δAy ¼ ayðrÞe−iωt: ð21Þ

In the next step one defines the quantity binding bxðrÞ and
byðrÞ in the form as

a�ðrÞ ¼ axðrÞ � iayðrÞ: ð22Þ

It leads to the following form of the underlying
equations:

a00�ðrÞ þ a�

�
3

r
þ f0ðrÞ

fðrÞ
�

þ ω2

r4fðrÞ2 a�ðrÞ � 4
α̃3ω

α̃

B0
zðrÞ

r3fðrÞ a�ðrÞ ¼ 0: ð23Þ

After a convenient parametrization

a� ¼ fðrÞe− iω
4r0ðað0Þ� þ ωað1Þ� þ…Þ; ð24Þ

we obtain the relations for zero and first order expansions
in ω

að0Þ
00

� þ
�
3

r
þ f0ðrÞ

fðrÞ
�
að0Þ

0
� ¼ 0; ð25Þ

að1Þ
00

� þ
�
3

r
þ f0ðrÞ

fðrÞ
�
að1Þ

0
�

¼ i
4r0

�
3fðrÞ0
rfðrÞ þ f00ðrÞ

fðrÞ
�
að0Þ�

þ i
2r0

fðrÞ0
fðrÞ a

ð0Þ0
� ∓ 4

α̃3ω

α̃

B0
zðrÞ

r3fðrÞ a
ð0Þ
� : ð26Þ

The regularity condition near the black brane event horizon
leads to the conclusion that the solution of Eq. (25) is given

by að0Þ� ¼ a0, where a0 is a constant. On the other hand,
the integral constant method applied to the relation (26)
implies

að1Þ� ¼ −
Z

∞

ro

dy
a0

y3fðyÞ

×

�
iy3f0ðyÞ
4r0

− ir0 ∓ 4α̃3
α̃

ðBzðyÞ − Bzðr0ÞÞ
�
: ð27Þ

The Green function implies

G�ðrÞ ¼ ω

�
ir0 �

4α̃3
α̃

ðb − Bzðr0ÞÞ
�
: ð28Þ

Having in mind relation (28), one gets that

σxy ¼
Gþ −G−

2ω
¼ 4α̃3

α̃
ðb − Bzðr0ÞÞ: ð29Þ

The first term in Eq. (29) originates from the Chern-Simons
gauge term contribution to the currents (it constitutes the
Bardeen-Zumino-like polynomial contribution). In order
to obtain the correct charge conserving definition of the
current and accurate value of the appropriate kinetic
coefficient, one ought to subtract it [28]. On this account,
at leading order in ω, we achieve the following relation:

σHall ¼
4α̃3
α̃

Bzðr0Þ: ð30Þ

We remark here that the general value of α̃3 found earlier
reduces to α̃3 ¼ − αα4

3
if the constraints found in the

Appendix are taken into account. On the other hand, the
conductivities in x and y directions imply, respectively,

σxx ¼ σyy ¼ r0: ð31Þ

IV. LONGITUDINAL CONDUCTIVITY

This section will be devoted to the longitudinal electric
conductivity at zero density. We shall consider the fluc-
tuation in the background, which does not source other
modes at zero density. The fluctuation of the charge gauge
field is of the form

δAz ¼ νzðrÞe−iωt; ð32Þ

ν00zðrÞ þ ν0zðrÞ
�
3

r
þ f0ðrÞ

fðrÞ
�
þ ω2νzðrÞ

r4f2ðrÞ ¼ 0: ð33Þ

The same consideration as in the previous sections lead to
the conclusion that in the ω0 order νð0Þz ¼ k0, where k0 is
constant. On the other hand, in ω1 order we have

νð1Þ
00

z þ
�
3

r
þ f0ðrÞ

fðrÞ
�
νð1Þ

0
z ¼ i

4r0

�
3f0ðrÞ
rfðrÞ þ f00ðrÞ

fðrÞ
�
νð0Þz

þ i
2r0

f0ðrÞ
fðrÞ ν

ð0Þ0
z : ð34Þ

Thus the solution is provided by

νð1Þz ¼ −
Z

∞

ro

dx
k0

x3fðxÞ
�
ix3f0ðxÞ
4r0

− ir0

�
: ð35Þ

The form of the above relation implies that the component
of the conductivity σzz ¼ r0. Its value does not depend on
the considered gauge field, but on the background geom-
etry. Namely, the radius of the black brane event horizon.
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V. NUMERICAL RESULTS

