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We explore conformal primary wave functions for all half integer spins up to the graviton. Half steps
are related by supersymmetry, integer steps by the classical double copy. The main results are as follows:
we 1) introduce a convenient spin frame and null tetrad to organize all radiative modes of varying spin;
2) identify the massless spin-3

2
conformal primary wave function as well as the conformally soft Goldstone

mode corresponding to large supersymmetry transformations; 3) indicate how to express a conformal
primary of arbitrary spin in terms of differential operators acting on a scalar primary; 4) demonstrate
that conformal primary metrics satisfy the double copy in a variety of forms—operator, Weyl, and Kerr-
Schild—and are exact, albeit complex, solutions to the fully nonlinear Einstein equations of Petrov type N;
5) propose a novel generalization of conformal primary wave functions; and 6) show that this
generalization includes a large class of physically interesting metrics corresponding to ultra-boosted
black holes, shockwaves and more.
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I. INTRODUCTION

Scattering in four-dimensional asymptotically flat space-
times obeys an infinite-dimensional symmetry algebra that
matches the structure of a two-dimensional conformal field
theory (CFT) living on the celestial sphere. In practice,
mapping S-matrix elements to celestial CFT correlators is
an integral transform of on-shell momenta. In principle, it
presents a new paradigm for identifying and organizing
universal features of scattering.
The goal of the Celestial Holography program is to push

beyond kinematics and gain insight into quantum gravity in
the bulk asymptotically flat spacetime from the celestial
boundary theory. Over the past few years, important strides
have been made towards building a holographic dictionary.
Beyond matching soft memory modes to currents [1],
and boost eigenstates to local operators [2–4], recent
advances are beginning to translate known universal
features of amplitudes into this new representation. Soft
theorems map to factorization theorems at special con-
formal dimensions [5–10], collinear limits are captured by
operator product expansions [10–15], double copy relations
in amplitudes persist [16], and the UV/IR mixing intrinsic
to this map has offered more insight into analyticity con-
straints and a new perspective on renormalization [17,18].

The goal of this paper is to expand the existing frame-
work surrounding conformal primary states [4,19,20] and
connect it to current progress being made in adjacent
subfields so that we will, ultimately, be prepared to apply
their tools to our problems. We take inspiration from recent
successes connecting classical observables to on-shell
quantum scattering amplitudes [21,22] as well as the so-
called double copy relation between gravity and gauge
theory amplitudes [23–25] and its classical counterpart
[26–30]. In particular, we will exploit the machinery of the
classical double copy—of Weyl and Kerr-Schild type—
between solutions in gauge theory and gravity.
Our results are organized around the theme of ‘shifting

spin’, which takes on a double meaning. On the one hand,
we will be examining how to step between radiative modes
of different spin. On the other, we will be considering wave
functions with conformal spins that differ from the bulk
helicity of the corresponding field. We demonstrate that
within the existing formalism for conformal primary wave
functions we can construct exact solutions which may serve
as backgrounds on top of which to perform perturbative
scattering. We then extend this formalism to encompass a
larger class of interesting bulk states. The objective is to set
up a framework that will help us explore bulk physics in a
manner that may be overlooked if we rely solely on a
Mellin transform of perturbative amplitudes.
This paper is organized as follows. In Sec. II, we set up a

convenient null tetrad and spin frame to describe conformal
primary wave functions. In Sec. III, we use this to reorganize
the presentation of conformal primaries. Starting from a
review of each Mellin representative of spin s ∈ 1

2
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0 ≤ s ≤ 2 in Sec. III A, we then use our spin frame to
promote these to conformal primaries in Sec. III B. This
allows us to quickly write down a series of interesting new
results; identifying the full spin-3

2
conformal primary wave

function, the conformal Goldstone mode for its large-gauge
symmetry corresponding to local supersymmetry, the generic
all-spins expansion of conformal primary radiative modes,
and charge operators for these modes (prerenormalization
counterterms are examined in [20,31]).
Section IVexplains how one can jump between different

spins using differential operators. It begins, in Sec. IVA,
with a review of the supersymmetry action on Mellin-
transformed amplitudes introduced by [32], which we
generalize in a manner that allows us to shift the spin of
a conformal primary wave function by arbitrary half-integer
steps. We then show how one can also jump by integer spin
with an operator double copy for curvatures in Sec. IV B.
One of the focuses of this paper is to consider exact vs
perturbative backgrounds. While the gauge equivalence of
perturbative Mellin modes and conformal primary modes
would allow the use of amplitudes constructed from either,
Sec. IV C shows how this gauge equivalence persists for the
finite perturbations. This will make it easier to extract
scattering on finite conformal primary backgrounds from
amplitudes methods.
In Sec. V we use our spin frame to demonstrate that spin-

0, spin-1, and spin-2 conformal primary wave functions
obey the Weyl double copy relations [27]. This makes
manifest the (anti) self duality of these solutions. In Sec. VI
we show that the conformal primary solutions satisfy the
Kerr-Schild double copy. This implies that spin-2 con-
formal primary wave functions are fully nonlinear solutions
to the Einstein equations. We examine the Kerr-Schild
doubly copy for conformal primary wave functions, for
their shadow transforms, and for conformally soft modes in
Secs. VI A–VI C, respectively, both verifying that these
modes become pure gauge when expected and identifying
their Petrov type.
At this point we have a set of nontrivial background

configurations with definite conformal weight and spin on
which to consider perturbative scattering. We find that we

can expand this set to even more useful backgrounds if
we relax our definition of conformal primary wave func-
tions. In Sec. VII we generalize the construction of [3] to
include nonradiative wave functions of definite conformal
weight. We perform a classification for each integer spin in
Secs. VII A–VII C. Finally, we apply this classification to a
series of interesting backgrounds in Sec. VII D. These
include boosted black holes, shock-wave configurations,
and other vacuum to vacuum transitions that would other-
wise be excluded from a conformal primary analysis.
Celebrated as exact solutions when they were discovered
in the 1970s and 1980s [33–35], these metrics have resur-
faced recently in the amplitudes literature. Identifying these
metrics as generalized conformal primaries opens up new
opportunities to apply these same amplitudes methods to
explore nonperturbative bulk physics in the celestial CFT.

II. NULL TETRAD AND SPIN FRAME

In this section we set up a spin frame and null tetrad for
the Minkowski metric that will be convenient for our
discussion of conformal primary wave functions. We use
the spinor conventions of [36] since they are also in the
mostly-plus signature convention. In theCelestial Conformal
Field Theory dictionary [2–4], 2D CFT operators at a point
ðw; w̄Þ correspond to 4D bulk wave functions defined in
terms of a reference direction

qμ ¼ ð1þ ww̄; wþ w̄; iðw̄ − wÞ; 1 − ww̄Þ: ð2:1Þ
Under an SLð2;CÞ Möbius transformation of the celestial
sphere

w ↦
awþ b
cwþ d

; w̄ ↦
ā w̄þb̄

c̄ w̄þd̄
; ð2:2Þ

with ad − bc ¼ ā d̄−b̄ c̄ ¼ 1, this reference direction trans-
forms as

qμ ↦ jcwþ dj−2Λμ
νqν; ð2:3Þ

where Λμ
ν is the corresponding vector representation of

SOð1; 3Þ ≅ SLð2;CÞ (see e.g., [37,38])

Λμ
ν ¼

1

2

0BBB@
aāþ bb̄þ cc̄þ dd̄ ab̄þ ābþ c̄dþ cd̄ iðab̄ − ābþ cd̄ − c̄dÞ −aāþ bb̄ − cc̄þ dd̄

ac̄þ ācþ bd̄þ b̄d ad̄þ ādþ bc̄þ b̄c iðad̄ − ād − bc̄þ b̄cÞ −ac̄ − ācþ bd̄þ b̄d

ið−ac̄þ āc − bd̄þ db̄Þ ið−ad̄þ ād − bc̄þ b̄cÞ ad̄þ ād − bc̄ − b̄c iðac̄ − āc − bd̄þ b̄d

−aā − bb̄þ cc̄þ dd̄ −ab̄ − ābþ cd̄þ c̄d ið−ab̄þ ābþ cd̄ − c̄dÞ aā − bb̄ − cc̄þ dd̄

1CCCA: ð2:4Þ

From this reference direction, one can naturally construct
two polarization vectors

ϵμþ ¼ 1ffiffiffi
2

p ∂wqμ; ϵμ− ¼ 1ffiffiffi
2

p ∂w̄qμ; ð2:5Þ

which obey the following inner products

q · ϵJ ¼ 0; q2 ¼ ϵ2J ¼ 0; ϵJ · ϵ−J ¼ 1; ð2:6Þ

for J ¼ �1.
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We see that we are one null vector shy of a tetrad
for Minkowski space. However, we have one more four-
vector at our disposal for a spacetime wave function, Xμ.
Let us now proceed to construct a tetrad in terms of
fXμ; qμ; ϵμþ; ϵμ−g, which form a basis for the tangent space
for generic Xμ. We would also like to demand that vectors
in our tetrad transform covariantly under SLð2;CÞ. A tetrad
that fits these criteria is given by

lμ ¼ qμ

−q · X
; nμ ¼ Xμ þ X2

2
lμ;

mμ ¼ ϵμþ þ ðϵþ · XÞlμ; m̄μ ¼ ϵμ− þ ðϵ− · XÞlμ: ð2:7Þ
One can check that our tetrad obeys the standard normali-
zation conditions

l · n ¼ −1; m · m̄ ¼ 1; l2 ¼ n2 ¼ m2 ¼ m̄2 ¼ 0;

l ·m ¼ n ·m ¼ 0; m̄μ ¼ ðmμÞ�; ð2:8Þ
and transforms covariantly under SLð2;CÞ as follows1

lμ ↦ Λμ
νlν; nμ ↦ Λμ

νnν; mμ ↦
cwþ d
c̄ w̄þd̄

Λμ
νmν;

m̄μ ↦
c̄ w̄þd̄
cwþ d

Λμ
νm̄ν: ð2:9Þ

An operator or wave function is said to have SLð2;CÞ
conformal dimension Δ and spin J if

OΔ;J

�
Λμ

νXν;
awþ b
cwþ d

;
ā w̄þb̄
c̄ w̄þd̄

�
¼ ðcwþ dÞΔþJðc̄ w̄þd̄ÞΔ−JDðΛÞOΔ;JðXμ;w; w̄Þ;

ð2:10Þ

where DðΛÞ is the representation of the corresponding
Lorentz transformation appropriate for the ð3þ 1ÞD indices
of the operator O. We thus see that lμ and nμ are real
four-vectors with SLð2;CÞ conformal weights ðh; h̄Þ≡
1
2
ðΔþ J;Δ − JÞ ¼ ð0; 0Þ, whereas mμ and m̄μ are complex

four-vectors with conformal dimension Δ ¼ 0 and spin
J ¼ �1, respectively.
The flat metric can bewritten in terms of our tetrad (2.7) as

ημν ¼ −lμnν − nμlν þmμm̄ν þ m̄μmν: ð2:11Þ

We can further decompose the elements of this tetrad into a
spin frame. We want

la _b ¼ oaō _b; na _b ¼ ιa ῑ _b; ma _b ¼ oa ῑ _b; m̄a _b ¼ ιaō _b;

ð2:12Þ
where for a four-vector vμ we go between spinor and vector
indices via [36]

va _b ¼ vμðσμÞa _b; vμ ¼ −
1

2
trðvσ̄μÞ; ð2:13Þ

where

ðσμÞa _b ¼ ð1; σiÞa _b; ðσ̄μÞ _ab ¼ ð1;−σiÞ _ab: ð2:14Þ

Here, the undotted (dotted) indices refer to left- (right-)
handed SLð2;CÞ spinors and these indices are raised and
lowered with

εab ¼ ε _a _b ¼ −εab ¼ −ε _a _b ¼
�

0 1

−1 0

�
: ð2:15Þ

We then see that the decomposition (2.12) holds for

oa ¼
ffiffiffiffiffiffiffiffiffi
2

q ·X

s �
w̄

−1

�
; ιa ¼

ffiffiffiffiffiffiffiffiffi
1

q ·X

s �
t− z−wðx− iyÞ
−x− iyþwðtþ zÞ

�
;

ð2:16Þ
up to an overall phase ambiguity which we fix by setting
ō _a ¼ ðoaÞ� and ῑ _a ¼ ðιaÞ� in the region where q · X > 0 and
analytically continue from there. The spinor oa has a simple
relation to the spinor helicity variables

jq�a ¼
ffiffiffiffiffiffiffiffiffiffi
q · X

p
oa; hqj _a ¼

ffiffiffiffiffiffiffiffiffiffi
q · X

p
ō _a; qa _a ¼ −jq�ahqj _a:

ð2:17Þ
We also have

oaιb − ιaob ¼
ffiffiffi
2

p
εab; ð2:18Þ

as well as the simple linear relation2

1The combination of ϵμþ and qμ appearing is such that mμ not
only transforms covariantly under Lorentz transformations, but
also is invariant under shifts ϵþ ↦ ϵþ þ αq, with the same being
true for ϵþ ↔ ϵ− and m ↔ m̄. Allowing spacetime depen-
dence and demanding conformal covariance gives rise to a
natural spacetime-dependent polarization vector independent of
the standard momentum space gauge ambiguity. Furthermore, the
normalization condition (2.8) prevents us from shifting the
weights of m and m̄.

