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We argue that the choice of boundary condition for the wave function in quantum cosmology depends on
the UV completion of general relativity. We provide an explicit example using a braneworld scenario in
which a de Sitter cosmology is induced on the surface of a Coleman-de Luccia bubble in a 5-dimensional
AdS space. The corresponding boundary conditions are unambiguously fixed by demanding consistency
with the known physics of bubble nucleation and this selects the Vilenkin weighting for the amplitude from
a 4D viewpoint.
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I. INTRODUCTION

Quantum cosmology (see, e.g., [1]) aims at computing
the wave function Ψ to explain (features of) the universe.
This is clearly an ambitious program and several aspects of
its basic principles remain a source of debate in the
literature. One particular issue concerns the choice of
boundary conditions on the wave function. Just as in
ordinary quantum mechanics, boundary conditions (and
normalization) are needed in order to uniquely fix solutions
to Schrödinger’s equation. Such boundary conditions are
often argued for by physical principles or by more formal
principles such as the self-adjointness of the Hamiltonian.
In quantum cosmology this is highly nontrivial to imple-
ment for several reasons. For starters, we do not know the
full Hamiltonian since we lack the complete Hamiltonian of
quantum gravity. The common attitude is to ignore the UV
completion of gravity and to work in a semiclassical
approximation, which is then further approximated by a
minisuperspace approach, i.e., a drastic cut in the number
of degrees of freedom.
Given this, one can debate the choice of boundary

conditions and reach various conclusions. Two natural
choices are the Vilenkin choice (aka the tunneling wave
function) [2,3] and the Hartle-Hawking (HH) choice (aka
no-boundary proposal) [4]. In mini-superspace, the differ-
ence can roughly be described as follows. At large scale-
factor, the tunneling wave function can be seen as purely
“outgoing” waves, just as a wave function of a particle
escaping a radioactive nucleus. The no-boundary proposal

instead has fine-tuned ingoing and outgoing waves such
that the wave function decreases toward the big bang
singularity. More accurate descriptions are available, but
we continue for now using this heuristic viewpoint.
The importance of the problem cannot be overstated

given the vastly different behaviors of the amplitudes of the
two wave functions when considering their dependence on
the cosmological constant (in Planck units)

ΨV ≈ e−c=Λ ↔ ΨHH ≈ ec=Λ; ð1Þ

with c a positive numerical constant. The amplitude for the
no-boundary proposal peaks at a small positive cosmo-
logical constant (cc) while the opposite is true for the
tunneling wave function. This would suggest that the most
naive interpretations of the wave function might then be at
odds with the tunneling wave function if one wants to
address the cosmological constant problem (there is no real
issue for inflation). But since we have not provided a full
integration measure on the space of cosmological con-
stants, such claims have no meaning.
Some claims, and counterclaims, appeared recently in

[5–13] concerning whether mathematical consistency
requires one choice over the other, since certain saddle
points dominate when choosing the correct integration
contour. We find it more reasonable that the UV completion
decides this by providing the extra physical input that
informs us how the Hamiltonian at large curvatures really
looks like. Imagine, for instance, the case discussed in [14]
where the effective minisuperspace potential for the scale
factor diverges to þ∞ near zero scale-factor. This is like a
hard wall model in quantum mechanics and the wave
function should vanish at zero scale-factor, which would
then select the no-boundary proposal. We refer to [11] for
more arguments as to why physics rather than mathematics
selects the boundary condition.
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One can also note recent claims that even the Hartle-
Hawking saddle points potentially contribute a e−c=Λ

amplitude instead of the inverse, see for instance [13].
We remain agnostic about these technical discussions and
simply focus on the amplitude that is selected in our model.
We will therefore refrain from using Hartle-Hawking or
Vilenkin wave functions (boundary conditions), but instead
will use the words HH-weighting and Vilenkin-weighting,
keeping in mind their definition in Eq. (1). In a follow-up
work we will uncover more details of the wave function,
but in this work we stick to a simple minisuperspace
approach and focus purely on the amplitude.
We will show that we are able to address the choice of

weighting unambiguously in a model of cosmology that
comes close to being UV complete within string theory
[15]. One starts with a nonsupersymmetric, perturbatively
stable AdS5 vacuum of string theory, which decays non-
perturbatively by means of bubble nucleation leading to
expanding thin wall bubbles containing the true vacuum. In
string theory, such bubble walls are fundamental branes
with matter and gauge forces localized on them. In [15–17]
it was demonstrated that a 4D de Sitter (dS) cosmology is
induced on the bubble walls at late times. This is akin to the
Karch-Randall mechanism [18] in some respects but differ-
ent in others. In the case of [18], a closed dS universe would
correspond to a bubble of AdS5 identified across its
boundary so that there is no outside. The bubbles we have
in mind, expand into a preexisting outside consisting of the
false vacuum. As emphasized in [19], this scenario evades
from the start the usual difficulties with dS model building
in string theory [20,21]—including attempts to realize [18].
Instead of the kind of difficult uplifting needed in other
constructions, the only thing needed is a brane that can
mediate a nonperturbative decay of AdS5. Even more, this
is perfectly in line with the swampland ideas [22–24] but
uses them to go around the dS swampland bounds.

