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In this paper, we study the bulk local states in the AdS=CFT correspondence in the large N limit using
the formula explicitly relating the bulk local operators and the conformal field theory (CFT) local operators.
We identify the bulk local state in terms of CFT local states and find that the bulk local state corresponds to
a CFT state supported in the whole space, which means a version of the subregion duality is not valid. On
the other hand, CFT states supported in a space region are expressed in terms of the bulk states supported in
a certain region. We find that the quantum error correction proposal is not realized although the puzzles of
the radial locality which motivated the proposal are resolved in our analysis. For the understating of the
bulk local states, an explicit realization of an analog of the Reeh-Schlieder theorem plays an important role.
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I. INTRODUCTION AND SUMMARY

The AdS=CFT correspondence [1] is highly nontrivial
and important in various aspects of physics and has been
investigated intensively. There is no proof for this corre-
spondence, thus it is still a conjecture although there are
many evidences.
The key ingredient of the AdS=CFT correspondence is

the locality in the bulk, which is needed for the emergence
of the extra dimension (for a recent discussion on the bulk
locality, see [2,3]). In particular, the local states in the bulk
should be understood from the states of CFTd. In order to
study the correspondence between the bulk theory and the
conformal field theory (CFT), some bulk-boundary corre-
spondence, like the Gubser-Klebanov-Polyakov-Witten
(GKPW) relation [4,5] or the Banks-Douglas-Horowitz-
Martinec (BDHM) relation [6] is usually assumed. Instead
of assuming such bulk-boundary correspondences, with the
natural assumptions on the large N strong coupling CFTd,
we can show the equivalence between the spectrum (i.e.,
the states and the Hamiltonian) of the CFTd and the
spectrum of the bulk theory on the (dþ 1)-dimensional
anti–de Sitter space (AdSdþ1) in the (naive) largeN limit, in
which the bulk gravity theory will become a free theory
[7].1 Here, the Hamiltonian is given by the dilatation
operator. Then, the bulk local operator and the bulk local

state are explicitly given by the CFTd operator and the
CFTd state, using the explicit identification of the energy
eigenstates in CFTd to the those in the bulk theory on
AdSdþ1.

2 Furthermore, it was shown that the GKPW and
BDHM relations are consequences of this identification.
Note that these results in [7] are based on some earlier

works [6,8,9] (see also [10–28]) and the identification in [7]
may be consistent with the Hamilton-Kabat-Lifschytz-
Lowe (HKLL) reconstruction [16] in which assuming
the BDHM relation [6] which relates the CFTd primary
field as a limit of bulk field to the boundary, the bulk local
operator is reconstructed from the CFTd operator.
Moreover, the bulk local state at the center of a time slice
of AdSdþ1 is also explicitly reconstructed by imposing the
invariance under some “rotations” symmetries of AdSdþ1

which are expected to fix the center [11–13]. The results in
[7] are consistent with these also.3

In [7], the bulk locality in the large N limit comes from
the large N factorization, which guarantees the theory is
(generalized) free and the completeness condition of the
spectrum, which gives the Fock space together with the
conformal symmetry, which may guarantee the Lorentz
symmetry for the local neighborhood of a spacetime point.
On the other hand, in [29] some problems or puzzles related
to the locality in the radial direction in the bulk were given,
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1Here, we considered the (asymptotically) global AdSdþ1 only,
because the spectrum of the theory will be continuous and
ambiguous for the Poincaré patch of AdS.

2A local state in this paper means a state obtained by acting a
local operator on the vacuum. More precisely, the local operators
and states should be smeared over a region in the spacetime.

3For a state at the center, we can check that the construction in
[7] gives same state given by [11–13]. However, there are states
which are invariant under the “rotations” symmetries, but is not a
local state [7]. In [26], the bulk local states not at the center are
constructed using the conformal transformation also for CFT2.
These could be different from the ones we will use in this paper
because the local operator with spacetime derivatives is a local
operator.
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and the quantum error correction codes are claimed to be
the key to solve these problems (for a review, see [30]).
However, the structure of the quantum error correction
codes has not been explicitly identified in realistic models
of the AdS=CFT correspondence. Thus, it is worth inves-
tigating these puzzles in the bulk local states or the bulk
local operator expressed by the energy eigenstates of CFTd
in the large N limit using the results in [7].
In this paper, we show how these puzzles of the radial

locality are solved in terms of the bulk and CFT local
operators or states which are given by the energy eigen-
states of CFTd.

4 The resolution is partly based on the fact
that we need the “cutoff” for the high energy states in the
low-energy effective theory which is regarded as the bulk
(gravity) theory. Note that this cutoff is also crucial for the
error correction code proposal [29] although this proposal
is completely irrelevant for the analysis in this paper.
Indeed, it is about low energy states (or code subspace),
thus it is obvious that the cutoff is needed, even if we
consider the large N limit. In other words, in the formal
large N expansion, we can not resolve the puzzles. We need
the large, but finite N effects (i.e., finite Planck length
effects) for the resolution of them.
With this cutoff we explicitly identify the bulk local state

in terms of CFT local states. We also explicitly identify
CFT states supported in a space region in terms of the bulk
local states. We find that the bulk local state corresponds to
a CFT state supported in the whole space Sd−1, not a
subregion. This means that the subregion duality [31–35] is
not valid in our model.5 On the other hand, we argue that a
CFT state supported in a space region A corresponds to a a
bulk state supported in a certain space region. We call this
bulk region as the minimal surface wedge of A, which is a
kind of generalization of the entanglement wedge.
Furthermore, we find that two bulk local states at a same
spacetime point constructed from CFT states supported in
space regions A and A0 are different generically if A ≠ A0,
even in the low energy theory. This means that the quantum
error correction code proposal [29] is not realized although
the puzzles of the radial locality raised in [29] are resolved.
We stress that the model considered in this paper is the

generalized free theory which is the universal low-energy
theory of AdS=CFT, although we consider only the scalar.
Namely, we study the holographic CFT itself, not a model
of the holographic CFT.

One of the important topics in this paper is the Reeh-
Schlieder theorem. We explicitly construct a CFT local
state at a spacetime point which is effectively equivalent to
a CFT local state at a different spacetime point. Hence, it is
important to find which state is effectively local with the
cutoff we introduced and then we call them the CFT
effective local states at each spacetime point. The CFT
effective local states on the time slice t ¼ 0 do not span
even the low-energy states. However, by the time evolution,
a CFT effective local state at t ¼ t0 ≠ 0 gives a CFT state
supported in a region at t ¼ 0, which is not given by
effective local states on t ¼ 0. If we consider the CFT
effective local states in whole spacetime (or the spacetime
region π ≤ t ≤ π) and consider the time evolution of them
to the time slice t ¼ 0, then any low energy state is
expected to be given by them because in the low-energy
theory the effective local states play the role of the local
states.6 We will see that the maximum distance from the
boundary in radial direction z of the bulk local state at t ¼ 0
constructed from such a CFTeffective local state at t ¼ t0 is
jt0j because of the bulk causality.
In this paper, we concentrate on the free field limit of the

bulk theory around the AdS spacetime. A generalization of
[7] to general classical backgrounds was done in [36] and
showed that the Einstein equation was derived with
assumptions made in [7]. It is interesting to investigate
how the analysis in the paper can be generalized to a
general background. In particular, for the black hole, we
expect that the brick wall [37] will appear [38] instead of
the horizon and it is interesting to study how the locality
near the brick wall is modified.
This paper is organized as follows. In the next section we

review the relation between the free scalar field on AdSdþ1

and the large N CFTd according to [7]. Based on this, we
will describe the bulk local states and the CFT local states
in terms of the energy eigenstates. In Sec. III we study the
bulk locality in AdS=CFT correspondence in the naive
large N limit. We explicitly identify the bulk local state as a
CFT state and we also identify a CFT state supported in a
space region as a bulk state.

II. BULK LOCAL STATES AND
CFT LOCAL STATES

In this section, we will review the relation between free
scalar field on AdSdþ1 and large N CFTd according to [7].
Based on this, we will describe the bulk local states and the
CFT local states in terms of the energy eigenstates. We will
consider the low-energy theory with the energy cutoff ωc,
which is related to the Planck mass, in order to obtain the

4In this paper, we only consider the bulk (free) scalar field and
the corresponding sector of CFT in the naive large N limit, for
simplicity.

