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In a perturbative approach Einstein-Hilbert gravity is quantized about a flat background. In order to
render the model power counting renormalizable, higher order curvature terms are added to the action.
They serve as Pauli-Villars type regulators and require an expansion in the number of fields in addition to
the standard expansion in the number of loops. Renormalization is then performed within the Bogoliubov-
Parasiuk-Hepp-Zimmermann-Lowenstein scheme, which provides the action principle to construct the
Slavnov-Taylor identity and invariant differential operators. The final physical state space of the Einstein-
Hilbert theory is realized via the quartet mechanism of Kugo and Ojima. Renormalization group and
Callan-Symanzik’s equation are derived for Green’s functions and, formally, also for the S-matrix.
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I. INTRODUCTION

In the perturbative construction of Einstein-Hilbert (EH)
gravity on four-dimensional spacetime one splits the metric
g" into a background ¢*¥ and oscillations A** around it
which are quantized. Back in the 1970s quite a few attempts
were undertaken to formulate such models of quantized
gravity. Most influential were the pioneering papers of
’t Hooft and Veltman [1], in which explicit calculations
showed that in higher than one-loop order the theory
becomes intractable due to power counting nonrenormaliz-
ability. Many more papers dealt with the problem without
surmounting these difficulties (see e.g., [2]). Out of these
early papers we concentrate on two in which important
progress had been achieved and which were very helpful
for our own understanding.

Kugo and Ojima [3] provided a quantized model of EH
general relativity. In order to deal with the indefinite
metric problem which results after having replaced diffeo-
morphism invariance by an appropriate Becchi-Rouet-
Stora-Tyutin (BRST) invariance, they use their quartet
mechanism. Hence they realize unitarity. They base their
reasoning, remarkably enough, on a general solution of
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the Slavnov-Taylor identity (ST) associated with the
BRST transformation without restriction by power count-
ing. This is, of course, motivated by the fact that the model
is power counting nonrenormalizable, hence quite rea-
sonable. The renormalization problem is left open.

Stelle [4] presented a complementary approach to quan-
tize classical relativity: he added the square of the Ricci
tensor and the square of the curvature scalar to the EH action.
This model is power counting renormalizable, but it is not
unitary. Looking at the propagator which has a falloff like
1/(p?)? for large p itis obvious that the lack of unitarity has
nothing to do with the gauge dependence of the model, but
originates from the invariants which contain four derivatives
of the metric.

Calculations to be presented below show that the gauge
fixing of [3] can also be used in the context, where the
square of the Ricci tensor and the square of the scalar
curvature are present in the action. Hence one has the
quartet mechanism at one’s disposal. Since the higher
derivative terms render the model power counting renor-
malizable, we could be led to interpret the regularizing
effect as Pauli-Villars type, which can be removed after
renormalization with a suitable scheme [5]. This turns out
to be wrong. We rather arrive at the conclusion that the
higher derivatives are tied fundamentally to the EH theory.
Their seemingly disastrous effect of causing negative
metric in state space can be overcome by a suitable
Lehmann-Symanzik-Zimmermann  projection.  The
dependence of the resulting theory from the additional
two coupling parameters however remains. Since this
enlarged model is power counting renormalizable, but
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depends crucially on a field of canonical dimension zero,
it contains infinitely many parameters, which are asso-
ciated with the redefinition of this field as a function of
itself. These generalized field amplitudes are, fortunately,
of gauge parameter type, and hence do not contribute to
physical quantities.

Before going into details of the realization of the model
we would like to present the argument why we are
convinced that the higher derivatives are necessary ingre-
dients for the definition of EH in quantum field theory.

Suppose we would like to gauge the translations in a
matter model, say a massless scalar field of canonical
dimension one, with the usual Noether procedure, then one
lets the parameter a, of the translations depend on x and
couples the respective conserved current, the energy-
momentum-tensor 7, (EMT), to an external tensor field
h* . This entails the field 4 with transformations dictated by
the local translations. These turn out to be just the general
coordinate transformations known from general relativity
(GR). If then the field & becomes a dynamical field with its
own invariant kinetic term, this kinetic term has to involve
four derivatives, if one wants to keep power counting
renormalizability: after all the EMT has canonical dimen-
sion four, i.e., the field 2 must have dynamical dimension
zero. The metric ¢*¥ which arises also in the course of the
Noether procedure is given by ¢ = y** 4+ h**—without
any parameter carrying dimension. This is quite reasonable
in QFT. In classical GR the metric may depend on
parameters which have mass dimension, but that is the
engineering dimension and not the dynamical one which it
has to be in quantum field theory, where the dimensions are
dictated by the kinetic terms. (The details of this derivation
can be found in [6-8]. However many other authors have
considered gauging translations, concluding that the result-
ing gauge theory is a gravitational theory with higher
derivatives, e.g., [9] and citations therein.)