II. HARTLE HAWKING VERSUS VILENKIN

For the sake of simplicity, we consider cosmologies
driven by a pure positive cosmological constant. Then the
Friedmann equation for a 4D cosmology in case of positive
spatial curvature becomes

_a2 ¼ −1þ a2

R2
; R−2 ≡ κ4

3
ρΛ4

¼ Λ4: ð2Þ

Here R is the de Sitter radius and κ4 ¼ 8πG4. The
minisuperspace reduction of the Einstein-Hilbert action
leading to the Friedmann equation is given by:

S ¼ 6π2

κ4

Z
dτN

�
−
a _a2

N2
þ a −

a3

R2

�
: ð3Þ

The lapse function N from the FLRW metric

ds2 ¼ −N2ðτÞdτ2 þ aðτÞ2dΩ2
3; ð4Þ

acts as a Lagrange multiplier whose constraint reproduces
(2). From the action we find the canonical momentum
p ¼ − 12π2a _a

N . Quantizing using p → −i d
da, the Hamiltonian

constraint becomes the Wheeler-deWitt (WdW) equation

N
a

�
−

1

24π2
d2

da2
þ 6π2VðaÞ

�
ΨðaÞ ¼ 0; ð5Þ

where VðaÞ ¼ a2 − R−2a4.
The plot of the effective potential in Fig. 1 makes the

analogy with tunneling through a barrier manifest. There
are two turning points: a ¼ 0 and a ¼ R. The region
between these two turning points is referred to as the
Euclidean region and denoted region I in what follows,
whereas the region a > R is classical and denoted region II.
The WKB solution is given by

ΨIðaÞ ¼
1

jVðaÞj1=4 ðce
Sða;0Þ þ de−Sða;0ÞÞ; ð6Þ

ΨIIðaÞ ¼
1

jVðaÞj1=4 ðAe
iSða;RÞ þ Be−iSða;RÞÞ; ð7Þ

where c, d, A, B are complex constants that are related by
the usual connection formulae and where we defined

Sða; aiÞ≡ 12π2

κ4

Z
a

ai

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVða0Þj

p
da0: ð8Þ

A choice ðc; dÞ or ðA;BÞ reflects a choice of boundary
conditions. We also need a normalization in order to fix
them completely and it is common to take

lim
a→0

jVðaÞj1=4ΨðaÞ ¼ 1: ð9Þ

The Hartle-Hawking choice selects the growing exponen-
tial in region I by taking ðc; dÞ ¼ ð1; 0Þ:

FIG. 1. Effective potential.
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ΨHHðaÞ ¼
1

jVðaÞj1=4
�
eSða;0Þ Region I

2eS0 cos ðSða; RÞ − π
4
Þ Region II

:

ð10Þ

where

S0 ≡ SðR; 0Þ ¼ 4π2R2

κ4
: ð11Þ

This leads to the following nucleation probability PHH:

PHH ∝ e2S0 : ð12Þ

Vilenkin’s choice is defined by selecting only outgoing
waves in region II namely ðA;BÞ ¼ ð0; BÞ:

ΨVðaÞ ≈
1

jVðaÞj1=4
�
eS0e−Sða;0Þþiπ

4 Region I

e−iSða;RÞ Region II
; ð13Þ

where we approximated c ≈ 0 since it is exponentially
suppressed. We then find

PV ∝ e−2S0 : ð14Þ

Our lightning overview of quantum cosmology has been
very superficial but it suffices to convey the essential
message of this paper in the next section; namely that a
concrete UV completion will decide the boundary con-
ditions near the “big bang” phase. A more detailed under-
standing of the quantum cosmology is of course attainable
but beyond the scope of this paper.

III. BUBBLE UNIVERSES

Reference [15] proposed a new mechanism in string
theory to obtain 4D de Sitter space. The main motivation
behind this model is the persistent difficulties in string
theory to construct stable and viable models with a positive
cosmological constant [20,25–27]. Instead of compactify-
ing six dimensions, a brane world scenario (for an overview
see, e.g., [28] and references therein) is considered that is
similar in spirit to Karch-Randall [18] (or [29]) but different
in the crucial aspects. Instead of a bubble that is identified
across its boundary so that it has no outside, the brane
surface is a Coleman-de Luccia (CDL) bubble wall. The
key insight is that the cosmology induced on a CDL bubble
(mediating the decay of a nonsupersymmetric 5D AdS
vacuum) is 4D de Sitter space. The expansion of the bubble
in 5D corresponds to the accelerated expansion of the 4D
universe for an observed confined to the wall.
This dark bubble scenario make use of key properties of

