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We study a Jackiw-Teitelboim (JT) supergravity theory, defined as a Euclidean path integral over
orientable supermanifolds with constant negative curvature, which was argued by Stanford and Witten to
be captured by a random matrix model in the β ¼ 2 Dyson-Wigner class. We show that the theory is a
double-cut matrix model tuned to a critical point where the two cuts coalesce. Our formulation is fully
nonperturbative and manifestly stable, providing for explicit unambiguous computation of observables
beyond the perturbative recursion relations derivable from loop equations. Our construction shows that this
JT supergravity theory may be regarded as a particular combination of certain type 0B minimal string
theories, and is hence a natural counterpart to another family of JT supergravity theories recently shown to
be built from type 0A minimal strings. We conjecture that certain other JT supergravities can be similarly
defined in terms of double-cut matrix models.
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I. INTRODUCTION

Jackiw-Teitelboim (JT) gravity [1,2], a theory of 2D
dilaton gravity, has emerged as one of the simplest models
for studying nontrivial problems in quantum gravity.
Describing the low-energy dynamics of a wide class of
near-extremal black holes and branes [3–7], JT gravity also
features in a precise realization of holographic AdS2=CFT1,
arising as the low-energy gravitational dual to the Sachdev-
Ye-Kitaev (SYK) 1D quantum mechanical system [8–13].
It has also been a crucial ingredient in recent work that has
yielded new insights into how the black hole information
puzzle may be resolved [14–17].
The partition function of the theory ZðβÞ has two natural

parameters: the length, β, of a boundary, which defines the
temperature via β ¼ 1=T and the quantity S0 (which can be
thought of as the extremal entropy of the parent black hole),
which defines a coupling ℏ ¼ e−S0 . Surfaces of Euler
character χ ¼ 2ð1 − gÞ − n (there are g handles and n
boundaries) contribute with a factor ℏ−χ to the path integral.
It is vitally important to be able to fully formulate JT
gravity as a complete theory of quantum gravity in its own

right, not just perturbatively in the parameters, but beyond.
A landmark discovery in this regard was the remarkable
demonstration by Saad, Shenker and Stanford [18] that JT
gravity can be formulated as certain random Hermitian
matrix models, in a double scaling [19–22] limit:

Zðβ1;…; βnÞ ↔ hTre−β1H � � �Tre−βnHic: ð1Þ
On the left-hand side Zðβ1;…; βnÞ is the JT gravity path

integral, computed as a Euclidean path integral over (con-
nected) Riemann surfaces with constant negative curvature
and n asymptotic boundaries of lengths βi. On the right-hand
side is the connected correlation function of insertions of the
operator Tre−βiH, with h� � �ic implying an ensemble average
of the Hermitian matrix H. The correspondence was estab-
lished inRef. [18] via powerful recursion relations,matching
the volumes of moduli spaces of Riemann surfaces [23]
contributing to Zðβ1;…; βnÞ to a genus expansion of a
Hermitian matrix integral [24,25]. While Eq. (1) is under-
stood to be order by order in genus g and then summed, a
matrix model definition can in principle supply nonpertur-
bative completions that go beyond the sum over genus.
Nonperturbative physics is extremely important, especially
for studying the low energy regime, and so it is of great
interest to fully understand and characterize matrix model
formulations, as a means of extracting it.1
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1While the Hermitian matrix model definition of Ref. [18] has
a problematic nonperturbative definition, a complete nonpertur-
bative completion of ordinary JT gravity that is naturally rooted in
matrix models can be found, as shown in Ref. [26].
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The correspondence was broadened rather elegantly
by Stanford and Witten [27] to include wider classes of
JT gravity, incorporating models with fermions and/or
time-reversal symmetry. Such models were shown
to be classified according to one of the ten types of
random matrix ensemble: the three Dyson-Wigner β
ensembles and the seven Altland-Zirnbauer ðα; βÞ ensem-
bles [28,29]. Many detailed gravity computations [now
involving the moduli space of orientable and/or unor-
ientable (super) Riemann surfaces] were shown to be
captured by detailed matrix model integrals, establishing
that expression (1) still holds (for an appropriate choice
of H). In the case of N ¼ 1 JT supergravity, which will
be the focus of this paper, the Hermitian matrix is written
H ¼ Q2, where it is the supercharge Q that is (on general
grounds) classified in the tenfold way, depending upon
the number, N, of fermions the effective SYK-like
“boundary” dual has, and the action of ð−1ÞF and T,
where F and T are fermion number and the time reversal
operator, respectively [27,30–36].
Symmetry under T results in the inclusion of unorient-

able surfaces in the path integral, but this paper will feature
JT supergravity theories models that do not preserve T.
So all that is left is to consider whether ð−1ÞF is a symmetry
or not—i.e., whether N is even (let us call this case A) or
odd (case B). In case A, since the supercharge anticom-
mutes with ð−1ÞF, it can be written [in a basis where ð−1ÞF
is block diagonal] as

Q ¼
�

0 M

M† 0

�
; ð2Þ

where M is a complex matrix, and M† its Hermitian
conjugate (see Sec. 2.6.2 in Ref. [27]), and the natural
combination the matrix model (1) cares about is M†M. In
case B, there is no grading due to ð−1ÞF, and so Q is itself
just an Hermitian matrix. This case should therefore fall
into the β ¼ 2 Dyson-Wigner class.
Recently, it was shown in Refs. [37–39] how to use

double-scaled random complex matrix models [40–44]
with a potential of the form VðM†MÞ to yield a complete
perturbative and nonperturbative definition of the case A
supergravity above. The formulation was shown to be
equivalent to combining together (in a precise sense
reviewed later) an infinite family of models known [45]
to be equivalent to type 0A minimal string theories.2 For
other studies of JT gravity and supergravity using minimal
models, see Refs. [46–50].
In retrospect, the involvement of type 0Aminimal strings

is entirely natural. The world sheet physics of minimal

string theories are themselves theories of two-dimensional
quantum gravity. When fermions are present, there is a spin
structure on the surfaces that enter the path integral, and
how these are treated defines different types of string
theories [51]. Type 0A string theories sum over such spin
structures and keep track of them by including a weight
factor of ð−1Þζ in the sum, where ζ (0 or 1 mod 2) is the
parity of the spin structure. On the other hand, in the JT
classifications above, the boundary ð−1ÞF directly corre-
lates with the bulk ð−1Þζ. Hence with hindsight it is natural
that, if minimal strings are going to be relevant at all (and
that is thrust upon us by the presence of double-scaled
matrix models in both settings) it is indeed type 0A
minimal strings that relate to case A above. Indeed, many
special properties of the nonperturbative “string equations”
that describe type 0A strings, when deployed appropriately
(as demonstrated in Ref. [37]) yield many of the remarkable
properties of the supergravity models noticed in Ref. [27].
This paper answers the natural question as to whether the

remaining T-breaking JT supergravity, case B above, can
be given an analogous treatment, yielding a fully comput-
able stable nonperturbative definition of the theory’s
observables. In light of the previous paragraph there is a
natural guess: Since it does not respect ð−1ÞF and hence
results in a sum over bulk geometries that simply ignores
ð−1Þζ, it ought to have a connection to type 0B minimal
strings, which themselves ignore that weight factor by
definition. The answer will turn out to be yes, and the 0B
connection (anticipated in Ref. [27]) will prove to be
correct.
Two more clues help lead to these answers, and they can

be found in the leading form of the spectral density for Q,
denoted here ρ0ðqÞ. Since H ¼ Q2, this is determined by
the Laplace transform of the super-Schwarzian partition
function, which yields [31] the density ρSJT0 ðEÞ of H (with
energies E ≥ 0). This gives

ρSJT0 ðEÞ ¼
ffiffiffi
2

p
coshð2π ffiffiffiffi

E
p Þ

πℏ
ffiffiffiffi
E

p ⇒ ρ0ðqÞ ¼
coshð2πqÞ

πℏ
; ð3Þ

since E ¼ q2, and after taking into account the Jacobian
dE ¼ 2qdq in the Laplace transform integral, where the 2
is absorbed by integrating q over R. (A translation factor of
γ−1 ¼ 1=

ffiffiffi
2

p
has also been used to go from the gravity

density to the matrix model density, as in Ref. [27].)
As noticed in Ref. [27], the Hermitian matrix model for

Q therefore has (after double scaling to match gravity) a
spectral density that naturally spreads over the entire real
line. This is our first clue: The most commonly studied
cases of double-scaled Hermitian matrix models usually
have support on the half line, resulting from the fact that the
double-scaling limit “zooms in” to capture the universal
physics to be found at one critical end point of the

2In fact, the same framework includes some T-invariant
models too. They all fall into the ðα; βÞ ¼ ð2Γþ 1; 2Þ Altland-
Zirnbauer series, for Γ ¼ 0;þ 1

2
;− 1

2
. Here, integer Γ breaks T.
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(unscaled) spectral density, as shown in the upper part of
Fig. 1 (see e.g., Ref. [52] for a review).
The simplest way of arriving at a density that spreads

over the whole real line from double scaling is to zoom in
on two end points that are colliding with each other, as can
happen with critical double-cut matrix models (see the
lower part of Fig. 1). The second clue is that ρ0ðqÞ is
symmetric on the real line. As will be reviewed later, the
string equations that arise from double-scaling symmetric
two-cut models (pioneered in Refs. [53–58]) have already
been identified in Ref. [45] as capturing type 0B minimal
string physics. Moreover, there is a curious universal
feature of the string equations that arises in the symmetric
sector (the Painlevé II hierarchy) that, as we will show,
reproduces certain characteristic features of observables in
the JT supergravity. Combining together an infinite family
of 0B minimal string models in a way precisely analogous
to what was done in Refs. [37–39] for the other JT
supergravities provides a fully nonperturbative definition
of the theory. As an example of what can be computed from
it, Fig. 2 displays (blue dots) the full nonperturbative
spectral density for Q. The black dashed line is the
perturbative result of Eq. (3). Other important quantities
can be computed in this way, such as the spectral form
factor displayed later in Fig. 10.
The rest of this paper is organized as follows. Section II

reviews the construction of double-cut Hermitian matrix
models and their double-scaling limit. Section III defines
the particular model that describes the Dyson-Wigner
β ¼ 2 JT supergravity, showing that it reproduces all of
the characteristic perturbative results for this model derived
in Ref. [27]. Nonperturbative contributions of the matrix
model are studied in Sec. IV, where the full spectral density
and spectral form factor are obtained by combining analytic
and numerical techniques. We finish in Sec. V with some
discussion. There are a number of Appendices included that
expand some computations, and help keep this work
somewhat self-contained without diluting the narrative
flow. Appendices A and B are devoted to computing
multicorrelators at leading genus and higher genus cor-
rections to the one-point function hTre−βQ2i, respectively.