Let us now turn our attention towards the numerical
solutions of the equations that had been derived in the
former sections. The background spin Uð1Þ-gauge field
condensation leads to two coupled ordinary differential
equations. We solve them by virtue of a shooting method,
with the adequate boundary conditions (20) to be fulfilled
on the r → ∞ boundary. The initial values of the fields
ϕðr0Þ and Bzðr0Þ are our shooting parameters, moreover
their derivatives are specified by the equations of motion.
Therefore our boundary value problem is translated into the
initial value problem with the additional constraint equa-
tions on the r → ∞ boundary. These constitute a simple
pair of algebraic equations, with the initial field values as
variables. The resulting equations are sequentially inte-
grated with a standard Runge-Kutta-type method, with
initial values correction in each step, until the satisfying
precision is achieved. We have used the Newton-Raphson
method for minimizing the conditions on the AdS space-
time boundary.
In Fig. 3 we depicted the solutions of Eqs. (18) and (19)

for the scalar field ϕ and the background gauge Bz as
functions of renormalization group flow coordinate, i.e., the
radial coordinate r of our AdS spacetime. For the coupling
constant α ¼ 0, they are given by solid lines, while for
α ¼ 0.4 by dotted lines. We can observe that scalar field
solutions for α ¼ 0 are slightly below the ones with α ≠ 0.
On the contrary, Bz solutions, responsible for the conduc-
tivity, with α ¼ 0 are visually hardly distinguishable from
the solutions with α ≠ 0.
As the holographic direction can be understood as

changing the energy scale, the obtained profiles for
BzðrÞ and ϕðrÞ illustrate the changes of the fields due to
the alternation of energy scale from low to high values. The
detailed behavior depends on the ratio M=b. For small
ratiosM=b the scalar field first starts growing with growing
r then there is a value of r coordinate for which the situation

changes and its value decreases to zero. For the values of
M=b bigger than the critical one (see below) we observe the
continuous decrease of the scalar field towards zero value
with increasing r in such a way that the boundary condition
(20) is satisfied. The bigger is the ratio M=b, the larger
maximal value of ϕðrÞ for r close to the horizon one
achieves.
On the other hand, the gauge field envisages the

monotonic growth tendency, i.e., BzðrÞ is growing towards
its limiting value b as r → ∞. The biggerM=b is taken into
account, the smaller value of BzðrÞ deep in the interior of
AdS spacetime one obtains. Next, for all the studied cases
of M=b, they attain the same UV value. The UV limit is
obtained earlier for smaller M=b ratios. As in [14], the
limiting BzðrÞ value is connected with the Hall conductivity
and it authorizes the holographic analog of beff .

A. Influence of α coupling

In Fig. 4 we plot the normalized anomalous spin
Hall conductivity σ̄Hall ¼ α̃σHall=4α̃3b, calculated from
Eq. (30), as a function of fermionic mass M and temper-
ature T. The normalization makes σ̄Hall a dimensionless
quantity. This normalization is convenient as it does not
require fixing the values of the couplings constants of
various Chern-Simons terms.
The nonzero Hall conductivity corresponds to the

topologically nontrivial phase of the system and thus serves
as an order parameter of the considered phase transition. By
increasing the mass M one drives the system towards a
quantum phase transition into a topologically trivial phase.
For low temperatures the characteristics are steep and
conductivity drops to zero around M=b ≈ 0.72. If one
increases the temperature the phase boundary is not so
sharp any more and the conductivity profile stretches.
Moreover, at elevated temperatures the nontrivial topologi-
cal state persists to larger values of mass. In the particular
case of Fig. 4 we use b ¼ 8 and α ¼ 0. We do not plot