2We are essentially using conformal covariance to pick a
reference spinor. From an amplitudes perspective, this would
correspond to using a differential operator in place of an arbitrary
reference spinor, replacing Xμ with i∂kμ for each external leg, or
an appropriate Mellin basis analog. The linear relationship
between ι and ō is reminiscent of the incidence relation defining
the embedding of Minkowski space into twistor space Zα ¼
ðωA; πA0 Þ as the locus (2.19), ωA ¼ iXAA0

πA0 so long as the
contour integral in the Penrose transform localizes to πA0 ↦ ō _a,
ωA ↦ i

ffiffiffi
2

p
ιa. It would be interesting to connect our classical

celestial double copy, in particular Sec. V, to the recent results of
[30] showing that the Weyl double copy can be derived from
twistor theory. We leave fleshing out these details to future work.
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ιa ¼
1ffiffiffi
2

p Xa _bō
_b; ð2:19Þ

where

Xa _b ¼
�−tþ z x − iy

xþ iy −t − z

�
; ð2:20Þ

is the matrix representation of the spacetime position vector.
We close this preliminary section by examining the

SLð2;CÞ covariance of our spinors foa; ιag. Because of
(2.19) and the covariance properties of the Infeld-van der
Waerden symbols (2.14) and the antisymmetric tensor
(2.15), we need only perform an explicit transformation
of oa. Under a Möbius transformation

oa ↦ ðcwþ dÞ12ðc̄ w̄þd̄Þ−1
2ðMoÞa; ð2:21Þ

where

M ¼
�

ā −b̄
−c̄ d̄

�
; ð2:22Þ

is an element of SLð2;CÞ. Meanwhile, from the intertwining
relation of the Infeld-van derWaerden symbols (2.14) we get

Xa _b ↦ ðMXM†Þa _b ¼ Λμ
νXνημρðσρÞa _b: ð2:23Þ

We thus have

ιa ↦ ðcwþ dÞ−1
2ðc̄ w̄þd̄Þ12ðMιÞa; ð2:24Þ

so that

Δ J

oa 0 1
2

ō _a 0 − 1
2

ιa 0 − 1
2

ῑ _a 0 1
2

ð2:25Þ

from which we see that the tensor products (2.12) reproduce
the correct conformal dimensions for the members of our
tetrad.

III. FROM PLANE WAVES TO
CONFORMAL PRIMARIES

This section applies the above framework to reorganize
wave functions relevant to celestial CFT correlators.
Scattering amplitudes are usually calculated with external
states in the plane wave basis, making translation symmetry
manifest. The fact that the 4DLorentz groupSLð2;CÞ acts as
the 2D global conformal group on the celestial sphere at null
infinity implies the existence of a conformal basis of
asymptotic states which makes conformal covariance mani-
fest. For massless3 particles, this change of basis to so-called
celestial amplitudes is achieved by a Mellin transform in the
energy of the external states [3,4,41,42]. As shown in [32],
the Mellin representatives of different spins are related by
supersymmetry. It is also straightforward to show that the
integer spin examples are related by the classical double
copy.We review thesemasslessMellinwave functionswhich
were cataloged for integer spins 0, 1, and2 in [3], and for half-
integer spins 1

2
and 3

2
in [32] in Sec. III A.

TheMellin representatives for spins f1; 3
2
; 2g fail to satisfy

(2.10); but judiciously adding pure gauge terms yields
conformal primary wave functions which do transform
according to (2.10). Massless spin-1 and spin-2 conformal
primary wave functions were introduced in [3]. We believe
the explicit form of the massless spin-3

2
conformal primary

wave function we propose in Sec. III B is new. Our
presentation of conformal primary wave functions in terms
of the null tetrad and its spin frame reveals that these wave
functions satisfy double copy relations of theWeyl and Kerr-
Schild types which we discuss in Secs. V and VI.

A. Mellin representatives

Recall the linearized equations of motion for massless
particles of 4D spin s ¼ jJj in vacuum of relevance to any
supergravity theory,

s ¼ 0 Klein-Gordon □ϕ ¼ 0;

s ¼ 1
2

Dirac γμ∂μψ ¼ 0;

s ¼ 1 Maxwell □Aμ − ∂μ∂νAν ¼ 0;

s ¼ 3
2

Rarita-Schwinger γμνρ∂νχρ ¼ 0;

s ¼ 2 linearized Einstein ∂σ∂νhσμ þ ∂σ∂μhσν − ∂μ∂νh −□hμν ¼ 0;

ð3:1Þ

3Massive bosonic wave functions were constructed for the scalar in [2] and generalized to arbitrary integer spin in [39]. Massive
fermionic wave functions were constructed in [38], and generalized to arbitrary dimensions for spin-1

2
in [40].
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with the linearized metric perturbation given in gμν ¼
ημν þ hμν. Massless particles are labeled by null momenta
which, in four dimensions, are described by three param-
eters: a point on a two-sphere, a scaling given by its energy,
and kμ ¼ ωqμðw; w̄Þ. The standard procedure for finding
scattering solutions to these equations is to start from the
scalar solution to the massless Klein-Gordon equation
given by the plane wave e�ik·X with k2 ¼ 0 and find the
appropriate polarization spinor/tensor to satisfy (3.1). The
authors of [32] showed that the standard Mellin map

M∶ Plane Wave Solution ↦ Mellin Representative

ð3:2Þ
where

Mð·Þ ¼
Z

∞

0

dωωΔ−1ð·Þ; ð3:3Þ

works for each spin in the supermultiplet, taking the plane
wave solutions of (3.1) to representatives of the gauge
equivalence class of conformal primary wave functions of
conformal dimension Δ, and spin J equal to the helicity of
the preimage. Starting from the scalar case

ϕΔ;�ðX;w; w̄Þ ¼
Z

∞

0

dωωΔ−1e�iωq·X−εq0ω ¼ ð∓ iÞΔΓðΔÞ
ð−q · X�ÞΔ

;

ð3:4Þ

where Xμ
� ¼ Xμ � iεf−1; 0; 0; 0g is used as a regulator,4

we can translate the results from [32] to the spin frame
language we introduced above. We arrive at the mapping
summarized in Table I. Note that we have implicitly
projected the spinor equations in (3.1) onto irreducible
Weyl representation solutions, and made use of the pro-
perties j − q�a ¼ þjq� and h−qj _a ¼ −hqj _a. We have also
reinstated the �iε regulators for the spinors oa and o _a.
While the polarization vectors depend solely on qμðw; w̄Þ,
the spinors and the scalar wave function depend on both Xμ

and qμðw; w̄Þ.

B. Conformal primaries in the supermultiplet

From the null tetrad and the spin frame introduced in
Sec. II, it is now straightforward to see how to promote the
Mellin transformed plane wave solutions listed in Table I
for the various spins to wave functions that solve the 4D
linearized equations of motion (3.1) and transform as 2D
conformal primaries (2.10); substitute mμ for any appear-
ance of ϵμþ, and m̄μ for any ϵμ−. For convenience and to
match onto the normalization of the conformal primary
wave functions in [3], we will strip off the prefactor ð∓
iÞΔΓðΔÞ in (3.4) and thus define

φΔ;� ¼ 1

ð−q · X�ÞΔ
ð3:5Þ

as the spin-0 conformal primary wave function. Indeed, it
transforms as a 2D scalar in (2.10). In addition, we will add
a compensating phase to our definition of the negative
helicity fermionic wave functions to remove the corre-
sponding � signs in Table I.
Spin-1 and spin-2 conformal primary wave functions

were defined in [3] as solutions to the Maxwell and
linearized Einstein equations in (3.1), transforming accord-
ing to (2.10) for J ¼ �1 and J ¼ �2, respectively, and
were shown to obey the harmonic and radial gauge
conditions. The positive helicity wave functions are given
by

AΔ;�
μ;J¼þ1 ¼ m�

μ φ
Δ;�; hΔ;�μν;J¼þ2 ¼ m�

μ m�
ν φ

Δ;�; ð3:6Þ

while the negative helicity ones are

AΔ;�
μ;J¼−1 ¼ m̄�

μ φ
Δ;�; hΔ;�μν;J¼−2 ¼ m̄�

μ m̄�
ν φ

Δ;�: ð3:7Þ

We define spin-1
2
and spin-3

2
conformal primary wave

functions as follows: matching the format of [3] for the case
d ¼ 2 and treating left- and right-handed fermionic wave
functions separately to emphasize the distinction between
ð3þ 1ÞD helicity and 2D spin. For ease of notation, we will
suppress spinor indices but leave vector indices explicit, and
use bars to denote right-handed spinors. In the Weyl basis

γμ ¼
�

0 σμ

σ̄μ 0

�
; ð3:8Þ

TABLE I. Mellin representatives of spins s ¼ f0; 1
2
; 1; 3

2
; 2g.

Plane wave solutions Mellin representatives

s ¼ 0 e�iωq·X ϕΔ;�

s ¼ 1
2

ffiffiffiffi
ω

p jq�ae�iωq·X, � ffiffiffiffi
ω

p hqj _ae�iωq·X o�a ϕΔ;�, �ō�_a ϕ
Δ;�

s ¼ 1 ϵμþe�iωq·X, ϵμ−e�iωq·X ϵμþϕΔ;�, ϵμ−ϕΔ;�

s ¼ 3
2

ffiffiffiffi
ω

p jq�aϵμþe�iωq·X, � ffiffiffiffi
ω

p hqj _aϵμ−e�iωq·X o�a ϵ
μ
þϕΔ;�, �ō�_a ϵ

μ
−ϕ

Δ;�

s ¼ 2 ϵμþϵνþe�iωq·X , ϵμ−ϵν−e�iωq·X ϵμþϵνþϕΔ;�, ϵμ−ϵν−ϕΔ;�

4In the spinor definitions from Sec. II, we take X ↦ X�
everywhere to regulate consistently, with the caveat that the
spinors oa and ιa are no longer related by complex conjugation to
ō _a and ῑ _a, respectively, for finite ε.
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which we will use to rewrite the spin-1
2
and 3

2
equations from

(3.1) for each chirality.
Definition.—An outgoing/incoming ðþ=−Þ, left(right)-

handed massless spin-1
2
conformal primary Weyl spinor

ψΔ;�
J (ψ̄Δ;�

J ) on R1;3:
a. Is a solution to the Weyl equation

σ̄μ∂μψ
Δ;�
J ¼ 0; σμ∂μψ̄

Δ;�
J ¼ 0: ð3:9Þ

b. Transforms as a (3þ 1)-dimensional spinor as well
as a two-dimensional spin-1

2
conformal primary of

conformal weight Δ and spin J

ψΔ;�
J

�
Λμ

νXν;
awþ b
cwþ d

;
ā w̄þb̄

c̄ w̄þd̄

�
¼ ðcwþ dÞΔþJðc̄ w̄þd̄ÞΔ−JMψΔ;�

J ðXμ;w; w̄Þ;

ψ̄Δ;�
J

�
Λμ

νXν;
awþ b
cwþ d

;
ā w̄þb̄

c̄ w̄þd̄

�
¼ ðcwþ dÞΔþJðc̄ w̄þd̄ÞΔ−JM̄ψ̄Δ;�

J ðXμ;w; w̄Þ;
ð3:10Þ

where M is the ð1
2
; 0Þ representation of the Lorentz

algebra corresponding to the Möbius transformation
(2.2), given by (2.22), and M̄ ¼ ðM−1Þ† is the ð0; 1

2
Þ

representation.
A complete scattering basis is given by Δ ¼ 1þ iλ. For
these wave functions, J ¼ � 1

2
.

Definition.—An outgoing/incoming ðþ=−Þ, left(right)-
handed massless spin-3

2
conformal primary Weyl spinor

χΔ;�μ;J (χ̄Δ;�μ;J ) on R1;3:
a. Is a solution to the chiral projection of the Rarita-

Schwinger equation

εμνρκσ̄ν∂ρχ
Δ;�
κ;J ¼ 0; εμνρκσν∂ρχ̄

Δ;�
κ;J ¼ 0: ð3:11Þ

b. Obeys the harmonic and radial gauge conditions

∂μχΔ;�μ;J ¼ 0; XμχΔ;�μ;J ¼ 0; ð3:12Þ
and similar expressions for the barred versions.

c. Transforms as a (3þ 1)-dimensional spinor as well
as a two-dimensional spin-3

2
conformal primary of

conformal weight Δ and spin J

χΔ;�μ;J

�
Λμ

νXν;
awþb
cwþd

;
ā w̄þb̄
c̄ w̄þd̄

�
¼ ðcwþdÞΔþJðc̄ w̄þd̄ÞΔ−JΛμ

νMχΔ;�ν;J ðXμ;w;w̄Þ;

χ̄Δ;�μ;J

�
Λμ

νXν;
awþb
cwþd

;
ā w̄þb̄
c̄ w̄þd̄

�
¼ ðcwþdÞΔþJðc̄ w̄þd̄ÞΔ−JΛμ

νM̄χ̄Δ;�ν;J ðXμ;w;w̄Þ;
ð3:13Þ

where M is the ð1
2
; 0Þ representation of the Lorentz

algebra corresponding to the Möbius transformation
(2.2), given by (2.22), and Λ is the usual vector
representation.

A complete scattering basis is given by Δ ¼ 1þ iλ. For
these wave functions J ¼ � 3

2
.