string theory such as extra dimensions, branes, and the
instability of non-SUSY AdS5 vacua. Rather than being a
problem, vacuum instabilities are turned into a virtue [19].
A crucial advantage over previous braneworld scenarios is

its natural UV embedding; the only requirement is an
unstable 5D AdS vacuum whose primary decay proceeds
through CDL bubbles, in line with the AdS weak gravity
conjecture (WGC) [22]. Another advantage is the clear
physical picture and the ability to address issues in quantum
cosmology as we now demonstrate.
In the notation of [15] we have that the cc’s of the true

and false vacuum are Λ� ¼ −6k2� with Λ− < Λþ < 0. The
index − (þ) refers to quantities evaluated in the true (false)
vacuum. The expansion of the bubble is governed by the
Israel junction conditions:

σ ¼ 3

κ5

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2− þ 1þ _a2

a2

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þ þ 1þ _a2

a2

s !
; ð15Þ

where σ is the tension of the brane, and κ5 ¼ 8πG5. The
induced metric on the bubble is simply given by (4).
Properly squaring the junction condition generates a 4D
Friedmann equation with positive cosmological constant
(2). To achieve this, one needs to identify

κ4 ¼
2k−kþ
k− − kþ

κ5: ð16Þ

Fromhere onwardswework in thephysical approximationof
large k� in which the 4D vacuum energy simplifies to [30]:

ρΛ4
≡ 3

κ4
R−2 ¼ 3ðk− − kþÞ

κ5
− σ: ð17Þ

Abubble can only nucleate if the tension is less than a critical
value σcr ¼ 3

k5
ðk− − kþÞ, and this condition automatically

leads to ρΛ4
> 0.

In [16,17,31] this model was studied in more detail
introducing radiation using a bulk black hole and dust from
a cloud of strings in the bulk. Using the Gauss-Codazzi
equations, it was also shown that the full relativistic
equations of 4D general relativity are recovered.

IV. QUANTUM MECHANICAL DESCRIPTION

We now study the quantum nucleation of such a bubble
by closely following the treatment of [32] for bubble
nucleation in 4D and extend it to 5D. The 5D action is
given by

S ¼ 1

2κ5

Z
d5x

ffiffiffiffiffi
jgj

p
ðRð5Þ − 2ΛÞ − σ

Z
d4ζ

ffiffiffiffiffi
jηj

p
þ 1

κ5

I
d4x

ffiffiffiffiffiffi
jhj

p
K: ð18Þ

The second term describes the brane shell with tension σ
and induced metric η with brane coordinates ζ. The 5D
metric is given by
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ds2� ¼ −A�ðrÞdt2� þ dr2

A�ðrÞ
þ r2dΩ2

3; ð19Þ

where A�ðrÞ ¼ 1 − Λ�
6
r2.

The shell glues the two spacetimes together at a radial
coordinate r ¼ aðτÞ and its metric coincides with (4). From
(19) and (4) one can then deduce that

_t� ¼ dt�
dτ

¼ β�
A�

; β� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A�N2 þ _a2

q
: ð20Þ

The on-shell action receives three contributions: the bulk
piece, the shell contribution and the boundary term.
Summing all terms, and ignoring terms that do not affect
the dynamics of the shell, we find the minisuperspace
Lagrangian to be

L ¼ 6π2

κ5

�
−a2 _atanh−1

_a
β
þ a2β

�
−

þ
− 2π2a3σN: ð21Þ

Expanding to quadratic order in _a, using (16), Eq. (3) can
be recovered. Using this we can go ahead and study
nucleation, where R will be the radius of the nucleated
bubble.
We now argue that the physics of bubble nucleation in

5D then fixes the amplitude to be of the tunneling type. Our
approach is simple: we verify that Vilenkin’s tunneling
amplitude exactly matches the known CDL amplitudes, as
expected from the physical picture of tunneling.
There are a few different ways to calculate the nucleation

probability P ¼ e−B that all yield the same result. Using the
WKB wall penetration probability we have P ¼ e−B with
B ¼ 2

R
dτp (p is the canonical momentum) and we

recover Vilenkins choice (14)

B ¼ 24π2

κ4

Z
R

0

da

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 −

a4

R2

r
¼ 8π2R2

κ4
: ð22Þ

One can also use the approach of Brown and Teitelboim
[33]. The Euclidean instanton is then obtained by integrat-
ing (18) over a Oð5Þ symmetric ball of radius R, with a
4D sphere as boundary and corresponds to a bounce.