5In this paper, the subregion duality means that the operators
supported in the CFT subregion A is equivalent to the operators
supported in a corresponding bulk subregion a. Another weaker
version of it is that the CFT density matrix for the region A, which
is defined by the tracing out, is equivalent to the density matrix
for the bulk theory defined in a bulk region a with an appropriate
boundary condition. This will be consistent with our results.

6Note that any CFT state is given by a superposition of the
CFT local states in the t ¼ 0 time slice of spacetime. For a small
number of (free) fields, any state (without a cutoff) will be given
by a effectively local states in the time slice, which implies that
there is no bulk dual for such a CFT.
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local bulk theory picture. This cutoff also introduces the
truncation of the states for sufficiently high energy states.
For the local operator and the local states, this cutoff gives
the effective smearing over the time with the length scale
1=ωc. Below, we will also explain such descriptions of the
local states in the low-energy theory.

A. Relation between free scalar field
on AdSd + 1 and large N CFTd

In this subsection, we will review local operators and
states of the (free) scalar field on AdSdþ1 in terms of CFTd
in the large N limit, following [7].
Let us consider the free scalar field for which the action

is given by

Sscalar ¼
Z

ddþ1x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgÞ

p �
1

2
gMN∇Mϕ∇Nϕþm2

2
ϕ2

�
;

ð2:1Þ

whereM;N ¼ 1;…; dþ 1, on global AdSdþ1. The AdSdþ1

metric is

ds2AdS ¼ −ð1þ r2Þdt2 þ 1

1þ r2
dr2 þ r2dΩ2

d−1; ð2:2Þ

where 0 ≤ r < ∞, −∞ < t < ∞, and dΩ2
d−1 is the metric

for the d − 1-dimensional round unit sphere Sd−1. We set
the AdS scale lAdS ¼ 1 in this paper. By the coordinate
change r ¼ tan ρ, the metric is also written as

ds2AdS ¼
1

cos2ðρÞ ð−dt
2 þ dρ2 þ sin2ðρÞdΩ2

d−1Þ; ð2:3Þ

where 0 ≤ ρ < π=2. With z ¼ π=2 − ρ, the metric is
given by

ds2AdS ¼
1

sin2ðzÞ ð−dt
2 þ dz2 þ cos2ðzÞdΩ2

d−1Þ: ð2:4Þ

The boundary of the AdSdþ1 is located at ρ ¼ π=2 or z ¼ 0.
We expand the quantized field ϕ̂ with the spherical

harmonics YlmðΩÞ,

ϕ̂ðt; ρ;ΩÞ ¼
X
n;l;m

ðâ†nlmeiωnt þ ânlme−iωntÞψnlmðρÞYlmðΩÞ;

ð2:5Þ

where Ω represents the coordinates of Sd−1 and

ψnlðρÞ ¼
1

Nnl
sinlðρÞcosΔðρÞ

× 2F1

�
−n;Δþ lþ n; lþ d

2
; sin2ðρÞ

�
; ð2:6Þ

where Δ is given by Δ ¼ d=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ d2=4

p
, and

ωnl ¼ 2nþ lþ Δ; ð2:7Þ

where n; l ¼ 0; 1; 2; 3;…. The normalization constant is
given by

Nnl ¼ ð−1Þn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n!Γðlþ d

2
Þ2ΓðΔþ nþ 1 − d

2
Þ

Γðnþ lþ d
2
ÞΓðΔþ nþ lÞ

s
: ð2:8Þ

The operators ânlm satisfy the commutation relation

½ânlm; â†n0l0m0 � ¼ δn;n0δl;l0δm;m0 ; ð2:9Þ

and the Hamiltonian is such that

½Ĥ; ânlm� ¼ −ωnl: ð2:10Þ

The Hilbert space is the Fock space spanned byQ
n;l;mðâ†nlmÞN nlm j0i, where N nlm is a non-negative integer.

We choose the constant shift of the Hamiltonian as
Ĥj0i ¼ 0 where j0i is the vacuum, i.e., ânlmj0i ¼ 0.
Now, let us consider a scalar primary field OΔðxÞ in

CFTd on R × Sd−1 where R is the time direction and the
radius of Sd−1 is taken to be 1. (For a review of the CFTd,
see for example, [39–41].) Any state in CFT can be
obtained as a linear combination of the primary state jΔi ¼
limx→0OΔðxÞj0i with the P̂μ, for example,

P̂μ1P̂μ2 � � � P̂μl jΔi: ð2:11Þ

We also define the operator

ÔΔ ¼ lim
x→0

Ôþ
ΔðxÞ; ð2:12Þ

where Ôþ
ΔðxÞ is the regular part of OΔðxÞ in xμ → 0 limit7

which can be expanded by the polynomial of xμ.8 This
satisfies jΔi ¼ ÔΔj0i where j0i is the conformal vacuum.
It was shown in [7] that the spectrum of this CFTd in the
large N limit is equivalent to the spectrum of free scalar on
AdSdþ1 under some natural assumptions on the spectrum.
The identification of the CFT states to the states of the Fock
space of the scalar fields in AdS is explicitly given by the
identification of the raising operators as

â†nlm ¼ cnls
μ1μ2…μl
ðl;mÞ Pμ1Pμ2 � � �PμlðP2ÞnÔΔ; ð2:13Þ

7This should be done after taking the large N limit. More
precisely, ÔΔ is the sum of the operators of dimension Δ up to
1=N corrections in OΔðxÞ.

8For the stress energy tensor in two dimensional theory, ÔΔ is
L−2 or L̃−2.
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where cnl is the normalization constant, which was
determined in [7], Pμ acts on an operator such that
Pμϕ̂ ¼ ½P̂μ; ϕ̂�, and sμ1μ2…μl

ðl;mÞ is a normalized rank l sym-

metric traceless constant tensor.

B. Bulk local states

We will decompose the local operator in the bulk
description to positive and negative frequency modes as

ϕ̂ðt; ρ;ΩÞ ¼ ϕ̂þðt; ρ;ΩÞ þ ϕ̂−ðt; ρ;ΩÞ; ð2:14Þ

where ϕ̂−ðt; ρ;ΩÞ ¼ ðϕ̂þðt; ρ;ΩÞÞ†. In this paper, we will
concentrate on the one particle states in the naive large N
limit only. For this, the commutator of the operators
ϕ̂ðρ;ΩÞ≡ ϕ̂ðt ¼ 0; ρ;ΩÞ is a constant and given by the
overlap of the corresponding states, ϕ̂þðρ;ΩÞj0i, which is

h0j½ϕ̂1ðρ;ΩÞ; ϕ̂2ðρ0;Ω0Þ�j0i
¼ h0jϕ̂−

1 ðρ;ΩÞϕ̂þ
2 ðρ0;Ω0Þj0i − h0jϕ̂−

2 ðρ0;Ω0Þϕ̂þ
1 ðρ;ΩÞj0i

¼ 2i Imðh0jϕ̂−
1 ðρ;ΩÞϕ̂þ

2 ðρ0;Ω0Þj0iÞ; ð2:15Þ

where ϕ̂i represents ϕ̂ with some spacetime derivatives and
ϕ̂�
i is the positive/negative frequency modes of ϕ̂i. Thus,

we will study the states, instead of the operators in order to
understand the locality in the bulk. In particular, the
commutator of the operators is zero if the corresponding
overlap vanishes.
Using (2.13), the bulk local operator is expressed as

ϕ̂þðt ¼ 0; ρ;ΩÞ
¼

X
n;l;m

ψnlðρÞYlmðΩÞâ†nlm

¼
X
n;l;m

ψnlðρÞYlmðΩÞcnlsμ1μ2…μl
ðl;mÞ Pμ1Pμ2 � � �PμlðP2ÞnÔΔ;

ð2:16Þ

where only the CFT operators appear in the last line.9 The
wave function for the radial direction can be rewritten as

ψnlðρÞ ¼
1

N nl
sinlðρÞcosΔðρÞPlþd=2−1;Δ−d=2

n ðcosð2ρÞÞ;

