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In a topological description of elementary matter proposed by Bilson-Thompson, the leptons and quarks
of a single generation, together with the electroweak gauge bosons, are represented as elements of the
framed braid group of three ribbons. By identifying these braids with emergent topological excitations of
ribbon networks, it has been possible to encode this braid model into the framework of quantum geometry
provided by loop quantum gravity. One major hurdle in this promising approach to unifying matter and
space-time has been the difficulty in implementing any dynamics that reflects observed particle
interactions. In the case of trivalent networks, it has not been possible to generate particle interactions,
because the braids correspond to noiseless subsystems, meaning they commute with the evolution algebra
generated by the local Pachner moves. In the case of tetravalent networks, interactions are only possible
when the model’s original simplicity, in which interactions take place via the composition of braids, is
sacrificed. The main result of the present paper is to demonstrate that it is possible to preserve both the
original classification of fermions, as well as their interaction via the braid product, if we embed the braid in
a trivalent scheme and supplement the local Pachner moves, with a nonlocal and graph-changing one-
handle attachment. Moreover, we use Kauffman-Lins recoupling theory to obtain invariants of braided
networks that distinguish topological configurations associated to particles in the Bilson-Thompson model.
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I. INTRODUCTION

In the topological matter model proposed by Bilson-
Thompson [1], the leptons and quarks of the Standard
Model (SM) are interpreted as simple braids of three
twisted ribbons, bound together at the top and bottom
by a parallel disk. The three ribbons are allowed to braid
each other, which allows the ribbons to be distinguished by
their relative crossings. With the ribbons distinguished in
this way, the twist structure of the ribbons accounts for the
electrocolor symmetries. The braid structure on the other
hand encodes the weak symmetry and chirality, with a top-
to-bottom reflection corresponding to mapping between
particles and antiparticles, and a left-to-right reflection
corresponding to a parity transformation. The electroweak
interactions are proposed to be represented topologically
via braid composition (such a process, however, ignores the
disks to which the three ribbons are connected at both the
top and bottom).
Although the model provides an appealing way to

encode the quantum numbers associated with leptons

and quarks in terms of simple topological features, and
represents their electroweak interactions via the simple
topological process of braid composition, one missing
element of the model is an explanation of where these
braids live. Furthermore, the model does not provide a
dynamical framework.
In loop quantum gravity (LQG), the states correspond to

spin networks. In the case of a nonzero cosmological
constant, the edges of these spin networks are framed,
generalizing the spin network to a ribbon network, in which
(for trivalent networks) the edges and vertices become
ribbons and disks, respectively. Such ribbon networks
provide a natural home for the braids in [1], and embedding
these braids into ribbon networks could address one of the
weaknesses of LQG as a theory for unification; namely the
lack of a particle spectrum.
Indeed, soon after the proposal in [1], it was shown that

the proposed braided states correspond precisely to the
simplest emergent conserved topological excitations of
ribbon networks in a background topological space (three
manifold), thereby providing an embedding of Bilson-
Thompson’s model into quantum gravity theories in which
states are labeled by diffeomorphism classes of embeddings
of ribbon graphs in a background topological space [2].
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The dynamics in these theories are generated by local
evolution moves on the graphs. These evolution moves on
trivalent spin networks are dual to the Pachner moves that
relate different triangulations of the same surface. In the
case of ribbon networks, these moves are suitably adopted
to account for the framing of the spin networks.
In this trivalent setting, a braid occurs as a single trivalent

node from which three ribbons emerge. The ribbons twist
and braid around each other, and then join to the rest of
the network at three other trivalent nodes.1 One then hopes
that the dynamics governing particle interactions arise as a
consequence of the dynamics of ribbon networks. However,
one finds that these subsystems of ribbon networks corre-
spond to noiseless subsystems, familiar from quantum
information theory. Noiseless subsystems correspond to
subsets of states of a quantum system that are preserved
under the evolution algebra of the system. In the present
context this means that under the standard local exchange
and expansion evolution moves, the braiding and twisting
content of these subsystems are preserved (they commute
with the evolution moves), and therefore provide conserved
degrees of freedom and associated quantum numbers.
As noiseless subsystems, the elementary particles are

protected by symmetries in the dynamics, and therefore
remain coherent as they propagate. Although this is con-
sistent with the observed stability of these particles, at the
same time it prevents the emergence of genuine particle
interactions, therefore hampering the development of a fully
dynamical theory, because the states are too strongly
conserved. In order to introduce nontrivial dynamics for
braided particles, it is necessary to consider moves such that
the braided particles do not constitute noiseless subsystems.
To overcome the serious limitation of braids being

conserved too strongly, the tetravalent scheme was devel-
oped. The topological excitations to be identified with
particles are still three ribbon braids, but now formed by
the three common edges of two adjacent tetravalent nodes.
The braids can therefore be considered as an insertion in an
edge of the ribbon graph. The subsequent dynamics based
on the (adapted) dual Pachner moves give rise to forms of
braid propagation and interaction that are in certain instances
analogues to the dynamics of particles. This is because in the
tetravalent scheme, the embedded braids no longer corre-
spond to noiseless subsystems, meaning that a braid’s
structure can undergo changes during its propagation. In
an interaction of two adjacent braids, one canmergewith the
other through a series of evolutionmoves. This braidmerger,
however, does not correspond to the familiar composition of
braids. Furthermore, in the tetravalent scheme one loses an
obvious identification between specific braids and the

leptons and quarks of the SM. In the trivalent scheme, [1]
maps the trivalent braids to SM fermions. However the
tetravalent case generates an infinite range of equivalence
classes of braids, and sufficient super-selection rules to
select appropriate braids to map to SM fermions are lacking.
Both the trivalent and tetravalent scheme have their

advantages, while at the same time introducing limitations.
Although the trivalent scheme successfully establishes a
correspondence between braids and SM particles, and the
tetravalent scheme provides a dynamical theory of inter-
actions ruled by topological conservation laws, neither
scheme does both. The trivalent scheme lacks dynamics,
and the tetravalent scheme is plagued by an infinite range of
equivalence classes of braids. In particular, neither theory is
capable of representing the electroweak interaction in the
spirit of [1], that is via the braid product. A comprehensive
review of both the trivalent and tetravalent scheme can be
found in [3].
In this paper, we consider the trivalent scheme and

generate interactions that correspond topologically to braid
compositions by complementing the Pachner moves by a
new move corresponding to adding a one-handle. This new
move, and hence the particle interaction, is not a local one
(like the dual Pachner moves) and so two particles,
separated in the ribbon network, are able to interact at
the topological level. Attaching handles corresponds to
having a four-dimensional cobordism from an initial state
embedded into a three-dimensional manifold to a final state
in a three-dimensional manifold. This cobordism is
obtained from crossing the base space, which is three-
dimensional, with a time coordinate. The construction is
therefore inherently four-dimensional. Unlike the Pachner
moves, which are graph changing but leave the underling
manifold unchanged, attaching a one-handle changes the
underlying manifold. Our proposal restores one of the most
attractive features of Bilson-Thompson’s model, that of
representing particle interactions topologically as braid
composition, while at the same time allowing the model
to be embedded into background independent theories of
quantum gravity. The identifications of leptons and quarks
correspond to those in [1], and electroweak interactions are
represented topologically via the braid product. This is the
first main result of this paper.
Finally we argue that, instead of using a link invariant to

distinguish between different particles, as has been done
previously [2], the algebraic invariant of isotopy classes of
braided networks based on Kauffman-Lins recoupling
theory [4] provides a more appropriate choice invariant,
being able to distinguish between the different particles.
This is the second main result of this paper.