The normalization of eigenfunctions is discussed in
Appendix C.

II. DOUBLE-CUT MATRIX MODELS

Very soon after the discovery of the double-scaling limit
in the context of single-cut Hermitian matrix models in the
1990s [19–22], the study of the double-scaled limit of
multicut Hermitian matrix models was initiated in a series
of works [55–59], with most of the focus on two-cut
models. Closely allied to the latter are the double-scaled
unitary matrix models, discovered slightly earlier in
Refs. [53,54], which yield a subset of the same physics.3

We shall see that in the end, the physics that we need will be
accessible from either system, but Hermitian double-cut
matrix model language is perhaps the most natural here
given the considerations of the previous section. They are
built from an N × N Hermitian matrix Q,4 so that the
expectation value of a matrix observable O is

hOi ¼ 1

Z

Z
dQOe−NTrVðQÞ; ð4Þ

where Z ¼ R
dQe−NTrVðQÞ is the matrix partition function.

The probability measure is determined by the potential
VðQÞ, that is typically taken to be a polynomial. See

q

q

FIG. 1. The double-scaling limit as a “zoom in” to the
neighborhood of the end points of spectral densities, resulting
in either a semi-infinite cut starting from a single-cut case, or
resulting in an infinite cut starting from a double-cut case that has
a merger.
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FIG. 2. Full spectral density for the double-cut model relevant
for JT supergravity, obtained from summing the two s ¼ �
contributions shown in Fig. 7. The dashed curve corresponds to
the answer to all orders in perturbation theory (3), so that their
difference is entirely generated by nonperturbative contributions.

3Transitions of the kind that interest us, involving mergers of
cuts, have an older history from before double-scaling and gravity
applications (see e.g., Refs. [60,61]).

4Note that the symbolN, the dimension of the square matrixQ,
should not be confused with the N describing the number of SYK
fermions, as used in Sec. I.
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Refs. [52,62,63] for useful sources of information about
random matrix theory and applications of the double-
scaling limit.
A central observable that determines the average dis-

tribution of eigenvalues λi ∈ R of the matrix Q is the
spectral density ρðqÞ, defined as

ρðqÞ ¼
�
1

N

XN
i¼1

δðq − λiÞ
�
: ð5Þ

Depending on the particular number and location of the
minima of VðQÞ, the spectral density in the large N limit
becomes a smooth function of q supported on a finite
number of disjoint intervals in q ∈ R. These intervals
ultimately become cuts in the complex q-plane when using
complex analysis to analyze the largeN limit. When ρðqÞ is
supported on more than one interval, the matrix model is
said to be “multicut.”
The focus here is on systems that transition between

double- and single-cut phases. Precisely at the transition,
the corresponding potential VðQÞ is said to be “critical,”
with different critical systems characterized [64] by the rate
at which the spectral density vanishes where the two cuts
meet at q ¼ 0, i.e., limN→∞ ρmðqÞ ∼ qm with m ∈ N. For
even potentials we have m ¼ 2k with k ∈ N, and the large
N spectral density of a critical system can be written as

lim
N→∞

ρ2kðqÞ ¼
bk
2π

�
q
a

�
2k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 − q2

a2

s
; ð6Þ

where a > 0 and bk ¼ 22kþ1ðkþ 1Þ!ðk − 1Þ!=að2k − 1Þ! is
a normalization constant. This spectral density is supported
on q ∈ ð−a; 0Þ ∪ ð0; aÞ and arises from a two-cut spectral
density transitioning to a single-cut phase. Using standard
methods (see e.g., Refs. [65,66]), the appropriate potential
needed to produce this spectral density can be easily
worked out to be

V 0
2kðqÞ ¼ bk

Xk
n¼0

�
1=2

n

�
ð−1Þn

�
q
a

�
2ðk−nÞþ1

; ð7Þ

which defines the critical model for arbitrary N. The even
potential V2kðqÞ contains two minima symmetrically
located in the interval jqj < a. Figure 3 is a plot of the
potential and spectral density for k ¼ 2. Note that it is
possible to construct models whose spectral density
behaves like limN→∞ ρðqÞ ∼ q2kþ1, but it is more subtle,
as these models by themselves are not well defined since
the resulting (unscaled) densities are not positive definite.
Instead, they can be introduced as perturbations of the even
model potentials, as described in Refs. [58,67].

A. The double-scaling limit

The double-scaling limit involves approaching the criti-
cal potential (7) while simultaneously taking the large N
limit in a way that captures only certain universal physics
associated to the merging of the two cuts. The leading
spectral density in the double-scaled model corresponds to
the behavior of ρðqÞ at q ∼ 0. For even potentials, this is
easily obtained from Eq. (6) by taking a → ∞, which gives
ρ0ðqÞ ¼ limN→∞ ρ2kðqÞ ∼ q2k. There will be 1=N (topo-
logical) perturbative corrections to this leading large N
behavior, and nonperturbative contributions too. There is a
powerful formulation (the orthogonal polynomial methods
[68,69]) that allows for them to be efficiently extracted.
These methods are reviewed in e.g., Refs. [52,62,63,65].
A brief summary of the logic is as follows. After writing

the matrix model in terms of integrals over the N eigen-
values λn, a family of N polynomials PnðλÞ ¼ λn þ � � � that
are orthogonal with respect to the matrix model measure
dλe−NVðλÞ is introduced. A simple argument shows the
different polynomials are related according to

λPnðλÞ ¼
ffiffiffiffiffiffiffiffiffiffi
Rnþ1

p
Pnþ1ðλÞþSnPnðλÞþ

ffiffiffiffiffiffi
Rn

p
Pn−1ðλÞ; ð8Þ

where Rn and Sn depend on the particular theory. The
matrix model can be used to derive a family of recursion
relations for Rn and Sn, and solving the model is equivalent
to finding them. The PnðλÞ themselves supply a Hilbert
space description of the system, on which matrix model
observables become operators. This will be very useful
shortly. At large N, the Rn and Sn define smooth functions
RðXÞ and SðXÞ of the variable X ¼ n=N ∈ ð0; 1Þ, a smooth
coordinate along the spectral density. The scaling limit
around the critical behavior at an end point is done by
introducing a parameter b which goes to zero as N → ∞,
and the rate at which it does so is set by ℏb2þ1=m ¼ 1=N
(with m ¼ 2k), determining a scaled topological expansion
parameter ℏ. The rate at which various quantities in the
model approach their critical values at the X ¼ 1 end point

FIG. 3. In blue we plot the singular spectral density (6) with
k ¼ 2, where the spectral density vanishes at the origin were the
two cuts meet limN→∞ ρ2kðqÞ ∝ q4. The dashed curve corre-
sponds to the critical potential (7), with the two minima
symmetrically located around q ¼ 0.
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is controlled by a power of b e.g., RðXÞ ¼ Rc þ
ð−1Þnb1=mfðxÞ þ � � �, where x ∈ R is the scaling part of
X ¼ 1 − b2ðx − μÞ, and the parameter μ will be fixed later.
A different scaling function gðxÞ arises from SðXÞ.
Inserting all these relations into the recursion relations
and taking the limit yields nontrivial coupled ordinary
differential equations for fðxÞ and gðxÞ. These are the so-
called “string equations” for the system indexed by m.
More generally, the critical potentials (7) can be summed

together with coefficients tm, and, defining the alternative
set of functions rðxÞ and αðxÞ by fðxÞ ¼ rðxÞ coshðαðxÞÞ
and gðxÞ ¼ rðxÞ sinhðαðxÞÞ the differential equations can
be conveniently written in the conventions of Ref. [45] as

X∞
m¼1

tmKm þ xK0 ¼ 0;

X∞
m¼1

tmHm þ xH0 þ η ¼ 0; ð9Þ

where η is a parameter of the model, arising as an
integration constant (see Ref. [45]) and fKm;Hmg are
polynomials of frðxÞ; αðxÞg and their derivatives deter-
mined from the following recursion relations:

Kmþ1 ¼ ℏα0Km þ rHm − ℏ2ðH0
m=rÞ0;

H0
mþ1 ¼ ℏα0H0

m − rK0
m; ð10Þ

where ðK0; H0Þ ¼ ðrðxÞ; 0Þ and primes are derivatives with
respect to x (see Ref. [45] for explicit expressions for the
first few values of m).5