ð2:17Þ

where Pα;β
n ðxÞ is the Jacobi polynomial defined by

Pα;β
n ðxÞ ¼ ð−1Þn

2nn!
ð1 − xÞ−αð1þ xÞ−β

×
dn

dxn
ðð1 − xÞαð1þ xÞβð1 − x2ÞnÞ; ð2:18Þ

and the normalization constant N nl is given by

N nl ¼ ð−1Þn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðnþ lþ d

2
ÞΓðnþ 1þ Δ − d

2
Þ

Γðnþ lþ ΔÞΓðnþ 1Þ

s
: ð2:19Þ

For later use, we will compute the large n, l limit of N nl
using the following formula; limz→∞Γðzþ aÞ=ΓðzÞ ¼ za.
For l → ∞ with a fixed n, we have ð−1ÞnN nl →ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γðnþ1þΔ−d
2
Þ

Γðnþ1Þ

q
1

lΔ=2−d=4
. For n → ∞ with a fixed l,

ð−1ÞnN nl → 1. For n → ∞ with a fixed l=n, ð−1ÞnN nl →
ð n
nþlÞΔ=2−d=4. Note that these limiting values are not
exponential, but powers of n, l.
Then, the bulk local state at ρ ¼ ρ0, Ω ¼ Ω0 is given by

jρ0;Ω0; ti≡ ϕ̂ðt; ρ0;Ω0Þj0i
¼

X
n;l;m

eitð2nþlþΔÞψnlðρ0ÞYlmðΩ0Þâ†nlmj0i: ð2:20Þ

The other bulk local operators and the bulk local states are
obtained from these by applying a finite number of
spacetime derivatives.10

The overlap between ϕ̂ðt ¼ 0; ρ ¼ ρ1;Ω ¼ Ω1Þj0i
and π̂ðt ¼ 0; ρ ¼ ρ0;Ω ¼ Ω0Þj0i, where π̂ðt; ρ;ΩÞ ¼ffiffiffiffiffiffi−gp

gtt ∂
∂t ϕ̂ðt; ρ;ΩÞ ¼ ðsin ρcos ρÞd−1 ∂

∂t ϕ̂ðt; ρ;ΩÞ is the momen-

tum which satisfies ½ϕ̂ðt ¼ 0; ρ ¼ ρ1;Ω ¼ Ω1Þ;
π̂ðt ¼ 0; ρ ¼ ρ0;Ω ¼ Ω0Þ� ¼ iδðρ0 − ρ1ÞδðΩ0 −Ω1Þ, can
be computed from

�
hρ1;Ω1; tj

∂
∂t jρ0;Ω0; ti

�����
t¼0

¼
X
l;m

�X
n

ið2nþ lþ ΔÞψnlðρ1Þψnlðρ0Þ
�

× YlmðΩ1ÞYlmðΩ0Þ; ð2:21Þ

which is (formally) proportional to iδðρ0 − ρ1ÞδðΩ0 −Ω1Þ
because of the orthogonality properties of the Jacobi
polynomials and the hyperspherical harmonics. We will
denote the bulk local state at ρ ¼ ρ0, Ω ¼ Ω0 on the t ¼ 0
slice simply as

9The derivatives of a local operator with t, ρ, Ω is also
a local operator, for example, the momentum π̂ðt; ρ;ΩÞ ¼ffiffiffiffiffiffi−gp

gtt ∂
∂t ϕ̂ðt; ρ;ΩÞ is a local operator.

10In the approximation where bulk theory is free, the time
derivative does not produce an independent local field by the
equations of motion, except the momentum. The products and the
linear combinations of the local operators are also local operators,
however, we will not consider the products for simplicity.
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jρ0;Ω0i≡
X
n;l;m

ψnlðρ0ÞYlmðΩ0Þâ†nlmj0i: ð2:22Þ

The overlap of these, hρ1;Ω1jρ0;Ω0i, may vanish
(formally) except ρ0 ¼ ρ1 and Ω0 ¼ Ω1.
Of course, these local states (and corresponding local

operators) themselves are not well defined. Indeed, they
have a divergent energy, which means these are ill defined,
and need to be smeared or regularized, for example, by
integrating ρ, Ω with the Gaussian factors of the center at
ρ0,Ω0.

11 Other ways of regularization are by inserting some
factors which decay exponentially for large n, l, for
example, e−Ĥ=ωc . Effectively both of these will introduce
the cutoff of the contributions for the large n, l in the
summations.
Note that if we consider the low-energy effective theory

with a cutoff of energy ωc, there are no local operators
smeared over the region smaller than 1=ωc and the local
operator should be smeared over a region of size of at least
1=ωc. This means that there is the largest energy cutoff,
around and above where the bulk locality is meaningless in
the low-energy effective theory. In the AdS=CFT corre-
spondence, the bulk description should be the low-energy
effective theory. This is because the complete independence
assumed in [7] should be violated for the finite N CFT and
the multiparticle states, which are related to the multitrace
operators, with a large energy are not independent from the
states with lower numbers of particles. Then, above this
energy scale the gravity picture (or the bulk locality) is not
valid. This invalidity of the gravity picture has been known
as the stringy exclusion principle [42], at least, for some
special examples of AdS3=CFT2. The largest cutoff ωc is
unknown for general models, however, it is expected to be
ωc < OðN2Þ because the degrees of freedom of the CFT is
OðN2Þ. Therefore, in this paper we consider the bulk
locality and the bulk local operators with the cut-off ωc ¼
OðN2Þ although wewill only use the fact that a cutoff of the
energy is needed and we will consider the leading order in
1=ωc expansion.12

With the cutoff, the overlap of two different bulk local
states (2.22),

hρ1;Ω1jρ0;Ω0i ¼
X
l;m

�X
n

ψnlðρ1Þψnlðρ0Þ
�

× YlmðΩ1ÞYlmðΩ0Þ; ð2:23Þ

vanishes, up to 1=ωc corrections, except ρ0 ¼ ρ1 and
Ω0 ¼ Ω1.
We can consider the local state smeared over angular

direction Ω, for example by a Gaussian factor, with length
scale 1=lc adding to the energy cutoff ωc. This induces the
effective cutoff lc for the summation over l in (2.22).13 Let
us consider these local states with a regularization satisfies

ωc ≫ lc; ð2:24Þ

which are important for the discussion below. For this case,
we can explicitly see how the overlap between the two local
states at different space points almost vanishes, as we will
see below. The dominant contributions in the summation
over n in (2.22) are those for lc ≪ nð≤ ωcÞ and the
asymptotic behavior of ψnlðρÞ for large n (with l and z
fixed) is computed, using the asymptotic behavior of Jacobi
polynomial [43], as

ψnlðρÞ¼
1ffiffiffiffiffiffi
πn

p ðtanzÞd−12 cos
�
ð2nþlþΔÞz−π

2

�
Δ−

d
2
þ1

2

��

þOðn−3=2Þ; ð2:25Þ

where

z ¼ π=2 − ρ; ð2:26Þ

and the boundary is at z ¼ 0. In the expression of the
overlap of two different bulk local states,

hρ1;Ω1jρ0;Ω0i ¼
Xlc
l¼0

� X½ðωc−l−ΔÞ=2�

n¼0

ψnlðρ1Þψnlðρ0Þ
�

×
X
m

YlmðΩ1ÞYlmðΩ0Þ; ð2:27Þ

the summation over n is almost canceled if ρ0 ≠ ρ1, and if
ρ0 ¼ ρ1 they are almost l-independent, because of the
phase factor in (2.25).14 Then, for the angular directions,P

l;m YlmðΩ1ÞYlmðΩ0Þ ∼ δðΩ0 −Ω1Þ, where the large l
contributions are almost canceled if Ω0 ≠ Ω1 because of

11We can also regularize this by integrating over the time with,
for example, the Gaussian factor. The regularization with the
smooth function supported on a spacetime region is better for the
notion of the local operators in the axiomatic quantum field
theory. We will not use such regularization because it is
technically difficult for the actual computations and what we
will consider below is the low-energy effective field theory which
is not described by the axiomatic quantum field theory.

12The gravity picture will be not valid even below this energy
scale, for example, the cutoff will be the plank scale, OðN2 1

d−1Þ.
The energy of the local operator will be proportional to the cutoff
energy and if the energy of the operator is proportional to the
plank scale, the back reaction to the geometry, which could
induces the topology change, should be incorporated. This
backreaction may change the notion of the bulk locality.
Thus, the cutoff is expected to be much less than the Planck
scale.

