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In recent times, a considerable effort has been dedicated to identify certain conditions—the so-called
swampland conjectures—with an eye on identifying effective theories which have no consistent UV-
completions in string theory. In this paper, we examine the anti–de Sitter vacua corresponding to solutions
which arise from purely nonperturbative contributions to the superpotential and show that these solutions
satisfy the (axionic) weak gravity conjecture and the AdS-moduli scale separation conjecture, without
particular fine-tuning of the parameters. We also sketch out their advantages over other constructions.
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I. INTRODUCTION

Moduli stabilization is the main issue to overcome when
constructing semirealistic low-energy effective theories
from string compactification. The state-of-the-art approach
consists of using fluxes to stabilize the axion-dilaton and
complex structure (shape) moduli and nonperturbative
effects on D7-branes wrapping cycles in the internal
manifold or Euclidean D3-branes to stabilize the Kähler
structure (see [1–5] for some original references and [6,7]
for reviews). In such constructions, an anti–de Sitter (AdS)
space is the generic 4d geometry obtained, ultimately, due
to supersymmetry.
On the other hand, the swampland program (see [8,9]

and references therein) proposes identifying theories which
cannot have UV completions within string theory. Based on
explicitly examples from string theory, there are now
several conjectures about such effective theories, the weak
gravity conjecture (WGC) being one of the most supported
ones [10]. There are different incarnations of the WGC
(e.g., electric, magnetic, scalar), depending on which fields
we are applying it to, but they all share the feature that
gravity should be the weakest force in any effective theory.
For p-form fields with coupling strength gp, it states that
there must exist a charged (p − 1)-brane whose tension is
bounded by its charge times gp (in Planck units) [11].

The special case p ¼ 0 corresponds to the axionicWGC in
which the decay constant of an axion (0-form) is bounded
by its coupling to an instanton.
In string compactification models, such as KKLT [4] and

LVS [5], the volume of cycles of the internal direction
always appear complexified by axions coming from the
integration of forms over the cycles and, thus, axions are
ubiquitous in these models. Hence, the same stabilization
mechanism which gives mass to the volume moduli
automatically fixes the decay constant of such axions. It
is then natural to ask whether these axions satisfy the
(axionic version of the) WGC. It was shown in [12] that
there are regions in the parameter space of the Kallosh-
Linde (KL) model [13,14] such that the axion decay
constant may violate WGC, and it was quickly realized
in [15] that this region is not mandatory for the model to
work and that the KL model generically satisfies the WGC.
For that to follow, the dependence of the stabilized volume
on the parameters of the nonperturbative superpotential was
crucial since the no-scale Kähler potential in these models
is such that the decay constant of the axion depends on the
volume of the cycle.
Motivated by questions about the interplay between

fluxes and supersymmetry [16], we recently proposed a
racetracklike mechanism for Kähler moduli stabilization in
models with vanishing flux potential at the minima of the
axion-dilaton and complex moduli (W0 ¼ 0). The model
has a Minkowski and an AdS minima, or two AdS minima
after a small shift in some parameters of the model, similar
to the KL model. However, even though it employs the
same ingredients as in the racetrack and KKLT scenarios,
the W0 ¼ 0 model has the distinct feature of having two
maxima, therefore achieving the decompactification limit
for positive values of the potential. Moreover, the stabilized
value of the volume moduli is parametrically different
from the one in the KL model. Since the decay constant
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dependence of the parameters in the model is different from
the KL model, this last property motivates us to check
whether such a model can satisfy the axionic WGC or not.
It is shown in Sec. III that the axion decay constant in the
W0 ¼ 0 models are always sub-Planckian and that the
WGC is consistently satisfied.
Another relevant conjecture to our model is the AdS-

moduli scale separation conjecture [17], which limits
the mass of the lightest stabilized modulus by the AdS
scale −Λ. In [18,19] the KKLT model was shown to satisfy
a log-corrected version of this conjecture, and the results
were used to motivate log-corrected refinements for the
trans-Planckian censorship conjecture (TCC) and the AdS-
moduli and AdS-distance conjectures. In Sec. IV we carry
out a similar analysis for the KL and W0 ¼ 0 models. We
find that the AdS-moduli conjecture is satisfied for both
models without the introduction of log corrections.
The goal of this note is to show that the W0 ¼ 0 model

satisfies relevant swampland conjectures. The paper is
organized as follows. Section II is a small overview of
the construction with an explanation on how it can be
potentially embedded in concrete Calabi-Yau orientifold
compactifications, Secs. III and IV discusses how the
axionic WGC and AdS scale separation conjecture are
satisfied for a large region of model’s parameter space,
respectively, highlighting the similarities and differences
between the two cases. We present our conclusions in
Sec. V. We use Planckian units when not stated otherwise.