II. A TOPOLOGICAL MODEL OF
COMPOSITE PREONS

We begin by providing a brief overview of the Bilson-
Thompson model [1]. The fundamental preonic object is a

1Braids, as subgraphs of extended 1-complexes, require at least
four trivalent nodes to be connected to the embedding graph.
Differently, isolated tangles can be achieved by interconnecting
two trivalent nodes.
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ribbon which may be twisted by �2π. Ribbons are
combined into triplets with nontrivial braiding, and con-
nected together at the top and bottom to a parallel disk.
Such a braid constitutes a two-dimensional (2D) surface. It
is assumed that ribbons with twists in opposite directions
are not permitted in the same triplet. The resulting
topological objects, corresponding to framed braids in
the circular Artin braid group Bc

3, are called 3-belts.
With a simple (but arbitrary) choice for how the ribbons
are braided, the braids in Fig. 1 represent the first
generation of SM leptons and quarks. In this representation,
the twist structure of the ribbons accounts for the electro-
color symmetries, with charges of �e=3 represented by
�2π twists, and the permutations of twisted ribbons
representing color. This braid model thus allows one to
describe electric charge and color charge in terms of the
topological structure of braids. Without any underlying
braiding of the three ribbons, a simple rotation of both end
disks means the ribbons become indistinguishable from one
another, and one loses the ability to represent the color
symmetry. No explicit assumption is made about the
permitted braiding of ribbons, and a well-motivated choice
for the braid structure to assign to leptons and quarks is still
lacking.2 The model in Fig. 1 chooses just one simple
possibility. More complex braiding may be speculated to
correspond to additional generations. However, without
any restriction on the complexity of braiding, this leads to
an unbounded number of generations.
The model does not provide a dynamical framework.

Weak interactions, however, may be represented topologi-
cally via braid composition, as shown in Fig. 2, where the

electroweak bosons are assumed to correspond to unbraids
(with possible twisting on its constituent ribbons), see
Fig. 3. Forming the braid product requires that the bottom
disk of the first composing braid, and the top disk of the
second composing braid, be removed. One limitation of the
original model is that this issue is not addressed. In Sec. V
A we show that attaching a one-handle naturally resolves
this issue.

III. THEORIES ON RIBBON GRAPHS

We now define and summarize the class of theories that
we focus on. Much of what follows in this section can be
found discussed at greater length in [2]. We are interested in
theories of ribbon graphs. These relate closely to LQG and
spin foam models, in which the graphs that comprise the
states in these theories are framed. The states of these
theories then are represented by the embedding of a two
surface into the spatial manifold.
A two-dimensional surface (with boundary) S of genus

at least two in a compact three manifold Σ can be
considered as a union of trinions, which are surfaces with
three distinct regions of connection to other surfaces. These
trinions ultimately represent the framing of trivalent spin
network nodes. A ribbon graph Γ then corresponds to a
particular decomposition of S.
By associating a finite-dimensional state space Ht to

each trinion, and the tensor product operation to the glueing
of trinions, it is possible to construct a map from the ribbon
graph to a quantum system. In this paper we do not focus on
the coloring of the graph, and therefore ignore the asso-
ciation of a (quantum) group element to each edge of a

FIG. 1. In the braid model, leptons and quarks are represented
as braids of three (possibly twisted) ribbons. Charged fermions
come in two handedness states whereas the neutrino and anti-
neutrino come in only one handedness state. Source [1].

FIG. 2. Weak interactions are represented topologically via
braid composition (Ref. [1]).

FIG. 3. Electroweak bosons are assumed to correspond to
triplets of ribbons that are not braided (Ref. [1]).

2Some recent works by one of the present authors demonstrate
that the topological structures of the helon model can be
generated from the minimal ideals of the two complex Clifford
algebras, Clð6Þ and Clð4Þ, by establishing a map between the
basis states of these ideals, and products of braid generators in the
circular Artin braid group Bc

3 [for Clð6Þ] and B3 [for Clð4Þ]. In
such a construction, the finite dimensionality of the minimal
ideals provides a natural limitation for the complexity of twisting
of ribbons, as well as the braiding of ribbons [5–7].
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trinion. Instead it suffices to use a functor to assign a finite-
dimensional vector space to each trinion. The state space
associated with the entire graph Γ is then given by

HΓ ¼ ⊗
t∈Γ

Ht; ð1Þ

where the label t runs over all trinions. The state space of
the theory is subsequently a sum over all the topologically
distinct embeddings of all such ribbon graphs in Σ with the
inner product hΓjΓ0i ¼ δΓΓ0

H ¼ ⨁
Γ
HΓ: ð2Þ

A. The evolution algebra

By embedding the braids representing the leptons and
quarks in [1] in this manner, it becomes possible to define
local dynamics by excising subgraphs of the ribbon net-
work Γ and replacing them with new ones. Because
trivalent spin networks are the dual skeletons of triangu-
lations of 2D surfaces in which a node is dual to a
2-simplex, the evolution moves of trivalent spin networks
which generate such dynamics are dual to the Pachner
moves that relate triangulations. In the case of a ribbon
network, these Pachner moves need to be suitably adapted.
There are three nontrivial generators Ai of evolution,
which, together with the identity, generate the evolution
algebra on the sate space H,

Aevol ¼ f1; Aig; i ¼ 1; 2; 3: ð3Þ

For a given ribbon graph Γ, the application of Ai results in

ÂijΓi ¼
X

α

jΓ0
αii; ð4Þ

where Γ0
αi represent the ribbon graphs that can be obtained

from Γ via an application of one of the evolution moves.
A key observation in [2] is that any braiding and twisting

content of states in the state space H remains invariant
under such evolution of the ribbon graph, as generated by
the evolution algebra. This means that any physical
information that is encoded in the braiding will necessarily
be conserved under evolution. In other words, the evolution
algebra only acts nontrivially on the trinions of the graph,
whereas any braids embedded into the ribbon graph are
noiseless, commuting with the evolution algebra.