13Because the precise form of the regularization is expected to
be irrelevant, we will just regard the regularization as the cutoff lc
for the summation over l.

14The 1ffiffi
n

p factor in (2.25) is canceled if we consider the
commutator between the bulk local field and its momentum.
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phase cancellations. Here, the resolution of ρ is 1=ωc and
the resolution of the angular direction is 1=lc.
Note that these local states with the regularization, which

satisfies ωc ≫ lc, is squeezed in the radial direction and
move in the radial direction only; thus among the local
states these are a special class of states because of the
condition ωc ≫ lc.

C. CFTd local states

We have considered the bulk local state in AdSdþ1, i.e,
ϕðt; ρ;ΩÞ. On the other hand, the local state in the CFTd,
i.e., OΔðt;ΩÞj0i, will be different from the bulk local state.
This is possible because the notions of locality are different
between the finite N CFTd and the bulk theory.
We can represent the CFTd local state OΔðt;ΩÞj0i as a

linear combination of the (normalized) energy eigenstates,

cnls
μ1μ2…μl
ðl;mÞ Pμ1Pμ2 � � �PμlðP2ÞnÔΔj0i; ð2:28Þ

which is identified as â†nlmj0i. This rewriting was explicitly
done essentially in [7] by using the hyperspherical Bessel
function in order to derive the BDHM [6] extrapolation
formula,

lim
ρ→π=2

ϕ̂ðρ;ΩÞ
cosΔðρÞ ¼

ffiffiffi
π

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΓðΔÞ

ΓðΔþ 1 − d=2ÞΓðd=2Þ

s
OΔðΩÞ:

ð2:29Þ

If we define

ψCFT
nl ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

π

ΓðΔþ 1 − d=2ÞΓðd=2Þ
ΓðΔÞ

s
lim

ρ→π=2

ψnlðρÞ
cosΔðρÞ ; ð2:30Þ

where

lim
ρ→π=2

ψnlðρÞ
cosΔðρÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðnþ Δþ 1 − d=2ÞΓðnþ lþ ΔÞ

Γðnþ 1ÞΓðnþ lþ d=2Þ

s

×
1

ΓðΔþ 1 − d=2Þ ; ð2:31Þ

the local state in the CFTd is written as

OΔðΩÞj0i ¼
X
n;l;m

ψCFT
nl YlmðΩÞâ†nlmj0i; ð2:32Þ

where we have taken t ¼ 0. Note that ψCFT
nl ¼

ffiffi
2
π

q
is a

constant for Δ ¼ d=2.
For later use, we will compute the large n, l limit of ψCFT

nl
up to numerical factors which do not depend on n, l. For

l → ∞with a fixed n, we haveψCFT
nl →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðnþ1þΔ−d

2
Þ

Γðnþ1Þ

q
lΔ=2−d=4.

For n → ∞ with a fixed l, we have ψCFT
nl → nΔ−d=2. For

n → ∞ with a fixed l=n, ψCFT
nl → ðnðnþ lÞÞΔ=2−d=4. Note

that these asymptotic behaviors are not exponential, but
powers of n, l. Note also that the ð2nþ lþ ΔÞaψCFT

nl → ∞
for n → ∞ if a ≥ 1.
The other local operators in the CFTd are given from

OΔðt;ΩÞ by acting finite number of spacetime derivatives.
If we are interested in scalar operators only, the derivatives
should be composed by the time derivative and the
Laplacian on Sd−1. The corresponding local states are
given by

jΩ; RiCFT ¼ R

�
−i

∂
∂t ;−ΔSd−1

�

×
X

n;l;m
eið2nþlþΔÞtψCFT

nl YlmðΩÞâ†nlmj0i
����
t¼0

ð2:33Þ

¼
X
n;l;m

Rð2nþ lþ Δ; lðlþ d − 2ÞÞ

× ψCFT
nl YlmðΩÞâ†nlmj0i; ð2:34Þ

where Rðx; yÞ is a polynomial of x, y. If we allow an infinite
series for Rðx; yÞ it possibly represents a nonlocal state. We
will take Rðx; yÞ as a polynomial of x only and denote
Rðx; yÞ as RðxÞ for notational simplicity because the y-
dependence is not relevant in the discussions below.
Because the energy of these states are divergent, it is

important to consider the regularization of these states and
the corresponding operators. Here, we consider the CFTand
we can smear the local state over some region in time t and
spaceΩ. For the finiteness of the energywe need to smear, at
least, in time except for the free CFT case.15 Then, we can
introduce, for example, the Gaussian factor e−ð2nþlþΔÞ2=ðωcÞ2,
where ωc ≫ 1, by the time average over a period of 1=ωc,
which gives the effective cutoff ωc for 2nþ lþ Δ (and also
the effective cutoff lc for l by the averaging over Ω).
With this regularization, we cannot regard the state

(2.34) as a local state in general if the degree of the
polynomial RðxÞ is sufficiently large. This can be under-
stood as follows.16 Let us take RðxÞ ¼ PqR

q¼0ðiϵxÞq=q!
where ϵ is a real constant and the qR is the degree of the

15For the free scalar theory, the smearing over space only can
give a finite energy state because there is no summation over n for
this case.

16As an example, let us consider the free field. The commu-
tation relations at a fixed time, ½ ∂q

∂xq ϕðxÞ; πðx0Þ� ¼ ∂q
∂xq δðx − x0Þ,

and ½Rð−i ∂q
∂xqÞϕðxÞ; πðx0Þ� ¼ Rð−i ∂q

∂xqÞδðx − x0Þ, where RðxÞ ¼PqR
q¼0ðiϵxÞq=q!, vanishe if x ≠ x0. For a smeared local field, the

commutation relation is ½Rð−i ∂q

∂xqÞ
R
dye−ðωcÞ2ðy−xÞ2ϕðyÞ; πðx0Þ� ¼

Rð−i ∂q
∂xqÞe−ðωcÞ2ðx−x0Þ2 . By taking ϵ ¼ x0 − x ≫ 1=ωc, this is

proportional to e−ðωcϵÞ2 for jϵj ≫ qR=ωc, then, exponentially
suppressed. On the other hand, it is almost 1 for jϵj ≪ qR=ωc.
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polynomial RðxÞ. Then, if jiϵxjqRþ1=ðqR þ 1Þ! ≪ 1, this
cannot be distinguished with eiϵx, which is the operator
generating the translation, t → tþ ϵ. Such an operation
causes the nonlocality of OðϵÞ for time, and then, the state
(2.34) at t ¼ 0 is smeared over the ball-shape region with
the size ϵ by the causality; thus it is not a local state. For a
large qR, this condition becomes jϵxj ≪ qR because
1=q! ∼ e−q log q. Because the maximum value of 2nþ lþ
Δ in (2.34) isOðωcÞ, the state (2.34) is supported in a space
region of the size jϵj for this RðxÞ if jϵj ≪ qR=ωc.

17 This
implies that, the state (2.34) is not necessary regarded as a
local state, at least if qR is comparable to ωc.
Thus, if the cutoff ωc is fixed or we consider the low-

energy effective theory below the energy ωc, the CFT local
states (or operators) are effectively local only when
qR ≪ ωc.

18 This is not inconsistent with the fact that local
fields with arbitrary number of derivatives are local fields in
a quantum field theory because ωc can be taken as
arbitrarily large. However, for the AdS=CFT, we will
consider a subspace of the Hilbert space of CFT which
introduces the largest ωc because the bulk locality is
meaningful only for low-energy states. (Low-energy effec-
tive theories for quantum field theories, in general, intro-
duce the largest ωc.)
Denoting ωc as the largest cutoff for the bulk picture, a

CFT state (2.34) with the smearing with ω0
c which satisfies

ω0
c ≫ qR ≫ ωc is effectively a local state in the CFT.