The positive helicity solutions to (3.9) and (3.11) are
given by the left-handed spinors

ψΔ;�
J¼þ1

2

¼ o�φΔ;�; χΔ;�
μ;J¼þ3

2

¼ o�m�
μ φ

Δ;�; ð3:14Þ

while the negative helicity solutions are given by the right-
handed spinors

ψ̄Δ;�
J¼−1

2

¼ ō�φΔ;�; χ̄Δ;�
μ;J¼−3

2

¼ ō�m̄�
μ φ

Δ;�: ð3:15Þ

This completes the list of spin s ¼ f0; 1
2
; 1; 3

2
; 2g conformal

primary wave functions whose 4D helicity �s is identified
with the 2D spin J. Table II summarizes the positive
helicity conformal primary wave functions in spinor
notation. The negative helicity wave functions are obtained
by the replacements o ↦ ō and ῑ ↦ ι. Because the value of
J uniquely labels the kind of particle, it is convenient to
introduce the compact notation ΦΔ;JðX;w; w̄Þ for 4D
solutions to (3.1) which transform as 2D spin-J conformal
primaries (2.10) with conformal dimension Δ ¼ 1þ iλ.
Unless necessary we omit the �iε regulator henceforth.
Besides the basis of conformal primary wave functions

corresponding to ΦΔ;J, we can construct from their shadow
transform a basis of conformal shadow primaries

Φ̃Δ;J ¼ gΦ2−Δ;−J; ð3:16Þ

whose conformal dimensions are flipped and shifted by
two, while their 2D spins are flipped. We note that while
each of the nonshadow modes ΦΔ;J has J ¼ l, where J is
the 2D spin and l ¼ �s is the ð3þ 1ÞD helicity, the
shadow modes Φ̃Δ;J have J ¼ −l. The shadow wave
functions of spin-0, spin-1, and spin-2 were constructed
in [3], and are given by

TABLE II. Positive helicity conformal primary wave functions
in spinor notation.

ΦΔ;J Wave function Reference

ΦΔ;0 φΔ [3]
ΦΔ;þ1

2
ψΔ
J¼þ1

2

¼ oφΔ [32]

ΦΔ;þ1 AΔ
J¼þ1 ¼ oῑφΔ [3]

ΦΔ;þ3
2

χΔ
J¼þ3

2

¼ ooῑφΔ � � �
ΦΔ;þ2 hΔJ¼þ2 ¼ ooῑ ῑ φΔ [3]
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φ̃Δ;� ¼ ð−X2
�ÞΔ−1φΔ;�; ÃΔ;�

μ;J ¼ ð−X2
�ÞΔ−1AΔ;�

μ;J ;

h̃Δ;�μ;J ¼ ð−X2
�ÞΔ−1hΔ;�μν;J: ð3:17Þ

We add to this list the following fermionic wave functions,
noting that the 4D helicity and the 2D spin are no longer
identified. The positive helicity conformal shadow primar-
ies are given by the left-handed spinors

ψ̃Δ;�
J¼−1

2

¼
ffiffiffi
2

p
ι�ð−X2

�ÞΔ−
3
2φΔ;�;

χ̃Δ;�
μ;J¼−3

2

¼
ffiffiffi
2

p
ι�m̄�

μ ð−X2
�ÞΔ−

3
2φΔ;�; ð3:18Þ

while the negative helicity shadow wave functions are
given by the right-handed spinors

˜̄ψΔ;�
J¼þ1

2

¼
ffiffiffi
2

p
ῑ�ð−X2

�ÞΔ−
3
2φΔ;�;

˜̄χΔ;�
μ;J¼þ3

2

¼
ffiffiffi
2

p
ῑ�m�

μ ð−X2
�ÞΔ−

3
2φΔ;�: ð3:19Þ

We will demonstrate in a forthcoming paper [31] that
the proposed half-integer spin solutions (3.14)–(3.15)
and (3.18)–(3.19) are indeed related by the shadow
transformation.
For now, we postulate that we can generically reach the

shadow primaries Φ̃Δ;J with the same SLð2;CÞ conformal
dimension and spin ðΔ; JÞ as the primaries ΦΔ;J via the
map5

o ↦

ffiffiffiffiffiffiffiffiffi
2

−X2

r
ῑ; ι ↦

ffiffiffiffiffiffiffiffiffi
−X2

2

r
ō; φΔ ↦ ð−X2ÞΔ−1φΔ;

ð3:20Þ

which is not to be confused with the shadow transform.
This takes us from Table II to Table III. We will see below

that the factor of
ffiffiffi
2

p
in the map matches the normalization

of the conformal primaries and their shadows for the spin-1
and spin-2 field strengths.
We conclude this section by observing that this tabu-

lation of conformal primary wave functions adds another
conformal Goldstone mode to the mix. While the large
gauge symmetry of the gravitino

χ ↦ χ þ ∂μψ ð3:21Þ

was studied in connection to a corresponding soft theorem
in [43,44], and that soft theorem was connected to a
conformal soft theorem for the Mellin representatives in
[32], we are pleased to identify the spin-3

2
conformal

primary Goldstino in this paper.
Although the large-gauge symmetry of the gravitino

(3.21) is eliminated by our gauge fixing condition (3.12),
we will see that for certain values of Δ the spin-3

2
conformal

primary reduces to being pure gauge. To this end we
introduce the analog of a ‘field strength’

fμν ≡ ∂μχν − ∂νχμ: ð3:22Þ

This combination will vanish precisely when the conformal
primary is pure gauge

fμν ¼ 0 ⇔ χμ ¼ ∂μψ : ð3:23Þ

Evaluating this expression allows one to read off the entries
in Tables IV and V.
For the nonshadow modes, we will be more explicit.

Note that the Mellin representative of [32] in Table I and the
conformal primary wave function in Table II differ by a
large gauge transformation of the type (3.21), up to a
normalization. For the positive helicity spin-3

2
conformal

primary (3.14), we have

χΔ;�
μ;J¼þ3

2

¼ Δ − 1
2

Δþ 1
2

ð�iÞΔ
ΓðΔÞ ϵμ;þo

�ϕΔ;� þ ∂μβ
Δ;�
þ ; ð3:24Þ

where

βΔ;�þ ¼ Δo�αΔ;�þ ; αΔ;�þ ¼ ϵþ · X�
Δð−q · X�ÞΔ

; ð3:25Þ

and αΔ;�J is the residual gauge term for spin-1 seen in [20].
The conformal primary (3.24) reduces to pure gauge
precisely for Δ ¼ 1

2
, matching the conformally soft pole

for the celestial amplitudes identified in [32]. In particular,
we see from (3.24) that

χ
1
2
;�
μ;J¼þ3

2

¼ ∂μβ
1
2
;�
þ : ð3:26Þ

TABLE III. Negative helicity conformal shadow primary wave
functions in spinor notation.

Φ̃Δ;J Wave function Reference

Φ̃Δ;0 φ̃Δ ¼ ð−X2ÞΔ−1φΔ [3]

Φ̃Δ;þ1
2

˜̄ψΔ
J¼þ1

2

¼ ffiffiffi
2

p
ῑð−X2ÞΔ−3

2φΔ � � �
Φ̃Δ;þ1 ÃΔ

J¼þ1 ¼ oῑð−X2ÞΔ−1φΔ [3]

Φ̃Δ;þ3
2

˜̄χΔ
J¼þ3

2

¼ ffiffiffi
2

p
oῑ ῑð−X2ÞΔ−3

2φΔ � � �
Φ̃Δ;þ2 h̃Δ;�J¼þ2 ¼ ooῑ ῑð−X2ÞΔ−1φΔ [3]

5We would like to point out the tension between the normali-
zation that grants our spin frame the desired inner products to
produce our null tetrad, and the factors of X2 needed for them to
satisfy the Dirac equation for the respective Weyl spinors. The
spinors are conformal primaries of dimension 0 and spin � 1

2
in

either case, but the spinors which are left-handed solutions to the
Dirac equation are foa;

ffiffi
2

p
X2 ιag.
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One obtains a similar expression for the Δ ¼ 1
2
negative

helicity spin-3
2
conformal primary (3.15). Table IV summa-

rizes this result, adding the spin-3
2
Goldstino to the spin-1

and spin-2 [3,42] conformal primary Goldstone modes of
spontaneously broken asymptotic symmetries. Meanwhile,
the spin-3

2
conformal shadow primaries (3.18)–(3.19) and

their opposite helicity expressions become pure gauge for
Δ ¼ 3

2
. This is summarized in Table V, whose entries

correspond to the shadow transforms of the conformal
primaries appearing in Table IV.
Curiously, whenever the shadow modes for spin 1 ≤

s ≤ 2 are pure gauge, they have conformal dimension
matching the classical scaling dimension for the corre-
sponding free field. Moreover, away from isolated points
where both X2 ¼ 0 and q · X ¼ 0, conformal shadow
primaries of any spin s ¼ f0; 1

2
; 1; 3

2
; 2g obey the standard

radiative fall offs. Indeed, it is these shadow modes that
pick out the stress tensor [45], supercurrent [32], and
large gauge current [19] in amplitudes. This is done via
charges constructed from the shadow Goldstone and
Goldstino modes [20,31].
In equations, using the compact notation ΦΔ;J for the

conformal primary wave functions and a similar notation
OΔ;J for the quantum fields, we have

OjJj ¼
X

J¼�jJj

Z
d2w

Z
1þi∞

1−i∞
ð−idΔÞ

× ½N þ
2−Δ;jJjΦ2−Δ;−JðXþ;w; w̄ÞaΔ;Jðw; w̄Þ

þN −
Δ;jJjΦΔ;JðX−;w; w̄ÞaΔ;Jðw; w̄Þ†�; ð3:27Þ

where, as in [20], the normalization factors are designed to
guarantee the canonical commutation relations

½aΔ;Jðw; w̄Þ; aΔ0;J0 ðw0; w̄0Þ†�
¼ δJJ0δ

ð2Þðw − w0ÞδðiðΔþ Δ0� − 2ÞÞ; ð3:28Þ

(with ½; � ↦ f; g for the fermionic case) and follow from the
inner product of the conformal primary wave functions.
These factors were computed for the spin-1 ðO1 ¼ AÞ and
spin-2 ðO2 ¼ hÞ cases in [20]. We will compute the
remaining ones (scalar and fermionic cases) in a companion
paper [31].
From these mode expansions, we can define the oper-

ators

QΔ;Jðw; w̄Þ≡ iðOjJj;Φþ
Δ�;−JðX;w; w̄ÞÞ; ð3:29Þ

with similar expressions for the shadow modes. For any
ðΔ; JÞ for which the field appearing in this inner product is
a Goldstone mode, this operator reduces to the canonical
charge for that asymptotic symmetry.6 In [31], we will
detail the appropriate inner products for the spin-3

2
missing

in [20]. We will also show that there exists a corresponding
interpretation for spin-0 and spin-1

2
operators. While there is

no corresponding gauge symmetry, these operators are
related by supersymmetry to fields which do possess large
gauge freedom.

IV. INCREMENTING SPIN WITH OPERATORS

In Sec. IVA, we recall the action of the generators of the
(super-)Poincaré algebra on bosonic and fermionic Mellin
representatives studied in [32,46] and extend this formalism
to allow us to make an arbitrary number of half-integer
steps in spin between our conformal primary wave func-
tions. We then phrase the classical double copy relation
between the curvatures of the bosonic Mellin representa-
tives as an celestial operator statement in Sec. IV B. Finally,
we contrast these Mellin expressions with the correspond-
ing ones for conformal primary wave functions and show in
Sec. IV C that the Lie derivative relating perturbative
Mellin representatives to conformal primary wave func-
tions exponentiates.

TABLE IV. Goldstone modes of spontaneously broken asymptotic symmetries for particles with spin 1 ≤ s ≤ 2.

AΔ
μ χΔμ hΔμν

Δ 1 1
2

1 0
Symmetry Large Uð1Þ Large SUSY Supertranslation Shadow superrotation ∈ DiffðS2Þ

TABLE V. Shadow Goldstone modes of spontaneously broken asymptotic symmetries for particles with spin
1 ≤ s ≤ 2.