The parameter tm controls the double-scaling limit of
the critical model with ρ0ðqÞ ∝ qm, e.g., the double-
scaled 2kth model associated to the critical potential in
Eq. (7) is obtained by setting all tm ¼ 0 except for
t2k ¼ 1. As differential equations, they encode not just
the corrections to the leading large N behavior, but
nonperturbative information too, as we shall see. They
can be derived from the Zakharov-Shabat (ZS) integrable
hierarchy [70], in an analog of the manner in which
the equations of type 0A minimal strings can be derived
from the Korteweg-de Vries (KdV) integrable hierarchy.
These models were identified as type 0B minimal strings
in Ref. [45].
Strictly speaking, we have written here a large family of

string equations labeled by any integerm. For our purposes,
it will be enough to restrict ourselves to the m even models

with α0ðxÞ ¼ 0.6 Using the recursion relations (10) it is
straightforward to show that H2k ¼ 0, so that the second
string equation (9) is automatically satisfied after fixing
η ¼ 0. The K2k are polynomials in rðxÞ and its derivatives,
computed from the following closed recursion relation
obtained from Eq. (10):

K2k ¼
2k

2k − 1

�
rðxÞ

Z
x
dx̄rðx̄ÞK0

2ðk−1Þ −
1

4
ℏ2K00

2ðk−1Þ

�
;

ð11Þ

where we have rescaled ℏ → ℏ=2 as well asK2k so that they
are normalized as K2k ¼ rðxÞ2kþ1 þOðℏ2Þ.7 The first few
are easily computed and given by

K0 ¼ rðxÞ;

K2 ¼ rðxÞ3 − 1

2
ℏ2r00ðxÞ;

K4 ¼ rðxÞ5 − 5

6
ℏ2rðxÞðrðxÞ2Þ00 þ 1

6
ℏ4rð4ÞðxÞ;

..

.

K2k ¼ rðxÞ2kþ1 þ � � � þ ð−1Þkk!ðk − 1Þ!
2ð2k − 1Þ! ℏ2krð2kÞðxÞ; ð12Þ

where rð2kÞðxÞ corresponds to the 2k x-derivatives acting
on rðxÞ.
Finally, the full string equation for this class of even

double-cut models is given by

X∞
k¼1

t2kK2k þ rðxÞx ¼ 0: ð13Þ

Restricting to the even m models and turning off αðxÞ
reduces the two string equations (9), to this simpler single
equation. It is in fact the Painlevé II hierarchy of ordinary
differential equations (ODEs), related to the modified KdV
(mKdV) integrable hierarchy, and was first discovered for
double-scaled unitary matrix models [53,54]. We shall see
that Eq. (13) is enough for describing the JT supergravity
theory in which we are interested.

B. Observables

We shall need to compute certain observables from
the function rðxÞ that solves the string equation (13).
The expectation value of any single trace observable
can be computed from a certain “macroscopic loop”5The string equations for the multicut matrix models were first

derived in full generality in Refs. [56,58]. We are following the
conventions in Ref. [45], slightly changing some of the notation
in order to avoid confusion: αhere ¼ βthere, Khere

m ¼ Rthere
m and

ηhere ¼ qthere. As pointed out in Ref. [45], qthere arises as an
integration constant, and counts the amount of R-R flux in a
minimal string interpretation.

6Note the actual constant value αðxÞ ¼ α0 does not appear in
the string equations and is therefore irrelevant.

7The rescaling of K2k can be applied at the level of the string
equation by shifting t2k → t2k=P2kð0Þ, where P2kðzÞ is the
Legendre polynomial.
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formula derived in Ref. [58]. In our conventions, it is
written as [71]

hTrðe−βQ2Þi ¼
X
s¼�

Z
μ

−∞
dxhxje−βHs jxi; ð14Þ

where

Hs ¼ p̂2 þ ½rðx̂Þ2 − sℏr0ðx̂Þ�; ð15Þ

with p̂ ¼ −iℏ∂x. The quantum mechanical system spanned
by the position eigenstates jxi arises from the continuum
limit of the orthogonal polynomial system described in the
previous subsection, i.e., PnðλÞ ∼ jni is promoted to a
continuous variable x [22,72].8 The integral comes from the
continuum limit, so that a sum over n of orthogonal
polynomial quantities, becomes an X integral from 0 to 1.
What remains is the part that survived in the double-scaling
limit, which zooms into the neighborhood of the X ¼ 1 end
point defined by X ¼ 1 − b2ðx − μÞ, giving −∞ and μ as
the limits on the x integral. The value of μ will be fixed
later by comparison to the supergravity theory. Compared
to the single-cut models in Refs. [72,74], there is an
additional sum over s ¼ � that comes from the fact the
orthogonal polynomials have a different behavior for even
and odd n [56,71].
The right-hand side is computed in one-dimensional

quantum mechanics in the usual way with hpjxi ¼
eipx=ℏ=

ffiffiffiffiffiffiffiffi
2πℏ

p
. This provides an extremely concrete formal-

ism that allows us to compute arbitrary single trace
observables to all orders in ℏ, and nonperturbatively. As
explained and shown in Appendix A, analogous formulas
can be derived for a higher number of insertions of the
matrix operator Tre−βQ

2

. This will be useful when we
compare results of the multicut matrix model to the JT
supergravity predictions.
This is all a beautiful counterpart to what occurred for the

other JT supergravity model (case A in the Introduction)
and its cousins in Refs. [37,39,73]. There, the natural
system that arose from double-scaled complex matrix
models produced a single Schrödinger Hamiltonian H ¼
p̂2 þ uðx̂Þ, where uðxÞ solved a different string equation.
All of the techniques applied there can be brought to this
system in order to fully solve this JT supergravity.9

For a start, we can use Eq. (14) to write a formula for
the spectral density ρðqÞ using the relation hTre−βQ2i ¼Rþ∞
−∞ dqρðqÞe−βq2 . Defining the wave functions ψE;sðxÞ of
the operator Hs (15),

HsψE;sðxÞ ¼ EψE;sðxÞ; ð16Þ

with eigenvalue E, a simple calculation yields

ρðqÞ ¼ jqj
X
s¼�

Z
μ

−∞
dxjψq2;sðxÞj2: ð17Þ

Now we are ready to apply all of this technology to the JT
supergravity of interest.

III. PERTURBATIVE PHYSICS

An important test is to see if the double-cut double-
scaled model reproduces the perturbative JT supergravity
results obtained in Sec. 5.2.1 of Ref. [27]. Recall that this is
a supergravity theory with contributions from orientable
supermanifolds of constant negative curvature with both
even and odd spin structures weighted equally. As a
reminder, we denote as Zðβ1;…; βnÞ the partition function
with n asymptotic boundaries of renormalized length βi,
which includes all possible (connected) genus surfaces
weighted by ℏ2ðg−1Þþn, where ℏ ¼ e−S0 . These observables
were computed in Ref. [27] to all orders in perturbation
theory in ℏ. They were shown to vanish (see Appendices A
and D of Ref. [27]), except for the cases n ¼ 1, 2, which are
given by

ZðβÞ
γ

¼ eπ
2=β

ℏ
ffiffiffiffiffiffi
πβ

p ;
Zðβ1; β2Þ

γ2
¼

ffiffiffiffiffiffiffiffiffi
β1β2

p
πðβ1 þ β2Þ

: ð18Þ

Included with each supergravity observable is an inverse
factor of γ ¼ ffiffiffi

2
p

for each boundary. These are in place in
preparation for comparison to matrix model quantities. As
explained in Ref. [27], a factor γ is needed to convert every
matrix model trace involved when comparing to super-
gravity results.
The spectral density of the supergravity theory, defined

from ZðβÞ ¼ R
∞
0 dEρSJT0 ðEÞe−βE, is given on the left of

Eq. (3). Meanwhile, the spectral density ρ0ðqÞ of the
supercharge via the matrix model is given on the right
of Eq. (3). While all of these results are surprisingly simple,
we stress that they get corrected by important nonpertur-
bative effects, which we will compute using the methods of
this paper in Sec. IV.

A. Matrix model matching

Section II reviewed a general class of double-scaled
matrix models, specified by the coefficients t2k that
determine the string equation (13) satisfied by rðxÞ, as
well as by μ appearing in the computation of observables
(14). Fixing to a specific ft2k; μg determines a particular
double-scaled model. Matching the leading genus behavior
of γhTre−βQ2i to the supergravity partition function ZðβÞ in
Eq. (18) uniquely fixes these parameters.

8See Refs. [52,63] for detailed reviews on how this effective
description arises and Refs. [26,37,39,73] for more recent
discussions in the JT supergravity context.