However, this state is constructed mostly from the very
high-energy states with n ≫ ωc. Such high-energy states
can not be described in the local bulk picture.
We have seen that the (smeared) CFT local state at a

point can effectively become the one at a different point by
choosing RðxÞ such that it mimics a translation. This might
seem surprising; however, for field theories in the
Minkowski spacetime, there is the Reeh-Schlieder theorem
[44] which essentially states that the algebra of the local
fields on a region in spacetime can generate any state
approximately with an arbitrary precision (see, for exam-
ple, [45]). Thus, the discussions above may be regarded as a
(nonrigorous) explicit realization of the analog of the Reeh-
Schlieder theorem.
Below, we will call the CFT states (2.34) (or operators)

with qR ≪ ωc [more precisely, qR ¼ OððωcÞ0Þ] as CFT
effective local states (or operators) because we will only

consider CFT operators and states with the regularization
by the smearing over 1=ωc.
Note that the CFT effective local states only span a small

subspace of the low-energy Hilbert space of the CFT.
However, by the time evolution, a CFT effective local state
at t ¼ t0 ≠ 0 gives a CFT state supported in a region at
t ¼ 0, which is not given by effective local states on t ¼ 0.
If we consider the CFT effective local states in the whole
spacetime (or the spacetime region π ≤ t ≤ π) and consider
the time evolution of them to the time slice t ¼ 0, then any
low-energy state is expected to be given by them because in
the low-energy theory the effective local states play the role
of the local states.

III. BULK LOCALITY IN AdS=CFT

In this section, we will consider the relation between the
bulk local states and the CFT (effective) local states. This
topic is related to how the bulk locality emerges in the CFT.
The bulk locality is seemingly paradoxical in the CFT point
of view; however, we will see that there may be no paradox.
One of the “paradoxes” discussed in [29] is about the

time-slice axiom which, essentially, says that there is no
nontrivial operator which strictly commutes with any local
field of CFT. However, from the bulk point of view, a
boundary operator is obtained from the corresponding bulk
field by taking it to the boundary with the appropriate
scaling factor. This means that there is no bulk local field,
strictly speaking. Indeed, the bulk local field is an approxi-
mate notion in the AdS=CFT correspondence because N
should be finite if the CFTd is well defined as a
d-dimensional field theory. Thus, this formal “paradox”
is not a real problem.19 We will see below how bulk local
fields appear in the CFT explicitly.

A. Bulk local states from CFT states

1. Bulk states localized in radial direction

Here, we will consider bulk states20 which are localized
only in the radial direction at ρ ¼ ρ0 and extended in the
angular direction, with l ¼ l0, m ¼ m0,

jρ0; l ¼ l0; ; m ¼ m0i≡
X
n

ψnl0ðρ0Þâ†nl0m0
j0i; ð3:1Þ

with the regularization discussed above. These states can be
obtained from the bulk local states by an appropriate

17Instead of the translation, we can consider RðxÞwhich causes
a smearing over the size ϵ. For example, RðxÞ ¼ PqR=2

q¼0 ðϵxÞ2q=q!,
which is a truncation of e−ðϵxÞ2 , is such an operation. For this RðxÞ
also, the state (2.34) is supported in a space region of the size ϵ if
ϵ ≪ qR=ωc.

18For the lattice field theory in a box of size L ¼ 1, with a
lattice spacing 1=ωc, the qR-derivative

∂qR
∂tqR is an operator which

acts on fields on the qR sites and induces the nonlocality of the
size qR=ωc.

19Indeed, as we will see below, the boundary operators are the
CFT effective local operators, which are in a subset of the CFT
local operators. Thus, the bulk operator can commute with the
boundary operators effectively.

20The bulk states and the CFT states are identical, of course.
(In the low energy, it is identical and the CFT may be the
definition of the theory above the cutoff scale.) Here the “bulk
state”means that we consider a state, from the bulk point of view,
which is obtained by acting a bulk local field on the vacuum.
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averaging over angular directions Ω. Note that for ρ0 ¼ 0
this is the local state at ρ ¼ 0 (which implies l0 ¼ 0) and for
ρ0 ≠ 0 this is localized in the radial direction, but extended
in the angular directions. For the latter case, if we take
l0 ¼ 0 in particular, the states are uniform in Sd−1.
Let us consider the time evolution of this state. At time t,

this state becomes

eiĤtjρ0; l ¼ l0; m ¼ m0i
¼

X
n

eið2nþl0þΔÞtψnl0ðρ0Þâ†nl0m0
j0i: ð3:2Þ

Because ψnl is not singular for finite n, the dominant
contributions in the summation are from n ≫ 1, and, by
using (2.25), the phase of each of the contributions
becomes

eið2nþl0þΔÞt cos
�
ð2nþ l0þΔÞz0−

π

2

�
Δ−

d
2
þ1

2

��

¼ 1

2
eið2nþl0þΔÞðtþz0Þ−π

2
ðΔ−d

2
þ1

2
Þ þ1

2
eið2nþl0þΔÞðt−z0Þþπ

2
ðΔ−d

2
þ1

2
Þ;

ð3:3Þ

where z0 ¼ π=2 − ρ0. Thus, at time t, the states becomes
localized at z ¼ z0 � t. This is consistent with the fact that
the lightlike trajectory in the radial direction of the AdS
spacetime is z ¼ z0 � t because the localized state in the
radial direction has an infinite energy (without regulariza-
tion).21 One might think that this is inconsistent with the
HKLL reconstruction of the bulk local state at the center for
the global AdS [16] because the smearing function used in
[16] is supported in the region −π=2 ≤ t ≤ π=2. However,
because the smearing function is KðtÞ ¼ ðcos tÞΔ−d or
K ¼ ðcos tÞΔ−dt, R

dtKðtÞ is divergent near t ¼ �π=2
for Δ ≤ d − 1. Thus, the integration is indeed localized
at these points.22

Let us concentrate on the l0 ¼ 0 case and consider what
the corresponding state is as a linear combination of the
CFT local states (2.34) with regularization. Because of the
rotational symmetry, the corresponding state should be
(2.34) with l ¼ 0

jl ¼ 0; RiCFT ≡
X
n

Rð2nþ ΔÞψCFT
n0 â†n00j0i; ð3:4Þ

with an appropriate RðxÞ. Thus, the l ¼ 0 state is uniform
in the space Sd−1 and cannot be described by the CFT state
supported in any subregion of the space Sd−1. This implies
that the bulk local state at the center of AdS space is
supported in whole space Sd−1 and then the version of the
subregion duality may not be correct.
For general l, we will see how the following CFT state

constructed from the CFT states (2.34) integrating over the
angular direction,

jl¼ l0;m¼m0;RiCFT≡
Z

dΩY�
l0;m0

ðΩÞjΩ;RiCFT
¼
X
n

Rð2nþ l0þΔÞψCFT
nl0

â†nl0m0
j0i;

ð3:5Þ

realizes the bulk state localized in the radial direction (3.1)
by choosing RðxÞ appropriately. We will also see how the
bulk locality in the radial direction is realized in the CFT for
this example.
In order to have a bulk state which is localized in the

radial direction (3.1) and its ρ-derivative, we need to choose
the polynomial R in (3.5) such that the phase factor in the
large n is reproduced, i.e.,

Rð2nþ l0þΔÞψCFT
nl0

∼exp

�
�i

�
ð2nþ l0þΔÞz0−

π

2

�
Δ−

d
2
þ1

2

���
; ð3:6Þ

for 1 ≪ n ≤ ωc, where the right-hand side is the asymptotic
behavior of ψnl0ðρ0Þ. This is possible because R is an
arbitrary polynomial and the range of n considered here is
finite. Indeed, if we take RðxÞ ¼ PqR

q¼0ðiz0xÞq=q! where
z0 ≪ qR=ωc, which is effectively a time translation oper-
ator, the state (3.5) reproduces the phase (3.6) and then the
state is localized at ρ ¼ 1=z0. We note that qR is, at least,
comparable with ωc which is very large, thus the CFT state
which corresponds to the bulk local state contains a large
number of derivatives. Note that with this choice of RðxÞ,
the CFT local state jΩ; RiCFT used in (3.5) is not a CFT
effective local state.
Thus, the CFT state (3.5) with the appropriate choice of

RðxÞ describes the bulk local states (3.1). This is possible
because of the large degrees of freedom of the large N
gauge theory. The different states at different ρ, which are
orthogonal to each other, are embedded in the OðN2Þ
internal degrees of freedom of the CFT, which essentially
correspond to the label n and the n-dependence of the state
is changed by the time derivatives. A linear combination
of the CFT local states with the large number of time

21For Δ ¼ d=2 which saturates the Breitenlohner-Freedman
bound [46] in the bulk picture, the particle in the bulk travels
through the lightlike trajectory. Indeed, for Δ ¼ d=2 ¼ 1, we can
check that ψn0ðρ ¼ 0Þ ¼ Ceið2nþΔÞπ=2ψCFT

n0 , where C is an
n-independent constant. This means that the bulk local state at
ρ ¼ 0, t ¼ 0 is obtained by the CFT local state averaged over S1
at t ¼ −π=2 (mod π). For Δ ¼ d=2 and d > 2, there will appear
some kinematic factor.