II. NEW NONPERTURBATIVE ADS
BACKGROUNDS

In this section we review the model introduced in [20]
characterized by a potential with two minima, correspond-
ing to a Minkowskian and an AdS vacua. Although this
feature is also present in the KL model, the superpotential
considered here,

W ¼
X3
j¼1

Ajeiajρ; ð1Þ

is different, with zero contribution from the fluxes as
explained in Sec. II B and three nonperturbative contribu-
tions, which may correspond to three different stacks of
D7-branes. Moreover, even neglecting large volume cor-
rections to the no-scale Kähler potential, the final potential
goes to zero from above for large values of the 4-cycle
modulus, i.e., the potential has two maxima in contrast to
the KKLT and KL potentials.
The condition for a susy preserving Minkowski vacuum

at ρ ¼ iσ0,

X3
j¼1

Aj

�
1þ aj

2σ0
3

�
e−ajσ0 ¼ 0 ¼

X3
j¼1

Aje−ajσ0 ; ð2Þ

fixes one of the parameters of the model, say A1, and σ0
to be

A1 ¼ −ðA2eða1−a2Þσ0 þ A3eða3−a2Þσ0Þ; ð3Þ

σ0 ¼
1

a3 − a2
ln

�
−
a3 − a1
a2 − a1

A3

A2

�
; ð4Þ

where we are assuming a1 ≠ a2 ≠ a3, as explained in [20].
Assuming that all parameters are real, from the expression for
σ0 we should have a3 > a2 and there are two possibilities
for the hierarchy between the other a’s: if signðA3Þ ¼
−signðA2Þ, then a3 > a1 and a2 > a1; while for signðA3Þ ¼
signðA2Þ we should have a2 < a1 and a3 > a1. Thus, either
a3 > a2 > a1 or a3 > a1 > a2 in order for σ0 > 0. The
potential has also an AdS minimum at σ1 > σ0, see Fig. 1.
Similarly to the KL model, by changing A1 away from

the fixed value (3), we can promote the first minimum to be
also AdS. If the change δA1 is small, the position of the
minimum is practically unchanged and

Vðσ0Þ ≈ −
3

8σ30
δA2

1e
−2a1σ0 : ð5Þ

Furthermore, given that the minimum was initially
Minkowski, we can use the same arguments from [14]
to argue for the positivity of the mass matrix of the
stabilized dilaton and complex moduli. This guarantees
the absence of tachyons and a parametrically smaller susy
breaking scale (as compared to the moduli mass scales)
after uplifting this shallow vacuum to dS. In the next
subsection we discuss the lifetime of the uplifted vacuum.

A. Uplift and dS lifetime

Although, in this paper, we shall mainly discuss different
aspects of the AdS vacua described above, let us give a
quick review of the dS vacua one gets by uplifting them, as
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FIG. 1. Potential for the W0 model, with parameter values
a1 ¼ 2π=100, a2 ¼ 2π=80, a3 ¼ 2π=70, A2 ¼ 0.98, A3 ¼ −1.05
and δA1 ¼ 0.007A1. The first AdS minimum is located
at σ0 ≈ 54.2.
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shown in [20]. The main characteristic of these solutions is
that they present a lifetime much smaller than the standard
KKLT and LVS scenarios. The uplifting to dS1 for the
shallower of the two minima can be taken care of by adding
an anti-D3 brane, as was done for the original KL model.
The resulting potential has a dS minima as well as an AdS
one (in the case of the minimum three nonperturbative
terms). The decay channel for the resulting dS vacuum is to
the AdS minima and this gives the leading order contri-
bution to the decay time. As has been discussed in [14], the
decay time for such a configuration can be calculated,
provided we (i) assume the thin-wall approximation,
(ii) assume the tension of the bubble wall remains unaf-
fected by the uplift, and (iii) assume that the depth of the
AdS minima remains the same in spite of the uplifting since
the shallower of the two minima was very close to
Minkowski before the uplift. On assuming these well-
known conditions, the lifetime can be approximated as