9In the discussion of Sec. V, there are further comments about
the similarities, and crucial differences, between these two
systems.
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We start by writing a perturbative expansion in ℏ for the
function rðxÞ:

rðxÞ ¼ r0ðxÞ þ
X∞
n¼1

rnðxÞℏn: ð19Þ

Inserting this into the string equation (13), the leading
contribution r0ðxÞ is determined from the following simple
algebraic constraint:

r0ðxÞ
�X∞
k¼1

t2kr0ðxÞ2k þ x

�
¼ 0; ð20Þ

which admits two possible solutions: Either r0ðxÞ ¼ 0 or
the quantity in parentheses vanishes, giving r0ðxÞ ≠ 0. To
get a nontrivial function r0ðxÞ defined over the whole real
line x ∈ R, we use the piecewise and continuous solution

r0ðxÞ∶
	P∞

k¼1 t2kr0ðxÞ2k þ x ¼ 0; x ≤ 0;

r0ðxÞ ¼ 0; x ≥ 0:
ð21Þ

From this solution, let us compute the leading genus
contribution to hTre−βQ2i in Eq. (14), using the following
identity:

hx2je−βHs jx1i ¼
e−βr0ðx2Þ

2−1
βð

x1−x2
2ℏ Þ2

2ℏ
ffiffiffiffiffiffi
πβ

p þOðℏÞ; ð22Þ

which can be easily proven by inserting a complete set of
eigenstates of the momentum operator p̂ and solving the
resulting p integral. Using this in Eq. (14) we find

hTre−βQ2i ¼ 2

2ℏ
ffiffiffiffiffiffi
πβ

p
Z

μ

−∞
dxe−βr0ðxÞ2 þOðℏÞ

≃
1

ℏ
ffiffiffiffiffiffi
πβ

p
�
μþ

X∞
k¼1

t2k2k
Z

∞

0

dr0r2k−10 e−βr
2
0

�

¼ 1

ℏ
ffiffiffiffiffiffi
πβ

p
�
μþ

X∞
k¼1

t2kk!
βk

�
þOðℏÞ; ð23Þ

where in the second equality we changed the integration
variable to r0 and computed the Jacobian using Eq. (21).
Note that to leading order the operator Hs in (15) is
independent of s ¼ �. We have also assumed the boundary
condition r0ð−∞Þ ¼ þ∞ that we shall verify shortly.
The leading ℏ behavior in (23) depends on the param-

eters ft2k; μg, and it should match with the supergravity
observable ZðβÞ=γ in Eq. (18). Clearly, the matrix model
result (23) has precisely the right structure, and we find
agreement if

ðt2k; μÞ ¼
�
π2k

k!2
; 1

�
: ð24Þ

This unambiguously defines the multicut double-scaled
model.10 With this choice, the spectral density ρ0ðqÞ of the
matrix model is the correct function given in Eq. (3) and
the definition of r0ðxÞ in the x < 0 region of Eq. (21)
can be resummed and written in terms of a modified
Bessel function. Specifically, the potential r0ðxÞ satisfies
the constraint

I0ð2πr0Þ − 1þ x ¼ 0: ð25Þ

Figure 4 shows r0ðxÞ for x ∈ R (red curve), where we see
that the assumed boundary condition r0ð−∞Þ ¼ þ∞ is
satisfied.

B. Further comparison with JT supergravity

Fixing the parameters ft2k; μg of the multicut model
according to Eq. (24) only ensures the matching between
ZðβÞ and γhTre−βQ2i to leading order in ℏ. Now we
must check whether higher trace operators and pertur-
bative corrections reproduce the all-orders supergravity
results (18), after using the identification in Eq. (1)
where H ¼ Q2.

1. Leading genus multitrace observables

We start by extending the leading genus analysis in
Eq. (23) to multitrace observables. For two and three
Tre−βQ

2

insertions the computation is reasonably straight-
forward, starting from the Appendix A general
formulas (A1) and (A4). Denoting G0ðβ1;…; βnÞ as the
leading ℏ behavior of the connected expectation value of n
insertions of Tre−βiQ

2

, we derive

FIG. 4. Plot of the leading solution r0ðxÞ obtained from (21)
after fixing t2k according to (24). In the region x < 0 there are two
solutions to the implicit constraint, indicated in red (solid) and
blue (dashed). We chose the red branch, which satisfies the
boundary conditions assumed in (23).

10Note that these agree with the values of the tk parameters
found for the complex matrix model definition of the other
supergravities discussed in Refs. [37,38].
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G0ðβ1; β2Þ ¼ 2

ffiffiffiffiffiffiffiffiffi
β1β2

p
2πβT

e−βTr0ðμÞ2 ;

G0ðβ1; β2; β3Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β1β2β3

p
2π3=2βT

½ðℏ∂xÞe−βTr0ðxÞ2 �x¼μ; ð26Þ

where βT ¼ P
n
i¼1 βi. Using that r0ðxÞ vanishes for positive

x and μ > 0, G0ðβ1; β2Þ precisely matches Zðβ1; β2Þ=γ2
in Eq. (18) and G0ðβ1; β2; β3Þ ¼ 0, such that
Z0ðβ1; β2; β3Þ ¼ 0, again in agreement with the super-
gravity result.11

Since the procedure used in Appendix A becomes
increasingly tedious when computing higher trace observ-
ables, we can instead use a compact formula derived in
Refs. [75,76] for the leading genus behavior of single-cut
Hermitian matrix models. While single-cut matrix models
are in a different universality class, observables are also
computed from an almost identical effective quantum
mechanical system [52,63]. To leading order, the only
difference is that the potential r0ðxÞ2 is positive definite
and a factor of 2 coming from the summation over
s ¼ � in (14). Taking this into account, we can apply
the general formula of Refs. [52,75,76] to the double-cut
case and find

G0ðβ1;…;βnÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β1 � � �βn

p
2πn=2βT

½ðℏ∂xÞn−2e−βTr0ðxÞ2 �x¼μ: ð27Þ

For n ¼ 2, 3 we recover the results in (26). Applying this
formula for the n > 3 cases we findG0ðβ1;…; βnÞ vanishes
for n ≥ 3, given that r0ðxÞ and all its derivatives vanish at
x ¼ μ > 0. In summary, we have shown how the double-
cut matrix model exactly reproduces all the supergravity
results to leading order in genus and arbitrary number of
boundaries.

2. Higher genus corrections

Next, we compute ℏ corrections to r0ðxÞ in Eq. (19), by
solving the string Eq. (13) in perturbation theory. There are
two different perturbative expansions, one valid for large
positive x and the other for large negative x. Since μ is
positive, the relevant one for comparing with supergravity
is the large positive x expansion. This is completely
analogous to choices present when using the type 0A
models, as discussed in Ref. [37]. It is convenient to
introduce the parameter c ∈ Rþ, and add ℏc to the
right-hand side of the string equation (13), giving

X∞
k¼1

t2kK2k þ rðxÞx ¼ ℏc; ð28Þ

so that c ¼ 0 corresponds to the case of interest. Inserting
(19) in this differential equation it is straightforward to
solve for the first few orders and find

rðxÞ ¼ r0ðxÞ þ
ℏc
x

�
1þ t2

ℏ2ð1 − c2Þ
x3

þ ℏ4ð1 − c2Þ
x6

× ðt22ð10 − 3c2Þ − t4ð4 − c2ÞxÞ þOðℏ6Þ
�
: ð29Þ

Notice that the whole perturbative series vanishes when
c ¼ 0, the case of interest. This is no accident and follows
from the observation that rðxÞ ¼ 0 is an exact solution to
the full string equation when c ¼ 0. This means the
function rðxÞ for the model relevant to JT supergravity
receives no perturbative corrections and is given by r0ðxÞ of
Eq. (21) [with t2k as in (24) and plotted in Fig. 4] to all
orders in perturbation theory. We will compute and display
the nonperturbative contributions in Sec. IV.
To compute higher order corrections to hTre−βQ2i using

Eq. (14) essentially involves computing the subleading
terms in Eq. (22). Building on some results of Gel’fand
and Dikii [77], we derive the following expansion in
Appendix B:

hxje−βHs jxi

≃
e−βr

2
0

2ℏ
ffiffiffiffiffiffi
πβ

p
	
1þ ℏβðsr00 − 2r0r1Þ

þ ℏ2β

12
½β2½ðr20Þ0�2 − 12ðr21 þ 2r0r2 − sr01Þ

þ 2βð12ðr0r1Þ2 þ ðr00Þ2 − 2r0r000 − 12sr0r1r00Þ�


; ð30Þ

where the rnðxÞ are corrections to r0ðxÞ defined in Eq. (19),
and “≃” means that terms of order ℏ3 have been dropped.
Integrating this expansion as in (14), we obtain higher ℏ
corrections to hTre−βQ2i. In doing so, there is an important
distinction that must be made regarding the leading and
subleading terms in Eq. (30).
When integrating (30) only the leading term must be

integrated in the whole range x ∈ ð−∞; μ� indicated in
Eq. (14). All subleading ℏ contributions can only be
integrated on the region x ∈ ½0; μ�, where the expansion
is meaningful (recall that we did a positive x expansion,
not a negative x one, and it is meaningless to have both
expansions present in the same expression). But we have
already shown that the solution r0ðxÞ ¼ 0 for x > 0 (21)
receives no perturbative corrections, meaning rnðxÞ ¼ 0 for
n ≥ 0. As a result, all ℏ corrections to (30) vanish and we
conclude that

hTre−βQ2i ¼ 1

ℏ
ffiffiffiffiffiffi
πβ

p
Z

μ

−∞
dxe−βr0ðxÞ2 ¼ eπ

2=β

ℏ
ffiffiffiffiffiffi
πβ

p : ð31Þ
11Again, as explained in Ref. [27], there is a factor γ ¼ ffiffiffi

2
p

for
every matrix model trace involved when comparing to super-
gravity results.
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The important difference with the previous computation in
Eq. (23) is that this is an exact result to all orders in
perturbation theory, matching with the supergravity result
in Eq. (18).
Let us emphasize that the vanishing of higher ℏ correc-

tions to hTre−βQ2i does not depend on the special tuning of
couplings that define the model, i.e., ft2k; μg in Eq. (24).
Instead, it is a consequence of having rðxÞ ¼ 0 for x > 0 to
all orders in perturbation theory which, as we can see from
Eq. (29), holds for arbitrary t2k.