IV. LEPTONS AND QUARKS AS
TOPOLOGICAL EXCITATIONS

A. The trivalent scheme

What was shown in [2] is that the braids proposed in [1],
representing leptons and quarks, correspond to the simplest
conserved topological excitations in a trivalent network.
By conserved, we mean that the generators of such

dynamics (the adapted dual Pachner moves) commute with
the braiding and twisting content of the topological
excitations, and the latter therefore correspond to noiseless
subsystems of the quantum dynamics. This means that
although the 0simplest excitations propagate coherently,
they are too strongly conserved since they do not desta-
bilize [2]. Thus, although it is possible to describe scatter-
ing, the creation and annihilation of particles is impossible
without some modification [8].

B. The tetravalent scheme

To overcome this serious limitation, and because of the
geometrical correspondence between framed tetravalent spin
networks and 3-space, a tetravalent scheme was sub-
sequently developed [9,10]. In this scheme, the topological
excitations to be identified with particles are still three strand
braids, but now formed by the three common edges of two
adjacent tetravalent nodes. The braids can therefore be
considered as insertion in an edge of the ribbon graph.
In this case, the dynamics based on the (adapted) dual

Pachner moves naturally associated with tetravalent graphs
give rise to forms of braid propagation and interaction that
are in some instances analogous to the dynamics of
particles. More precisely, the theory gives rise to different
classes of braids. One class of braids neither propagates nor
interacts. A second class of braids propagate but do not
interact. In this case, one finds that the propagation is chiral,
meaning that some braids can only propagate to their right
in relation to the local subgraph, while others only
propagate to their left. Such braids are speculated to
correspond to fermions. A final class of braids consists
of actively interacting braids that are two-way propagating.
These braids are capable of merging with neighboring
braids when certain interaction conditions are met, and are
speculated to correspond to bosons [9]. Exchanges of such
actively interacting braid excitations give rise to the
interactions between fermionic braids.
Dynamics generated in this manner strongly constrains

the number of possible discrete transformations in the
tetravalent scheme to be exactly seven (excluding the
identity), corresponding to C, P, T, and their product,
and the interactions of braids are found to be invariant
under C, P, and T separately, and thus also under CPT [11].
Braid Feynman diagrams have been developed and used to
represent the dynamics of braids, with the hope that an
effective theory describing braid dynamics can be based on
these braid Feynman diagrams [12].
As the above paragraphs indicate, the tetravalent for-

malism has proven to be more adapt at generating dynamics
than the trivalent formalist, but not without introducing a
new set of challenges to overcome. In the tetravalent
scheme one lacks a means to pick out those tetravalent
braids that should be mapped to the SM particles. Whereas
in the trivalent case such a map is provided by the model in
[1], with each equivalence class of braids being mapped to a
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single type of particle, the tetravalent case produces a
seemingly infinite range of (equivalence classes of) braid
states analogous to bosons and fermions.

V. RIBBON NETWORKS EMBEDDED
INTO 3-MANIFOLDS

We suppose that particle systems constitute ribbon
graphs in which vertices are thickened to be (homeomor-
phic to) two dimensional disks (or rectangles), and edges
are thickened to ribbons. These objects are embedded in a
three-dimensional ground space, which is taken to be a
3-manifold, and they are also referred to as fat graphs in the
literature. See, for instance, [13,14].
Ribbon graphs are formally defined as oriented surfaces

decomposed into two families of rectangular surfaces, i.e.,
embeddings of the square ½0; 1� × ½0; 1� in the base three-
dimensional manifold, called “coupons” and “ribbons,”
and a family of “annuli,” i.e., embeddings of the cylinder
S1 × ½0; 1�. We will think of coupons as vertices of a
graph, thickened into rectangles, or, equivalently, a two-
dimensional closed ball, while ribbons will constitute the
connecting edges of a graph, thickened to rectangles.
Annuli determine the components of framed links, and
will therefore be given with a trivialization of the normal
bundle, which is described by an integer corresponding to
the twisting. Moreover, it is assumed that coupons, ribbons,
and annuli do not self-intersect, but coupons and ribbons
are allowed to meet at one side of the boundary of the
rectangular surface. Figure 4 shows a portion of the ribbon
graph where a central coupon, rectangular and correspond-
ing to a “fat vertex” of the graph, is connected to ribbon
edges on the top and bottom. This is the fundamental unit of

a ribbon network considered below, as we can concatenate
them by joining their ribbons.
Two ribbon graphs are said to be equivalent if there exists

an isotopy that transforms one into the other. The equiv-
alence of ribbon graphs is conveniently expressed in
combinatorial terms by considering diagrams of ribbon
graphs, i.e., projections on the plane. In terms of their
diagrams, two ribbon graphs are equivalent if and only if
there exists a finite sequence of plane isotopies and moves
of type:

(i) Oriented framed Reidemeister moves;
(ii) Ribbons can slide above and below coupons;
(iii) Opposite crossings cancel, after orientation turning

is applied;
(iv) Coupons can be rotated with surfaces parallel to the

plane, so that the attached ribbons spiral around the
coupons.

These combinatorial moves correspond to the generators of
the category of ribbon graphs in [15], relations rel1 to rel13.
In analogy with spin networks in quantum gravity, we

call ribbon networks the elements of an appropriate
subclass of ribbon graphs (introduced below) considered
in this article. We assume that our ribbon networks are
embedded into 3-manifolds. A 3-manifold M is thought of
as a temporal fragment of space-time, in the sense that it
represents the spatial coordinates at a fixed time. A network
embedded in M represents a physical system at time t0.

FIG. 4. Example of ribbon graph. The top ribbons and bottom
ribbons have one side connected to the central rectangular
coupon, homeomorphic to a disk.

FIG. 5. Fragment of trivalent ribbon network embedded in a 3-
manifold. The box named “B” corresponds to a braid of the
Bilson-Thompson model.

FIG. 6. A trivalent vertex is represented by a trinion.
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Figure 5 illustrates a portion of a trivalent network
embedded into a 3-manifold corresponding to an arbitrary
braid B of Bilson-Thompson’s model.
We take our “admissible” ribbon networks to be closed