We therefor continue with quantization, renormalization,
and analysis of the implications.

We choose the Bogoliubov-Parasiuk-Hepp-Zimmermann-
Lowenstein (BPHZL) renormalization scheme [10,11] for our
purposes. The auxiliary mass which is required in this
scheme, is put in by hand, but it serves very well to construct
finite Green’s functions since the higher derivatives rendered
the model power counting renormalizable. The main gain of
this version to deal with the UV infinities is that one has an
action principle [12] at one’s disposal which one would not
have in the power counting nonrenormalizable EH model.
The hurdle that this scheme is not BRST invariant can be
overcome by cohomology results existing in the literature
since the 1980s (see [13]). They become now powerful tools
because—supplemented by power counting—they exist also
analytically.

Even in this rather modest approach of quantizing
gravity, namely perturbation theory and flat background,
one encounters quite a few difficulties: the interaction is

nonpolynomial and the main field to start with has
canonical dimension zero, hence in a perturbative approach
one has an expansion in the number of loops and in the
number of fields—a situation familiar from supersymmet-
ric gauge theories [14]. The presence of a field with
vanishing canonical dimension, which goes hand in hand
with propagators falling off as 1/(p?)? for large p, points to
possible infrared problems already off-shell. Those will be
controlled by infrared power counting which is a built-in
instrument of the scheme.

The paper is structured according to the use of the
fundamental field #*. In Secs. II-VII we take & at face
value and formulate in terms of it the standard invariants of
general relativity related to R, R?, R'R,, —expanded in
terms of h. We call this the “special solution” (of diffeo-
morphism invariance). In the tree approximation we set up
the model, construct propagators, the ST identity, prove
unitarity of the S-matrix, make explicit the parameters of the
model and look at gauge parameter independence. In Sec. III
we start the renormalization by introducing an auxiliary
mass required in the BPHZL scheme which we use. Central
is then power counting: in the ultraviolet (UV) and infrared
(IR) region of momentum space integrations, and conver-
gence. It guarantees the existence of normal product inser-
tions and thus of Green’s functions: one-particle-irreducible
(1PI) or vertex functions, connected and general ones. We
then establish the ST to all orders of perturbation theory.
Thereby formal unitarity of the S-matrix is established.
Sections IV-VI are devoted to the derivation and use of
symmetric differential operators which yield parametric
differential equations: the Lowenstein-Zimmermann (LZ)
equation which shows that Green’s functions are ultimately
independent of the auxiliary mass; the renormalization group
(RG) equation which governs the change of the normaliza-
tion parameter; the Callan-Symanzik (CS) equation which
yields the scaling properties of Green’s functions. In Sec. VII
we project down to the EH theory. In Sec. VIII we study the
“general” solution, i.e., we replace the original field / by an
arbitrary function of itself ##* — F*(h). This is possible
due to the vanishing canonical dimension of / and this space
of functions F is swept out in the course of renormalization,
hence the study is necessary. Section IX is devoted to
discussions and conclusions.

II. TREE APPROXIMATION

For a decent perturbative treatment it is mandatory to set
up the first orders carefully. In the present context this refers
to the zero-loop order and the first and second order in the
number of fields.

A. The model and its invariances

As explained in the Introduction, we base our study of
EH in the more general context of permitting invariants
under diffeomorphisms up to fourth order in the derivatives.
Restricting ourselves to spacetimes which are topologically
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equivalent to flat ones we may use the Gauf-Bonnet
theorem and express the square of the Riemann tensor
in terms of the Ricci tensor and the curvature scalar

/ J=GRR,, 0 = / VIR R, = R?). (1)

Together with the cosmological constant a basis of invar-
iants is then provided by the terms in the following action:

[elass — /d4x./—g(c01<_4 + ¢3k2R + ¢,R* + ¢;R*R,,).
(2)

Here x denotes the gravitational constant. The invariance
under general coordinate transformations is to be translated
into Becchi-Rouet-Stora-Tyutin invariance with respective
gauge fixing. The field #** is defined via

= g =, (3)

The propagators of & [Eqs (17)—-(19)] will tell us that /4 has
canonical dimension 0, hence x must not show up in its
definition.