12

With this in mind, consider higher ℏ corrections for
multiple insertions of the macroscopic loop operator
Tre−βiQ

2

, which via the dictionary (1) will correspond to
the JT supergravity partition function with higher genus
corrections. For the supergravity of interest, all higher
genus corrections vanish. It is interesting to see how this
feature emerges from our definition of the double-scaled
matrix model. Consider for example the two-point func-
tion, hTrðe−β1Q2ÞTrðe−β2Q2Þi. The β2 macroscopic loop can
be expanded in terms of insertions of pointlike operators
σ2k, the “microscopic loops” [52,78], giving

hTrðe−β1Q2ÞTrðe−β2Q2Þi ¼
X∞
k¼1

β
2kþ1

2

2 hTrðe−β1Q2Þσ2ki ð32Þ

(in a particular normalization for the σ2k that we will
not need to specify here). However, a σ2k insertion is
equivalent [22] (fully nonperturbatively) to differentiating
the function rðxÞ with respect to the general coupling t2k,
and so in practical terms, the right-hand side of the above
is computed by differentiating the explicit rðxÞ dependence
in (14). In the genus expansion therefore, all contributions
to the right-hand side contain t2k derivatives of rðxÞ, which
are given by the mKdV flows:

∂rðxÞ
∂t2k ∝ K0

2k½r�; ð33Þ

where the K2k½r�, polynomials in rðxÞ and its derivatives,
are characterized in expressions (11) and (12). Since it has
been established that rðxÞ ¼ 0 at every order in perturba-
tion theory for arbitrary t2k, we see that ∂rðxÞ=∂t2k
vanishes, and hence all higher genus contributions to
this correlator. This procedure can be iterated to take

care of correlators with higher numbers of Tre−βQ
2

insertions, showing that they also vanish to all orders in
perturbation theory.
In summary, in this section we have shown how the

double-cut Hermitian matrix model reproduces all of the
perturbative results obtained from supergravity computa-
tions in Ref. [27].

IV. NONPERTURBATIVE PHYSICS

While the perturbative expansion of the supergravity
observables is surprisingly simple, there can still be non-
perturbative contributions that are not captured by the
topological expansion. Although some important nonper-
turbative effects were discussed in Ref. [27], the main
methods used there cannot derive generic nonperturbative
effects, whether using supergravity or the recursive loop
equations technology which defines the matrix model order
by order in the genus expansion. As emphasized in
Refs. [26,37,38], the advantage of the alternative matrix
model techniques used in this paper is that nonperturbative
contributions can be explicitly computed because rðxÞ is
defined nonperturbatively by the string equation.

A. A toy model

Let us start by considering nonperturbative effects in a
simple toy model that is relevant for JT supergravity and
where everything can be computed analytically. This model
is analogous to the Bessel model extensively studied in
e.g., Refs. [26,27,37], and is

rðxÞ ¼ ℏc
x
; ð34Þ

with x > 0. When c ¼ 0;�1 it is an exact solution to the
string equation (28). The eigenfunctions ψE;sðxÞ of the
operator Hs (16) can be computed exactly and written in
terms of a Bessel function,

ψE;sðxÞ ¼
1

ℏ

ffiffiffi
x
2

r
Jαsð

ffiffiffi
E

p
x=ℏÞ; ð35Þ

where αs ¼ cþ s=2 and the other independent solution is
discarded since it is not regular at the origin. The normali-
zation constant is fixed using the procedure described in
Appendix C. All observables can be constructed from the
following kernel:

LsðE1; E2Þ

≡
Z

μ

0

dxψE1;sðxÞψ�
E2;s

ðxÞ

¼ ℏ2

�
ψE1;sðxÞψ 0

E2;s
ðxÞ − ψ 0

E1;s
ðxÞψE2;sðxÞ

E1 − E2

�
x¼μ

¼ 1

2

�
μ

ℏ

�
2
�
ζ2Jαsðζ1ÞJ0αsðζ2Þ − ζ1J0αsðζ1ÞJαsðζ2Þ

ζ21 − ζ22

�
; ð36Þ

12This same feature (but in a different language) was also
observed in Sec. 5.2.1 of Ref. [27], where the vanishing of the
perturbation series was shown to be independent of the detailed
structure of ρ0ðqÞ (3) but relied on ρ0ðqÞ being supported on the
whole real line q ∈ R, leaving no cut end points to source the
relevant resolvents. An analogous situation also applies to other
JT supergravity theories, as shown in Ref. [37] for the cases
ðα; βÞ ¼ ðf0; 2g; 2Þ.
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where ζi ¼ μ
ffiffiffiffiffi
Ei

p
=ℏ and the integration region is x ∈ ½0; μ�

since this is the region where rðxÞ in (34) is defined.
The identity in the second line holds for any model and can
be derived using that ψE;sðxÞ are eigenfunctions of the
operator Hs.

13 The full spectral density ρðqÞ computed
from (17) is given by

ρðqÞ ¼ jqj
X
s¼�

Lsðq2; q2Þ

¼
X
s¼�

μζ

4ℏ
½JαsðζÞ2 − Jαs−1ðζÞJαsþ1ðζÞ�; ð37Þ

where now ζ ¼ μjqj=ℏ. This exact result includes both
perturbative and nonperturbative contributions.
The case that is relevant for JT supergravity is

when ðc; μÞ ¼ ð0; 1Þ, where the spectral density greatly
simplifies to

ρðqÞjðc;μÞ¼ð0;1Þ ¼
X
s¼�

�
1

2πℏ
−

s
4πq

sinð2q=ℏÞ
�
: ð38Þ

For each value of s we observe there is a perturbative term
in ℏ as well as a single nonperturbative correction, given by
a fast oscillatory function, see Fig. 5. A remarkable feature
of the spectral density is that nonperturbative corrections
coming from each s sector precisely cancel each other, so
that we are left with the exact result ρðqÞ ¼ 1=πℏ. Note that
this captures the small q behavior of the spectral density
ρ0ðqÞ in (3) required to describe the JT supergravity theory.
The cancellation between nonperturbative corrections

in this toy model is exclusive to the spectral density and
single trace observable. Using the kernel (36) one can
easily compute the expectation value of higher trace
observables and explicitly show nonperturbative correc-
tions are nonvanishing.

B. The full model

Let us now consider the full double scaled that is relevant
for describing JT supergravity, defined from the values of μ
and t2k indicated in (24). The analytic computation of
nonperturbative contributions is much more challenging in
this case, as it is not possible to write a simple solution
ψE;sðxÞ as in the toy model (35). However, we can make
some progress by computing the eigenfunction ψE;sðxÞ in
the usual WKB approximation

lim
ℏ→0

ψE;sðxÞ ¼
Aþ exp ½ iℏ

R
x
xmin

dx̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − r0ðx̄Þ2

p
�

ðE − r0ðxÞ2Þ1=4

þ A− exp ½− i
ℏ

R
x
xmin

dx̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − r0ðx̄Þ2

p
�

ðE − r0ðxÞ2Þ1=4
; ð39Þ

where the parameter xmin is defined from r0ðxminÞ2 ¼ E, so
that this is the solution in the classically allowed region.
The challenge is fixing the undetermined constants A�.
To do so, we note that for any double-scaled model at
sufficiently large x, rðxÞ approaches rðxÞ ¼ ℏc=x of the toy
model (34). Therefore, for large x the general WKB
approximation in (39) should match the classical limit
ℏ → 0 of the eigenfunctions of the toy model (35). In this
way, we can fix the constants A� and obtain the WKB
approximation for an arbitrary model:

lim
ℏ→0

ψE;sðxÞ ¼
cos ½1ℏ

R
x
xmin

dx̄
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E − r0ðx̄Þ2

p
− π

4
ð1þ 2αsÞ�ffiffiffiffiffiffi

πℏ
p ðE − r0ðxÞ2Þ1=4

:

ð40Þ

Setting xmin ¼ 0 and r0ðxÞ ¼ 0 we can easily check this
expression agrees with the classical limit of (35). For the
general case, xmin is a complicated function of E and
ψE;sðxÞ has a different classical limit.
From this we can compute the leading perturbative and

nonperturbative contributions to the spectral density ρðqÞ.
Using the expression given in the second line of (36)
[which holds for arbitrary rðxÞ] as well as the first line
in (37) we find

lim
ℏ→0

ρðqÞ ¼ ρ0ðqÞ −
X
s¼�

s
4πjqj sin

�
2π

Z jqj
dq̄ρ0ðq̄Þ − πc

�
;

ð41Þ

where we have identified ρ0ðqÞ as the leading perturbative
contribution,

ρ0ðqÞ ¼
jqj
2πℏ

X
s¼�

Z
μ

xmin

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − r0ðxÞ2

p ; ð42Þ

FIG. 5. Plot of the spectral density of the toy model with
ðc; μÞ ¼ ð0; 1Þ in (38), where ρsðqÞ corresponds to the s ¼ �
contribution to the spectral density. While for fixed s we observe
nonperturbative corrections, when summing both contribution we
get a cancellation which ensures the full spectral density is
exactly given by ρðqÞ ¼ 1=πℏ.