τdS ¼ e
24π2

jV0 j
ðC−1Þ2Þ

C2ð2C−1Þ2 ; ð6Þ

where V0 is the depth of the shallower of the two minima
(before uplift) and V1 is the deeper of the two AdS minima
and C ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijV1j=jV0j

p
. As has been shown in [20], the

lifetime, although much shorter than other standard propos-
als, cannot be made to be short enough to be compatible
with the recently proposed trans-Planckian censorship con-
jecture (TCC) [21,22] by tuning the parameters of thismodel,
as long as one still obeys the supergravity approximation.

B. Models with vanishing flux superpotential

The original racetrack scenario used the sum of two
exponential terms Aeiaτ þ Beibτ to fix the dilaton field at
weak coupling in heterotic strings [23,24] (see also
[25,26]). For a ¼ 2π=N, b ¼ 2π=M, the superpotential
for the axion-dilaton field τ can be imagined to be
generated by gaugino condensates for the group
SUðNÞ × SUðMÞ. When N and M are large and close to
each other, the supersymmetric minimum occurs at

τ ¼ NM
M − N

log

�
−
MB
NA

�
; ð7Þ

whose imaginary part is very large. Therefore, e−Imτ is
small and so the dilaton is stabilized at the weak coupling
regime.
In [27], the authors adapted the racetrack idea to KKLT

type models (in which the relevant moduli are the complex
Kähler moduli) by adding an extra contribution W0 to the
superpotential and the idea was extended to the KL model
in [13]. In our discussion we want to preserveW0 ¼ 0 as in

the original racetrack. The relevant geometries that are used
to obtain W0 ¼ 0 were discussed in [28] (and further
clarified in [29]). In these papers, there are two different
constructions that are relevant to us. The first refers to IIB
compactified on a Calabi-Yau 3-fold Z with a holomorphic
involution Ω̂ with fixed loci corresponding to O3 and O7
planes. Moreover, Z has arbitrary h2;1 three cycles and h1;1

cycles and D branes are introduced to cancel the RR tadpoles
of the orientifold planes. The second construction considers
an F theory compactification on a Calabi-Yau fourfold X
which is an elliptic fibration π over a threefold B.
Type IIB is compactified on B and D7 branes are introduced
at singularities of π. The complex combination between
axion and dilaton at a point on B is the fiber π−1 over B at
that point. If the singularities of π are D4 singularities, four
coincident D7 branes and an O7 plane are introduced and we
recover Z as a double cover of B.
The sizes of the h2;1 three cycles are fixed by RR and NS

fluxes and the sizes of the h1;1 four cycles are fixed by D7
branes wrapped on them. The fixing of the sizes of the h1;1

four cycles is done by a superpotential generated on the D7
branes. This superpotential has been argued to be nonzero
only if the arithmetic genus

P
3
j¼0 h

0;j is one and [28]
searched for models with this property among divisors of
Calabi-Yau 4-folds X. Using the relation between X, its
base B and the double cover of its base Z, this led to a
search for a class of constructions for B which are P1

bundles over toric surfaces and their orientifold limits Z
which are elliptic fibres over P2. One such construction has
h1;1 ¼ 2 and h2;1 ¼ 272 but, due to an Z6 × Z18 action on
the moduli space, only two complex deformations z1 and z2
are independent. By fixing them at z1 ¼ z2 ¼ i and the
dilaton, one finds a quantized vacuum with W0 ¼ 0 which
is exactly what we want before introducing nonperturbative
terms. The nonperturbative terms appear as

P
2
j¼1 bje

2πiajρj

where ρ1, ρ2 are the complexified volumes of the 2
independent 4-cycles implied by h1;1 ¼ 2.
This immediately raises the question of how to deal with

more than one Kähler parameter, i.e., h1;1 > 1. In our
discussion, we are wrapping branes on one cycle whose
size becomes fixed but it is important to ask what about the
sizes of the unwrapped cycles. As we discuss Minkowski
vacua, we can apply the discussion of [14,30] in this
context. Collectively denoting the complex moduli
ðx1;…; xmÞ by x, the Kähler moduli ðρ1;…; ρnÞ by ρ
and the dilaton-axion by τ, the supersymmetry condition
for vanishing cosmological constant Wðρ0; τ0; x0Þ ¼ 0 is
∂IW ¼ 0, where I runs through all moduli.
If we allow a nonperturbative racetrack type potential for

each Kahler modulus ρi

Wnp ¼
Xn
j¼1

ðCjeiajρj −DjeibjρjÞ ð8Þ
1We are assuming an uplifitng mechanism similar to KKLT

here. However, note that difficulties with respect to this uplifting
procedure has been recently discussed in [20].