Evaluating expression (6.4) in [33] with Rð5Þ
� ¼ −20k2�,

which follows from the equations of motion, we find:

B ¼ σA4 þ
1

κ5

�
4k2V5ðR; kÞ −

4

R
βA4

�
−

þ
; ð23Þ

with A4 ¼ 8π2R4=3, and dV=dR ¼ A4=β. Extremizing
using dB=dR ¼ 0 implies the junction condition and fixes
R to the critical value. Expanding in large k, we have

V5 ¼
A4

4k

�
1 −

1

k2R2

�
: ð24Þ

Inserting this, and replacing κ5 by κ4 using (16), we
recover (22).
Another nice feature of our 5D UV completion is that we

have control over an infinite tower of corrections to the 4D
quantum cosmological model. Going back to the full
expression, the canonical momentum is given by

cosh

�
κ5p
6π2a2

�
¼ β−βþ − _a2

N2
ffiffiffiffiffiffiffiffiffiffiffiffi
A−Aþ

p ; ð25Þ

and the Hamiltonian plays the role of a constraint imposing
the junction condition:

H ¼ 2π2Na3
�
σ −

3ðβ− − βþÞ
aκ5

�
¼ 0: ð26Þ

Expressed in terms of the canonical momentum the
Hamiltonian constraint becomes

H ¼ −
6π2

κ5

�
A− þ Aþ − 2

ffiffiffiffiffiffiffiffiffiffiffiffi
A−Aþ

p
cosh

�
κ5p
6π2a2

��
1=2

þ 2π2Na3σ ¼ 0: ð27Þ

We can quantize the system to obtain the WdW-equation by
making the replacement

p → −
i

a3=2
d
da

a3=2: ð28Þ

For general p the equation is of infinite order in p and turns
into a difference equation. We focus on the limit of small p,
where the Hamiltonian becomes quadratic in p. This is the
limit that is relevant for the case of a small cosmological
constant compared to fundamental scales. In this limit, we
recover (5)

�
−

1

24π2
1

a3=2
d2

da2
ða3=2ψÞ þ 6π2VðaÞ

�
ψ ¼ 0; ð29Þ

with a different normalization of the wave function that is
easily understood. Here, the wave function ψ is supported
in four spatial dimensions, and is related to the wave
function in minisuperspace through Ψ ¼ a3=2ψ . Note thatR
a3jψ j2 ¼ R jΨj2 is used for normalization.

V. CONCLUSION

We conclude that Vilenkin’s amplitude in quantum
cosmology can be understood as the nucleation probability
of a bubble of true vacuum in an unstable AdS5 space. Our
understanding of the physics of CDL bubbles (see [34])
translates to an understanding of more involved issues in
quantum cosmology such as the choice of boundary
conditions which affect the amplitudes.
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In this model there is no big-bang singularity to worry
about and all physics at all length scales that are involved in
the process are essentially understood. It is semiclassical
gravity in 5D, which can be embedded in string theory and
provides our UV completion of 4D cosmology. Indeed,
the big bang singularity is not present in 5D and would
correspond to the fiducial zero size of the bubble, which is
not a physical solution to worry about. The undetermined
coefficients in the minisuperspace wave function are then
completely fixed, since it has to be consistent with the
standard story of thin wall CDL tunneling (or the particular
Brown-Teitelboim incarnation in this case). From the point
of view of a 4D observer, the nucleation of the closed
bubble universe is a creation out of nothing. From a 5D
point of view, one still needs to explain the origin of the
AdS space time. This question we do not address and leave
for further string theoretic studies, possibly within the
framework of a multiverse.
In [5–13] it has been debated whether quantum cosmol-

ogy is potentially unstable against fluctuations. We believe
that the arguments in [10–13] settles this, and take away
worries about such instabilities in the case of Vilenkin
weighting. The bottom line is that the path integral needs to
be supplied by extra terms to properly take into account
boundary conditions. These terms contribute to the ampli-
tude and can be interpreted as appropriate wave functions
for the fields involved. Our interpretation of the Vilenkin
tunneling proposal in terms of the nucleation of a higher
dimensional bubble, intuitively explains why instabilities

are not to be expected. As argued in [11], the path integral is
just a way to solve the WdWequation. Examining solutions
of the latter is the simplest way to sort out the physics of the
problem.
It is useful to compare our results with the model of

Karch-Randall [18]. There, a closed dS universe is repre-
sented by a bubble with its inside identified with itself
across its boundary. Such a bubble has no outside and
cannot nucleate in to a preexisting space time. Interestingly,
[29] concluded that the quantum creation of such a universe
would be described by the Hartle-Hawking amplitude.
This is in contrast with the nucleating bubbles we have
studied in this paper, which tunnel into existence as a false
vacuum decays and thus need to be described by Vilenkin’s
tunneling amplitude. The swampland conjectures suggest
that it is the latter possibility that has a chance of
being realized in string theory (see [35] for a concrete
suggestion).
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