22The divergence is regularized by the smearing of the bulk
local operator. For Δ > d − 1, some modifications of the dis-
cussion in [16] would be needed.
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derivatives corresponds to the bulk state away from the
boundary.

2. Examples of bulk local states from CFT states

We have seen that the bulk local state at the center
corresponds to the CFT state which is supported on whole
space Sd−1 uniformly. This implies that a generic bulk local
state also corresponds to a CFT state which is supported on
whole space, because of continuity.
On the other hand, some particular bulk local states can

correspond to CFT states which are supported on a
subregion in the space as we will see below.23 Let us
consider the CFT state (2.34) at Ω ¼ Ω0 with the
regularization,

jΩ ¼ Ω0; RiCFT

¼
X2nþlþΔ<ωc;l<lc

n;l;m

Rð2nþ lþ ΔÞψCFT
nl YlmðΩ0Þâ†nlmj0i:

ð3:7Þ
This state is a CFT local state smeared over the timewith the
length scale 1=ωc and over the space with the length scale
1=lc. Here, we take the parameters of the regularizations as
1 ≪ lc ≪ ωc. (1=ωc can be the smallest one, which may be
related to the Planck length and 1=lc will be an arbitrary
(very small) length scale, but much larger than 1=ωc.)
If this CFT state corresponds to the bulk local state (2.22)

at ρ ¼ ρ0, Ω ¼ Ω0, the phase factor should be reproduced.
For this, we need to take

RðxÞ ¼
Xqc
q¼0

ðiz0xÞq=q!; ð3:8Þ

where z0 ≪ qc=ωc as in (3.6). Then, if we neglect the 1=lc
suppressed terms, the overlap between the (normalized)
CFT state (3.7) and the bulk local state (2.22) at ρ ¼ ρ1,
Ω ¼ Ω1, with the regularization by ωc,

hρ1;Ω1jΩ ¼ Ω0; RiCFT

¼
X2nþlþΔ<ωc;l<lc

n;l;m

Rð2nþ lþ ΔÞψCFT
nl ψnlðρ0Þ

× Y�
lmðΩ1ÞYlmðΩ0Þ; ð3:9Þ

divided by the normalization factors of the two states
vanishes24 except at ρ0 ¼ ρ1 up to 1=ωc and at Ω0 ¼ Ω1 up
to 1=lc because

P
l;m Y�

lmðΩ0ÞYlmðΩ1Þ ∼ δðΩ0 − Ω1Þ.

Thus, this CFT state (with the finite number of the
spacetime derivatives) corresponds to a bulk local state
at ρ ¼ ρ0 ¼ 1=z0 and Ω ¼ Ω0 smeared over the small
spacetime region.
Note that the condition 1 ≪ lc ≪ ωc implies that the

corresponding bulk local state may have momentum only
along the radial direction.25 This interpretation is consistent
with the fact that the CFT state is the bulk local state at
z ¼ z0 which is moving into the center along the radial
direction from the boundary at t ¼ −z0. The bulk local state
at the center with l ¼ 0 can be obtained by the super-
position of such CFT states with z0 ¼ π=2 averaging over
the whole space.
Note also that this CFT state, which is approximated as

jΩ ¼ Ω0; RiCFT ≈
X2nþlþΔ<ωc;l<lc

n;l;m

eiz0ð2nþlþΔÞψCFT
nl

× YlmðΩ0Þâ†nlmj0i; ð3:10Þ

is not a CFT effective local state because of the large
number of derivatives in R which are regarded as a time
translation operator by z0. Thus, this CFT state is supported
on the approximately sphere-shape (Sd−2) region with
radius z0 in the space Sd−1, as we will explicitly see below.
The overlap between this state and a CFT local state at
Ω ¼ Ω1 associated with a polynomial R̃ðxÞ is

CFThΩ ¼ Ω1; R̃jΩ ¼ Ω0; RiCFT

≈
X2nþlþΔ<ωc;l<lc

n;l;m

eiz0ð2nþlþΔÞR̃�ð2nþ lþ ΔÞðψCFT
nl Þ2

× Y�
lmðΩ1ÞYlmðΩ0Þ

¼
Xl<lc

l;m

� X2nþlþΔ<ωc

n

eiz0ð2nþΔÞR̃�ð2nþ lþ ΔÞðψCFT
nl Þ2

�

× Y�
lmðΩ1Þeiz0lYlmðΩ0Þ: ð3:11Þ

We take jΩ ¼ Ω1; R̃iCFT as a CFT effective local state at
Ω ¼ Ω1, i.e., the degree of the polynomial R̃ðxÞ is much
less than ωc. Then, the summation of n in the last line of
(3.11) is almost canceled by the phase factor and is
exponentially suppressed, except for the terms for
n < Oð1=z0Þ.26 These remaining terms are not exponen-
tially large for large l because ðψCFT

nl Þ2 ∼ lΔ−d=2. We also

see that
Pl<lc

l;m Y�
lmðΩ1Þeiz0lYlmðΩ0Þ almost vanish except

23The bulk local state constructed here is a local state with the
resolution 1=lc, but not a local state with the resolution 1=ωc.
Thus, precisely speaking, the bulk local state constructed here is
not an effectively local state.

24For ωc ∼ lc, the asymptotic behavior of ψnl is complicated
[47], thus we can not construct a generic bulk local state from a
CFT local state.

25
1 ≪ lc ≪ ωc implies 1 ≪ lc ≪ nc where nc is the largest n

in the sum. Note also that the momentum is incoming in the radial
direction but by changing the RðxÞ to Rð−xÞ, it becomes outward.

26The overlap (3.11) is small, if we normalize jΩ ¼ Ω1; R̃iCFT
by choosing the overall factor of R̃ðxÞ appropriately, because of
the cancellation. However, the number of the independent CFT
effective local states are large due to the choice of R̃ðxÞ.
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Ω1 ∈ Sd−2z0 ðΩ0Þ up to 1=lc corrections where Sd−2z0 ðΩ0Þ is
the sphere-shape (Sd−2) region whose center is at Ω ¼ Ω0

with radius z0 in the space Sd−1. To see this, let us consider
the free CFT, i.e., Δ ¼ d=2 − 1, although it is not a
holographic CFT. For this case there is no summation over
n and the overlap (3.11) becomes

CFThΩ ¼ Ω1; R̃jΩ ¼ Ω0; RiCFT

¼
Xl<lc
l;m

�
eiz0ΔR̃�ðlþ d=2 − 1Þ 2d − 1

πðlþ d=2 − 1Þ
�

× Y�
lmðΩ1Þeiz0lYlmðΩ0Þ; ð3:12Þ

which should almost vanish except the case that Ω0 can be
reached at t ¼ z0 by a light ray, which is described by the
free CFT, emanating from Ω ¼ Ω1 at t ¼ 0. This means
that

Pl<lc
l;m Y�

lmðΩ1Þeiz0lYlmðΩ0Þ has the property stated
above. Therefore, the CFT state (3.10) is supported on
the sphere region from the CFT point of view although it is
the bulk local state from the bulk point of view.27

In order to understand more clearly how the bulk local
state appears from the CFT let us consider d ¼ 2 case. For
this case, the CFT state at t ¼ 0 is supported on two points
S0 which is a time(-reversed) evolution of the CFT effective
local state at Ω ¼ Ω1, t ¼ z0. Then, one might think that
the particles at the two points are entangled and regarded as
an Einstein–Podolsky–Rosen (EPR) pair. However, These
two particles are just a superposition although the EPR pair
is a two-particle state. Thus, the bulk local state is a
nonlocal state in the CFT and this nonlocality is related to
the basis change of the states, which dose not keep the
locality. This also means that the state is an entangled state.