trivalent ribbon graphs, i.e., ribbon networks with no open
edges whose vertices have three incident edges. We allow,
moreover, disconnected annuli, i.e., loops, knotted with the
rest of a ribbon network. In other words, an admissible
ribbon network is a compact (not necessarily connected)
surface with a boundary whose corresponding spine is a
trivalent graph embedded in 3-space. A vertex coupon is
represented as in Fig. 6, and will be called a trinion. We
consider isotopy classes of braided networks, and therefore
do not distinguish between representatives of the same
class. An isotopy class is determined combinatorially by a
slightly modified version of the moves described above. In
fact, the set of moves relating diagrams of isotopic surfaces
with a boundary embedded in a 3-manifold has been
determined in [16] in both the oriented and nonoriented
case. Since Bilson-Thompson’s framed braids are all
oriented, it is reasonable to require that our ribbon graphs,
and hence ribbon networks, are all taken to be oriented. In
the oriented case, Matsuzaki’s moves [16] correspond to
the framed Reidemeister moves, as given, for example, in
[17], Fig. 1.8, slide of trinions over and underneath ribbons,
and Ishii’s IH move in [18]. In fact, the latter move has been
considered in [2] under the name of exchange move. We
remark that using Matsuzaki’s moves, in principle, the
procedure of trading braiding for twists discussed in [19] is
not allowed, as the oriented moves do not include vertex
twists. Roughly speaking, we always look at one side of the
ribbons, without allowing half-twists. This is consistent
with the constructions found in this article, as a conse-
quence of restricting ourselves to oriented surfaces.3 We
will see below that it is useful to derive a relation between
self-crossing twists and the composition of half-twists in
order to simplify computations. We will use this relation as
a computational tool, although no isolated half-twist
appears in our framework.
Lastly, recall that each 3-manifold arises from surgery on

a framed link embedded in the 3-sphere S3 (see, for
instance, [20]). This result, known in the literature as the
Lickorish-Wallace Theorem, allows us to represent a
3-manifold M3 by a framed link L whose S3-surgery
producesM3

L. Using the definition of a braided network, a
framed link L is indeed a (possibly part of) braided
network. We can therefore represent both base 3-space
and braided matter by means of braided networks as the
disjoint union of a framed link L representing M3

L, the

three-dimensional base space, and matter embedded inM3

is encoded in an embedded surface with a nontrivial
number of trinions. In other words, space-time and matter
are considered to be on the same footing.
The set of diagrammatic moves relating two framed links

that correspond to diffeomorphic 3-manifolds were
obtained by Kirby [21], and are referred to as Kirby’s
Calculus. A braided network N , therefore, is presented as
the union N ¼ Γ ∪ L of a trivalent surface with boundary
Γ and a framed link L, where L represents (via the
Lickorish-Wallace Theorem and link surgery) the base
3-space M3

L, and Γ gives the braided matter embedded
in M3

L.

A. Surgery on 3-manifolds

A cobordism is an ordered triple of manifolds [22],
written fX0; Y; X1g, such that ∂Y ¼ X0 ⨆ X1. If the
manifolds are taken to be oriented, one assumes further
that the orientations of Xi and the orientations induced on
them by that of Y coincide.
Recall first the definition of handle attachment, which we

hereby provide. Let X be a manifold of dimension n, and let
ψ be an embedding of ∂Bp × Bn−p in ∂X, where Bk

indicates the standard k-dimensional closed ball. We say
that we attach a p-handle to X when we attach a copy of
Bp × Bn−p along the image ψð∂Bp × Bn−pÞ. The notion of
handle attachment is closely related to that of surgery on a
manifold. Suppose that we have an embedding of the
k-dimensional sphere ϕ∶ Sk → M, into the n-dimensional
manifold M. A framing of ϕðSkÞ is a (continuous) section
of the normal bundle of ϕðSkÞ. An embedded sphere,
along with a framing of its image, determines a map
ψ∶ Sk × Bn−k → M up to isotopy. A k-surgery on ψ
consists of removing ψðSk × Bn−kÞ from M, and replacing
it with a copy of Bkþ1 × Sn−k−1 via the map ψ . It is known
([22,23]) that a k-handle attachment on an (nþ 1)-dimen-
sional manifold with boundary is equivalent to a (k − 1)-
surgery on the n-dimensional boundary. We will, therefore,
sometimes improperly use the two names interchangeably.
Now let X be a manifold and consider the cylinder X × I,

where I ≔ ½0; 1� is the closed unit interval, and let us
indicate by Xi the copy X × fig of X in X × I, with
i ¼ 0, 1. We attach a p-handle to the boundary of X × I
along a copy of ∂Bp × Bn−p ↪ X1. It is a known result that
the manifold so obtained is a cobordism Y between X,
identified with the copy X0 of X × I, and X1, with surgery
along the attaching sphere of the p-handle. We say that
such a cobordism arising from attaching a handle to a given
manifold is an elementary cobordism.
Recall further that given two cobordisms, fX0; Y; X1g

and fX0
0; Y

0; X0
1g, where we have a diffeomorphism

X1 ≅ X0
0 (and compatible orientations in the orientable

setting), we can construct a “composition” cobordism
fX0; Y ∪X1

Y 0; X0
1g, obtained by gluing Y and Y 0 along

3As appeared in Bilson-Thompson’s work, full twists are
compositions of two half-twists, either positive or negative. In
the present context, what is meant by a full twist is a loop with
(positive or negative) self-crossing (also called kink), as in
Matsuzaki’s moves.
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their (diffeomorphic) common boundary for a given choice
of diffeomorphism. This operation of composition of
cobordisms can clearly be repeated. We have the following
traditional result, proof of which can be found in [22],
Chapter 7.
Theorem 1. Let C ¼ fX0; Y; X1g be a cobordism. Then

C can be obtained as:

C ¼ C1 ∪ � � � ∪ Ct;

for elementary cobordisms Ci ¼ fXi
0; Y

i; Xi
1g, i ¼ 1;…; t.

In fact, in our setting we are not interested in all types of
elementary cobordisms and, consequently, general types
of cobordisms. We restrict ourselves to handle attachments
of degree 1 to 4-manifolds with three-dimensional boun-
daries, according to certain specific rules which we now
describe. First, observe that if M is a three-dimensional
manifold, then ∂Bp × B4−p ¼ ∂B1 × B3, which is diffeo-
morphic to two three-dimensional closed balls. Then, the
one-handle attached to M × I following the procedure
described above, is a copy of B1 × B3, i.e., a cylinder
whose section is a three-dimensional ball.

B. Braid dynamics via surgery

Let us consider now a trivalent network N embedded in
a 3-manifold M. An elementary cobordism obtained via
one-handle attachment is said to be admissible if the two
embedded 3-balls ∂B1 × B3 intersect two braids b1, b2,
representing particles as in the Bilson-Thompson model, in
such a way that ∂B1 × ∂B2 intersect b1 and b2 in exactly
two triplets of disks and, moreover, the portions of b1 and
b2 contained inside intð∂B1 × B3Þ are isomorphic to the
ball with a trivial trivalent braid attached to it, i.e., an
embedded trinion. Once we attach a one-handle, the new
manifold M0 so obtained contains two open braids, which
we connect via straight ribbons contained in the attached
handle, in such a way that no new crossing or twisting is
introduced. We therefore obtain a new manifold M0 con-
taining an embedded network N 0 that is identical to N
outside the attached one-handle. By construction, N 0 is
obtained by joining b1 and b2 following Bilson-Thompson
composition rules described in Sec. II above. The mani-
folds M and M0 containing N and N 0, respectively, are
related by an elementary (admissible) cobordism. Of
course, we also allow the opposite procedure, in which
we cut a handle containing a braid, with the condition that
no crossing or twisting is contained in the handle, and
attach back two 3-balls in which we embed two disks along
with (unbraided) ribbons joined to the braids b1 and b2
obtained by cutting the handle. The two processes
described above take the physical interpretation of particle
fusion and decay.
We define the dynamical interaction in a braided network