The classical action

Fclass — l—‘plass + Fgf =+ qu + Fe.f.’ <4)

mv

1 1
Ty = _Ec/g,w(aﬂby +9,b,) — an/;/lﬂlfbﬂby, (5)

1
N i / (D) (0, + 0,2,), (6)
DY = —g"850, — ¢80, + 9,9, ()

T = / (K, 8h" + L,3c") (8)

is invariant under the BRST transformation

3¢ = KD} cP3cP = —kct0)c”, 9)
8¢, = b,.8b, =0, (10)
8y = —k(OFc? + 0¥ ct), (11)

3 W = —k(0,c"h* + 0,cV ' — Fo,h).  (12)

In accordance with the expansion in the number of fields we
have introduced the transformations 8, $; which maintain
the number, respectively, raise it by one. K, L, are external
fields to be used for generating insertions of nonlinear field
transformations. The Lagrange multiplier b, couples to 9, h

and thus fixes eventually these derivatives (deDonder like

gauge fixing). Since the terms R?, RMR,,, contain however
four derivatives one might be tempted to fix also the higher
derivatives in a corresponding manner, or only those. It turns
out that this is superfluous or even contradictory when using a
Lagrange multiplier field b, so we stick to (5), (6) which is the
gauge fixing chosen in [3].

B. Propagators

The definition of the propagators as inverse of vertex
functions requires the knowledge of first and second orders
in the number of fields of (4). Since the cosmological term
contributes at first order in the field z# we suppress it here in
the tree approximation by putting ¢y = 0 and in higher
orders by a normalization condition. (A classical argument
for this demand is that flat space should be a solution to the
h-field equations.) In Fourier space one arrives at

1 r r
Dt = 3 DKL PR e (13)
KLr

i1
Fb/,hw = _; <5 (gpﬂpu + gpvpﬂ) + a);wp/)) ’ (14)

I, b, = ~Q0Nps> (15)

P

1
L. =—ip’ <9p65<p2) + wpain(pz)). (16)

For the h-bilinear terms we introduced projection operators P
(see the Appendix A) and general coefficient functions y. It
will turn out that the propagators can be uniquely determined
for general scalar functions y(p?) with the projectors taking
care of the spin structure inherent in the terms of (2). In tree
approximation the values for y are given by

2 _
7(T7>‘ = —P2(01P2 — (3K 2)7 (17)
1
J’(TOT) =p? <(302 +c1)p* + §C3K_2>’ (18)
| 0 0 0
7 = viw = 7w = 1y = 0. (19)

The coefficients of I',, and I, will turn out to be fixed,
whereas those of I'.; again can be very general with tree
values E =n = 1.

The inversion equations to obtain the propagators read
for the bosonic fields
l

Fhwha,,Ghaﬂhm + Fh,,bbAGbAW ==m/n° +n.nr),  (20)

2
I,,G" +T,,G" =0, (21)
thth + beth - 0, (22)
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Ly eG4+ T, G = —in,”. (23)

For the ghosts they have the form
| G =in,’. (24)

For the (hh) propagators we introduce like for the
2-point-vertex functions an expansion in terms of pro-
jection operators

Gl = 4> (M) (P ) yper (25)

KLr

In order to solve the inversion equations we introduce

K
Gﬁgv = p ((pﬂgl//) + pygﬂﬂ)bl + p/)w;wa + p/leﬂub.’a)’

(26)
G = GPh. (27)

Here by, b,, and b5 are arbitrary scalar functions such that
this is the most general expression compatible with
Lorentz invariance and naive dimensions.

The gauge parameter independent solutions <hh>% turn
out to be

2 i 0 I
() = —. (A = —= (28)

whereas the “gauge parameter multiplet” is given by

4i 4
<hh>( ) lagl(' ’ <hh>< ) lagl(' ’ (29)
P P
0 0
(hh)Sy, = (hh)Sr = 0. (30)

It is important to observe that the gauge parameter indepen-
dent part is determined by the coefficient functions y, which
depend on the model, i.e., by the invariants and—as will be
seen later—by higher orders, whereas the gauge multiplet is
essentially fixed and only determined by the specific gauge
fixing. The remaining bosonic propagators read

(byhy) = ; (PuBup + PuOup) b1 + Py,ubs + Py0ub3)
(31)
and
(bpbg) =0. (32)

In the tree approximation by = b, =1 and b3 = 0. The
antighost/ghost propagator has the general form

_ . __l on_ l Wy
€ee) = 2 (5@2) " 2n<p2>>' (33)

The tree approximation values are £ = n = 1, such that

1 1
o) =—i(0, +-w, ) —. 4
<CpC0> l( po + 2®p0> P2 (3 )

We note that (bb) = 0, in accordance with the field b, to be a
Lagrange multiplier.