B. CFT states supported in a space region
from bulk local states

As we have seen, the bulk local state is, in general,
reconstructed from the states in the CFT supported in the
whole space Sd−1. (This fact was also known in the HKLL
reconstruction in the global coordinate [16].) However, the
CFT effective local states should be supported in some
region in the bulk, in the bulk point of view, because of the
causality. For example, the CFT local operator at the north
pole of Sd−1 and the one at the south pole should commute
with each other (if the difference of time is shorter than π)
by the causality in the CFT.28 This is impossible if the
corresponding bulk states are extending in the bulk suffi-
ciently because propagation in the bulk can connect two

boundary regions faster than what the CFT requires, as
shown in Appendix. Note that there is only one free scalar
field in the bulk corresponding to the large N CFT fields,
i.e., the degrees of freedom of the bulk theory is one [or
Oð1Þ], not OðN2Þ. Thus, if the propagation in the bulk
connects two spacetime points, two generic local operators
at these points will have a nonzero commutator.
In this section, we will study bulk interpretations of the

CFT effective local state and the CFT states which are
supported in a region and see how these states extend in the
bulk.29

1. CFT effectively local states

Here, we will explicitly consider bulk interpretation of
the CFT local state jΩ0; RiCFT at Ω ¼ Ω0 with the
regularization by the smearing for the time direction and
the space (Sd−1) direction with the resolutions given by
1=ωc and 1=lc, respectively

jΩ0; RiCFT ¼
X2nþlþΔ<ωc;l<lc

n;l;m

Rð2nþ lþ ΔÞ

× ψCFT
nl YlmðΩ0Þâ†nlmj0i: ð3:13Þ

This state is a CFT effective local state by requiring that the
degree qR of the polynomial RðxÞ is small (ωc ≫ qR) and
the derivatives do not change the large n behavior of the
phase factor. Here, we concentrate on the case that the
smearing for the space direction is much larger than the one
for the time direction, which means 1 ≪ lc ≪ ωc.

30 The
overlap between this state and the bulk local state (2.22) at
ρ ¼ ρ1, Ω ¼ Ω1 is given by (3.9) and, for this case, the
phase factor in the sum for the n is

Rð2nþ lþ ΔÞψCFT
nl ψnlðρ1Þ

∼ cos

�
ð2nþ lþ ΔÞz1 −

π

2

�
Δ −

d
2
þ 1

2

��
; ð3:14Þ

for l ≪ n ≤ ωc. Thus, the overlap almost vanishes except
z1ð¼ π=2 − ρ1Þ ¼ 0 up to 1=ωc and Ω0 ¼ Ω1 up to 1=lc.
This means that the CFT effective local states corresponds
to the bulk local states near the point on the boundary. In
other words, the CFT primary states (or fields) with a
sufficiently small number of derivatives (and a low con-
formal dimension) live on the boundary of the bulk theory.
This statement is a refinement of the statement “CFT lives

27For z0 ¼ π, the CFT state is a CFT effectively local state at
the opposite point (Ω̄0) to Ω ¼ Ω0 in Sd−1 as we can see it
explicitly by using eiπlYlmðΩ0Þ ¼ YlmðΩ̄0Þ.

28Our smearing of the fields is not restricted on a region, but it
is like a Gaussian. Thus, the commutator vanishes with some
terms suppressed by the regularization parameters.

29In [48], similar discussions have been done for the Euclidian
time evolution.

30We can also consider the case with lc ∼ ωc or the case with
the smearing for the time direction only by using the results in
[47]. Here, we consider the case with 1 ≪ lc ≪ ωc only because
it is simpler and sufficient for showing where in the bulk the CFT
state extends.
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on the boundary of AdS” in AdS=CFT correspondence
although the CFT corresponds to the whole bulk theory.
If we change the high energy cutoff ωc lower, the CFT

effective local state when this cutoff extends in the radial
direction in the bulk for z < Oð1=ωcÞ. This may be a kind
of a realization of the UV=IR relation.

2. CFT states supported in a region

Let us considerCFT states effectively supported in a space
(Sd−1) regionA, andwe call the subspace of theHilbert space
spanned by them asHeff

A . Becausewe consider only the low-
energy states, the states are really supported in the spacetime
region which is given by extending the space region to the
time direction with the width 1=ωc. Note that the CFT
(formal) local states, which are obtained by the CFT local
operators acting on the vacuum, are not included in Heff

A
generically because they are effectively nonlocal even if they
are smeared over the region A. Note also that the linear
combinations of the CFT effective local states in the space
regionA are inHeff

A , however, there exist other states inHeff
A ,

corresponding to the states inside the bulk, as we have seen.
Indeed, the CFT state (3.10) is not a CFT effective local
state, but is supported in the Sd−2 sphere with radius z0
around Ω ¼ Ω0. Thus, this state is in Heff

A if we choose z0
appropriately small and Ω0 ∈ A.
Note that the CFT states which are supported in the Sd−2

sphere around Ω ¼ Ω0 with radius z0, or the ball including
the inside of this sphere, can not correspond to a bulk state,
including a bulk local state at z > z0, Ω ¼ Ω0, because of
the causality discussed above and the results in Appendix.
The CFT state (3.10) which corresponds to a bulk local
state at z ¼ z0,Ω ¼ Ω0, has the maximum value for z under
this causality bound for the states in Heff

A .
Let us consider the bulk states correspond to the CFT

states supported in this ball shaped regionA (at t ¼ 0). These
CFT states will be generated by considering the all CFT
effective local states in the causal diamond of the space
region A (the boundary domain of dependence of A) and the
corresponding CFT states at t ¼ 0 by the time evolution.31

We expect that the CFT effective local states at a point p
in the causal diamond can represent any bulk local state,
which can move in various directions, at the point p which
are on the boundary of the bulk spacetime. Thus, the region
a in the t ¼ 0 slice in the bulk (which can be reached by the
bulk local states in the causal diamond by the time
evolution) is the bulk region corresponding to the region
A and we can see that this region a coincides with the
causal wedge of A. This means that the CFT states
supported in the region A are given by the bulk states
supported in the causal wedge of A.

This is similar to the version of the subregion duality,
however, there is no inverse of this, thus this is not like a
duality. As we have seen, there are some bulk states
supported in the causal wedge of A which can not be given
by the CFT states supported in the regionA. Indeed, the CFT
state (3.10) corresponds to a bulk local state at z ¼ z0, Ω ¼
Ω0 moving along the radial direction and it may not be
possible to correspond to a bulk local state at the point
moving in a different direction.32 One might think that by
changing the phases in (3.10) one could build a wave packet
that describes an excitation moving in any direction and is
able to represent any state in the causal wedge of A. But, if
the phases are changed by hand (or further smearing over the
radial direction), then the state is no longer supported inCFT
regionA, generically. Thus, it is impossible to construct such
wave packet from the CFT states in A.
Thus, a bulk local state is decomposed to the bulk local

states moving in particular directions, each of which are
represented by the CFT state (3.10) or the rotation of it.
Some of these rotated CFT states (3.10) are supported in
regionA and the others are not supported inA. The bulk local
state constructed from theCFT states supported in a regionA
is a sum of such CFT states, but only for the ones supported
in the region A. This also implies that bulk local states (or
operators) at a same bulk point constructed from CFT states
supported in different regions are different even in the low
energy (gravity) theory.33 Note that in the quantum error
correction code proposal [29], two such bulk local states
were assumed to be same in the code subspace, which may
correspond to the subspace of the low-energy gravity theory.
Thus, in our example, the quantum error correction code
proposal may not be realized.

3. Entanglement wedge or causal wedge?

As we have seen, for the connected region A, the CFT
states supported in the region A are given by the bulk states
supported in the causal wedge of A. The causal wedge of A
and entanglement wedge of A are same for this case. On the
other hand, these two wedges can be different for a region A
which is a sum of disconnected regions A1 and A2, i.e., A ¼
A1 ∪ A2 and A1 ∩ A2 ¼ ∅. For this case, there are bulk
states which are not contained in bulk states supported in
a1 ∪ a2 where ai is the causal wedge of Ai. Let us consider,

31CFT states which enter in the causal diamond by the time
evolution are also supported in the region A, however, the
corresponding CFT states at t ¼ 0 are represented by the CFT
states in the causal diamond also.