ÃΔ
μ χ̃Δμ h̃Δμν

Δ 1 3
2

1 2
Symmetry Large Uð1Þ Large SUSY Supertranslation Superrotation

6This may require an appropriate renormalization as in [20].
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A. Shifting spin with supersymmetry

We will now discuss operators that shift the spin of
conformal primaries by half-integer steps. The natural
physical setting for this would involve supersymmetry.
The authors of [32] studied the N ¼ 1 supersymmetric
extension of the 4D Bondi–van der Burg–Metzner–Sachs
(BMS) algebra. Supermultiplets of conformal primary
wave functions for bosonic and fermionic states are related
via supersymmetry. In 2D superspace, the supersymmetry
generators are given by7

Qa ¼ ∂θjq�ae∂Δ=2; Q̄ _a ¼ θhqj _ae∂Δ=2 ð4:1Þ

where θ is a Grassmann variable. These obey the expected
four-dimensional supersymmetry algebra

fQa; Q̄ _ag ¼ −σμa _aPμ; ð4:2Þ

where the translation generator of the Poincaré algebra is
given by the differential operator [46]

Pμ ¼ qμe∂Δ : ð4:3Þ

The action of (4.3) on an operator or a wave function

PμOΔ;Jðw; w̄Þ ¼ qμOΔþ1;Jðw; w̄Þ; ð4:4Þ

shifts its SLð2;CÞ conformal weight by an amount opposite
to that of qμ (2.3), and therefore matches our expectation
that a Lorentz vector operator has conformal dimension
Δ ¼ 0. Because the null vectors (2.5) and (2.7), as well as
the spinors (2.16), have no Δ dependence, it suffices to
consider (4.4) for the spin-0 wave function

PμφΔ ¼ qμφΔþ1; ð4:5Þ

to infer the action of (4.3) on all spin s ¼ f0; 1
2
; 1; 3

2
; 2g

Mellin representatives and conformal primary wave
functions (which agree for spin-0 and spin-1

2
up to nor-

malization). In celestial amplitudes, the translation gener-
ator relates operator insertions of different conformal
dimensions.
The fermionic analog of (4.5) is given by the action of

the differential operator in the supersymmetry generators
(4.1) relating the spin-1

2
to the spin-0 wave function

ψΔ
J¼þ1

2

¼ jq�e∂Δ=2φΔ ¼ jq�φΔþ1
2: ð4:6Þ

This action is equivalent to the relation displayed in Table II
via spin frame multiplication and shows that, similar to the
action of the translation generator in celestial amplitudes,

the supercharge relates operator insertions of different
conformal dimensions.
By dropping the θ dependence from the supercharges of

[32]—which made them satisfy the N ¼ 1 supersymmetry
algebra but also makes them nilpotent—we can define a
more general spin-shifting operator that takes us between
conformal primary wave functions of arbitrary spin. Let us
start by defining

T _a
a ≡

ffiffiffi
2

p

X2
Xa _bε

_b _a; T̄a
_a ≡ −

ffiffiffi
2

p

X2
ε _a _bX̄

_ba; ð4:7Þ

where X̄ _ba ≡ Xμðσ̄μÞ _ba, so that

oa ¼ T _a
a ῑ _a; ō _a ¼ T̄a

_aιa: ð4:8Þ

It is natural to define a field with all left- or right-handed
indices, depending on the sign of J. For J > 0, we let

Φ̂Δ;J;a1…a2J ¼
YbJc
i¼1

T _ai
a⌈J⌉þiΦΔ;J;a1…a⌈J⌉ _a1… _abJc : ð4:9Þ

It is straightforward to check from (4.8) and Table II that
these modes obey

Φ̂Δ;J ¼ ðoÞ2JΦ̂Δ;0 ¼ ðjq�e∂Δ=2Þ2JΦ̂Δ;0 ¼ jq�2JΦ̂ΔþJ;0:

ð4:10Þ

For J < 0, we use T̄ to write

Φ̂Δ;J; _a1… _a2jJj ¼
Yb−Jc
i¼1

T̄ai
_a⌈−J⌉þi

ΦΔ;J; _a1… _a⌈−J⌉a1…ab−Jc ð4:11Þ

so that

Φ̂Δ;J ¼ ðōÞ2jJjΦ̂Δ;0 ¼ ðhqje∂Δ=2Þ2jJjΦ̂Δ;0 ¼ hqj2jJjΦ̂ΔþjJj;0:

ð4:12Þ

We thus have a multiplet of fields Φ̂Δ;J constructed from
radiative solutions of the equations of motion ΦΔ;J. A key
point is that the map ΦΔ;J ↦ Φ̂Δ;J can be inverted to return
a radiative solution with the corresponding spin. Since the
fields Φ̂Δ;J are totally symmetric in their spinor index, we
can use

ðT−1Þa_a ¼ −
1ffiffiffi
2

p ε _a _bX̄
_ba; ðT̄−1Þ _aa ¼

1ffiffiffi
2

p Xa _bε
_b _a ð4:13Þ

to write

ΦΔ;J;a1…a⌈J⌉ _a1… _abJc ¼
YbJc
i¼1

ðT−1Þa⌈J⌉þi

_ai
Φ̂Δ;J;a1…a2J ð4:14Þ7Note that our definitions differ from [32] since we continue to

use the conventions of [36].
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for J > 0, while for J < 0 we have

ΦΔ;J; _a1… _a⌈−J⌉a1…ab−Jc ¼
Yb−Jc
i¼1

ðT̄−1Þ _a⌈−J⌉þi
ai Φ̂Δ;J; _a1… _a2J : ð4:15Þ

We can combine these results to write a differential operator
that shifts us between conformal primary wave functions
ΦΔ;J of different spin, avoiding the new multiplet Φ̂Δ;J. For
J > 0, we have

ΦΔ;J;a1…a⌈J⌉ _a1… _abJc

¼
�Y⌈J⌉
i¼1

jq�aie∂Δ=2
YbJc
j¼1

ðT−1jq�Þ _aje∂Δ=2
�
ΦΔ;0; ð4:16Þ

and for J < 0

ΦΔ;J; _a1… _a⌈−J⌉a1…ab−Jc

¼
�Y⌈−J⌉
i¼1

hqj _aie∂Δ=2
Yb−Jc
j¼1

ðT̄−1hqjÞaje∂Δ=2
�
ΦΔ;0: ð4:17Þ

If we were interested in amplitudes instead of wave
functions, we would expect to replace every appearance
of Xμ with a differential operator. In the plane wave basis
this would be i∂kμ , whereas for conformal primary wave
functions we would use

∂qμφ
Δ ¼ΔXμφ

Δþ1 ⇒XμOΔ ¼ 1

Δ− 1
e−∂Δ∂qμOΔ: ð4:18Þ

We leave subtleties regarding on-shell restrictions that
complicate such manipulations in amplitudes to future
work. It is worth pointing out that the Δ dependence of
(4.18) implies that the operator ordering matters in this
representation.
We can also use the operators defined in this section to

create a multiplet for the shadow modes. Observing that

T−1 ¼ X2

2
T̄; T̄−1 ¼ X2

2
T; ð4:19Þ

and letting S denote the action of the map (3.20) on the
spinors fo; ιg, we find the intertwining relation

ST ¼ −T̄S; S2 ¼ 1; ð4:20Þ

meaning that up to the price of an overall sign, we can apply
the map S before or after mapping to a multiplet with
uniform indices.
Finally, we note that one can also go back down in spin.

Using ιaoa ¼ ῑ _aō _a ¼ ffiffiffi
2

p
, we have

Φ̂Δ;J;a1…a2J ¼ oa1Φ̂Δ;J−1
2
;a2…a2J ;

Φ̂Δ;J−1
2
;a2…a2J ¼

1ffiffiffi
2

p ðT̄−1ōÞa1Φ̂Δ;J;a1…a2J ; ð4:21Þ

for J > 0 or, equivalently, for the original radiative modes8

ΦΔ;J;a1…a⌈J⌉ _a1… _abJc ¼jq�a1e∂Δ=2ΦΔ;J−1
2
;a2…a⌈J⌉ _a1… _abJc;

ΦΔ;J−1
2
;a2…a⌈J⌉ _a1… _abJc ¼

1ffiffiffi
2

p ðT̄−1hqjÞa1e∂Δ=2ΦΔ;J;a1…a⌈J⌉ _a1… _abJc;

ð4:22Þ

for J > 0 and odd, and

ΦΔ;J;a1…a⌈J⌉ _a1… _abJc ¼ ðT−1jq�Þ _a1e∂Δ=2ΦΔ;J−1
2
;a1…a⌈J⌉ _a2… _abJc;

ΦΔ;J−1
2
;a1…a⌈J⌉ _a2… _abJc ¼

−1ffiffiffi
2

p hqj _a1e∂Δ=2ΦΔ;J;a1…a⌈J⌉ _a1… _abJc:

ð4:23Þ

for J > 0 and even. It is straightforward to write down the
analogs for negative helicity.
We have thus found that incrementing (þ decrementing)

spin in wave functions by half-integer steps is achieved by a
modified (θ-stripped) version of the supersymmetry gen-
erators which, in turn, can be seen as the “square root” of
the translation generator. Integer steps in spin can be
achieved with even powers of these operators within the
multiplet Φ̂Δ;J, via multiplication by ϵJ ∼ ∂Jq for Mellin
representatives, or by m or m̄ for conformal primary wave
functions ΦΔ;J. The latter amounts to the classical double
copy which we will discuss in detail in Secs. Vand VI. The
perturbative double copy for amplitudes was recently
shown to hold for celestial amplitudes in the form of an
operator statement that involves the action of (4.3) on
individual external states given by the Mellin representa-
tives [16]. We will now demonstrate its classical analog
involving the curvatures for the Mellin representatives.

B. Celestial operator double copy

The perturbative double copy for celestial amplitudes
involving (the Mellin transforms of) plane waves has a

8Note that depending on the use case, these expressions can be
written in two different suggestive forms. First, as a relation
between shifted Δ and J; second, as a differential operator
shifting h̄ ¼ 1

2
ðΔ − JÞ. For example,

ΦΔ;J;a1…a⌈J⌉ _a1… _abJc ¼ jq�a1ΦΔþ1
2
;J−1

2
;a2…a⌈J⌉ _a1… _abJc ⇒ jq�e∂ h̄=2ΦΔ;J:

The final form is schematic on wave functions with spinor indices
but could be interesting from the point of operators in the 2D
celestial CFT in contexts where one considers analytically
continuing J [47].
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simple classical analog. Electromagnetic waves ϵμ;leik·X

in gauge theory with field strength Fμν;l ¼ iðkμϵν;l −
kνϵμ;lÞeik·X and gravity waves ϵμ;lϵν;leik·X with Riemann
tensor Rμνρσ;l ¼ 1

2
ðkμϵν;l − kνϵμ;lÞðkρϵσ;l − kσϵρ;lÞeik·X

satisfy an obvious squaring relation after stripping off
the scalar wave function eik·X. This simple relation between
the curvatures gets promoted to an operator valued double
copy in the conformal basis.
The curvatures of the integer Mellin representatives of

Table I are easily computed in terms of the celestial
momenta KΔ

μ introduced in [16] by

∂μϕ
Δ ¼ Δqμ

−q · X
ϕΔ ≡ KΔ

μ ϕ
Δ: ð4:24Þ

The field strength for the spin-1 Mellin representative
ϵμ;Jϕ

Δ is

FΔ
μν;J ¼ ðKΔ

μ ϵν;J − KΔ
ν ϵμ;JÞϕΔ; ð4:25Þ

and the Riemann tensor for the flat background perturbed
by the spin-2 Mellin representative gΔμν;J ¼ ημν þ ϵμ;Jϵν;Jϕ

Δ

with inverse gΔμνJ ¼ ημν − ϵμJϵ
ν
Jϕ

Δ is

RΔ
μνρσ;J ¼ −

1

2

�
1þ 1

Δ

�
ðKΔ

μ ϵν;J − KΔ
ν ϵμ;JÞ

× ðKΔ
ρ ϵσ;J − KΔ

σ ϵρ;JÞϕΔ: ð4:26Þ

The Δ-dependent factor is familiar from the double copy
for celestial amplitudes [16] and arises from the spacetime
dependence of the celestial momenta. Expressing the latter
via the action of the translation generator (4.3) on the scalar
wave function

Pμϕ
Δ ¼KΔ

μ ϕ
Δ; PμPνϕ

Δ ¼
�
1þ 1

Δ

�
KΔ

μKΔ
ν ϕ

Δ; ð4:27Þ

promotes the celestial momenta in (4.25) and (4.26) to
momentum operators. Defining

FΔ
μν;J ¼ F μν;Jϕ

Δ; RΔ
μνρσ;J ¼ Rμνρσ;Jϕ

Δ; ð4:28Þ

we see that the Riemann tensor is related to the field
strength via the operator valued squaring relation

−2Rμνρσ;J ¼ F μν;JF ρσ;J; ð4:29Þ

when acting on the conformal wave function ϕΔ. This
resonates with the double copy for celestial amplitudes
[16], where the operator valued numerator in gauge theory
squares to the operator valued gravity numerator when
acting on the amplitude of scalar wave functions. Indeed,
they have the same origin.