to be restricted to admissible cobordisms and the merging
of braids induced by them, according to the scheme

described above. As a consequence, a system represented
by an embedding of a network N in M, can evolve only
into a network N 0 which differs from N only for a finite
number of merging/cutting of braids. Observe that the
dynamics inherently present a four-dimensional component
due to the fact that the cobordisms induced by surgery are
four-dimensional. Time evolution is given by 4-cobordisms
and the space-time is naturally thought of as a four-
dimensional manifold, as it is intuitively done.
In this picture, the exchange of bosons happens on one-

handles that are inserted to merge braids. Suppose, for
instance, that the particles represented by braids b1 and b2
undergo a merging induced by an admissible cobordism.
Then we can slide twists of ribbons from one braid to the
other, corresponding to boson exchange of typeW� and Z0.
A photon is exchanged if there is no twisting exchange
between the two braids, since the braid representing a
boson γ is trivial. We allow exchange of braiding between
two particles on the handle connecting them. Dynamics is,
therefore, thought of as a process in which we perform
surgery on the base (spacelike) 3-manifold, exchange
braiding and twisting between braids corresponding to
particles, and perform the opposite surgery again. In
general, depending on what twisting and braiding exchange
is performed during the surgery, we might produce different
particles than those we started with. We assume that, during
the dynamics, the restrictions on twisting and braiding
considered in Bilson-Thompson’s model are still respected.
Our view of braided matter and its interaction through

the surgery of manifolds intrinsically provides a reason for
the stability of fundamental particles. Decay happens
on handles, so that a particle (braid) that is embedded in
the 3-manifoldM does not intersect any handles. Decay for
these particles is automatically ruled out, so that they do not
split into their constituent preons.
Generally speaking, representing dynamics as cobord-

isms in four dimensions implies that the diagrams repre-
senting a braided networkN need to be adapted to take into
account the extra dimension. First, we assume a “sliceness”
condition on braided networks Γ ⊂ N . For trivial cobord-
isms M3

L × I, this means that for each t ∈ I, the surface
Γt ↪ M3

L × t at the instant t is embedded and it is isotopic
to the initial Γ ¼ Γ0. So, along trivial cobordisms we see
that Γ varies isotopically, which is represented diagram-
matically by Matsuzaki’s moves. For the nontrivial cobord-
isms given above, we assume that when attaching handles
the braided surface is isotopic to the initial Γ outside the
handle where braid exchange is happening. This, in
particular, means that the surface is locally not isotopic
to Γ. Dynamics are not encoded via moves that preserve the
underlying topology.
The mid-manifold W corresponds to a boson exchange,

and we can think of it as being virtual, as the handle it lives
on is not embedded in the base 3-manifold, as the particles
given by braided matter. Using the notion of Kirby
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diagrams, it is possible to diagrammatically describe one-
handle surgery and braid interaction.
When no braid interaction happens, i.e., when no handle

is attached to the base 3-manifoldM, then the isotopy class
of the braided network, along with a framed link L up to
Kirby moves, determines the system completely. In fact,
time evolution is described by a trivial cobordism where
each slice M × t is homeomorphic to the base manifold
M, which is determined by the framed link L up to Kirby
moves.
In order to describe braid interaction diagrammatically,

the surgery needs to be described in four dimensions, since
during the handle attachment the slice of space-time is not
homeomorphic to the base manifold anymore. The four-
dimensional cobordism can be described by means of a
Kirby diagram [23]. In a Kirby diagram, a one-handle is
depicted by drawing two disjoint balls that represent the
attaching spheres of the handle. Then a braided network
can be drawn unperturbed far from the one-handle, while
the two braids that merge are not drawn, as they interact on
the one-handle.

VI. ISOTOPY INVARIANTS OF BRAIDED
NETWORKS

The fact that isotopy classes of trivalent braided net-
works are used in the scheme described above implicitly
raises two important issues. The first relates to the
possibility of associating conserved quantities to particles
embedded in braided networks. Second, we ideally want to
consider invariants that distinguish different particles in
Bilson-Thompson’s model, and different configurations of
particle networks. In the previous literature the invariant
link has been used to argue that particles correspond to
different states [2]. This is a link-valued invariant of braided
networks, in the sense that it associates a topological link to
a given braided network. In [8], the author has constructed
certain topologies on braided networks that distinguish
different topological configurations associated to particles
in Bilson-Thompson’s model. We follow a different para-
digm in the present article, which is particularly suitable for
distinguishing different braided network configurations.
We utilize, in fact, algebraic invariants of isotopy classes
of braided networks based on Kauffman-Lins recoupling
theory [4]. We provide a formulation of invariants closely
related to those of [24,25], where we do not preserve
the Reidemeister move I, but rather we have invariance
under the framed Reidemeister move I. In fact, the
invariants given by Mizusawa and Murakami in [25] are
suitable as well in the precise formulation thereby given,
although twists would be neglected and the particles in the
Bilson-Thompson model would be indistinguishable.
Topologically, the isotopy classes of Bilson-Thompson
particles can be distinguished by their combed position.
Since during the evolution with respect to time the braided
network might be substantially deformed (for instance by

one-handle slides), it might not be straightforward to
individuate the particles in a braided network, and having
some global factor in the invariant provides information
that might not be immediately retrieved. One further
subtlety concerns the fact that Matsuzaki’s moves treat
embeddings in the 3-space R3, or its compactification S3.
For different manifolds, which are not simply connected,
some differences arise, such as the fact that there are
different types of unknotted surfaces (depending on which
holes they wrap around), but the local moves remain
unchanged, and the same paradigm can be applied.
Now, we show that classical results of Kauffman and