32One might think that the superposition of different local
states can move another direction. However, such superposition is
not a bound state and can move in different directions separately.
In particular, by averaging the CFT states over a time period of
1=lc near t ¼ z0. we obtain a CFT state corresponding to bulk
local states moving in all directions. The bulk local state at
z ¼ z0; t ¼ 0, which is a small part of it, is moving in the radial
direction.

33The bulk local state moving in some direction is not a local
state with the resolution 1=ωc. Thus, precisely speaking, the bulk
local state can not be constructed from the CFT states supported
in the subregion.
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for example, the casewhereAi are very small regions and are
regarded as points. Then, there is a spacetime point p of the
CFT (or the boundary of the bulk) which is a midpoint of A1

and A2 in space and at the (past) time such that the point p is
connected to A1 and A2 by lightlike trajectories. Then the
time evolution to t ¼ 0 of aCFTeffective local state atpmay
be supported inA ¼ A1 ∪ A2 from the CFT point of view. In
the bulk viewpoint, a bulk state at p can move toward the
center (i.e., in the radial direction) or toward Ai in space.
Moreover, it can move in any direction between these and
will reach different bulk points at t ¼ 0. Then, for the d ¼ 2
case, the bulk state at t ¼ 0 will be supported on a minimal
surface (curve) in the bulk connectingA1 andA2 because the
minimal surface is the boundary of the causal wedge of the
segment which is given by the geodesics betweenA1 andA2.
For general d, this statement will be correct although the
minimal surface is degenerated. Thus, for this A, the CFT
states supported in the regionA correspond to the bulk states
supported in the sumof the causalwedge ofA and this region
given by the minimal surface, which is not the entanglement
wedge.34

Now, let us consider the case where Ai are not small
regions. For this case, the bulk states at t ¼ 0 will be
supported in the region which is the sum of the (degenerate)
minimal surface between the all possible points in A1 and
A2. This region is expected to be the bulk region whose
boundaries are Ai and the minimal surface connecting these
in the space at t ¼ 0. Note that the entanglement wedge is
the region surrounded by the Ryu-Takayanagi surface [50]
for A, which is this region or the causal wedge of A,
depending on the area of the minimal surfaces. We will call
the sum of regions surrounded by any possible minimal
surface whose boundaries are in the boundary of A as the
minimal surface wedge of A. Then, the minimal surface
wedge may be the bulk region corresponding to A, i.e., any
CFT state supported in A may be expressed by a bulk state
supported in the minimal surface wedge of A.35

Note that it is known that the causal wedge is always
inside the entanglement wedge for our case. However, the
bulk local state at a space point p in the causal wedge
constructed from A1 (or A2) only is different from the above
bulk local state at the same point p constructed from both
A1 and A2. According to [50], the entanglement entropy is
proportional to the area of the Ryu-Takayanagi surface. It is
interesting to understand this Ryu-Takayanagi formula
explicitly in the view point of this paper.

C. Comments on subregion duality and quantum
error correction

Aswehave seen, theversion of the subregion duality is not
valid in our analysis. A bulk local state corresponds to a CFT

state supported in whole space, although a CFT state
supported in a region A will correspond to a bulk state
supported in theminimal surfacewedge ofA. This is possible
because a bulk state constructed from CFT states in a region
A is different from a bulk state at the same point constructed
from CFT states in a region A0 which is different from A.
Our analysis is essentially the same as the global

AdS reconstruction of HKLL. Instead of it, the AdS-
Rindler reconstruction was also discussed in [16]. This
reconstruction was used to argue that the quantum error
correction is relevant for quantum gravity in [29]. However,
the AdS-Rindler wedge only covers a part of the AdS
spacetime and we need continuum spectrum for the mode
expansion for a construction of the smearing function for it.
The spectrum of the CFT is discrete, where the Hamiltonian
is the dilatation.36 Thus, we need infinite energy modes of
the CFT for the AdS-Rindler reconstruction37; the bulk
state from the AdS-Rindler reconstruction is unclear in the
CFT states, in particular for the low-energy theory.
If we forget about the CFT states and the Hamiltonian,

based on which we have discussed low-energy theory,
the AdS-Rindler Hamiltonian will not be a problem and
there will be duality between the subregions of the bulk and
CFT, like the AdS-Poincaré reconstruction. However,
if we consider the two different regions, A and A0, the
AdS-Rindler reconstructions depend on the different
Hamiltonians on the two regions and it is unclear how to
compare the two bulk local states constructed in the different
regions in the low-energy theories; in particular the two bulk
local states will not be equivalent in the low-energy theory.
Thus, it is not justified to use the AdS-Rindler reconstruction
for the discussion on the bulk local operators for such cases.
In our analysis, a CFT state supported in a ball-shaped

region A will correspond to a bulk state supported in the
causal wedge of A, which also appears in the AdS-Rindler
reconstruction; however, two bulk local states at the same
spacetime point constructed in different regions are differ-
ent even in the low-energy theory. Thus, the theory does
not have the structure of quantum error correction codes
discussed in [29].
The bulk local operator of the AdS-Rindler

reconstruction will reproduce the bulk correlation function.
However, the correlation function with the same bulk local
operator insertions will be different from each other for the
AdS-Rindler reconstruction and the global reconstruction.
This is because the AdS-Rindler reconstruction used the
eigenmodes with the (in-going) boundary condition in the
bulk, then it reproduces the bulk correlation function with

34In [49], some related ideas were explored from a
different perspective.

35We expect that this is true for any region A.

36In order to define the bulk operator, we need to choose the
Hamiltonian because the bulk local operator will be defined in the
low-energy theory and the low-energy states on which the bulk
local operators act are defined by the Hamiltonian.

37The continuum spectrum is due to the boundary condition for
the Rindler wedge although the CFT states satisfies the periodic
boundary condition for Sd−1.
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the boundary condition, which is absent for the global
reconstruction. Thus, the bulk local operator of the AdS-
Rindler reconstruction should be different from the bulk
local operator of the global reconstruction even in the low
energy.
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APPENDIX: ON THE CAUSALITY ON AdS=CFT

The metric of AdSd−1 spacetime is given by

ds2AdS ¼
1

sin2ðzÞ ð−dt
2 þ dz2 þ cos2ðzÞdΩ2

d−1Þ: ðA1Þ

where 0 ≤ z ≤ π=2.

Let us consider a lightlike trajectory along the radial
direction from a bulk point near the north pole (z ¼ ϵ,
θ ¼ 0) at t ¼ 0 to the south pole (z ¼ 0, θ ¼ π) where θ is
an angle variable of Sd−1 satisfying 0 ≤ θ ≤ π. For this
trajectory, dt ¼ dz, and it will be at the south pole at
t ¼ π − ϵ. Instead of this, let us consider a lightlike
trajectory along the angular direction from a bulk point
on the boundary near the north pole (z ¼ 0, θ ¼ ϵ) at t ¼ 0
to the south pole (z ¼ 0, θ ¼ π) with dz ¼ 0 satisfying
dt ¼ dθ, thus it will also be at the south pole at t ¼ π − ϵ.
Note that this lightlike trajectory is regarded as the one in
the CFTd on Sd−1 as a space.
Thus, the CFT state supported in a ball-shaped region of

size ϵ centered at the north pole of Sd−1 cannot correspond
to the bulk local state at z > ϵ; θ ¼ 0 because of the
causality of the CFT.
The following is not relevant for the discussions in this

paper, but, we can consider a lightlike trajectory from a
bulk point near the north pole (z ¼ ϵ, θ ¼ 0) at t ¼ 0 to a
point near the south pole (z ¼ ϵ0; θ ¼ π) not along the

radial direction. It satisfies dt ¼ dθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dz2

dθ2 þ cos2ðzðθÞÞ
q

>

dθ cosðzðθÞÞ. Thus it will be at the point after
t ¼ π − πðϵ0Þ2=2, for ϵ ≥ ϵ0, where we assumed ϵ ≪ 1.
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