13In the random matrix theory context, this is sometimes called
a Christoffel-Darboux formula, an integral version of an identity
satisfied by orthogonal polynomials [79,80].
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and used the following identity:Z jqj
dq̄ρ0ðq̄Þ ¼

1

πℏ

Z
μ

xmin

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − r0ðxÞ2

q
: ð43Þ

The second term in (41) is the interesting one, which
gives the leading nonperturbative contribution to ρðqÞ.14
The peculiarity is that the contributions from s ¼ �
precisely cancel each other, so that there is effectively
no leading nonperturbative term for the spectral density
ρðqÞ. There can still be subleading contributions, sche-
matically given by

ρðqÞ ¼ ρ0ðqÞ þ ℏn sinð#=ℏÞ þ � � � ; ð44Þ

with n > 0. For the toy model we have seen in (38) that all
nonperturbative terms in ρðqÞ vanish. It is natural to ask if
this is also the case for the matrix model that describes JT
supergravity.
To answer this, we need to compute the full eigenvalue

spectral density ρðqÞ, without making any approxima-
tion. Since there is no way of performing the calculation
analytically, we proceed numerically. The first step is to
solve the string Eq. (13) for rðxÞ. To make sense of it as a
finite order differential equation, we follow [38] and
introduce a truncation by only including contributions
from t2k up to some maximum value kmax:

Xkmax

k¼1

t2kK2k þ rðxÞx ¼ 0; ð45Þ

where ðt2k; μÞ are given in (24). For high enough values of
kmax any artifacts due to the truncation are, at low enough
energies, indistinguishable from other numerical errors due
to discretization of rðxÞ or when subsequently solving the
spectral problem numerically. From the general structure of
K2k indicated in (12) we see the differential equation for
rðxÞ is of order 2kmax. The boundary conditions at large
values of jxj are fixed by the leading ℏ solution r0ðxÞ
in (21),

lim
jxj→∞

∂nrðxÞ
∂x ¼ lim

jxj→∞

∂nr0ðxÞ
∂x ; ð46Þ

with n ¼ 0; 1;…; kmax − 1. Similar truncation procedures
have been successfully applied to other double-scaled
matrix models in relation to JT gravity and supergravity
[39,73].
In the diagram of Fig. 6, the blue solid line corresponds

to the numerical solution for rðxÞ with ℏ ¼ 1 and a
truncation with kmax ¼ 6. Working with higher truncations

does not generate any substantial difference, at least for the
numerical precision required for the computations here.
The dashed line corresponds to r0ðxÞ in (21), that is actually
the exact solution to all orders in perturbation theory. The
substantial difference between rðxÞ and r0ðxÞ for small
values of x is entirely due to nonperturbative effects.
Using this solution we can compute rðxÞ2 − sℏr0ðxÞ,

build the operator Hs and numerically compute the
corresponding eigenfunctions ψE;sðxÞ, similarly as previ-
ously done in [26,37,38,73]. Although the eigenfunctions
are not normalizable, the normalization constant is fixed
from the procedure explained in Appendix C. In this way,
we can use (17) and compute the full spectral density ρðqÞ
that is relevant for JT supergravity, including all perturba-
tive and nonperturbative contributions. For each s ¼ �
sector we plot the spectral density in Fig. 7. Comparing
with the perturbative answer shown in the dashed line, we
observe nonperturbative corrections are present and domi-
nate the spectral density for each value of s ¼ � at low
values of q. The actual spectral density of the matrix model
ρðqÞ is obtained from summing the two s ¼ � contribu-
tions, shown in the plot of Fig. 2. Comparing with the
perturbative answer shown in the dashed line, we observe
there are indeed small subleading nonperturbative correc-
tions generated by contributions of the schematic form
given in (44).
Since the difference between the perturbative and full

spectral density in Fig. 2 is quite small, we want to make
sure it is not generated by numerical uncertainties but real
physics. To do that, we can take smaller values of ℏ, where
we expect nonperturbative effects to disappear. As noticed
in [38], instead of taking ℏ small, it is numerically more
convenient to increase μ. This has the same effect, as larger
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FIG. 6. The solid blue curve corresponds to the full non-
perturbative numerical solution rðxÞ to the string Eq. (13) in the
kmax ¼ 6 truncation with ℏ ¼ 1. The dashed red curve is the
leading genus solution r0ðxÞ in (21).

14A different calculation in Appendix E of [27] gives similar
(and in some sense equivalent) result for other random matrix
ensembles.

JACKIW-TEITELBOIM SUPERGRAVITY AS A DOUBLE-CUT … PHYS. REV. D 104, 086019 (2021)

086019-11



values of μ means the x integral in (17) gets a larger
contribution from the classical region of the potential inHs,
suppressing the quantum effects. In Fig. 8 we plot each spin
contribution s ¼ � to the spectral density when μ ¼ 10,
instead of μ ¼ 1 as in (24). The gray curves in that diagram
correspond to the WKB approximation in (41), where we
find good agreement.15

The full spectral density at μ ¼ 10 is obtained by
summing these contributions. Instead of doing that it is
convenient to isolate the nonperturbative effects by plotting
ρðqÞ − ρ0ðqÞ, shown in Fig. 9 for μ ¼ 10 (red) and μ ¼ 1
(blue). As expected, we observe the nonperturbative
corrections that are present for μ ¼ 1 are suppressed as
μ increases and the answer is dominated by the WKB
approximation (41). This provides good evidence that the
nonperturbative effects seen for μ ¼ 1 in Fig. 2 are real
physics and not artifacts of the numerics.
Having the nonperturbatively computed eigenfunctions

ψE;sðxÞ allows for the computation of many other observ-
ables of interest, including all perturbative and nonpertur-
bative corrections. A quantity of particular interest is the
spectral form factor, defined as the two-point correlator
involving two asymptotic boundaries, written as a sum of
disconnected and connected pieces:

hZðβ þ itÞZðβ − itÞi≡ Zðβ þ itÞZðβ − itÞ
þ Zðβ þ it; β − itÞ; ð47Þ

where the two boundary lengths β1 and β2 have been
analytically continued to β þ it and β − it. This quantity is

useful for diagnosing certain universal aspects of quantum
chaotic behavior [81–83]. Random matrix theory predicts
the spectral form factor to exhibit “dip,” “ramp” and
“plateau” behavior, describing the interaction of eigenval-
ues. In the context of the JT gravity/SYK correspondence,
these features of SYK describe aspects of the information
scrambling properties of black holes [81].
Using the identification in Eq. (1), the spectral form

factor can be computed from the matrix model side by
inserting two operators Tre−βQ

2

and performing the
analytic continuation. For other JT supergravity theories
this has been recently computed in Refs. [38,39]
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FIG. 7. Plot of each spin contribution s ¼ � to the spectral
density for μ ¼ 1, with the dashed line corresponding to the
perturbative answer ρ0ðqÞ=2.
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FIG. 8. Plot of each spin contribution s ¼ � to the spectral
density for μ ¼ 10. In this regime, there is good matching with
the WKB expression in (41), shown as the gray curves.
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FIG. 9. Difference between the full spectral density ρðqÞ and
the perturbative result ρ0ðqÞ for μ ¼ 1 (blue) and μ ¼ 10 (red).
We explicitly observe how the nonperturbative corrections are
suppressed as the value of μ increases.

15A similar matching for a different class of double-scaled
matrix models that are relevant for other JT supergravity theories
was performed in Ref. [38].
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[see Eq. (26) of Ref. [38]). Using the eigenfunctions
ψE;sðxÞ relevant to this case, we compute an example
and obtain the result shown in Fig. 10, showing the
expected features. As in the previous work, it is observed
that nonperturbative effects again play a crucial role in
developing the plateau, and (since ℏ ¼ 1 in the figure)
rapidly take over and hide the usually linear part of the
ramp. For brevity, we have omitted showing plots of the
individual disconnected portions of the spectral form factor,
but there is a great deal of similarity to the (0,2) case studied
in Ref. [38], and so we refer the reader there for results and
extended discussion. In particular, the initial slope of the
falloff of the disconnected piece is unity, as it should be for
a JT supergravity [this follows from the leading small β
dependence of ZðβÞ]. Also, following from the fact that the
spectral density ρðEÞ diverges (even after nonperturbative
corrections) as E → 0, the connected piece takes much
longer to saturate to the plateau value, just as happened for
the (0,2) model.

V. CLOSING REMARKS

We have shown how a particular JT supergravity
theory—one which sums only over orientable surfaces
and equally weights spin structures in the Euclidean path
integral—is given a complete nonperturbative description
by a double-cut Hermitian matrix model (i.e., a β ¼ 2
Dyson-Wigner ensemble). While generally the double-cut
matrix model is characterized by two string equations
associated to the ZS integrable hierarchy, here the two
string equations collapse to a single string equation, the
Painlevé II/mKdV integrable hierarchy, also known from
unitary matrix models. These equations are known to
describe type 0B minimal strings [45], and we showed a
precise combination of such minimal models reproduces
the JT supergravity. This is completely analogous to the

work of Refs. [37–39], which produced similar results
for the Altland-Zirnbauer ðα; βÞ ¼ ðf0; 1; 2g; 2Þ JT super-
gravities, showing how to construct them from type 0A
minimal strings.
It was observed long ago in Ref. [42] that there is a