Another general remark is in order. In the Landau gauge
ap = 0 the two-point functions (hh) fall off for large |p|
like |p|™, hence one has to associate to the field & the
canonical dimension zero. This implies that field mono-
mials #h---h always have canonical dimension |u| =
degree of the multiderivative 9, independent of the number
of fields & in the monomial.

C. The Slavnov-Taylor identity in tree approximation

Since the $ variations of A, ¢ are nonlinear in the fields,
they are best implemented in higher orders via coupling to
external fields [cf. (4)], hence the ST identity then reads

o' o' oI'oI' oI’
S(F)_/<6K6h+5l,6c+b5 > —0. (35)

Since the b equation of motion

ol

_1 ”h
T 0

—ayb, (36)
is linear in the quantized field b, it can be integrated
trivially to the original gauge fixing term. Thus it turns out
to be useful to introduce a functional T" which no longer
depends on the b field:

One finds
1'“ o0
=0 38
5, (38)

as restriction. Hence ' depends on ¢ only via
H, =K, -~ (9,c,+0,,) (39)

and the ST identity takes the form
1 -
SI) = EBI-F =0, (40)
sis o s e ors
.= —_————+—— 41
B /<5H5h+5h6H+5L5c+ 5c6L> (41)

This form shows that Br can be interpreted as a variation
and thus (40) expresses an invariance for I
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D. Unitarity in the tree approximation
The S operator can be defined [15] via

S=3:Z(J)] 1—o. (42)

Y= exp{/ dxdy®;, (x)K (x — y)z™! f?y)}’ (43)

where J denotes the sources J,,. /2, j¢, j, for the fields
", c?, c?, b,, respectively, and their in-field versions are
collected in @;,. K(x—y)z™' refers to all in-fields and
stands for the higher derivative wave operator, and hence
removes the complete (tree approximation) propagator
matrix. ¥ would then map onto the respective large
Fock space of the higher derivative model. As mentioned
already the dynamical degrees of freedom which originate
from the higher derivatives are definitely unphysical;
therefore, they have to be removed before we consider
the S-matrix for the Einstein-Hilbert theory. Here in the tree
approximation this is trivial because all Green’s functions
are well defined. So we put simply ¢; = ¢, = 0. With this
the massive poles are absent, the wave operator is the one of
Einstein-Hilbert and we study just those unphysical degrees
of freedom which go along with that model. These differ
slightly from those studied by [3] because we employ a
different field A, but the general structure is the same
[cf. (353)]. Here we follow [16] and would like to show that
the S-matrix commutes with the BRST charge Q by
establishing the equations

S, :2:]Z,00 = =0, :X:]Z,_0 = [0, 5] =0, (44)

where

0 0 0
S= J— —Jo——J2 ith SZ=0. (45
/( ﬂvKlw J SL” Je 5]$> w1 ( )

The left-hand side of (44) is a commutator in the space of
functionals, i.e., of S, the ST operator, with the S-matrix
|

defined on the functional level via Z, the generating
functional for general Green’s functions. Now

[S,:2:]Z;20=0 (46)

since the first term of the commutator vanishes because
S =0 for vanishing sources, the second term of the
commutator vanishes due to the validity of the ST identity.

The right-hand side of (44) is an equation in terms of
(pre-)Hilbert space operators: an S operator and BRST
charge, both defined on the indefinite metric Fock space of
creation and annihilation operators. The claim is that we
can find an operator Q such that the right-hand side
holds true.

We then know that a subspace defined by Q|phys) = 0 is
stable under S, hence physical states are mapped into
physical states.