Lins suit our machinery well. We fix a natural number
n ≥ 1, and let q be a 2nth root of unity.ōWe let each trinion
of a trivalent braided network correspond to a spin network
vertex where the Jones-Wenzl projector is used ([4], Sec. 4,
Definition 3) with the integer triple fa; b; cg which is
q-admissible, i.e., aþ bþ c is even, aþ b − c, bþ c − a,
cþ a − b ≥ 0, and aþ bþ c ≤ 2n − 4. In this perspec-
tive, each ribbon of a ribbon network consists of a edges
for some a, and the crossings are “cabled,” as well. We
consider all q-admissible triples at each vertex, and normal-
ize the vertices by dividing by their θ values divided by the
traces Δi of the projectors at the incident edges. In fact, the
trinions so considered are orthonormal bases, as seen in
[26], of the skein vector space with three boundary arcs. See
also [24], and compare with [25], where this construction
appears as well. Then, using the skein relation for the Jones
polynomial at a root of unity A (related to q via A2 ¼ q as
usual), and the recursive definition of the Jones-Wenzl
projector, we can associate a numerical value KLnðN Þ to
any braided network as follows. Each twisted edge is
written as a power of A times a double half-twist, as
observed before, and each vertex is multiplied by its
conjugate, determined as in [24,26] by taking the mirror
image and multiplying the results of smoothing all cross-
ings and iterating the Jones-Wenzl projectors. For each
fixed choice of admissible triples, this value has been
proven to be a framed isotopy invariant of trivalent graphs
up to powers of the value A (see [4], Sec. 4). We argue that
indeed this is an isotopy invariant of braided networks, by
verifying that Matsuzaki’s moves are preserved. Moreover,
the extra powers of A (or q) that appear in the statement of
the original result of Kauffman and Lins, in our setting,
play the role of counting the twists of the edges. In what
follows, we will use a notational convention to refer to
braids in our computations. These braids will be repre-
sented diagrammatically as in Figs. 1 and 3 They are
described algebraically as vertical compositions of twists
and crossings. A twist will be denoted by the symbol θ,
while a crossing is denoted by R. Horizontal juxtaposition
is indicated as a tensor product, and the straight ribbon (i.e.,
the identity element of the framed braid group) is indicated
by j2n, where 2 refers to the two edges of the ribbon. For
example, with m ¼ 2, the positron on the top left of Fig. 1
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is given by ðj2 ⊗ RÞðR−1 ⊗ j2Þθ⊗3, where the composition
symbol has been omitted, and reading from right to left
corresponds to braids from top to bottom.
Theorem 2. Let N be a trivalent (oriented) braided

network and let n ≥ 1. Then, KLnðN Þ is an isotopy
invariant of N .
Proof.—We need to verify that KLnðN Þ preserves

Matsuzaki’s moves since, as observed above, braided
networks are isotopic if and only if their diagrams are
related by a finite sequence of these moves. Invariance
under framed Reidemeister moves II and III are the
fundamental results of Kauffman in the construction of
the Jones polynomial from the (now called) Kauffman
bracket polynomial. Sliding ribbons above and below
trivalent networks has shown to preserve the value of
KLn as a consequence of framed Reidemeister moves II
and III, once the recursive definition of the Jones-Wenzl
projector is applied at the vertex. In fact, after smoothing,
one obtains that the lines of a ribbon overpass/underpass
closed Jordan curves, or cups and caps. Either way, using
the Reidemeister moves II and III one can slide the ribbon
as required. This is also observed in Sec. 4.3 of [4], and it
works for any fixed admissible coloring. We need to verify
the framed Reidemeister move I (i.e., the cancellation of
kinks). This does not appear, at least in the form needed for
our purposes, explicitly in the work of [4]. We proceed as
follows. First, consider a single strand self-crossing to give
a positive twist. Smoothing at the single crossing we obtain
A · ∘j þ A−1 · j, where ∘ indicates a closed Jordan curve, j
denotes a straight line, and we use a · symbol to
separate scalars from the diagrams they refer to. Using
the renormalization value for ∘ ¼ −A2 − A−2, we find the
value −A3 · j. Applying the same procedure to the self-
crossing that generates negative loops, one obtains A−3 · j.
So, concatenation of positive and negative kinks gives the
straight strand j, as expected. Now, in general, the ribbons
of the braided network N correspond to groups of more
strands, so the positive loops consist of parallel strands that
twist together to give a self-crossing. We show how to
proceed with m ¼ 2 strands, since a simple induction
generalizes this step to all values of m. Using the compu-
tation for the positive and negative twists just obtained, we
see that a single line can be slid above and below a kink,
since both evaluations simply give −A�3 · R, where R�
indicates a crossing of two lines (positive or negative). A
self-crossing with two strands twisted positively, which we
indicate with the symbol θ2, can therefore be rewritten as
the tangle

θ2 ¼ ðd ⊗ jÞðj ⊗ j ⊗ RÞðj ⊗ R ⊗ jÞðb ⊗ j ⊗ jÞðθ1 ⊗ jÞ;
ð5Þ

where b is the birth (i.e., cap) tangle, d is the death (i.e.,
cup) tangle, and θ1 ¼ ðd ⊗ jÞðj ⊗ RÞðb ⊗ jÞ is the

decomposition of the (positive) twist tangle into compo-
sitions of generators of the tangle category. Using
θ ¼ −A3 · j, and by Reidemeister moves II and III, the
previous expression becomes −A6 · R2. Similar computa-
tions show that the negative twist is written as −A−6 · R−2.
The concatenation of positive and negative twists gives the
straight lines k. In the general case for θm, a self-crossing of
m strands, one obtains

θm¼ð−1Þ3mA�3m ·ðjm−2⊗R�Þ���ðR�⊗ jm−2ÞðR�⊗ jm−2Þ
�� �ðjm−2⊗R�Þ; ð6Þ

where þ or − depends on whether we consider positive or
negative twists, respectively, and where the symbol jm
indicates m straight parallel lines. It follows that the
composition of twists for arbitrary m gives jm. In this case,
as before, the argument works for any fixed admissible
coloring. To show invariance under IH move, one considers
that this corresponds to a change of an orthonormal basis to
another one, and therefore consists of applying a unitary
matrix, see [26], and the value ofKLnðN Þ does not change.
In this case we need to let the colorings vary over all the
admissible possibilities.

A. Examples and Computations

The computation of twists in Theorem 2 suggests that the
invariant KLn distinguishes, in general, the particles of the
Bilson-Thompson model, in the sense that two braided
networks that are identical, except for two regions that
enclose one of the particles of Fig. 1 or Fig. 3, generally
have different values of KLn. Of course, in order to give a
specific statement of this sort, regarding what particles are
distinguished, one needs to fix the values of q (i.e., A) and
n. It is not the scope of the present article to fix values for
them, but rather we are contented with showing that the
theory is nontrivial.
We observe that no isotopy invariant of braided networks

is suitable to distinguish Z0 and γ bosons, as they differ by
an application of the framed Reidemeister move I which, by
construction, is preserved by any isotopy invariant of
braided networks.
By means of example we show that the invariant KL4

does change when we replace a boson γ by a bosonWþ, so
that the algebraic setting detects the topological nonequiv-
alence of different bosons. Setting n ¼ 4 means that each
ribbon edge is represented by parallel lines whose total sum
does not exceed 6. Since the two networks are assumed to
be identical outside the region enclosing the two particles
Wþ and γ, we can substantially compute the invariant KL4

of Wþ and γ as depicted in Fig. 3, as the computation of
KL4 would give identical values, when computing the rest
of the braided network. We rewrite the twists of Wþ using
the computation performed in the proof of Theorem 2.
The computations are identical for each coloring, with the
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only difference being that one needs to take into account
the number of strands in the twists. For example, trinions
all colored with two strands (the triple f2; 2; 2g is
q-admissible) gives us an overall factor of A18 and the
braids of Wþ are replaced by R2 ⊗ R2 ⊗ R2, two con-
secutive crossings that braid the edges of each ribbon. We
now perform smoothing of each crossing and utilize the
definition of the Kauffman bracket polynomial. Observe
that performing the two smoothings on a ribbon produces
two diagrams: one with a straight ribbon and an extra factor
of A2, and one with the ribbon removed and a factor of
1 − A−4. The computation is therefore reduced simply to
the product of these factors. We denote by ji the braid with i
straight ribbons, where i ¼ 0, 1, 2, 3. We obtain that the
braid Wþ can be replaced in the braided network by the
sum of terms