PURELY NONPERTURBATIVE ADS VACUA AND THE … PHYS. REV. D 104, 086016 (2021)

086016-3



and write the flux superpotential as Aðx0Þ þ τBðx0Þ, the
Minkowski vacua occur at

Bðx0Þ ¼ 0; Aðx0Þþ
X
j

ðCje
iajρ0j −Dje

ibjρ0j Þ ¼ 0: ð9Þ

This can be interpreted as choosing the fluxes such that the
complex moduli are stabilized at ðx01;…; x0mÞ and then
fixing ρ as function of x0. The ∂ρW ¼ 0 condition implies a
relation between the parameters in the superpotential
and ρ0.
In our case, let us consider n ¼ h1;1 − 1 so the Kähler

moduli fixed by the choice of complex moduli are
ρ1;…; ρh1;1−1, as explained above. Hence, assuming the
remaining moduli ρh1;1 to have the superpotential

W ¼
X3
j¼1

Ah1;1;je
iah1;1 ;jρh1;1 ð10Þ

leads to the Minkowski and AdS minima appearing in our
discussion. This is the same as Eq. (1) when aj are
relabelled as ah1;1;j. Therefore our model is valid for any
value of h1;1 with the understanding that h1;1 − 1 number of
Kähler moduli are fixed by the choice of complex moduli in
a Minkowski vacuum. It is clear that the minima discussed
around Eq. (4) can be obtained after the stabilization of
many moduli, even if fields other than ρh1;1 are stabilized
with the usual racetrack mechanism. Models with
Minkowski vacuum W0 ¼ 0 were also recently considered
in [31,32] by pursuing the ideas originally proposed in [33]
to restrict the set of complex deformations to an algebraic
set which satisfies W0 ¼ 0. In particular, [32] consider an
F-theory compactification on K3 × K3 which implies a
pretty large value for h1;1, it would be interesting to see how
to explicitly fix all but one of the Kähler deformations as a
function of complex deformation and follow up with our
superpotential (1).

III. AXIONIC WGC CONJECTURE

The weak gravity conjecture [10] for axions states that an
axion (0-form) should couple with an instanton ((−1)-
brane) such that (see [34–39] for discussions on the axionic
WGC and [9] for a review)

fSE ≤ MPl; ð11Þ

where f is the axion decay constant and SE is the Euclidean
action for the instanton. If on top of that we want to have a
controlled instanton expansion and the contribution of the
harmonic term induced by this instanton to the potential is
non-negligible, then the axionic WGC implies that f should
be sub-Planckian. As in [12] we will assume that a strong
form of the conjecture: it should apply for any harmonic,
regardless of the nonperturbative effect that generated it.

Recalling that the 4-cycle volume modulus σ is always
accompanied by an axionic field ϕ, both appearing in the
scalar component of the chiral multiplet as ρ ¼ ϕþ iσ, in
[12] it was pointed out that the choice of parameter for
stabilizing σ could be incompatible with the strong form of
the weak gravity conjecture applied for ϕ, which would
require its decay constant to be sub-Planckian. However, in
[15] it was shown that the KL model can indeed satisfy
this form of WGC with a choice of parameters entirely
compatible with the stabilization mechanism, although the
authors explicitly criticize the specific form of the con-
jecture. In the following, we study whether we can also
satisfy the WGC in our model, i.e., check if we can
consistently select parameters such that the axion has a
sub-Planckian decay constant.
In order to calculate the axion decay constant, we will

start from the full potential and write ρ ¼ ϕþ iσ, assuming
only ai to be real. For