To show that (46) indeed holds, we observe first that the
commutator [S,:X:] is of the form [S,e']. If [S,Y]
commutes with Y, one can reorder the series into
(S, e¥] =[S, Y]e. This has to be evaluated. Since in the
tree approximation z = 1, hence K(x — y)pq = Loar, We
define for the explicit calculation

o 13} o
r=/ (h””l“,’jﬁ’,m R R
NG P Q,

5 o
+ bThk 5 + IS8 i o I §> : (47)

o

For the desired commutator one finds

o _ 0 0
S, Y] = — h/wl—*hh — cPree — oPTec ,
[ ] /( uvpo 5Kpa (G 5]3_ Ly 5L5)

(48)

so it clearly commutes with Y.
In the next step we have to consider :[S,Y]e':Z, ie.,
terms of the type

4 : 0 =pTcc 4 .
- / : (Wrﬁgpg o cﬂr;gﬁ Ay = ) tY(1) -+ Y(n) - Z(J) 0 (49)
po o c

1.e.,

—/ (TR kDY ¢t — ¢PTSSbe — ePT5Ect0,c) Y (1) - -

Y(n) - Z(J))y—o-

These terms constitute insertions into the functional Z. A closer look in terms of Feynman diagrams reveals that due to
momentum conservation from D4°c* only terms linear in the fields survive and also the last term bilinear in ¢ cannot
contribute—when going on mass shell they cannot develop particle poles. We arrive thus at

[[S.Y]:Z=3% [ / (=hTH k(D%P + D) + eTEb) | < - Z(J) o (50)
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The second factors in the insertion are just the linearized
BRST variations of 2%, respectively ¢°. This suggests that
one introduce a corresponding BRST operator Q which
generates these transformations

o
I'= oHc? + Ot by —1TI', (51
or= [ |sore v oren o Zlr 1)
6Z. oZ oz, -
Z.=—i M —=+0—J = s, 52
oz=-i [[s(oFx +o 5 i+ ] 2

0 1 _ 0
Z=- J oM —+0"— iS—Z, (53
0z == [ r(o 55+ 0 55) iaglz. o

u

and to calculate the commutator [Q, :X:]|Z y—o- And, indeed
it coincides with the right-hand side of (50). Following
in detail the aforementioned diagrammatic analysis, we
have a simple interpretation: in the Green’s functions
G(y;zy,...,2,) a field entry has been replaced by the
linearized BRST transformation of it. Having established
(44) one can continue along the lines of [3], form within the
linear subspace of physical states equivalence classes by
modding out states with vanishing norm with the well-
known result that these factor states have nonvanishing norm
and the S-matrix is unitary.

E. Parametrization and gauge parameter independence

It is a necessary preparation for higher orders to clarify
which parameters the model contains and how they are
fixed. Also a glance at the free propagators, (28) versus
(29), shows that they differ in their falloff properties
depending on the value of the gauge parameter . Since
Landau gauge o = 0 simplifies calculations enormously,
we would like to show that it is stable against perturbations.
Since these two issues are closely linked, we treat them
here together. Obvious parameters are the couplings ¢, ¢,
¢, and c3. In the next subsection we give a prescription,
how to fix them by appropriate normalization conditions.
Also obvious is the gauge parameter «. It will be fixed by
the equation of motion for the b field. Since this equation is
linear in the b field it also determines its amplitude. Less
obvious is the normalization of the fields ##*, ¢” and of the
external fields K, L. In order to find their amplitudes it is
convenient to inquire under which linear redefinitions of
them the ST (35) stays invariant. We define

" =z, (ag) ™, ¢ = y(ap)c’, (54)
go— 1k [ (55)
() M g y(a) "

where we admitted a dependence on the gauge parameter
because we would like to vary it and detect in this way
dependence algebraically. Clearly, the values for z; and y

have to be prescribed. It is also clear that with
ap-independent values for z; and y the ST identity is
maintained. In order to make changes of ¢ visible, we
differentiate (4) with respect to it, i.e.,

o
—3 / (— %) (@b, + b ™. (56)

We observe that this is an 8 variation and thus, if we
introduce a fermionic partner y = 3a, and perform the
change

00
8(10 N 3(10 ef

Dot +Tgr = Tgp + Ty + / <— %)X(Z‘ﬂbu +c,b,)n",
(57)
we have
S(T) + x0,,I' = 0. (58)

We carry over this extended BRST transformation to Z
S8Z=8Z+40,Z=0, (59)
with the implication
0,(82)=0=0,2=-80,Z (60)

showing that a, dependence is a BRST variation, hence
unphysical. This last equation can be easily checked on the
free propagators (for propagators connected and general
Green’s functions coincide).