nonperturbative map between the string equations of the
complex matrix models (type 0A minimal strings) and those
of the unitary matrix models (the type 0Bminimal strings). It
is in fact the Miura transformation [84,85] that links the
parent KdV and mKdV hierarchies: uðxÞ ¼ rðxÞ2 þ ℏr0ðxÞ,
where the vðxÞ of Ref. [42] is rðxÞ here. (This is different
from the map for the k ¼ 1 case noticed in Ref. [86], or the
connection more recently discussed for unscaled models in
Ref. [87].) In this sense, the ðα; β ¼ 2Þ JT supergravities,
nonperturbatively defined as complex matrix models in
Refs. [37,38], can straightforwardly be cast in terms of
unitary matrix model language.16 This does not mean that
such a recasting captures the Dyson-Wigner β ¼ 2 JT
supergravity discussed in this paper however. The key
new ingredient, arising from using the loop operator in
Eq. (14), is that for the β ¼ 2 case, the physics comes from
summing the results of the two separate Schrödinger systems
with potentials rðxÞ2 � ℏr0ðxÞ, and not just a single copy of
one or (equivalently) the other, which is appropriate for
the other family of JT supergravities. It is a subtle, but
crucial, difference.
In a sense, from a nonperturbative (geometry-

independent) high-altitude perspective, the fundamental
variable is really rðxÞ, and the two different (inequivalent)
uses of it to define potentials amounts to the two (inequi-
valent) JT supergravity families. This perspective deserves
further exploration, since this simple difference in choice
changes major features of the theory, such as whether it has
nonorientable geometries (preserves T), respects ð−1ÞF,
and so on.
It is worth noting that there is a language in which the

two different uses of rðxÞ are both natural. The integrable
hierarchies in question have an underlying slð2;CÞ struc-
ture [89–94] from which naturally arises two “τ-functions,”
τ0 and τ1. In terms of these, define u0;1 ¼ 2ℏ2∂2

x ln τ0;1
where either choice u0;1 ¼ v2 � ℏv0 gives a KdV-type
function uðxÞ, and recall that vðxÞ is the rðxÞ of this paper.
Their difference gives v ¼ ℏ∂x lnðτ0=τ1Þ while their sum
gives v2 ¼ ℏ2∂2

x lnðτ0τ1Þ. Perhaps this τ-function language
can be aligned with the supergravity symmetries T
and ð−1ÞF.
There are a number of other interesting potential avenues

for future work. For example, as discussed in Ref. [27],
there are several other JT supergravity theories that are T
invariant (so they include nonorientable surfaces in the
Euclidean path integral) and have not yet been studied
nonperturbatively. For example, two of them are classified
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FIG. 10. Full nonperturbative spectral form factor vs time t,
computed from the matrix model side with β ¼ 50 and ℏ ¼ 1,
using (14), (A1), and the methods described in Refs. [38,39].

16In fact, this was done later in Ref. [88].
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as double scaled β ¼ 1, 4 Dyson-Wigner ensembles
[95–97], and ought to share many of the qualitative features
discussed in this paper. In particular, the leading spectral
density ρ0 for these models has a branch cut comprising the
entire real line. It is natural to conjecture (and we do) that
these SJT models may be similarly described by double-cut
matrix models. It is a natural guess that the string equations
for those systems will define a function analogous to
rðxÞ that has a regime where it vanishes to all orders in
perturbation theory. The details will be different however,
with important nonperturbative differences, since the
underlying orthogonal polynomials (and hence the string
equations) arising from double scaling will be different.
As already noted, the larger system of equations des-

cribing double-cut Hermitian matrix models are from the
Zakharov-Shabat hierarchy, where the function αðxÞ and
the parameter η (see Sec. II A) are turned on. In our
matching to the JT supergravity we restricted to the sym-
metric sector and turned those off. However, Ref. [45] gave
a type 0B minimal string interpretation to some of the more
general solutions in terms of symmetry breaking R-R
fluxes. It would be interesting to explore if those can be
understood in terms of the JT supergravity.
Notably, the KdV, mKdV, and ZS hierarchies are all

naturally embedded in a larger hierarchy of differential
equations called the dispersive water wave hierarchy (see
Ref. [98] and references therein). It was noticed [99,100]
that it is possible to derive string-equation-like ODEs from
that larger system that have many properties of minimal
string theories, suggesting a large interconnected web of
minimal string theories of which type 0A and type 0B are
merely a small part. It is tantalizing to imagine that (by
using the procedures used here and elsewhere for building
JT gravity models out of minimal strings) an interconnected

web of JT gravity and supergravity theories can similarly
be defined.
Lastly, it would be worthwhile to use complex matrix

models and double-cut Hermitian matrix models to
describe nontrivial deformations of JT supergravity analo-
gous to those described in Refs. [101,102], and also to
JT gravity in de Sitter space [103,104]. Nonperturbative
insights into such deformations would be useful. Progress
has already been made for deformed JT gravity [73], and is
currently under way for JT supergravity [71].
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APPENDIX A: HIGHER TRACE OPERATORS

In this Appendix we show how to compute the expect-
ation value of higher trace operators in the double-scaled
multicut model. Starting from the single trace formula in
Eq. (14) one way of deriving the analogous higher trace
formulas is to use the free fermion formalism [52,72].
While this formalism was originally developed for single-
cut matrix models, the effective quantum mechanical
system that arises when computing observables is basically
the same after some simple redefinitions.

1. Double trace operators

Starting from Eq. (14), we obtain the following formula
for two insertions of Tre−βQ

2

[71]:

hTrðe−β1Q2ÞTrðe−β2Q2Þic ¼
X
s¼�

Z
μ

−∞
dx1

Z þ∞

μ
dx2hx1je−β1Hs jx2ihx2je−β2Hs jx1i: ðA1Þ

Using Eq. (22), it is quite simple to evaluate its leading ℏ behavior and find

hTrðe−β1Q2ÞTrðe−β2Q2Þic ¼
1

2πℏ2
ffiffiffiffiffiffiffiffiffi
β1β2

p
Z

μ

−∞
dx1

Z þ∞

μ
dx2e

−β1r0ðx1Þ2−β2r0ðx2Þ2−β1þβ2
β1β2

ðx1−x2
2ℏ Þ2 þOð1Þ: ðA2Þ

Changing the integration variables to x1 ¼ ℏðw1 − w2Þ þ μ and x2 ¼ ℏðw1 þ w2Þ þ μ the integrals decouple after we
expand the exponentials e−βir0ðxiÞ2 ≃ e−βir0ðμÞ2 to leading order in ℏ. The remaining ðw1; w2Þ integrals can be easily solved
and we find

hTrðe−β1Q2ÞTrðe−β2Q2Þic ¼ 2

ffiffiffiffiffiffiffiffiffi
β1β2

p
2πβT

e−βTr0ðμÞ2 þOðℏ2Þ; ðA3Þ

where we have defined βT ¼ P
n
i¼1 βi, in this case with n ¼ 2. Using r0ðμÞ ¼ r0ð1Þ ¼ 0, the leading behavior reproduces

the supergravity result in Eq. (18).
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2. Triple trace Operators

Let us now consider three insertions of the matrix operator Tre−βQ
2

. The general formula in this case can be obtained from
the neat general expression derived in Ref. [105], and written in Eq. (3.28) of Ref. [106]. In our conventions, it is given by

hTrðe−β1Q2ÞTrðe−β2Q2ÞTrðe−β3Q2Þic ¼
X
s¼�

Z
μ

−∞
dx1

Z þ∞

μ
dx2hx1je−β1Hs jx2i

×

�Z þ∞

μ
dx3hx2je−β2Hs jx3ihx3je−β3Hs jx1i −

Z
μ

−∞
dx3hx2je−β3Hs jx3ihx3je−β2Hs jx1i

�
:

ðA4Þ

To evaluate its leading ℏ behavior, which we denote as G0ðβ1; β2; β3Þ, we set without loss of generality β2 ¼ β3 ¼ β, as the
general answer is then obtained by requiring its symmetric under arbitrary exchanges of βi ↔ βj. Using (22) we find

G0ðβ1; β; βÞ ¼ 2

ffiffiffiffiffiffiffiffiffi
β1β

2
p
2π3=2

Z þ∞

−∞

dx3
4β1β

2ℏ3
signðx3 − μÞ

Z
μ

−∞
dx1

�Z þ∞

μ
dx2e

−β1r0ðx1Þ2− 1
β1
ðx1−x2

2ℏ Þ2

× e−βr0ðx2Þ
2−1

βð
x2−x3
2ℏ Þ2e−βr0ðx3Þ

2−1
βð

x1−x3
2ℏ Þ2

�
: ðA5Þ

Changing the integration variables to xi ¼ ℏx̄i þ μ we can use the following expansion in ℏ:

e−βir0ðxiÞ2 ¼ e−βir0ðμÞ2 ½1 − βi½ðℏ∂xÞr0ðxÞ2�x¼μx̄i þOðℏ3Þ�: ðA6Þ

The first term contributes to (A5) as an integral over the whole real line in x̄3 of the following function:

Fðx̄3Þ≡ signðx̄3Þ
Z

0

−∞
dx̄1

Z þ∞

0

dx̄2e
−ðx̄1−x̄2Þ2

4β1
−ðx̄2−x̄3Þ2

4β −ðx̄1−x̄3Þ2
4β : ðA7Þ

It is straightforward to show this is an odd function Fðx̄3Þ ¼ −Fð−x̄3Þ, so that it vanishes when integrated over the whole
real line. This means the leading contribution is given by the second term in (A6), so that (A5) can be written as

G0ðβ1; β; βÞ ¼ 2

ffiffiffiffiffiffiffiffiffi
β1β

2
p

2π3=2ðβ1 þ 2βÞ ½ðℏ∂xÞe−ðβ1þ2βÞr0ðxÞ2 �x¼μ

	
1

4β1β
2

X3
i¼1

βiIi



; ðA8Þ

where we have defined

Ii ¼
Z þ∞

−∞
dx̄3signðx̄3Þ

Z
0

−∞
dx̄1

Z þ∞

0

dx̄2x̄ie
−ðx̄1−x̄2Þ2

4β1
−ðx̄2−x̄3Þ2

4β −ðx̄1−x̄3Þ2
4β : ðA9Þ

To evaluate these triple integrals, we first apply a change of coordinates that decouples the exponents,