W ¼ W0 þ
X
j

Ajeiajρ; K ¼ −3 lnð−iðρ − ρ̄ÞÞ; ð12Þ

we have

Vðϕ; σÞ ¼ 1

2σ2
XN
j

jAjW0jaje−ajσ cos ðajϕþ αjÞ

þ 1

6σ

XN
j

jAjj2
�
a2j þ

3

σ
aj

�
e−2ajσ

þ 1

3σ

XN
j<k

jAjAkj
�
ajak þ

3

2σ
ðaj þ akÞ

�

× eðajþakÞσ cos ððaj − akÞϕþ αjkÞ; ð13Þ

where αj ¼ argðAjW̄0Þ and αjk ¼ argðAjĀkÞ. These phase
factors are set to zero in the following, since it is sufficient
to consider real values of Ai. For N ¼ 2, we get the full
potential of the KL case studied in [12]. Note that in general
for N nonperturbative terms in the superpotential, we could
have up to N þ NðN − 1Þ=2 harmonic terms in the final
potential. Of course, we are interested in the case W0 ¼ 0
and N ¼ 3, and thus we have three possible harmonics,
denoted by ði; jÞ (with i > j) corresponding to the ampli-
tude proportional to AiAj.
The kinetic term of ϕ can be read from the Kähler metric

which implies that at a minimum with σ ¼ σ0, the canoni-
cally normalized field corresponding to ϕ will be

ϕ̃ ¼
ffiffiffi
3

2

r
ϕ

σ0
: ð14Þ

Thus, from the general potential (13) for W0 ¼ 0, the
possible axion decay constants are
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fij ¼
ffiffiffi
3

2

r
1

ðai − ajÞ
1

σ0
; ð15Þ

and in order for the WGC to be satisfied we need fij < 1

(we are using natural units) for the dominant ði; jÞ
harmonic.
We see that a priori we can have aiσ0 > 1 but ðai −

ajÞσ0 < 1 such that fij > 1. So, we should look for a
region in the parameter space where this does not happen,
that is, we need to find choices of parameters such that
ðai − ajÞσ0 > 1. Fortunately, the harmonic (3,2) can easily

satisfy WGC if the log factor in (4) is greater than
ffiffiffiffiffiffiffiffi
3=2

p
,

i.e., if we choose

A3>e
ffiffiffiffiffiffi
3=2

p
jA2j

a2−a1
a3−a1

⇒

ffiffiffi
3

2

r
ln

�
−
a3−a1
a2−a1

A3

A2

�
>1 ð16Þ

Furthermore assuming a3 > a2 > a1 we have

f31 ¼
ffiffiffi
3

2

r
1

a3 − a1

1

σ0
<

a3 − a2
a3 − a1

< 1; ð17Þ

and the harmonic (3,1) automatically yields a sub-
Planckian decay constant. If we further assume that a3 −
a2 < a2 − a1 the decay constant f21 will satisfy

f21 ¼
ffiffiffi
3

2

r
1

a2 − a1

1

σ0
<

a3 − a2
a2 − a1

< 1; ð18Þ

and then all possible decay constants are sub-Planckian,
regardless of which terms dominate the potential. We see
that there is a region in the parameter space where the WGC
can be satisfied without invalidating the instanton expan-
sion and the stabilization of σ at large values.

IV. ADS-MODULI SCALE SEPARATION
CONJECTURE

Recently, it was shown in [18,19] that the KKLT AdS
minimum satisfies a log-corrected version of the AdS-
moduli scale separation conjecture [17]. This conjecture
states that there should not be a scale separation between
the mass m of the lightest stabilized modulus and the AdS
scale jΛj,

m ≤ cjΛj1=2; ð19Þ

where c is a positive Oð1Þ number. Another relevant
conjecture on AdS vacua is the AdS distance conjecture,
introduced in [40], which states that in the limit Λ → 0
there exists a tower of light states with mass satisfying

mtower ¼ c0jΛjα; ð20Þ

with α > 0. A stronger version fixes α ¼ 1=2 for super-
symmetric AdS, corresponding to no scale separation
between the mass of the states and the AdS curvature scale.
Given the difference on how the AdS vacuum for the KL

and the W0 ¼ 0 model are constructed, in this section, we
investigate whether the scale separation conjecture is
satisfied or not for those models. Clearly, this conjecture
does not constrain the Minkowski vacua, and so we are
interest in the AdS vacua which can be constructed from
the KL and W0 ¼ 0 models, as explained in Sec. II. The
analysis will be sensible when 4-cycle moduli mass is the
relevant mass scale for the AdS scale separation conjecture,
which is the case for KKLT [41]. Given that there is no
modification to the complex structure moduli stabilization
mechanism, we expect that to be also the case in the models
we are interested in.
After turning off the axion (ϕ ¼ 0) and considering the

parameters in the superpotential to be real, the potential in
both cases can be read from