Using for Z(J) the form

o, e (£
Zy = exp{/ il((l)d))il} (61)

one obtains

0,200) = 0,20 2(0) = (0, [ wiwaliz) 2. (6

(Here J stands for the sources of all propagating fields ®.)
Hence @ dependence remains purely at external lines, if
one does not add ay-dependent counterterms, and then
vanishes on the S-matrix where these lines are amputated.
It also means that the power counting for the gauge
multiplet is irrelevant because this multiplet shows up
only as external lines.
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We now step back and analyze a, dependence more
systematically. Equations (58) and (59) and the analogous
one for connected Green’s functions

SZ, + 304 Zc =0, (63)

where @, undergoes the change
3ay = ¥, 8y =0, (64)

have to be solved. The right-hand side of (57) is a solution
of the extended gauge condition

ol
ob”

1 _
=k"'O"h,, — aph” — 34y (65)

Acting with 6/8b” on the ST (58) we find that the ghost
equation of motion has changed accordingly,

0

1
2 \r=2,. (66
+5ap> 24 (66)

oK,

G'T = <K‘18”

As in (37) and (39) we introduce H,, = K,
9,¢,) and T by

,— 5 (0,8, +

_ 1 1
r=r+ / <_§a0b#bvnﬂ - ﬂhﬂ (aﬂby + 8ybv>
1 - S v
— Zl)((c”b” + b, )0 > . (67)

The extended ST reads in terms of T’
ST)=BIT)=0 (68)

with

_ sCor sCsf  of
B() = / (51( oh sLac X aa0> (69)

I satisfies the homogeneous ghost equation of motion
|

GT = 0. (70)

We now have to find the most general solution of the ghost
equation (66) and the new ST (68). Due to dimension and
¢n-charge neutrality. I' can be decomposed as

—f(h ek Loao) 41 [ Ul)kh+ frlaLe).

(71)

With the choice of linear dependence from 4, however, we
certainly do not cover the most general case: due to the
vanishing dimension of /#* one could replace the linear factor
h* by an arbitrary function F#*(h) in K, h**. For simplicity
we discuss here the linear case, which continues (54),
whereas the nonlinear one will be treated below (see
Sec. VIID).
From (68) and (69) we deduce that

_ _ , o
0= B() = B)| o+ / (~run
o ot ar
+ fuH" 6H,,,,+fL —fiL )‘H(a - (712

At y = 0 follows first
B([)[,~ = 0. (73)

and then

i
)

=0. (74)

T T
/<_thﬂy5h””+fHHﬂU5H””+fL

ot
8050

Equation (73) corresponds to (35); hence we know that the
general solution (of the linear case) is given by

F = g2 / VIR (21 (ao)) + &, / IGRR (21 (ao) ) + &5 / VIR (21 (a) )

¢ / (KHﬂl,<y (90) _guev — ety — y(ag) (@t — O + cﬂaﬂhﬂvo —ky(ap)L,c?).  (75)

z1(a)

Equation (75) inserted into (74) implies after some calcu-
lations that all ¢ are independent of «a,, whereas the
functions f; ; satisfy the relations

Oayy = =fLY. (76)

8%21 = fuzi

I

All parameters ¢ can therefore be fixed by normali
zation conditions independent of a,. Since we shall
work in Landau gauge, ay = 0, the functions fy, f; will
be independent of «a,, as well as z; and y, hence
numbers.
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F. Normalization conditions I

In the tree approximation as studied in this section, the
free parameters of the model can be prescribed by the
following conditions:

0
ﬁV(TZT)’ pP=0 = c3k2 (coupling constant),  (77)
14
0 9 .
802 0p? YTT C (coupling constant) (78)
o 0
a_pza—pz?’%oT) =2(3¢c; +¢1) (coupling constant), (79)

L = —1c0 =0 (coupling constant), (80)

Ty, = =iK(0P0, 4110, = )
(amplitude of h and K), (81)
0 o
aTj,lrL,,c“cf = —lK(éfrﬂh - 5/;’1,10)
(amplitude of ¢ and L). (82)

Imposing the b equation of motion (36) fixes a, and the b
amplitude. It is worth mentioning that the ¢ contribution to
y© in (18) is an implication of the invariance under 8,A,
and hence must not be postulated via some normalization
condition.

ITII. RENORMALIZATION

At first we have to specify the perturbative expansion in
which we would like to treat the model. Due to the
vanishing canonical dimension of the field #*, we have
to expand in the number of this field. Second we expand as
usual in the number of loops. Next we have to choose a
renormalization scheme in order to cope with the diver-
gences of the loop diagrams. We shall use the Bogoliubov-
Parasiuk-Hepp-Zimmermann-Lowenstein  scheme [11]
which is based on momentum subtractions and an auxiliary
mass in order to avoid spurious infrared divergences which
otherwise would be introduced by the momentum sub-
tractions when dealing with massless propagators.