C. Gauge equivalence for finite deformations

While the Mellin representatives ϵμ;Jϵν;Jϕ
Δ and the

corresponding conformal primary wave functions of
hΔμν;J ¼ mμ;Jmν;Jφ

Δ were originally obtained as solutions
to the linearized equations of motion (3.1), i.e., as pertur-
bations around the Minkowski background, we will show
in Sec. VI that they are actually exact solutions to the
nonlinear Einstein equations, by virtue of the Kerr-Schild
double copy. In this section, we show that the Lie derivative
along the diffeomorphism relating these wave function
perturbations exponentiates, and thereby demonstrate that
the nonlinear solutions constructed from the Mellin repre-
sentatives and the conformal primary wave functions are
gauge equivalent.
In [20] it was pointed out that the Mellin representative

and the conformal primary wave function

hΔ;�μν;JðXμ;w; w̄Þ ¼ Δ − 1

Δþ 1

ð�iÞΔ
ΓðΔÞ ϵμ;Jϵν;Jϕ

Δ;�

þ ∂μζ
Δ;�
ν;J þ ∂νζ

Δ;�
μ;J ; ð4:30Þ

are related, up to a normalization, by a diffeomorphism

ζΔ;�μ;J ¼ 1

2ðΔþ 1Þ
�
ϵμ;JðϵJ · X�Þ
ð−q · X�ÞΔ

þ 1

2

qμðϵJ · X�Þ2
ð−q · X�ÞΔþ1

�
:

ð4:31Þ

In the above expression, the Lie derivative is acting on the
flat background around which both wave functions are
perturbations. It is straightforward to show that

LβζΔJ
ðηþ αϵJϵJϕ

Δ;�Þμν
¼ αβΔϵμ;Jϵν;JðζΔJ · lÞϕΔ þ βð∂μζ

Δ
ν;J þ ∂νζ

Δ
μ;JÞ

þ αβð∂μζ
Δ;σ
J ϵν;J þ ∂νζ

Δ;σ
J ϵμ;JÞϵJ;σϕΔ

¼ βð∂μζ
Δ
ν;J þ ∂νζ

Δ
μ;JÞ; ð4:32Þ

where we have used (2.6), the spacetime independence of
the null vector q, as well as

KΔ
μ ¼ Δlμ: ð4:33Þ

Since ζΔJ only involves the span of ϵJ and q, we can raise
and lower indices with the flat metric. The final form of
(4.32) demonstrates that we can exponentiate the Lie
derivative and that the exact gravitational solutions con-
structed from the Mellin representatives and conformal
primaries are gauge equivalent.
To complete the discussion, we report here the curvatures

of the conformal primary wavefunctions AΔ
μ;J ¼ mμ;Jφ

Δ

and hΔμν;J ¼ mμ;Jmν;Jφ
Δ of Table II. The field strength for

the J ¼ þ1 conformal primary is given by
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FΔ
μν;J¼þ1 ¼ ðΔ − 1Þðlμmν − lνmμÞφΔ; ð4:34Þ

while the Riemann tensor for the J ¼ þ2 conformal
primary is

RΔ
μνρσ;J¼þ2 ¼ −

1

2
ΔðΔ − 1Þðlμmν − lνmμÞðlρmσ − lσmρÞφΔ;

ð4:35Þ

and equivalent expressions for J ↦ −J withm ↦ m̄. Here,
we have chosen to write these field strengths in terms of our
tetrad (2.7), due to its nice conformal covariance properties
(2.9). Comparing (4.25)–(4.26) to (4.34)–(4.35) using
(4.33), we observe that the curvatures involving the
Mellin representatives and the conformal primary wave
functions are the same up to an overall normalization
(which will be an important distinction in the conformally
soft limit associated to asymptotic symmetries below), in
line with the result (4.32) above.
For book-keeping’s sake, let us also write the curvatures

for the conformal shadow primaries of Table III

F̃Δ
μν;J¼þ1 ¼ ðΔ − 1Þðnμmν − nνmμÞ

2

X2
φ̃Δ; ð4:36Þ

and

R̃Δ
μνρσ;J¼þ2 ¼ −

1

2
ðΔ − 1ÞðΔ − 2Þðnμmν − nνmμÞ

× ðnρmσ − nσmρÞ
�

2

X2

�
2

φ̃Δ: ð4:37Þ

V. WEYL DOUBLE COPY FOR
CONFORMAL PRIMARIES

Conformal primary solutions exhibit definite (anti)self-
duality—a property that proves useful when considering
scattering in nontrivial backgrounds.9 Conformal primaries
thus naturally satisfy a Weyl double copy which we now
demonstrate.
In vacuum spacetimes, the Riemann tensor coincides

with the Weyl tensor Rμνρσ ¼ Wμνρσ. The spinorial form of
the Weyl tensor is

Wa _ab _bc_cd _d ¼ Cabcdε _a _bε_c _d þ C̄ _a _b _c _dεabεcd; ð5:1Þ

where Cabcd and C̄ _a _b _c _d are the antiself-dual and self-dual
parts of the curvature. They are completely symmetric and
Cabcd ¼ ðC̄ _a _b _c _dÞ� if the Lorentzian spacetime is real.

Analogously, the field strength Fμν in gauge theory can
be written in spinorial form as

Fa _ab _b ¼ fabε _a _b þ f _a _bεab; ð5:2Þ

where fab and f̄ _a _b are the antiself-dual and self-dual parts
of the field strength. They are symmetric and fab ¼ ðf̄ _a _bÞ�
if the field strength is real. Using

σμνab ¼ σ½μa_cσ̄
ν�_cdεdb; ð5:3Þ

we can express the antiself-dual parts of the curvature and
field strength as

Cabcd ¼
1

4
Wμνρσσ

μν
abσ

ρσ
cd; ð5:4Þ

and

fab ¼
1

2
Fμνσ

μν
ab: ð5:5Þ

The Weyl double copy is defined as [27]

Cabcd ¼
1

S
fðabfcdÞ; ð5:6Þ

where the scalar S and the field strength spinor fab are
uniquely determined by the Weyl scalar of the gravity
solution.
From the decomposition of the tetrad into Weyl spinors

(2.12) relation (2.18), we see that the tensor structures
appearing in our field strengths (4.34) and (4.36) and Weyl
tensors (4.35) and (4.37) reduce to

la _amb _b − lb _bma _a ¼
ffiffiffi
2

p
oaobε _a _b;

la _am̄b _b − lb _bm̄a _a ¼
ffiffiffi
2

p
ō _aō _bεab;

na _amb _b − nb _bma _a ¼ −
ffiffiffi
2

p
ῑ _a ῑ _bεab;

na _am̄b _b − nb _bm̄a _a ¼ −
ffiffiffi
2

p
ιaιbε _a _b: ð5:7Þ

We thus notice that
a. the conformal primaries with positive helicity

fAΔ
J¼þ1; h

Δ
J¼þ2g are antiself dual,

b. the conformal primaries with negative helicity
fAΔ

J¼−1; h
Δ
J¼−2g are self dual,

c. the conformal shadow primaries with negative helicity
fÃΔ

J¼þ1; h̃
Δ
J¼þ2g are self dual,

d. the conformal shadow primaries with positive helicity
fÃΔ

J¼−1; h̃
Δ
J¼−2g are antiself dual.

In terms of the Weyl double copy field strengths, we arrive
at table VI. Performing a decomposition in terms of the
tetrad for the flat metric suffices for analyzing linearized

9See, for instance, reference [48] and related work for an
example application of antiself-dual backgrounds to MHV
scattering amplitudes computed in the twistor formalism.
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solutions. In Sec. VI we will show how to generalize this
tetrad for the corresponding nonlinear solutions.

VI. KERR-SCHILD DOUBLE COPY FOR
CONFORMAL PRIMARIES

The Kerr-Schild double copy is a powerful tool for
identifying exact solutions of Einstein’s equations. It relates
a class of Kerr-Schild spacetimes to solutions of Maxwell’s
equation [26]. Kerr-Schild spacetimes [49] possess the
property that they admit coordinates for which the metric
gμν may be written in the form

gμν ¼ ημν þmμmνφ; ð6:1Þ

where ημν is the Minkowski metric, φ satisfies the scalar
wave equation ημν∂μ∂νφ ¼ 0, and the vector mμ has the
property that it is null and geodesic with respect to both the
Minkowski and the full metric

mμ∇μmν ∝ mν; mμ∂μmν ∝ mν: ð6:2Þ

Note the inverse metric is simply

gμν ¼ ημν −mμmνφ; ð6:3Þ

and the index on mμ may be raised with either ημν or gμν.
The famous property of the Kerr-Schild form is that it
linearizes the Ricci tensor with mixed indices

Rμ
ν ¼

1

2
∂λ½∂μðmλmνφÞ þ ∂νðmλmμφÞ − ∂λðmμmνφÞ�;

ð6:4Þ

where ∂μ ≡ ημν∂ν. The Kerr-Schild double copy now states
that if gμν is a solution to the Einstein equations, then the
gauge field given by

Aa
μ ¼ Tamμφ; ð6:5Þ

is a solution to Yang-Mills theory [26]. Since Ta are just
constant color factors here, (6.5) lives in a Uð1Þ sector of
the gauge theory, with Aμ ¼ mμφ a solution to Maxwell’s
equations.

A. Conformal primaries

It turns out that the spin-1 and spin-2 conformal primary
wave functions satisfy a celestial Kerr-Schild double copy

AΔ
μ;J ¼ mμ;Jφ

Δ; hΔμν;J ¼ mμ;Jmν;Jφ
Δ; ð6:6Þ

with Kerr-Schild vector

mμ;J ¼ ϵμ;J − qμ
ϵJ · X
q · X

: ð6:7Þ

To see this, notice that the Minkowski background per-
turbed by the spin-2 primary takes the form of a Kerr-
Schild metric

gΔμν;J ¼ ημν þmμ;Jmν;Jφ
Δ; ð6:8Þ

with inverse

gΔμνJ ¼ ημν −mμ
Jm

ν
Jφ

Δ: ð6:9Þ

With respect to the flat metric ημν and the perturbed metric
gμν, the Kerr-Schild vector (6.7) is indeed both null and
geodesic

gΔμνJ mμ;Jmν;J ¼ ημνmμ;Jmν;J ¼ 0;

mμ
J∇μmν;J ¼ mμ

J∂μmν;J ¼ 0: ð6:10Þ

For fixed spin J ¼ �1, the Kerr-Schild vector corre-
sponds to two of our flat null tetrad members

mμ;þ ¼ mμ; mμ;− ¼ m̄μ: ð6:11Þ

To construct the null tetrad with respect to the Kerr-Schild
metric gΔμν;J for fixed helicity J ¼ �2, observe that the only
inner product that changes is that of the Kerr-Schild vector
of opposite helicity −J ¼∓ 1, namely gΔμν;Jm

μ
−Jm

ν
−J ¼ φΔ.

It is straightforward to complete the curved space null tetrad
via a suitable linear combination of fmþ;m−g

mΔ
μ;−J ≡mμ;−J þ

φΔ

2
mμ;J: ð6:12Þ

Notice, however, that raising the index on this mixed
helicity vector with the inverse Kerr-Schild metric gΔμνJ

TABLE VI. Weyl double copy for conformal primaries.

fab f _a _b S

ΦΔ;J>0

ffiffiffi
2

p ðΔ − 1ÞoaobφΔ 0 −2 Δ−1
Δ φΔ

ΦΔ;J<0 0
ffiffiffi
2

p ðΔ − 1Þō _aō _bφ
Δ −2 Δ−1

Δ φΔ

Φ̃Δ;J>0 0 −
ffiffiffi
2

p ðΔ − 1Þῑ _a ῑ _b 2
X2 φ̃Δ −2 Δ−1

Δ−2
2
X2 φ̃Δ

Φ̃Δ;J<0 −
ffiffiffi
2

p ðΔ − 1Þιaιb 2
X2 φ̃Δ 0 −2 Δ−1

Δ−2
2
X2 φ̃Δ
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(i.e.,mΔμ
−J ≡mμ

−J −
φΔ

2
mμ

J) no longer yields the same result
as raising the index with ημν, as was the case for the Kerr-
Schild vectors of definite helicity. In terms of the tetrad

fl; n;mJ;mΔ
−Jg; ð6:13Þ

the Kerr-Schild metric can be expressed as

gΔμν;J ¼ −lμnν − nμlν þmμ;JmΔ
ν;−J þmΔ

μ;−Jmν;J: ð6:14Þ

The Maxwell field strength for the gauge field in the
Minkowski background is

FΔ
μν;J ¼ ðΔ − 1Þðlμmν;J − lνmμ;JÞφΔ; ð6:15Þ

and the Riemann tensor for the Kerr-Schild metric is

RΔ
μνρσ;J ¼ −

1

2
ΔðΔ − 1Þðlμmν;J − lνmμ;JÞ

× ðlρmσ;J − lσmρ;JÞφΔ: ð6:16Þ

The Δ-dependent factors in (6.15) and (6.16) ensure the
curvatures vanish when the conformal primaries AΔ

μ;J and
hΔμν;J reduce to pure gauge and diffeomorphism terms,
respectively, when Δ ¼ 1 and Δ ¼ 0, 1. Furthermore, the
Ricci tensor for the Kerr-Schild metric (6.8) vanishes

RΔ
μν;J ¼ 0: ð6:17Þ

This can be seen using the properties of the null tetrad
implied by q2 ¼ q · ϵJ ¼ 0; or, alternatively, by starting
from the famous property that Kerr-Schild metrics linearize
the Ricci tensor with mixed indices, as in (6.4), and using
the null and geodesic properties of the Kerr-Schild vector
(6.10). Hence the Minkowski background “perturbed” by
the spin-2 conformal primary hΔJ¼�2, originally constructed
as a linearized solution, is actually an exact solution to the
vacuum Einstein equations.
Because of (6.17), the Riemann tensor (6.16) is equiv-

alent to the Weyl tensor as expected for exact gravitational
wave solutions in the vacuum. Out of the five Newman-
Penrose Weyl scalars only one is nonvanishing10

Ψ4 ¼ CΔ
μνρσ;Jn

μmν
−Jn

ρmσ
−J ¼ −

1

2
ΔðΔ − 1ÞφΔ: ð6:18Þ

Hence the conformal primary hΔJ¼�2 gives rise to a Petrov-
type N solution to Einstein’s equations.