FIG. 3. Background fields as a function of renormalization group flow coordinate. Solid lines represent solutions with α-coupling
constant equal to zero, while dotted ones illustrate the α ¼ 0.4 case.
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surfaces for alternative α-coupling values because they
would be hardly distinguishable.
Figure 5 presents such dependence. The normalized Hall

conductivity is plotted as a function of mass with constant
temperature for different values of α parameter. It can be
seen that the presence of the kinetic mixing term causes the
decrease of the critical point ðM=bÞcrit. Also the conduc-
tivity slightly decreases, especially in the steep region of the
curve in the vicinity of the quantum phase transition point.
This effect is subtle but observable. It can constitute the key
point in identifying the existence of the α-coupling constant
between two sectors of Uð1Þ-gauge fields.
At this point it will be instructive to examine more

carefully the transport coefficient, at lower temperature, as

well as its dependence on the relative ratio of the mass M
and temperature T. As we have alluded in the introductory
discussion, the massM and the parameter b define a gap in
the Dirac semimetal spectrum. It constitutes the relation
between the gap in the spectrum and temperature, which
affects the observation of the true phase transition. The
smooth behavior of the Hall conductivity at high temper-
atures has already been observed in Fig. 4.
To commence with, let us investigate the critical behav-

ior of the system near the quantum phase transition point,
driven by the change of b=M scale. As one goes down with
the temperature, the smeared tail of Hall conductivity (as it
is seen in Fig. 5) vanishes and the phase transition becomes
sharp. Naturally in our theoretical setup we cannot achieve
the exact zero temperature, as we work in the probe limit
and use the gravitational background of a black brane with
defined Hawking temperature instead of a gravitational
soliton metric. Nevertheless we can lower the temperature
to the point that allows us the approximate analysis of the
critical behavior of the order parameter. To obtain quanti-
tative information we fit the anomalous Hall conductivity
close to the critical point by a power law in the form

σ ∼ ðb=M − ðb=MÞcritÞβ: ð36Þ

Similar analysis for the closely related model has been
already done in [29] in the context of holographic dis-
ordered Weyl semimetal. However, the presence of α
coupling is interesting from the perspective of the phase
transition analysis in the Dirac semimetal. The results are
presented in Fig. 6. It can be clearly seen that the quantum

FIG. 5. Normalized anomalous Hall conductivity profile versus fermionic mass for different values of α coupling. The figure presents
an exemplary slice for constant temperature from Fig. 4. One can notice that the kinetic mixing term decreases the conductivity in a
topologically nontrivial phase, especially in the steep central region of the characteristics.

FIG. 4. Normalized anomalous Hall conductivity σ̄Hall ¼
α̃σHall=4α̃3b from the relation (30) as a surface plot with mass
M and temperature T as variables. We set b ¼ 8 and α ¼ 0.
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phase transition point ðb=MÞcrit is influenced by α. The
value of ðb=MÞcrit clearly grows as the coupling increases.
The value of the critical exponent β ≈ 0.213, calculated

at temperature πT=M ¼ 0.1, is in quite good agreement
with the previously obtained zero temperature result β ≈
0.211 [15,29]. It has to be mentioned that the field theory
model predicts standard mean field value β ¼ 0.5. We shall
also like to add that in the present approach all other
components of conductivity tensor are given by r0 ∝ T.
We also investigated the anomalousHall conductivity as a

function ofM=T scale. Interestingly it features two different
behaviors. For small values ofM=T the function follows the
power law,while for the bigger values of themass (or smaller
temperature) it behaves exponentially, see Fig. 7. It has to be
noted that similar behavior has been observed by Ammon
and coworkers [29]. This scaling dependence is observed at,
or in the vicinity of, the critical point. The coupling αmainly
changes the position of the critical point, as is visible in
Fig. 6. This explains our numerical observation in Fig. 7 that
the scaling of the Hall conductivity is essentially indepen-
dent on the coupling constant α.
In the next step, we focus on the properties of Hall

conductivity calculated using Eqs. (18) and (19). To begin
with, let us first discuss the behavior of σxy, given by
Eq. (29). We take b ¼ 8 and qd ¼ 1 and ignore the constant
factor originating from Chern-Simons couplings, consid-
ering the normalized conductivity on its own. In this way
we can extract the influence of α coupling on the holo-
graphic Hall conductivity as a function of the fermionic
mass to the gap ratio.
Consequently, let us consider the following dimension-

less ratio:

δσðα; T;MÞ ¼ σixyðα; T;MÞ − σixyð0; T;MÞ
σixyð0; T;MÞ ; ð37Þ

dependent on the coupling parameter α, temperature T, and
fermion mass M. For simplicity we omit the indices, thus
δσðα; T;MÞ ¼ δσxyðα; T;MÞ in the text and in figures. The
following two figures present the Hall conductivity ratio
δσðα; T;MÞ for two different scenarios. In the first one,
presented in Fig. 8, we fix the α-coupling constant to α ¼
0.4 and increase Hawking temperature. It can be observed
that for low temperatures the coupling constant causes a
strongly peaked shift in the Hall conductivity around a
specific mass to gap ratio. With increasing temperature the
peak blurs away due to thermal fluctuations. Apparently,

FIG. 6. Anomalous Hall conductivity as a function b=M scale
calculated for temperature πT=M ¼ 0.1. The phase transition is
quite sharp, with a delicate tail for b=M < ðb=MÞcrit. The
presence of α-coupling shifts the critical value of the holographic
scale parameter.

FIG. 7. A log-log plot of anomalous Hall conductivity versus
M=T scale calculated for the value b=M ≈ 1.399, being very near
the critical value, for a given α. One can see two different
behaviors in the quantum critical region, a power law function for
small M=T, i.e., high temperature and exponential dependence
for higher masses or lower temperatures. This behavior is
unaffected by the α-coupling parameter, which only enters the
position of the critical ðb=MÞcrit.

FIG. 8. The conductivity shift ratio defined in Eq. (37) as a
function of normalized fermionic mass, calculated for a number
of temperature values. The coupling parameter is fixed to
α ¼ 0.4. The function is strongly peaked in the low temperature
around the point M=b ≈ 0.715.
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the position of this peak coincides with the point of
quantum phase transition, observed here, at finite but
low enough temperature, see Figs. 4, 5, and especially 6.
The imprints of the interactions between the considered two
Uð1Þ-gauge sectors, mediated by α, are the strongest in the
vicinity of the critical point.
On the other hand, one may fix the temperature and vary

the coupling strength parameter, which shows us the similar
picture seen from a different perspective. Figure 9 presents
the conductivity shift ratio as a function of M=b. Once
again we can see that it is peaked near specific values of
M=b with the peak position and its magnitude visibly
dependent on α. Namely, at this point one has that, the
larger the value of the α-coupling constant that we take into
account, the bigger δσ one achieves. It is worth to recall that
the noninteracting system is expected to have the critical
value ofM=b ¼ 1. This large renormalization of the critical
value is attributed to strong coupling effects taken into

account by holographic approach. It is also worth to note,
that similarly large renormalization of the critical value of
the mass has been achieved in the lattice model, where it
can be attributed to the nontrivial energy spectrum. The
critical exponents, however, remain of the mean field
variety, contrary to their holographic values. For the higher
values of the temperature (right panel of the Fig. 9) the
transition changes into crossover which is not so sharp and
δσ takes on small but nonzero values forM=bwell above 1.
It is well visible in Fig. 9 that both the δσ and the critical

value of M=b depend on the coupling α. To learn more
about this dependence we first numerically establish the
dependence ðM=bÞcrðαÞ. For this we have defined these
critical values from the low temperature plots of σHall
as function of M=b, similar to those shown in Fig. 5.

FIG. 9. The ratio δσ as a function of mass parameter M=b calculated for a number of couplings α. Both panels present the same
function although for different temperatures. In (a) the conductivity ratio at πT=b ¼ 1=8 and for α ¼ 0 is strongly peaked around
M=b ≈ 0.715. The holographic approach supports an intuitive conclusion, that the rise of temperature smears the peak, as visible from
(b), which has been obtained for πT=b ¼ 3=8.

FIG. 10. The dependence of the critical value ofM=b on α. The
points are the numerical values deduced from the low temperature
plots similar to that in Fig. 5, while the continuous curve is a
parabolic fit to the points.