VðσÞ ¼ 1

6σ

XN
i;j

AiAj

�
aiaj þ

3

σ
aj

�
e−σðaiþajÞ þ W0

2σ2
XN
i

Aiaie−aiσ; ð21Þ

where N ¼ 2 for the KL model and W0 ¼ 0 and N ¼ 3 for our model. Its first and second derivatives are given by

V 0ðσÞ ¼ −
X
i;j

AiAj

�
2

3

aiaj
σ2

þ aj
σ3

þ 1

2

a2j
σ2

þ 1

3

aia2j
σ

�
e−ðaiþajÞσ −

W0

2σ2
X
i

Ai

�
a2i þ 2

ai
σ

�
e−aiσ; ð22Þ

V 00ðσÞ ¼
X
i;j

AiAj

�
7

3

aiaj
σ3

þ 2
a2j
σ3

þ 15

6

aia2j
σ2

þ 1

2σ2
a3j þ 3

aj
σ4

þ 1

3

a2i a
2
j

σ
þ 1

3

aia3j
σ

�
e−ðaiþajÞσ

þW0

X
i

Ai

�
2
a2i
σ3

þ 3
ai
σ4

þ 1

2

a3i
σ2

�
e−aiσ: ð23Þ
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Now let us impose the condition for a supersymmetric
vacuum at σ ¼ σ0, i.e., DWðσ0Þ ¼ 0. For the KL model,
this condition reduces to

W0 ¼ −
X
j

Aj

�
1þ 2

3
ajσ0

�
e−aiσ0 ; ð24Þ

while for our W0 ¼ 0 model, it is simply

X
j

Aje−ajσ0 ¼ −
2

3
σ0
X
j

Ajaje−aiσ0 : ð25Þ

For both models, imposing the susy vacuum at σ0 results
into

Vðσ0Þ ¼ −
1

6σ0

�X
i
Aiaie−aiσ0

�
2

; V 0ðσ0Þ ¼ 0; ð26Þ

and

V 00ðσ0Þ ¼
1

3σ30

�X
i
Aiaie−aiσ0

�
2

þ 7

6σ20

�X
i

Aiaie−aiσ0
�

×

�X
j

Aja2je
−ajσ0

�
þ 1

3σ0

�X
i
Aia2i e

−aiσ0

�
2

:

ð27Þ

Thus, the mass of the 4-cycle volume can be obtained by
evaluating the expression for V 00ðσ0Þ with the parameter
values chosen to get the Minkowski or AdS minimum.
Before doing that, we need to recall that σ is not canonically
normalized. In fact, from the Kähler metric, the canonically
normalized field is ϕ ¼ ffiffiffiffiffiffiffiffi

3=2
p

ln σ, such that its mass is
given by

m2
ϕ ¼ 2

3
σ20V

00ðσ0Þ: ð28Þ

Denoting Λ ¼ Vðσ0Þ < 0, we can write

m2
ϕ ≡

�
mϕ;M þ 7ffiffiffiffiffi

12
p ffiffiffiffiffiffiffi

−Λ
p �

2

þ 11

4
Λ; ð29Þ

where we have defined

m2
ϕ;M ≡ 2σ0

9

�X
i
Aia2i e

−aiσ0

�
2

: ð30Þ

Note that although it has the same structure of the mass
when the vacuum is Minkowski, for Λ ≠ 0 its value is not
the same as m2

ϕ in the Minkowski vacuum, since not only
the parameters change between the two cases, but also the
location of the minimum (σ0) is different. But assuming
that the difference between the parameters in the

Minkowski and AdS cases to be small (which would
require a small Λ for consistency), we can approximate
mϕ;M to be the mass at the Minkowski minimum. The mass
m2

ϕ of the canonically normalized volume above has a
dependence on Λ which is parametrically different from the
corresponding expression for the KKLT case [19],

m2
ϕ;KKLT¼−Λð2þ5aσ0þ2a2σ20Þ; Λ¼−

A2a2

6σ0
e−2aσ0 ;