The key ingredients of this scheme are the subtraction
operator acting on one-particle-irreducible diagrams (1PI)
and the forest formula which organizes the subtractions.
The subtraction operator reads

#0)-1 )(1— A ). (83)

(1 - Ty) = (1 ~ pr(sr-1) pr'st
Here tj‘fl.__xn denotes the Taylor series about x; = 0 to order
difd > 0or0if d < 0. y denotes a 1PI diagram, p” refers
to its external momenta, and s” to an auxiliary subtraction

variable to be introduced. p(y) and &(y) are the infrared and
ultraviolet subtraction degrees of y, respectively. Those will
be specified below. As far as the forest formula is con-
cerned we refer to the literature (cf. [11,17]). For later use
we note that

(1-7,)=(1=67) for p(y) =8(r) + 1. (84)

A. Auxiliary mass

In the BPHZ subtraction scheme one removes UV
divergences by suitable subtractions at vanishing external
momenta. In the massless case those would introduce
artificial (off-shell) IR divergences. Hence in an exten-
sion, the BPHZL scheme, one introduces an auxiliary
mass term of type M?(s — 1)? for every massless propa-
gator. Subtractions with respect to p, s performed at
p=0, s=0 take care of the UV divergences.
Subtractions with respect to p, s — 1 thereafter establish
correct normalizations for guaranteeing poles at p =0
and vanishing of three-point functions (of massless
fields) at p = 0.

When trying to introduce such an auxiliary mass term
for the massless pole in the double pole propagators, one
encounters difficulties. Neither with a naive ik term nor
with a Fierz-Pauli type mass term can one invert [, to
propagators Gy, such that the Lagrange multiplier field b,
remains nonpropagating. But its propagation would
prevent its use in the quartet formalism of [3]. A glance

at the propagators (28) and the coefficients yg{ (17)
suggests that one replace the overall factor p? in the y’s by

pr—m?=p>—M*(s—1)>. (85)

Here m” denotes the auxiliary mass contribution. This
push in p? still maintains restricted invariance, i.e., under
8h, (see Sec. V B and Appendix B), and is fairly easy to
carry along as we shall see.

Accepting this change of vertices and propagators one
has to analyze in some detail what it implies. For the
propagators it is clear that the pole at p> = 0 is shifted, as
desired to a pole at p?> = m?. It affects not only the invariant
parts but also the gauge fixing dependent propagators (bh)
and (¢c). This can be seen when performing push in I" and
having a look at the inversion equations. The y’s (17) then
read

ve = —=(p* = m2)(c1 p? — c3x72) (86)

= P (m?) = m2(cp? — c72),  (87)

1
A= =) (G + e ) (89
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1
= mpjnt) = -2 (Ges + e)p? + 3. (69

In the inversion equations one has products of y?L with its

direct counterpart (hh>5<rz,
change there.
For gauge fixing terms we find the effect of push as

such that this change is not a

1 0 0 0
758 = v = 1w = rigr = 0. (90)  follows:
|
i K
e Gh = 3¢ ouPu + 1pupy) o (p*0” + p*0* + pra*)  (local) (91)
i PR -
= 5 (puPy + 10 Pu) 5~ (P16 + p 0 + pPer®) - (local) (92)
K p-p
push I p2 —m? K - v _—
_)Z_K(”pﬂpu"—’///Jypﬂ)sz_mz (9 p +0 pr+pw ) (93)
2\hb —im’
= F<m );w/) = sz (npﬂpu + ”pypy> (1’10[11008_1), (94)
K .
= G/’jl’}y = peg— (PO + PO,y + Pp®y,) (massive propagator) (95)

i.e., there appears an additional term in I and the (bh) propagator becomes massive (with the auxiliary mass). In x space

the complete gauge fixing term reads

1 , m? a )
Fu == st 000 00 0 ot + g b= o

1 O 1 a
. 122 i 2y~ L _%0 Hy
2K/dxdyh (x)(aﬂby—l—c‘)ybﬂ)(y){(‘mz—l—m > (x—y)z} 5 /77 b,b,.

A suitable Faddeev-Popov (FP) term is then

1
Cye == [ drasD (0,8, + 0,60 {otx =) +

- —%/dxdyDﬁ”cp(X)(aﬂf_?v + 6v5ﬂ)(y){ (% + mz) (X—ily)z}

because it maintains the BRST doublet structure within the
gauge fixing procedure.