FIG. 11. The data from Fig. 9(b) rescaled according to Eq. (38),
with n ¼ 2. The rescaled conductivity ratios tend to one curve.
However, the simple integer power n ¼ 2 does not lead to the
collapse of data onto the single curve. A slightly different power
2.03 < n < 2.04 leads to much better convergence of the curves,
nevertheless it is still not ideal.
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The numerical points and the parabolic fit to them are
shown in Fig. 10. The dependence is approximately
quadratic with ðM=bÞcritðαÞ ¼ ðM=bÞcritð0Þ − aα2, and a ≈
0.093 is a numerical factor.
The defined critical points have been used to find if the

amplitude of δσ also scales as second power of α. The
expected scaling may be written as

σðα; T;MÞ − σð0; T;MÞ
σð0; T;MÞ ∼ αn; ð38Þ

where the expected power n equals to 2. To check this
supposition we replotted the conductivity ratio from the
Fig. 9 divided by α2 versus the shifted parameter
M=b − ðM=bÞcritðαÞ. The result is depicted in Fig. 11.
The scaling with power n ¼ 2 is only an approximate one.

VI. CONCLUSIONS

Our theory describes the holographic scenario of the
quantum phase transition in Z2 Dirac semimetals, from the
topologically nontrivial to the trivial phase. This system has
been modeled by the action with Chern-Simons terms
binding various combinations of Uð1Þ-gauge field
strengths with adequate coupling constants. The important
ingredient, which we paid special attention to, is the direct
coupling between both fields. The coupling constant α
between two gauge fields, corresponding to charge and spin
degrees of freedom in Dirac semimetals with chiral
anomaly and Z2 charge, has a relatively small but well
visible effect on the studied topological phase transition.
Both the critical value of theM=b and the magnitude of the
Hall conductance do change with α, but even if the changes
are relatively small the effect is probably measurable.
Defining the dimensionless ratio of Hall conductivities,

by the relation (37), we observe that for low temperatures
the mixing between both considered fields causes the
strongly peaked shift in the studied Hall conductivity.
On the contrary, fixing the temperature and varying the
coupling strength parameter, one analyzes the conductivity
as a function ofM=b. It can be noticed that the critical value
of M=b at which the phase transition happens depends on
the value of α-coupling constant.
In the case of the longitudinal conductivity we have

found that it is independent on parameters M and b.
Namely it has the constant value σxx ¼ σyy ¼ σzz ¼
r0 ¼ πT. Such linear dependence on temperature is char-
acteristic for the gapless topological phase.
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APPENDIX: CONSTRAINTS FROM THE
CURRENT CONSERVATION

Now we pay some attention to the analysis of the
boundary currents bounded with the Chern-Simons terms
in the underlying theory and the conservation of currents. In
order to obtain some constraints on the coupling coeffi-
cients we shall study currents in our theory, i.e., one
expands the holographic action about fixed background
gauge fields of the form Aμ → Aμ þ δAμ; Bμ → Bμ þ δBμ,
to the second order in fluctuations [30]. After tedious
calculations one finds that the variation of the action can be
grouped into parts, one connected with the bulk action,
which is responsible for the equations of motion, and the
boundary part from which we get expressions for the
searched currents. They yield

JαðFÞ¼δSðgaugeÞ
δAα

����
r→∞

¼ ffiffiffiffiffiffi
−g

p �
Fαrþα

2
Bαr

�����
r→∞

þϵrαβγδ
�
4

3
α1AβFγδþ

2

3
α3AβBγδþ

2

3
α4BβBγδ

�����
r→∞

;

ðA1Þ

JαðBÞ¼δSðgaugeÞ
δBα

����
r→∞

¼ ffiffiffiffiffiffi
−g

p �
Barþα

2
Far

�����
r→∞

þϵrαβγδ
�
4

3
α2BβBγδþ

2

3
α3AβFγδþ

2

3
α4BβFγδ

�����
r→∞

:

ðA2Þ

The important point is that in both currents we have a
mixture of gauge fields. The current JαðFÞ above corre-
sponds to the charge current in the system and thus should
be conserved. This immediately leads to α1 ¼ α3 ¼ 0. On
the other hand, the current JαðBÞ, which we interpret as the
spin current does not vanish and is related to the Z2

anomaly of the studied model.
There is no obvious constraints on the couplings α2 and

α4. In this context we add the following comment. It may be
recalled that the appearance of the Chern-Simons terms,
similar to those encountered in the action (1), has been
discussed for the (2þ 1)-dimensional condensed matter
system [31,32]. The couplings have been found to depend
on the lifetime τ of the fermions in the system. On the other
hand, the lifetime changes with the strength of disorder,
electron-phonon interactions, etc. If a similar physics is
realized in the considered Z2 Dirac systems, then the
mentioned couplings may be system dependent.
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