B. Conformal shadow primaries

The shadow transformed conformal primary wave func-
tions also satisfy a Kerr-Schild double copy

ÃΔ
μ;J ¼ mμ;Jφ̃

Δ; h̃Δμν;J ¼ mμ;Jmν;Jφ̃
Δ; ð6:19Þ

for the same Kerr-Schild vector (6.7), which is null and
geodesic with respect to the Kerr-Schild shadow metric

g̃Δμν;J ¼ ημν þmμ;Jmν;Jφ̃
Δ: ð6:20Þ

The expressions for the field strength and Riemann tensor,
which are rather complicated, can be vastly simplified by
adopting a modified version of the null tetrad (6.13),
namely

fl; n;mJ; m̃Δ
−Jg ð6:21Þ

where

m̃Δμ
−J ≡mμ

−J −
φ̃Δ

2
mμ

J: ð6:22Þ

In terms of this tetrad, the field strength for the Maxwell
shadow gauge field is

F̃Δ
μν;J ¼ ðΔ − 1Þðnμmν;J − nνmμ;JÞ

2

X2
φ̃Δ; ð6:23Þ

and the Riemann tensor for the Kerr-Schild shadow metric
(6.20) is

R̃Δ
μνρσ;J ¼ −

1

2
ðΔ − 1ÞðΔ − 2Þðnμmν;J − nνmμ;JÞ

× ðnρmσ;J − nσmρ;JÞ
�

2

X2

�
2

φ̃Δ: ð6:24Þ

Note that the curvatures have the same tensor structure
predicted by the map (3.20). Meanwhile, the numerical
prefactor matches the behavior expected from Table V. The
conformal shadow primaries ÃΔ

μ;J and h̃Δμν;J become pure
gauge when, respectively, Δ ¼ 1 and Δ ¼ 1, 2. The Ricci
tensor vanishes

R̃Δ
μν;J ¼ 0; ð6:25Þ

and the sole nonvanishing Weyl scalar is

Ψ4 ¼ C̃Δ
μνρσ;Jl

μmν
−Jl

ρmσ
−J ¼−

1

2
ðΔ− 1ÞðΔ− 2Þ

�
2

X2

�
2

φ̃Δ:

ð6:26Þ

The conformal shadow primary h̃Δ;�J¼�2 is thus also an exact
solution to Einstein’s equations of Petrov-type N.

10Note that these definite helicity solutions have complexified
Newman-Penrose scalars, so Ψ̄i and Ψi are independent.
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Notice that the roles of principle null directions l and n in
(6.26) are exchanged as compared to (6.18). Hence, there is
a sense in which the primaries hΔJ¼�2 and h̃ΔJ¼�2 for fixed J
and reference direction are counter propagating.

C. Conformally soft double copy

1. Goldstone modes

The field strengths and Riemann tensors for the pri-
maries, (6.15) and (6.16), and for their shadows, (6.23) and
(6.24), vanish for Δ ¼ 1. At this value of the conformal
dimension, the conformal primaries and their shadows
degenerate and become the Goldstone modes of sponta-
neously broken large-gauge symmetry

Ã1
μ;J ¼ A1

μ;J ¼ ∇μα
1
J; with α1J ¼ −

ϵJ · X
q · X

; ð6:27Þ

and of spontaneously broken diffeomorphism symmetry

h̃1μν;J ¼ h1μν;J ¼ ∇ðμξ1νÞ;J; with

ξ1μ;J ¼ −
1

2

ϵJ · X
q · X

�
ϵμ;J −

1

2
qμ

ϵJ · X
q · X

�
: ð6:28Þ

From the Kerr-Schild double copy

h1μν;J ¼ mμ;JA1
ν;J ¼ mμ;Jmν;Jφ

1; ð6:29Þ

it follows that the generator of BMS symmetry ξ1μ is related
to the generator of large Uð1Þ Kac-Moody symmetry α1. In
this sense, BMS symmetry is a double copy of large gauge
symmetry [28,29]. Since all Weyl scalars vanish, the Kerr-
Schild metrics (6.8) and (6.20) become Petrov-type O, as
expected for a pure diffeomorphism.

2. Conformally soft primaries

A linear combination of conformal primaries and their
shadows has been constructed in [19] in the conformally soft
(CS) limit Δ ¼ 1. The conformally soft photon is given by

ACS
μ;J ¼ ½ΘðX2Þ þ log½X2�ðq · XÞδðq · XÞ�A1

μ;J; ð6:30Þ

whose field strength on the flat background is

FCS
μν;J ¼ 2ðXμA1

ν;a − XνA1
μ;JÞ

�
δðX2Þ þ q · X

X2
δðq · XÞ

�
:

ð6:31Þ

The conformally soft graviton is

hCSμν;J ¼ ½ΘðX2Þ þ log½X2�ðq · XÞδðq · XÞ�h1μν;J; ð6:32Þ

and the Riemann tensor for the perturbed metric

gCSμν;J ¼ ημν þ hCSμν;J; ð6:33Þ

is given by

RCS
μνρσ;J ¼ −

���
ηρμ − 2

XρXμ

X2

�
h1σν;J − ðρ ↔ σÞ

�
− ðμ ↔ νÞ

��
δðX2Þ þ q · X

X2
δðq · XÞ

�
: ð6:34Þ

The Ricci tensor vanishes

RCS
μν;J ¼ 0; ð6:35Þ

and the conformally soft graviton thus gives rise to an exact
solution to the vacuum Einstein equations as well.
Indeed, the conformally soft gravitons and photons also

satisfy a Kerr-Schild double copy

hCSμν;J ¼ mμ;JACS
ν;J ¼ mμ;Jmν;Jφ

CS; ð6:36Þ

with Kerr-Schild vector (6.7), which is also null and
geodesic with respect to (6.33). This in turn defines the
conformally soft scalar

φCS ¼ ðΘðX2Þ þ log½X2�ðq · XÞδðq · XÞÞφ1; ð6:37Þ

which solves the massless Klein-Gordon equation in the
flat background and transforms as a Δ ¼ 1 conformal
primary wave function.
In terms of the null tetrad fl; n;mJ;mCS

−Jg where

mCS
−J ≡mμ

−J −
φCS

2
mμ

J; ð6:38Þ

the Riemann tensor can be expressed as

RCS
μνρσ;J ¼

�
X2

2
ðlρmσ;J − lσmρ;JÞðlμmν;J − lνmμ;JÞ

þ 2

X2
ðnρmσ;J − nσmρ;JÞðnμmν;J − nνmμ;JÞ

�
×

�
δðX2Þ þ q · X

X2
δðq · XÞ

�
φ1: ð6:39Þ

We thus obtain a superposition of solutions with the tensor
structures we found for the primaries hΔJ¼�2 and h̃ΔJ¼�2, but
with singular support at the loci X2 ¼ 0 and q · X ¼ 0. Up
to symmetries of the Weyl tensor, the only nonzero
Newman-Penrose scalars are given by the contractions

CCS
μνρσ;Jn

μmCSν
−J nρmCSσ

−J ¼ X2

2

�
δðX2Þ þ q · X

X2
δðq · XÞ

�
φ1;

ð6:40Þ
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and

CCS
μνρσ;Jl

μmCSν
−J lρmCSσ

−J ¼ 2

X2

�
δðX2Þ þ q · X

X2
δðq · XÞ

�
φ1:

ð6:41Þ

From this result, it appears that the CS modes are not of
type N. However, there is a subtlety here. In the limit that
q · X → 0, the tetrad components lμ and nμ diverge and, so
long as X2 ≠ 0, are both approximately proportional to qμ.
If we are careful about the space of test functions, we can

elect to keep only the leading-order terms at each locus of
nontrivial support.

RCS
μνρσ;J

≅
�
2

X2
ðXρmσ;J − Xσmρ;JÞðXμmν;J − Xνmμ;JÞδðX2Þ

þ ðqρmσ;J − qσmρ;JÞðqμmν;J − qνmμ;JÞδðq · XÞ
�
φ1

ð6:42Þ

which, although singular as a distribution, is type N.

VII. GENERALIZED CONFORMAL
PRIMARIES

The previous section showed that conformally soft
modes lead to distributional curvatures. This suggests we
may also want to put more thought into allowing distri-
butional versions of our conformal primary wave functions.
Another issue we have avoided up to this point is that
removing the iε regulator opens up the possibility of
sources. Wewill address both of these topics by introducing
the notion of a generalized conformal primary wave
function.

A. Generalized scalar

Since we are ultimately interested in constructing non-
trivial backgrounds for celestial CFT, we consider only
bosonic fields in this section. As we saw from the double
copy result, it is convenient to build up the spin-1 and spin-
2 wave functions in terms of the scalar.
Definition.—A generalized conformal primary scalar is a

wave function on R1;3 which transforms under SLð2;CÞ as
a conformal primary of dimension Δ.

φgen
Δ

�
Λμ
νXν;

awþb
cwþd

;
ā w̄þb̄
c̄ w̄þd̄

�
¼ jcwþdj2Δφgen

Δ ðXμ;w;w̄Þ:

ð7:1Þ

We do not impose any condition on the equation of motion.

Wave functions which are analytic in Xμ take the form

φgen
Δ ¼ fðX2Þ 1

ð−q · XÞΔ ; ð7:2Þ

for some fðX2Þ, while for distributional wave functions we
should allow the φΔ factor to vary as well. For instance

lim
ε→0

iðφ1;þ − φ1;−Þ ¼ 2πδðq · XÞ: ð7:3Þ

While singular, one may also start from the distribution

φgen
Δ ¼ 1

ð−q · XÞΔ−1 δðq · XÞ; ð7:4Þ

and other distributional combinations, depending on the
use case and the space of test functions one wants to allow.
The fðX2Þ term can also be a distribution. If support is

restricted to one of the Milne regions, one can also multiply
by ΘðX0Þ and not ruin the property (7.1). The key point to
remember is that we have the hyperbolic foliation [41] and
the hyperplane q · X ¼ 0 at our disposal. The leaves of the
foliation [41] are defined by δðX2 − τ2Þ, and δðX2 þ
τ2ÞΘð�X0Þ for real τ. Figure 1 shows a schematic of the
submanifolds on which a distributional generalized scalar
wave function can have support.
To be more concrete, consider the case w ¼ 0 so that

qμ ¼ ð1; 0; 0; 1Þ and let the 3D volume projected onto the
page in Fig. 1 be the hypersurface y ¼ 0. The bold line in
Fig. 1 is the wordline of a massless point particle, while the
dashed lines are the loci ft ¼ z; x2 þ y2 ¼ τ2 > 0g, i.e., we
are seeing a 3D cross section of a world sheet in ð3þ 1ÞD,
rather than two worldlines.

1. Source interpretation

Whilewe do not impose any conditions on the equation of
motion,we do stress that the quantity□φgen

Δ should retain the
same conformal transformation properties asφgen

Δ , so that if it
is nonvanishing it also has conformal dimension Δ and spin
J ¼ 0. We can use this feature to reach more general
distributions than the examples given above. For instance
starting from (7.3), wave functions of the form □

nδðq · XÞ
will also have generalized conformal dimension 1. Alterna-
tively, we can look at solutions where the support of the
source is of higher codimension than the support of the wave
function. The locus of support for the source should also
possess the structure described in Fig. 1, and should be a
subset of the support of the wave function itself.

2. Off-shell interpretation

One can also use this construction to look for off-shell
solutions, e.g., to the Klein-Gordon equation

□φgen
Δ ¼ �m2φgen

Δ : ð7:5Þ
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In [2], we were interested in positive and negative fre-
quency solutions to the standard real-mass [i.e., þ sign in
(7.5)] Klein-Gordon equation

ϕ�
Δ;mðXμ;w; w̄Þ ¼ 4π

im
ð

ffiffiffiffiffiffiffiffiffiffi
−X2

�
p

ÞΔ−1
ð−q · X�ÞΔ

KΔ−1

	
im

ffiffiffiffiffiffiffiffiffiffi
−X2

�
q 


;

ð7:6Þ
where we picked the Bessel function with good falloff
behavior and restored an iε prescription to avoid singular-
ities/sources on the submanifold of real Xμ. To arrive at
(7.6) we actually, somewhat ironically, solved (7.5) for the
“wrong sign”, and then analytically continued away from
m ∈ −iRþ. Here, we are essentially pointing out that we
can use a hyperbolic foliation of off-shell momentum space
to capture off-shell exchanges if we take this analytic
continuation literally. Dealing with strictly massless par-
ticles, we would expect cutting rules to return us to the on-
shell Mellin (or shadow Mellin) solutions. While not
specifically looking for off-shell solutions, the machinery
one would want to use is likely related to the auxiliary
exchange modes studied in [50].