Wþ ¼ −A24 · j6 − A18 · ½A2ð1 − A−4Þ þ 2A4ð1 − A−4Þ� · j4
− A18½ð1 − A−4Þ þ 2A2ð1 − A−4Þ2� · j2
− A18ð1 − A−4Þ3 · j0: ð7Þ

By definition, we have that the evaluation with the boson
γ, with the same color, is simply j6, which appears up to a
factor in Eq. (7). When computing KL4 of Wþ, the terms
with lower powers of j disappear, since they contain
turnbacks that are annihilated by the Jones-Wenzl projec-
tors. In general, considering all colorings, KL4 distin-
guishes the two bosons, as previously claimed. We remark
that in the previous computation we have pairs of ribbons or
single ribbons, instead of triples representing framed
braids. In general, this is a middle step of a computation
and, therefore, it is not to be considered to be a physically
meaningful configuration of a braided network.
It has been pointed out, in [2], that in order to introduce a

nontrivial dynamics for braided particles, it is necessary to
consider moves such as that (what we have here called)
braided networks do not constitute noiseless subsystems. It
has been pointed, in [2], that in order to introduce nontrivial
dynamics for braided particles, it is necessary to consider
moves for which braided networks do not constitute
noiseless subsystems. A natural question to ask is whether
performing surgery on manifolds to introduce dynamics
represents an example of such a paradigm. We argue that
this is indeed the case, and that the invariant KLn shows
this. In fact, (very tedious) computations show that there are
cases where the interaction/decay of two particles in a
braided network, obtained via surgery as described above,
produces another braided network whose KLn invariant is
different from the initial one. Applying Theorem 2, it
follows that the initial and final states are not isotopy
equivalent and, therefore, the topology of the system has
been changed during surgery, giving an affirmative answer
to the previous question.

We briefly describe the computations related to electron/
positron annihilation producing one virtual photon. Recall
that, in the setting of the present article, virtual means that
the photon produced in the process lives on the handle that
mediates the interaction. We set n ¼ 4, and consider the
coloring where all edges are assigned value 2 (the remain-
ing colors are computed in the same way). Let us indicate
the value associated to this coloring by KL2

4ðN Þ. Suppose
that eþ and e− are right-handed. First, observe that the
value of two braided networks that are identical outside two
regions containing eþ and e− differ by a multiplication of a
(Laurent) polynomial fðA�1Þ, where A refers to the
positron, and A−1 refers to the electron. Therefore, to
compute KL2

4ðN Þ, for a braided network N containing a
positron and an electron, we can perform the computation
of KL2

4ðe−Þ for the electron, and obtain the contribution of
eþ simply by changing the variable A−1 to its inverse A.
This computation can be simplified as follows. One first
uses the formula obtained in Theorem 2 to rewrite the
twisting of each ribbon as composition of two negative
crossings. This produces an overall factor of −A−18

multiplying the braid corresponding to e−. Now, we obtain
a braid in pure twist form by applying two rotations of
trinions [19]. We remark, here, that we can perform this
operation by means only of framed Reidemeister moves,
without twisting the vertex, or using the IH move, since the
number of twists is even (due to the orientability
assumption discussed above) [16]. No overall multiplying
factor is introduced during this process. We can also see
this by applying Proposition 3 in Sec. 4.2 of [4], since
two opposite rotations would be utilized. In pure twist
form, the right-handed electron e− can be written as
½0;−2;−1� (see table at page 12 of [19]). Now, we use
the computation for the composition of two negative
crossings, R−2 ¼ A−2 · j2 þ ð1 − A4Þ · j0, as obtained in
Theorem 2, to complete the computation. This requires
three iterations to give the result

KL2
4ðe−Þ ¼ −A−24 · KL2

4ðj6Þ þ A−18QðAÞ · KL2
4ðj4Þ

þ A−18PðAÞð1 − A4Þ · KL2
4ðj2Þ; ð8Þ

where

PðAÞ ≔ A−18½2A−2ð1 − A4Þ − ð1 − A4Þð−A2 − A−2Þ�;
QðAÞ ≔ A−22ð1 − A4Þ − PðAÞA−2: ð9Þ

As previously observed, we also have

KL2
4ðeþÞ ¼ −A24 · KL2

4ðj6Þ þ A18QðA−1Þ · KL2
4ðj4Þ

þ A18PðA−1Þð1 − A−4Þ · KL2
4ðj2Þ; ð10Þ

where the polynomials P and Q are defined in Sq. (9). Let
N be a braided network containing e− and eþ and suppose

GRESNIGT, MARCIANÒ, and ZAPPALA PHYS. REV. D 104, 086021 (2021)

086021-10



that, via surgery on the base manifold, N undergoes an
annihilation of e− and eþ on an attached handle (over
which a virtual boson is exchanged). Let us denote by N 0

the braided network obtained after surgery, and by N̂ the
network obtained from N by removing eþ and e− and
replacing them with two particles γ. From the computations
giving Eq. (8) and Eq. (10), we have that

KL2
4ðN Þ ¼ KL2

4ðN̂ Þ
þ KL2

4ðterms containing QðA�Þ; PðA�ÞÞ:
ð11Þ

The extra terms in Eq. (11) correspond to the braids with
two ribbons, or a single ribbon, after the smoothings of e�,
and their coefficients do not generally vanish identically,
but their contribution to KL4 evaluations are trivial, since
they contain turnbacks annihilated by the Jones-Wenzl
projector. Summing the contributions due to the other
q-admissible colorings, we see directly that the surgery
corresponding to annihilation electron/positron changes the
isotopy class of the braided network since, in general, we
have that KL4ðN̂ Þ is different from KL4ðN 0Þ.