3x̄1 ¼
ffiffiffiffiffiffiffiffiffiffi
2ββ1

p
ð2w1 þ w2 þ 3w3Þ;

3x̄2 ¼
ffiffiffiffiffiffiffiffiffiffi
2ββ1

p
ð2w1 þ w2 − 3w3Þ;

3x̄3 ¼ 2
ffiffiffiffiffiffiffiffiffiffi
2ββ1

p
ðw1 − w2Þ; ðA10Þ

so that the integration region gets mapped to

x̄1 ∈ ð−∞; 0� → 2w1 ∈ ½−w2 þ 3w3;−w2 − 3w3�;
x̄2 ∈ ½0;þ∞Þ → w2 ∈ ð−∞;þ∞Þ;
x̄3 ∈ ð−∞;þ∞Þ → w3 ∈ ð−∞; 0�: ðA11Þ

Applying this transformation we find
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Ii ¼
ffiffiffi
2

p

3
ð4ββ1Þ3=2

Z
0

−∞
dw3e−ðβ1þ2βÞw2

3

Z þ∞

−∞
dw2e−β1w

2
2

Z −w2−3w3
2

−w2þ3w3
2

dw1signðw1 − w2Þx̄iðwjÞ; ðA12Þ

where the prefactor comes from the Jacobian in the change of variables. Solving the integral as written in the wi variables is
simpler, but still tedious. The final result in each case is given by

β1I1
4β1β

2
¼ β1

β1 þ 2β
−

2β1βffiffiffiffiffi
β1

p ðβ1 þ 2βÞ3=2 tan
−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β1

β1 þ 2β

s
;

βI2
4β1β

2
¼ β

β1 þ 2β
−

2β2ffiffiffiffiffi
β1

p ðβ1 þ 2βÞ3=2 tan
−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β1

β1 þ 2β

s
;

βI3
4β1β

2
¼ β

β1 þ 2β
þ 2βðβ1 þ βÞffiffiffiffiffi

β1
p ðβ1 þ 2βÞ3=2 tan

−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β1

β1 þ 2β

s
: ðA13Þ

Summing these three terms as indicated in (A8), we get a
nice cancellation such that the factor between curly
brackets in (A8) is equal to one.
This gives an explicit expression for G0ðβ1; β; βÞ. To get

the result for arbitrary values of βi we note that the
symmetry of the observable under arbitrary exchanges
βi ↔ βj uniquely fixes ðβ1 þ 2βÞ → ðβ1 þ β2 þ β3Þ and
β1β

2 → β1β2β3. Putting everything together, we arrive at
the final result in Eq. (26).

APPENDIX B: HIGHER GENUS PERTURBATIVE
CORRECTIONS

In this Appendix we compute perturbative ℏ corrections
to the one point function hTre−βQ2i using (14), by calcu-
lating the subleading terms in (22). One way of doing this is
by using the expansion for the resolvent of the operator
Hs ¼ −ðℏ∂xÞ2 þ rðxÞ2 − sℏr0ðxÞ, worked out long ago by
Gel’fand and Dikii [77] and given by

hxj 1

Hs − ξ
jxi ¼ 1

ℏ

X∞
p¼0

1

ð−ξÞpþ1=2

ð2p − 1Þ!R̃p½usðxÞ�
ð−4Þpp!ðp − 1Þ! ;

ðB1Þ
where ξ < 0 and we defined usðxÞ ¼ rðxÞ2 − sℏr0ðxÞ. The
Gel’fand-Dikii functionals R̃p½rðxÞ2� are polynomials in

rðxÞ2 and its derivatives computed from the following
recursion relation:

R̃pþ1 ¼
2pþ 2

2pþ 1

�
usðxÞR̃p −

ℏ2

4
R̃00
p −

1

2

Z
x
dx̄u0sðxÞR̃p

�
;

ðB2Þ

with R̃0 ¼ 1. Our normalization of the functionals R̃p is
different from the one used in Ref. [77], as we have defined
things differently so that R̃p ¼ usðxÞp þOðℏ2Þ. Explicit
expressions for the first few functionals are given in
Eq. (10) of Ref. [77]. Applying an inverse Laplace trans-
formation in ξ to Eq. (B1) we obtain the analogous
expansion for hxje−βHs jxi:

hxje−βQ2 jxi ¼ 1

2ℏ
ffiffiffiffiffiffi
πβ

p
X∞
p¼0

ð−βÞp
p!

R̃p½usðxÞ�: ðB3Þ

While this asymptotic series formula is valid to all orders
in ℏ, we cannot exchange the infinite series with the x
integral in (14). Instead we must solve the series order by
order in ℏ. To do so, we can use the recursion relation (B2)
to expand R̃p in ℏ. The expansion becomes simpler when
written in terms of uðxÞ ¼ rðxÞ2, so that we find

R̃p½us� ¼ ups −
ℏ2

12
pðp − 1Þup−3s ½2usu00s þ ðp − 2Þðu0sÞ2� þ

ℏ4

1440
pðp − 1Þðp − 2Þup−6s ½24u3suð4Þs þ 48ðp − 3Þu2su0su000s

þ 36ðp − 3Þu2sðu00s Þ2 þ 44ðp − 3Þðp − 4Þusðu0sÞ2u00s þ 5ðp − 3Þðp − 4Þðp − 5Þðu0sÞ4� þOðℏ6Þ: ðB4Þ

Inserting this into (B3) and solving the series order by order in ℏ we find
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hxje−βHs jxi ¼ e−βus

2ℏ
ffiffiffiffiffiffi
πβ

p
�
1 −

ℏ2β2

12
ð2u00s − βðu0sÞ2Þ

−
ℏ4β3

1440
ð24uð4Þs − 48βu0su

ð3Þ
s − 36βðu00sÞ2 þ 44β2ðu0sÞ2u00s − 5β3ðu0sÞ4Þ þOðℏ6Þ

�
: ðB5Þ

The final expansion used in the main text (30) is obtained by replacing usðxÞ ¼ rðxÞ2 − sℏr0ðxÞ with rðxÞ in (19) and
expanding in ℏ one last time.
To check we did not miss any factor in this expansion, let us use it to compute higher ℏ corrections for the toy model

defined from rðxÞ ¼ ℏc=x. Using (14) we find

hTre−βQ2i ¼
X
s¼�

1

2ℏ
ffiffiffiffiffiffi
πβ

p
Z

μ

0

dx

�
1 −

cðcþ sÞβℏ2

x2
þ cðcþ sÞðcðcþ sÞ − 2Þβ2ℏ4

2x4
þOðℏ6Þ

�

¼
X
s¼�

μ

2ℏ
ffiffiffiffiffiffi
πβ

p
�
1þ cðcþ sÞβℏ2

μ2
−
cðcþ sÞðcðcþ sÞ − 2Þβ2ℏ4

6μ4
þOðℏ6Þ

�
; ðB6Þ

where the integration region is given by x ∈ ½0; μ� since it is for this range that rðxÞ ¼ ℏc=x is well defined. There is a
divergent contribution coming from the x → 0 limit of the integral that we have disregarded. From this expression it is
straightforward to compute the spectral density ρðqÞ and find

ρðqÞ ¼
X
s¼�

μ

2πℏ

�
1 −

cðcþ sÞℏ2

2μ2q2
−
cðcþ sÞðcðcþ sÞ − 2Þℏ4

8μ4q4
þOðℏ6Þ

�
: ðB7Þ

Comparing this with the first perturbative terms obtained
from expanding the exact expression in (37), we find
perfect agreement.

APPENDIX C: EIGENFUNCTIONS
NORMALIZATION

In this Appendix we show how to normalize the
eigenfunctions HsψE;sðxÞ ¼ EψE;sðxÞ from their classical
ℏ → 0 behavior. To do so, let us start by writing an
expression for ρ0ðqÞ from the first line in (23). After
applying an inverse Laplace transform we obtain the
following expression for ρ0ðxÞ in terms of r0ðxÞ:

ρ0ðqÞ ¼
jqj
2πℏ

Z
μ

−∞
dx

Θ½q2 − r0ðxÞ2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 − r0ðxÞ2

p ; ðC1Þ

which is precisely the perturbative term obtained from the
WKB approximation (42). Comparing with the full expres-
sion for ρðqÞ in (17), we obtain the following condition
satisfied by jψE;sðxÞj2:

lim
ℏ→0

jψE;sðxÞj2 ¼
1

2πℏ
ffiffiffi
E

p þ oscillating; x > 0; ðC2Þ

where we have used that r0ðxÞ ¼ 0 for x > 0. Since
ψE;sðxÞ for x → þ∞ behaves like a free particle, we expect
to have additional oscillating terms which average to zero.
Using this condition we can unambiguously fix the
normalization constant in the eigenfunctions ψE;sðxÞ.
Let us see how this works for the toy model eigen-
functions (35). Computing the norm square and taking
the classical limit we find

lim
ℏ→0

jψE;sðxÞj2

¼ 1

2πℏ
ffiffiffi
E

p −
1

2πℏ
ffiffiffi
E

p cos

�
2x

ffiffiffi
E

p

ℏ
−
π

2
ð2cþ s − 1Þ

�
; ðC3Þ

which is precisely the normalization required by Eq. (C2).
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