3. Generalized conformally soft scalar

In looking for examples of generalized conformal
scalars, the case Δ ¼ 1 relevant in Sec. VI C is subtle
and requires special care. We will start by looking at
solutions that satisfy the massless Klein-Gordon equation
away from singular loci, and then see how the Δ → 1 limit
can lead to solutions other than one considered in [19], if
one avoids imposing the standard iε prescriptions.
Starting with the factorized ansatz

φgen
Δ ¼ fðX2ÞSΔðq · XÞ; ð7:7Þ

where

Xμ∂μSΔ ¼ −ΔSΔ; ð7:8Þ

one can show that [3]

□φgen
Δ ¼ 0 ⇔ X2f00ðX2Þ − ðΔ − 2Þf0ðX2Þ ¼ 0: ð7:9Þ

For generic Δ, this differential equation has the solution

f ¼ c1 þ c2ðX2ÞΔ−1; ð7:10Þ

while for Δ ¼ 1, it has the solution

f ¼ c01 þ c02 logðX2Þ: ð7:11Þ

One can also obtain this log solution from a limit of the
power-law ones [which was implicitly done in [19] ]. It is
straightforward to see that the multiplicative function

logðX2Þ ¼ lim
Δ→1

ðX2ÞΔ−1 − 1

Δ − 1
ð7:12Þ

arises via the limit

φlog;� ≡ lim
Δ→1

∂ΔðφΔ;� þ φ̃2−Δ;�Þ ¼ −
logðX2

�Þ
ð−q · X�Þ

: ð7:13Þ

The conformally soft mode of [19], which appears above as
the Kerr-Schild zeroth copy (6.37), is constructed via

φCS ¼ 1

2πi
ðφlog;þ − φlog;−Þ

¼ ðΘðX2Þ þ log½X2�ðq · XÞδðq · XÞÞφ1: ð7:14Þ

Looking back at the definition (7.1), it becomes clear that
either one of these terms individually meets our require-
ment for a generalized conformal scalar of conformal
dimension Δ ¼ 1. We can readdress the concerns we raised
at the end of Sec. VI C about the singular behavior and the
Petrov type of the solution by restricting each of the terms
in (7.14) separately. Defining

FIG. 1. Loci of support consistent with conformal covariance.
Wave functions obeying (7.1) are naturally written in terms of
data on the hyperbolic foliation of Minkowski space, multiplied
by a homogeneous function in the distance from the hyperplane
q · X ¼ 0. Wave functions with restricted support will have that
support on a union of some leaves of the hyperbolic foliation with
constant X2, on the hyperplane q · X ¼ 0, or on an intersection
thereof (bold and dashed curves).
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φCS0 ≡ ΘðX2Þ 1

−q · X
; φCS00 ≡ log½X2�δðq · XÞ; ð7:15Þ

one can check that these wave functions are separately
responsible for the two terms in (6.42). At the end of this
section, we will consider an alternative Kerr-Schild vector
for the double copy construction that uses the wave
function φCS00 to construct the Aichelburg-Sexl ultraboost.

B. Generalized vector

Building on the pattern we started for the generalized
conformal scalar wave function, we will now consider the
analog for integer spin. We start with minimal assumptions,
only enforcing conformal covariance, and then examine, in
turn, how these solutions are restricted by the tracelessness,
the equations of motion, and the gauge choices we had
imposed to select the corresponding conformal primary
wave functions. We begin with the vector field case.
Definition.—A generalized conformal primary vector is

a wave function on R1;3 which transforms under SLð2;CÞ
as a conformal primary of dimension Δ and spin J

Agen
Δ;J;μ

�
Λμ
νXν;

awþ b
cwþ d

;
ā w̄þb̄

c̄ w̄þd̄

�
¼ ðcwþ dÞΔþJðc̄ w̄þd̄ÞΔ−JΛμ

νAgen
Δ;J;νðXμ;w; w̄Þ:

ð7:16Þ

While for the spin-1 radiative solutions we had jJj ¼ 1, we
will see that generically rank-s tensor fields in ð3þ 1ÞD
can have 2D conformal spins jJj ≤ s, matching what one
would expect for decomposing the spin states of a massive
particle—after all we are not imposing the massless
equations of motion at this stage. One can view the
conformal spin as measuring the ð3þ 1ÞD spin along
the axis parallel to the reference direction. See, for instance,
the examination of the massless limit of massive spin-1
primaries in [51], or the general massive classification [39].
Using (2.7) and their SLð2;CÞ transformation (2.9), we

see that our desired J ¼ 0 solutions take the form

Agen
Δ;0;μ ¼ lμφ

gen;1
Δ þ nμφ

gen;2
Δ ; ð7:17Þ

where the two generalized conformal primary scalar wave
functions that appear are generally different, and any one of
them can vanish. Meanwhile, for J ¼ �1 we have

Agen
Δ;þ1;μ ¼ mμφ

gen
Δ ; Agen

Δ;−1;μ ¼ m̄μφ
gen
Δ ; ð7:18Þ

again for arbitrary generalized conformal primary scalarwave
functions. Because the inner products of the tetrad elements
(2.8) are just �1 or zero, this is all the freedom we get.
We note the radial gauge condition imposes one con-

straint on (7.17), but is automatically satisfied by (7.18).
Spatial derivatives hitting φgen

Δ will be in the span of
fXμ; qμg. Furthermore,

X · l ¼ −1; X · n ¼ X2

2
; X ·m ¼ 0; X · m̄ ¼ 0;

ð7:19Þ
while derivatives of the tetrad take the form

∂μlν ¼ lμlν; ∂μnν ¼ ημν þ nμlν;

∂μmν ¼ mμlν; ∂μm̄ν ¼ m̄μlν; ð7:20Þ
from which one can check

□lμ ¼ 0; □nμ ¼ 2lμ; □mμ ¼ 0; □m̄μ ¼ 0: ð7:21Þ

This allows us to compute the constraints on the generalized
conformal scalar wave functions that appear when imposing
the harmonic gauge condition or spin-1 equations of motion.
We will only do so explicitly for the analytic generalized
conformal primary scalar (7.2), where the only freedom is the
choice of fðX2Þ. Table VII summarizes the results. When
harmonic gauge is not imposed, the entries of this table need
to be combined as in (3.1) to identify the current.
For the J ¼ �1 examples, we see what would be the

nonshadow and shadow modes arising from the second-
order differential equation for f in the last column. For the
J ¼ 0 case, we have two functions constrained by a
coupled system of second-order equations. Trying to
impose the same gauge fixing we used for the radiative
modes makes the system highly constrained. For instance,
Table VII shows we would need f1 ¼ X2

2
f2 to obey the

radial gauge condition. The harmonic gauge condition then
forces Δ ¼ 2. The last column then tells us that we have a
harmonic solution for

f02 þ X2f002 ¼ 0 ⇒ f2 ¼ c1 þ c2 log½X2�; ð7:22Þ
so that there are two independent Δ ¼ 2, J ¼ 0 harmonic
and radial gauge generalized conformal primary vectors
given by

TABLE VII. Modes relevant for various constraints one can impose on a generalized conformal primary vector field. The allowed
forms for negative J solutions are related by complex conjugation.

XμAμ ∂μAμ □Aμ

Agen
Δ;þ1

0 0 4½ð2 − ΔÞf0 þ X2f00�mμφ
Δ

Agen
Δ;0 ½−f1 þ X2

2
f2�φΔ ½−2f01 þ ð3 − ΔÞf2 þ X2f02�φΔ f4½ð1 − ΔÞf01 þ X2f001 þ 1

2
f2�lμ þ 4½ð3 − ΔÞf02 þ X2f002 �nμgφΔ
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Aμ ¼
�
nμ þ

X2

2
lμ

�
ðc1 þ c2 log½X2�Þφ2; ð7:23Þ

which satisfy the freeMaxwell equations almost everywhere.

C. Generalized tensor

We can now see the pattern one would need to build up
an arbitrary symmetric rank-s tensor; one constructs super-
positions of symmetric products of tetrads with definite
conformal spin jJj ≤ s multiplied by a generalized con-
formal primary scalar of weight Δ (allowing an indepen-
dent solution for each independently allowed tensor factor).
We will now demonstrate the rank-2 example relevant to
generalizing our metric solutions.
Definition.—A generalized conformal primary metric is

a wave function on R1;3 which transforms under SLð2;CÞ
as a conformal primary of dimension Δ and spin J

hgenΔ;J;μν

�
Λμ
νXν;

awþ b
cwþ d

;
ā w̄þb̄
c̄ w̄þd̄

�
¼ ðcwþ dÞΔþJðc̄ w̄þd̄ÞΔ−JΛμ

σΛν
ρhgenΔ;J;σρðXμ;w; w̄Þ;

ð7:24Þ

and is symmetric under exchange of the ð3þ 1ÞD indices.
Using (2.7) and their SLð2;CÞ transformation properties

(2.9), we see that our desired J ¼ 0 solution takes the form

hgenΔ;0;μν ¼ lμlνφ
gen;1
Δ þ nμnνφ

gen;2
Δ þ ðlμnν þ nμlνÞφgen;3

Δ

þ ημνφ
gen;4
Δ ; ð7:25Þ

where the four generalized conformal primary scalar wave
functions that appear are generally different, and any one of
them can vanish. Meanwhile for J ¼ þ1 we have

hgenΔ;þ1;μν ¼ ðlμmν þmμlνÞφgen;1
Δ þ ðnμmν þmμnνÞφgen;2

Δ ;

ð7:26Þ

and the same for J ¼ −1 with m ↦ m̄. Finally, for J ¼ þ2
we have

hgenΔ;þ2;μν ¼ mμmνφ
gen
Δ ; ð7:27Þ

and the same for J ¼ −2 with m ↦ m̄.
We will now compute the constraints on the generalized

conformal scalar wave functions that arise from imposing
standard gauge constraints or equations of motion on the
metric. Again, we will only do so explicitly for the analytic
case (7.2), where the only freedom is the choice of fðX2Þ.
The results are summarized in Table VIII. The fact that
there are several allowed tensor structures makes the table
entries rather long, so we have separated out evaluating the
d’Alembertian

□hgenΔ;þ2;μν ¼ 4½ð2 − ΔÞf0 þ X2f00�mμmνφ
Δ;

□hgenΔ;þ1;μν ¼ 4½ð1 − ΔÞf01 þ X2f001 þ f2�ðlμmν þmμlνÞφΔ þ 4½ð3 − ΔÞf02 þ X2f002�ðnμmν þmμnνÞφΔ;

□hgenΔ;þ0;μν ¼ 4½−Δf01 þ X2f001 þ f3�lμlνφΔ þ 4½ð4 − ΔÞf02 þ X2f002�nμnνφΔ

þ 4½f2 þ ð2 − ΔÞf03 þ X2f003�ðlμnν þ nμlνÞφΔ þ 4

�
1

2
f2 þ ð2 − ΔÞf04 þ X2f004

�
ημνφ

Δ: ð7:28Þ

When we do not impose harmonic gauge or tracelessness,
this result needs to be combined with the entries of
Table VIII into the linearized Einstein tensor to identify
the matter stress tensor.
Recall, the point of this formalism was to set up a way to

look at sourced solutions or nonradiative backgrounds on
which to do scattering. We have now reached the point

where we have built enough machinery to dive into
interesting particular examples.

D. Boosted black hole, shockwave, and shift states

We will now show that combining our generalized
conformal primary scalar with the Kerr-Schild double copy

TABLE VIII. Modes relevant for various constraints one can impose on a generalized conformal primary metric. The allowed forms
for negative J solutions are related by complex conjugation.

ημνhμν Xμhμν ∂μhμν

hgenΔ;þ2
0 0 0

hgenΔ;þ1
0 ½−f1 þ X2

2
f2�mνφ

Δ ½−2f01 þ ð4 − ΔÞf2 þ X2f02�mνφ
Δ

hgenΔ;0 ½−2f3 þ 4f4�φΔ f½−f1 þ X2

2
ðf3 − f4Þ�lν þ ½X2

2
f2 − ðf3 − f4Þ�nνgφΔ f½−2f01 þ ð2 − ΔÞf3 þ X2ðf03 − f04Þ þ Δf4�lν

þ½ð4 − ΔÞf2 þ X2f02 − 2ðf03 − f04Þ�nμgφΔ
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formalism allows us to identify the Aichelburg-Sexl ultra-
boost metric with a generalized conformal primary metric
of Sec. VII C, as well as several other examples.
We start with the generalized scalar mode φCS00 , defined

in (7.15) and appearing as one of the two terms in the
conformally soft modes examined in [19]. Because this
mode appeared as a limit of source-free radiative modes, we
expect its source to have support only where those modes
had singularities in the iε → 0 limit. It is easier to identify
this source if we pick a reference direction q. Without loss
of generality, we take w ¼ 0 so that qμ ¼ ð1; 0; 0; 1Þ≡ qμ0.
We then have

log½X2�δðq0 · XÞ ¼ logðx2 þ y2Þδðt − zÞ; ð7:29Þ

then

□ðlog½X2�δðq0 · XÞÞ ¼ ½ð∂2
x þ ∂2

yÞ logðx2 þ y2Þ�δðt − zÞ
þ logðx2 þ y2Þð−∂2

t þ ∂2
zÞδðt − zÞ

¼ 2πδðxÞδðyÞδðt − zÞ; ð7:30Þ

where we have used ð∂t þ ∂zÞδðt − zÞ ¼ 0 to kill the
second term and employed the 2D Euclidean Green’s
function identity for the first term. Promoting this to
generic q, we get

□ðlog½X2�δðq · XÞÞ ¼ 2π

Z
dαδð4ÞðX − αqÞ: ð7:31Þ

Thus, the Klein-Gordon equation for this scalar mode is
sourced by a massless point particle.
We will now use this scalar as a starting point for the

double copy formalism. In Sec. VI, we observed that the
conformal primary wave functions take the Kerr-Schild
form where the polarization vectors m or m̄ serve as the
Kerr-Schild vector. Given what we saw in the previous
subsections, we can try to generalize these solutions further
by looking at other entries in our null tetrad to see if the
Kerr-Schild form holds.
It is straightforward to check that the null geodesic

requirement is satisfied by l since

lμ∇μlν ¼ lμ∂μlν þ lμΓρ
μνlρ ¼ 0: ð7:32Þ

The same also holds true for qμ. Because the profiles which
interest us are supported at q · X ¼ 0, where the prefactors
used to define our normalized tetrad diverge, we will use
the qμ in place of lμ within the double-copy formalism. This
does not get in the way of the classification we performed in
the last section, but highlights the care with which one
should approach excluding certain distributions. The only
thing to note here is that, while a double copy with lμ relates
fields of the same conformal dimension, a double copy with
qμ shifts the dimension down by one as the ð3þ 1ÞD spin

goes up by one (but the 2D spin stays constant). Starting
with the generalized conformally soft scalar φCS00, we land
on a metric with conformal dimension Δ ¼ −1 and
spin J ¼ 0.