VII. POSSIBLE PREGEOMETRIC UNIFICATION
OF MATTER AND GRAVITY

In this final section, we speculate how the emergence of
matter may be naturally related to the emergence of gravity,
out from the Planck realm. Here the quantum fluctuations
of the fields destroy the common notion of the space-time
arena, and call for a totally new theoretical perspective.
While considering matter to be constituted by braids of
pregeometric fields, one assumes automatically a frame-
work that is the same as that adopted in emergent gravity
scenarios. Thus gravity and matter can be finally treated on
the same footing. At the same time, describing matter
requires the possibility to account for particle interaction.
Letting features of matter remain preserved by the (pre-
geometric) dynamics prevents us from instantiating a
physical description of particle interaction. A nontrivial
dynamics can be rather introduced, considering moves for
which braids, now representing particles, do not constitute
noiseless subsystems, and the underlying topology is
therefore not preserved.
Several concepts percolate into the definition of par-

ticles. In general, particles are defined asymptotically, on
Cauchy-surfaces, within the boundary formalism.
Resorting to cobordism, particles, as any states, must be
represented on the boundary of the 2-complexes associated
to the space-time bulk. Within this picture, braids repre-
senting real particles are localized on the boundaries.
Selection rules apply to the big picture, requiring a trans-
lation in terms of topological invariants. The preservation
of the associated quantum numbers then instantiates the

rules governing the dynamical processes that are allowed
within the pregeometric framework. The example provided
by the electron-positron annihilation elucidates this concept
concerning the preservation of the quantum lepton number.
Matter and gravity arising from pregeometry calls for a

profound rethinking and a deeper understanding of the
emergence of structures and forces, since particles are now
thought of in terms of their complexity, no more depicted
without extension, and gravity arises due to interacting
matter, its source and reason of being. A phase transition
can be naturally advocated entailing the emergence of
braiding in the pregeometry. Away this phase transition can
be realized is by accounting for a thermal flux that, while
bringing the pregeometric entities to equilibrium, restore at
lower energy scales the quantum constraints that define
gravity, and through the scalar constraint automatically
instantiate braided matter interaction.
On the one hand, it can be argued that the handle

prescription we have introduced in this paper is a nonlocal
instantiation of the scalar Hamiltonian constraint, when
irreducible representations of the holonomies assigned to
the links of the 1-complexes are quantum-group-like. Then
ribbons and fat graphs are taken into account, and the scalar
Hamiltonian constraint may generate the handle attach-
ment. On the other side, it is possible to think of the very
same emergence of braided matter in terms of a quantum
dynamics that breaks diffeoinvariance, out of the equilib-
rium, while the dynamical symmetry breaking is taking
place. Technically, one might account in different ways for
the evolution of holonomies and Wilson lines to encode
braid nucleation, including dual techniques borrowed from
either string theories or stochastic quantum field theory
methods.
The emergence of gravity seems therefore to be attained

differently than for braids. The latter are rather inserted
through the action of knotting and braiding operators,
which still preserve triangulation invariance. Gravity, on
the other hand, arises as the byproduct of the interaction of
particles. In other words, it only materializes when we
consider particle interaction, which can only be made
possible by handle attachment. On the other hand, handle
attachment is instantiated at the quantum level by the action
of the Hamiltonian constraint, so it traces back to the
consideration of the full constrained system that realizes the
symmetries and the dynamics of gravity. This seems to be
on the same line as the considerations made by Bilson-
Thompson, Markopoulou, and Smolin in [2], at the end of
the article. Matter remains a gravitational noiseless sub-
system, as long as particle interaction, i.e., handle attach-
ment, is considered.
According to this picture, the emergence of matter is then

ascribed to the formation of braids, into portions of the
braided network. As reminded by Rovelli [27], spin
networks are not usually considered to be embedded in
3-manifolds, but rather are intended as abstract graphs, on
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which knotting and braiding act without the need of any
physical notion. Within the Bilson-Thompson model, the
only available physical explanation is actually the one that
provides the base to the concept of particles, and hence
allows for the emergence of matter. The very same
formation of braided matter, which requires the use of
quantum groups, also naturally instantiates an infrared
regulator for quantum gravity. To unveil this phenomenon,
it is essential to remind that the deformation parameter,
when it is a root of unity, automatically limits to a
maximum weight the irreducible representations of the
quantum groups involved, thus preventing bubble
divergences.
The deformation parameter of the quantum groups

adopted in three-dimensional and four-dimensional quan-
tum gravity has been hitherto conjectured to be connected
to the cosmological constant. But the presence of a bare
cosmological constant is inessential to the physics, since
several quantum mechanisms can be advocated to get rid of
its classical value. At the same time, possible explanations
involve also BCS condensate of fermionic matter, and a
wealth of other alternatives that encode bosonic conden-
sates and cosmological plasma physics. Nonetheless, the
perspective we are pushing forward here is that the
regulator is rather justified by the emergence of matter,
described by the quantum groups. In other words, matter is
the natural regulator of gravity, and this becomes evident
due to the quantum groups representations that are required
by the braided matter.

VIII. DISCUSSION

How matter is to be incorporated into a viable theory of
quantum gravity remains an important open question.
One interesting proposal, pursued by several authors, is
to embed the topological toy model of Bilson-Thompson,
in which leptons and quarks are represented as simple
braids, within a class of background independent theories
of quantum gravity based on spin networks (or their
generalization). One major obstacle in the development
of this novel framework has been the lack of any suitable
dynamics reminiscent of the particle interactions observed
in the laboratory. It turns out that the Pachner moves which
generate the dynamics on spin networks do not give rise to
the dynamics governing particle interactions. The main
theoretical result of this paper has been to demonstrate, by
supplementing the local Pachner moves with nonlocal
graph-changing one-handle attachments, that it is possible

to introduce suitable particle interactions topologically via
the braid product, while preserving the original simple
classification of fermions proposed by Bilson-Thompson.
While our result develops an appealing theoretical

framework, we stress that at this early stage we do not
have a satisfactory or complete dynamical theory. It is not
clear at this point in time how specific amplitudes for
particle processes may be calculated within this purely
topological construction, nor how the Higgs boson, or
Pontecorvo, Maki, Nakagawa and Sakata (PMNS) and
Cabibbo, Kobayashi and Maskawa (CKM) matrices may
arise. Ultimately, any convincing theory of matter and
quantum gravity must address these important questions,
and make actual predictions that can be tested experimen-
tally. Despite these current shortcomings, we believe this
approach to pregeometrically unifying matter with gravity
is worth investigating further, and only a more complete
study of this framework can establish its viability.
Among the points to bear in mind for forthcoming

investigations, the issue of implementing a covariant
representation that encodes quantum fluctuations, without
requesting the splitting among space and time, is one of the
most urgent. A possible way to overcome this problem
could be considering a braided surface that is embedded in
a four-dimensional space. Deepening the link among
braided matter and the emergence of an infrared regulator
for gravity is as crucial as the previous point to this line of
research, and will deserve detailed forthcoming studies.
Finally, demonstrating that the handle attachment hereby
introduced instantiates a nonlocal realization of the scalar
Hamiltonian constraint, would be a major corroboration of
the idea that the emergence of matter and gravity are
intrinsically related.
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