ð31Þ

and so the volume mass for the KL andW0 ¼ 0models will
have different behavior in the limit Λ → 0 as compared to
the KKLT model.
Up to now, there were no approximations invoked in

order to get the results above. To check the relation with the
AdS scale separation conjecture explicitly, let us compute
the behavior of m2

ϕ for small Λ, so that can use analytic
expressions (for the first minimum) to relate the value of
σ0 to Λ. Furthermore, note that the limit Λ → 0 does not
necessarily imply that we are back to the prior Minskowski
vacuum; this will only be so if we take this limit while
keeping σ0 fixed.
We need to determine how m2

ϕ;M depends on Λ to check
whether there is scale separation or not. For the KL model,
we have

Λ ≈ −
3δW2

0

8σ30
; ð32Þ

that can be inverted to give

σ0 ≈
�
−

8Λ
3δW2

0

�
−1=3

: ð33Þ

For the model with W0 ¼ 0 we have

Λ ≈ −
3

8σ30
δA2

1e
−2a1σ0 ; ð34Þ

with and since we are interested in the Λ → 0 limit, we can
take

σ0 ≃ −
lnð−ΛÞ
2a1

: ð35Þ

We explicitly see that for both models the Λ → 0 limit
corresponds to the infinite distance limit in field space, as
required by the AdS distance conjecture. In this case, the
mass scale (30) is exponentially suppressed and the mass of
the moduli limits to

m2
ϕ →

4

3
jΛj: ð36Þ
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Thus, for both models the Λ dependence in m2
ϕ;M does not

dominatem2
ϕ and the scale separation conjecture is satisfied

without logarithmic corrections, in contrast to the KKLT
case.

V. CONCLUSION

An essential feature of the KKLT construction which
have been recently questioned, even before considering
issues related to uplifting, is the fine-tuned, small value of
the Gukov-Vafa-Witten superpotential in the vacuum,
denoted by W0 ∼ eK=2hR G ∧ Ωi, over some Calabi-Yau
orientifold. The condition hDiWi ¼ 0; hWi ¼ 0 is needed
for having a supersymmetry preserving Minkowski vac-
uum, and therefore, choosing a value of W0 ≠ 0 implies
that the vacuum is not supersymmetric anymore. In [16], it
was argued that the validity of the perturbative solution is
questionable when one considers a nonzero W0. This led
us to consider 4-d EFT models of dS vacua which have
W0 ¼ 0 as the starting point in [20], and we realized that
such models typically have lifetimes much smaller than
KKLT. In this work, we examine the AdS vacua corre-
sponding to such models in which we tune the fluxes such
that once the complex structure moduli are stabilized, we
have W0 ¼ 0. We show that such models are possible to
construct by sketching out how to deal with more than one
Kähler moduli, as is often required for the relevant geom-
etries when dealing with a vanishing flux superpotential.
The main result of this paper was to show that the new

class of AdS vacua, which are constructed purely from
nonperturbative terms in the superpotential, satisfies the
axionic WGC and the no-scale separation conjecture, for
some region in the parameter space. Apart from usual
swampland considerations, there is a specific objective
behind checking these conjectures for our model. It was

argued in [42] that the backreaction of the uplift, in the
effective 4-d model of KKLT, is large enough to flatten
the potential, thereby preventing the formation of the dS
minimum. Although this was shown to be not true in the
relevant parameter space of KKLT [15], the consensus
agreement which came out of this discussion was that the
racetrack variety of KKLT (specifically, the KL model)
does not have any such problems of backreaction due to the
uplift. However, this led the authors of [12] to posit that
although the racetrack fine-tuning can avoid these flat-
tening effects, they necessarily violate the (axionic) WGC.
Once again, this claim was contested for the relevant
parameter space of the model [15]. However, these argu-
ments make it clear that our model, with solely non-
perturbative terms in the superpotential, needed to be
checked for its consistency with the axionic WGC (since
we already know that the backreaction flattening would be
automatically absent for this mechanism). This led us to
explicitly show that the decay constants derived from the
potential are always sub-Planckian in this case, in the region
of parameter spacewhich is of interest. Interestingly, we also
find that the stronger version of the AdS-scale separation
conjecture is obeyed by this class of vacua, as opposed to
KKLT,which requires an additional logarithmic correction to
be incorporated. Thus, unlike in KKLT, there is no log-type
scale separation for thesemodels. In the future, ourmain goal
would be to construct an explicit realization of this solution
with a vanishing flux superpotential.
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