1. Aichelburg-Sexl

The generalized conformal primary metric (7.25) of
dimension Δ ¼ −1 and spin J ¼ 0

lμlν log½X2�δðq · XÞð−q · XÞ2 ¼ qμqν log½X2�δðq · XÞ
ð7:33Þ

corresponds to the Aichelburg-Sexl ultraboost metric [33]

gμν ¼ ημν − 4GNαqμqν log½X2�δðq · XÞ; ð7:34Þ

with energy E ¼ αq0. The matter source is the bold line in
Fig. 1. In interesting recent work, [21] derived this form of
the metric starting from an off-shell amplitudes construc-
tion. We can proceed to match the other metrics considered
in that paper to generalized conformal primaries.

2. Ultraboosted Schwarzschild-Tangherlini

Reference [21] also discussed the generalization of
Aichelburg-Sexl to higher dimensions; the ultraboosted
Schwarzschild-Tangherlini metric studied in [34]. The
comparison to results in [21] does not stop there. First,
we point out that the analog of (7.9) for D > 4 (d > 2 in
[3]) implies the higher-dimensional analog of ultraboosted
Schwarzschild corresponds to the shadow modes for a
generalized conformally soft mode with Δ ¼ 1

ðX2ÞΔ−d
2

�
1

ð−q · XþÞΔ
−

1

ð−q · X−ÞΔ
�����

Δ¼1

¼ 1

ðX2ÞD−4
2

δðq · XÞ; ð7:35Þ

where D ¼ dþ 2 in the notation of [3]. We then arrive at

gμν ¼ ημνþ 8π
4−D
2 GNαqμqν

ΓðD−2
2
Þ

ðD− 4ÞðX2ÞD−4
2

δðq ·XÞ; ð7:36Þ

again a Δ ¼ −1 spin J ¼ 0 conformal primary, now in a
celestial CFTD−2.

3. Dray-’t Hooft planar shell

Consider the factorized form (7.2). For the analytic
conformal primary wave function φΔ, the class of gener-
alized conformal primary wave functions is captured by the
free function fðX2Þ. In the last few subsections, however,
we saw physically interesting solutions with distributional
support on the locus q · X ¼ 0. For any such SΔðq · XÞ as in
(7.7), one has a choice of fðX2Þ. In this and the following
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subsections, we will look at this type of generalization of
the examples we have just considered. Namely, we take

φgen
Δ¼1 ¼ fðX2ÞSΔ¼1ðq · XÞ; SΔ¼1 ¼ δðq · XÞ; ð7:37Þ

and show that different fðX2Þ take us from the Aichelburg-
Sexl metric to Dray-’t Hooft’s planar shell, to the ultra-
boosted Kerr solution. Moreover, this freedom to choose
fðX2Þ is isomorphic to the freedom examined by Ferrari,
Pendenza, and Veneziano [34]. We will start with the
specific example of Dray-’t Hooft, demonstrate the gener-
alization of [34] corresponds to our classification here, then
return to the specific example of the Kerr ultraboost, which
ties in directly to comments on spin memory and super-
rotation vacuum transitions with which we would like
to close.
As pointed out in [34], for the case fðX2Þ ¼ X2, we have

□

h
X2δðq0 · XÞ

i
¼ 8πδðt − zÞ; ð7:38Þ

so that in place of the localized source (7.30) (bold line in
Fig. 1), there is a constant density of matter across the plane
q · X ¼ 0 (plane tangent to light cone in Fig. 1). This holds
for arbitrary D with the change 8π ↦ 4ðD − 2Þπ coming
from the derivatives hitting

P
d−1
i¼1 x

2
i . We see that the metric

gμν ¼ ημν − 4πGNαqμqν
X2

ðD − 2Þ δðq · XÞ; ð7:39Þ

reproduces the Dray-’t Hooft plane-wave solution [35] with
energy density ρ ¼ αq0.

4. Beamlike gravitational waves

Ferrari, Pendenza, and Veneziano showed in [34] that by
changing the profile function fðX2Þ, parametrizing the
relative freedom (7.37), one can build up an arbitrary
beam. In our language, functions that respect the hyper-
bolic foliation of [41] keep the correct conformal covari-
ance properties. Because the authors in [34] are already
restricted to the plane q · X ¼ 0, they have X2 ¼ r2 where r
is the radial coordinate of a beam surrounding the null ray
Xμ ∝ qμ. The two dashed lines in Fig. 1 represent the
intersection of the null hyperplane q · X ¼ 0 and a hyper-
boloid of constant X2, which only happens for X2 > 0. As
explained in the discussion surrounding Fig. 1, this surface
is actually a world sheet in the full ð3þ 1ÞD spacetime of
which the figure shows a cross section.
Sticking to the case D ¼ 4 here, [34] points out that the

metric

gμν ¼ ημν − 4GNαfðX2Þqμqνδðq · XÞ ð7:40Þ

describes the metric surrounding a beam of null matter with
energy profile

EðrÞ ¼ αq0
ffiffiffiffiffiffi
X2

p
f0ðX2Þ: ð7:41Þ

The authors go on to examine geodesics in this background.
From the framework we have set up in this paper, we
identify this metric as a generalized conformal primary
metric of weight Δ ¼ −1, spin J ¼ 0, and double copy
form. Moreover, the space of solutions [34] considers is
precisely the degree of freedom we have in picking a
generalized conformal primary scalar of dimension Δ ¼ 1

for the choice of SΔ¼1 in (7.37). This encompasses the
limiting Aichelburg-Sexl/Schwarzschild-Tangherlini and
Dray-’t Hooft shells we have seen above, as well as the
ultraboosted Kerr gyraton we turn to next.

5. Ultraboosted Kerr gyraton

The final example [21] considers is the gyraton metric of
a spinning particle. The gyraton metric

gμν ¼ ημν − 4GNα logðjX2 − a2jÞqμqνδðq · XÞ ð7:42Þ

describes ultraboosted Kerr (or the metric surrounding a
highly-boosted spinning particle of mass m and spin s)
where a2 gives the spin to mass ratio via

aμ ¼ 1

m
sμ; ð7:43Þ

sμ is the spin vector, and a · q ¼ 0. The Kerr black hole can
be obtained from the Schwarzschild solution via the
Newman-Janis shift

Xμ → Xμ þ iaμ; ð7:44Þ

which has reared its head in recent studies of the double
copy [21,22,52]. Here we see the ring singularity of Kerr at
X2 ¼ a2, which extrudes a world sheet (dashed curve in
Fig. 1) surrounding the worldline through the origin (bold).
We conclude this sectionwith a couple of comments. First,

if we think of the gyraton as an ultraboosted Kerr black hole
as opposed to an approximate metric of an arbitrary spinning
particle, we have a bound on a ≤ 1 in natural units. We see
that any singular behavior is isolated to the hyperbolic slices
within a Planck length of the light cone. This world sheet
appears quite distinct from the geometry introduced in [52].
The complexification of Minkowski space required in the
Newman-Janus shift and employed in the world sheet
effective action of [52], however, lies at the heart of resolving
collinear singularities of on-shell three-point correlators [4],
and most likely presents a step towards establishing a world
sheet interpretation of the celestial sphere CFT. It would be
interesting to pursue any connections that might manifest,
now that we have identified this background as a generalized
conformal primary state.
Second, the nature of this solution implies it should act as

a canonical example of a source inserting spin memory [53]
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at a point on the celestial sphere. Its matter stress tensor
should give a nonzero flux of angular momentum through
null infinity.11 Similar to the electromagnetic case [54], a
single-boosted particle will not radiate. However, scattering
between configurations that are approximately of this form
at early and late times would be expected to give a nonzero
radiative memory mode [53,55], as opposed to just a
change in the angular momentum aspect.

6. Superrotation vacuum transitions

The Aichelburg-Sexl metric we began with is an exam-
ple of a pp-wave. Shock waves of the form studied by Dray
and ’t Hooft are relevant for inserting supertranslation
hair.12 Furthermore, we mentioned in the previous sub-
section that the gyraton should source spin memory, the
canonical partner to the superrotation Goldstone. With
these ideas in mind, it is natural to turn to another cut
and paste proposal relevant to the asymptotic symmetry
analysis. In [59], Strominger and Zhiboedov proposed
interpreting superrotation vacuum to vacuum transitions
as snapping cosmic strings. Such geometries were further
conjectured to generalize the celestial sphere to nontrivial
topologies, which makes them of particular interest to
celestial CFTwith respect to possible constraints that could
arise from modular invariance.
A metric which glues finite superrotations across the

light cone takes the form

ds2 ¼ −du2 − 2dudr

þ
�
2r2γzz̄ þ

1

4
u2Θð−uÞð1þ zz̄Þ2fζ; zgfζ̄; z̄g

�
dzdz̄

− ruΘð−uÞðfζ; zgdz2 þ fζ̄; z̄gdz̄2Þ; ð7:45Þ

where

fζ; zg ¼ ζ000

ζ0
−
3

2

�
ζ00

ζ0

�
2

: ð7:46Þ

We can massage this into the form of a classical double
copy with generalized conformal primary metric form if we
allow ourselves to complexify this metric. It is straightfor-
ward to see that for the complexified case, by choosing

fζ; zg ¼ 1

ðz − wÞ4 ; fζ̄; z̄g ¼ 0; ð7:47Þ

which can be achieved with the finite complexified con-
formal transformation

ζ ¼ tan
1ffiffiffi

2
p ðz − wÞ ; ζ̄ ¼ z̄; ð7:48Þ

the metric (7.45) reduces to

gμν ¼ ημν þ ½Θð−X2ÞΘðX0Þ − 1�h̃2μν; ð7:49Þ

where h̃2μν is the superrotation Goldstone mode analyzed
in [20] and gμν − ημν is a generalized conformal primary
metric of weight Δ ¼ 2 and spin J ¼ 2 with Kerr-Schild
vector mμ. We would also emphasize the difference
between solutions of this form and solutions we would
expect to source spin memory. In the Bondi gauge, the zero
mode corresponding to spin memory should be paired with
the superrotation Goldstone. This observable is not, itself, a
vacuum to vacuum transition between finitely superrotated
solutions.
While concocting a complexified version to guarantee

Kerr-Schild form is of interest from the point of view of this
paper and looking at scattering around finite backgrounds
[though one may need to go to a (2,2) signature], sticking
to infinitesimal transformations allows us to superimpose
the complex conjugate mode, keep the metric real, and still
find an application for our generalized conformal primary
metrics, albeit not the Kerr-Schild double copy.
So long as one sticks to linearized solutions, one can

superimpose conformal primaries of various reference
directions to build up more general angular profiles. One
could expect to straightforwardly construct the general
form (7.45), which [59] showed matched Penrose’s cosmic
string metric, but the full C-metric bulk solution seems
more subtle. In [27], it was shown that the C-metric can
be written as a double copy. From the classification of
source geometries in Fig. 1, however, we do not expect the
C-metric to be a single conformal primary. It would be
interesting to generalize our setup to other sourced and/or
double-copy examples.

VIII. OUTLOOK

Wewould like to conclude this paper by looking towards
the future. In the previous section we covered examples
introduced decades ago by [33–35] in the interest of finding
exact solutions to Einstein’s equations. Interestingly, recent
literature like [21,22,26] is finally appreciating how these
solutions arise from the double copy. This change in
method is powerful. For our purposes, we are particularly
interested in what it can teach us about a celestial CFT
reorganization of scattering amplitudes.

11Note the condition a · q ¼ 0 does not get in the way of this
fact. In the rest frame of a spinning particle, the four momentum
ðm; 0⃗Þ and spin vector ð0; s⃗Þ are orthogonal. This remains true in
the ultraboost. In the massless case, sμ is replaced with the Pauli-
Lubanski pseudovector and we measure the helicity of the
particle moving with four-momentum parallel to qμ.

12See [56] for the original proposal, [57] for a near-horizon
perspective and [58] for an examination of the effect of these
modes on the experience of an infalling observer. Note that we are
looking at a planar shell here, as opposed to the spherical ones
considered in those references.
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In particular, let us point out that the method [21] used
makes the comparison here all the more interesting. That
paper showed how certain interesting exact solutions to the
Einstein equations arose from an off-shell scalar-scalar
graviton three-point function. Here, we have shown that the
metrics that appear in various interesting double copy
examples are generalized conformal primary metrics.
Combining this realization with the computation of [21]
seems to imply that we should also see this structure in the
OPE coefficients of the celestial CFT. It would be particu-
larly interesting to pursue a celestial CFT interpretation of
the method to reach these backgrounds rather than merely
the metrics resulting therefrom.
The goal of the Celestial Holography program is to gain

insights into bulk physics and not just rewrite what is
guaranteed from on-shell kinematics of scattering states.
As such, we have sought to systematize our approach to

building conformal primaries of different spin for radiative
states, and generalize our formalism to nonradiative/off-
shell states so that we gain more categories of candidate
bulk physics interpretations for operators that might appear
within celestial CFT OPE expansions and conformal block
decompositions.
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