A comment to the “nonlocal” terms is in order. Our
writing is symbolic shorthand in order to have a simple
handling of these terms. Using the explicit form of 3,/ and
integration by parts, one may observe that the actual
nonlocal part is of projector type in terms of differential
operators—quite in line with its first appearance in p space.
There the projectors lead formally to direction-dependent
integrals. However Zimmermann’s ¢, introduced as

p* = p* +ie(p?), (98)

guarantees absolute convergence, hence no serious problem
will arise once we have reliable power counting and

(96)

&

©7)

|
appropriate correct subtractions. Of course, at the physical
value s = 1 it disappears anyway.

We therefore discuss in the next subsection power
counting and convergence with positive outcome, and
return thereafter to a discussion of the m?-dependent terms.
Before starting with the presentation of power counting, we
have to have a look at the basis of naively symmetric
insertions once we have introduced an auxiliary mass term.
Obviously we can introduce the following shift

/\/—gc3k‘2R - / ,/—g<c301<‘2 +cyk”'m

1
+ 0325m2>R. (99)
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In the tree approximation these terms are invariant (and for
s = 1 reduce to the original term), but in higher orders they
represent new and independent elements in the basis of
symmetric normal products with 6 = p = 4 (cf. [18]). So,
we have to carry them along as vertices when studying
power counting.

B. Power counting and convergence

In the Landau gauge, oy = 0, the only nonvanishing
propagators are the following:

i

(et = (P = m2)ey(p? =) o
<hh>(TOT) - (Pz - mz)(3cz + iC] )(P + 2(§Z:+ZC])) ’ (101)
by} = s (2B PGy Py (102
(&) = —i(@,,,, + ;a)0> pzimz (103)

In addition to m = M(s—1) one needs also Zimme-
rmann’s & prescription (98). This will guarantee absolute
convergence of diagrams, once power counting is estab-
lished and subtractions are correctly performed.

Important to note: in all formulas to follow in this section
the replacement of c; by the sum given in (99) is to be
understood. Relevant for power counting arguments is
never a coefficient in front of a vertex, but the number
of lines and derivatives at the vertex and its associated
subtraction degree. The (bh) propagator will be of no
relevance for reasons spelled out after (62).

Power counting is based on ultraviolet (UV) and infrared
(IR) degrees of propagators and vertices. The upper degree
@p,s gives the asymptotic power for p and s tending to
infinity; the lower degree @p,(‘v_l) gives the asymptotic

power for p and s — 1 tending to zero. For propagators they
read

deg,((hh)]) = —4,  deg _ ((hh)7})==2, (104)
deg,,((hh){)) = =4, deg _ ((hh)7})==2, (105)
deg,,((tc)) = deg () =-2.  (106)

As shorthand we write also deg = D, and deg = D, . The
degrees of the vertices thus have the values

DV(L-3) = 2, DV(’/’”) = 2, (107)

Dyc) =Dy =4, Dy =2, Dyun =2. (108)

Let us now consider a one-particle-irreducible (1PI)
diagram y with m loops, I, internal lines, a,b = h, ¢, ¢,
and V vertices of type V(c1-¢2:¢:¢7) or insertions Q; as well as
N amputated external lines. In the subsequent considerations
a more detailed notation is useful: N, are of type ®,, n,; are

of type a and are attached to the ith vertex. Then with Q;

|l
0/ = ()" TIwi s (109)
we first find for the UV and IR degrees of y
d(y)=4m(y)+> Dy+ > Dy (110)

Vey Ley

=dm(y) +4vieve) Loy oy —ar,, — 21 .,

(111)
r(y) = 4m(y) + ZQV + ZQL (112)
Vey Ley
=dm(y) + 4Vl oy oy _of, —2f. .
(113)
The topological relations
m=1-V-+1, (114)
Na:Znai’ZIaa:Z Cai — az anl a (115)
permit one to rewrite these degrees as
=44 (Dy—4)+> (D, +4). (116)
Vey Ley
d(y) =4 —N;—2v(s), (117)
ry) =4+ (Dy—4)+ ) (D, +4). (118)
Vey Ley
r(y) =4 =2V —2v@n Lo, 421 .. (119)

(Here ¢ stands for both, ¢ and ¢.) The aim is now to associate
subtraction degrees to them which are independent of the
detailed structure of the respective diagrams. An obvious
choice is
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(120)

Before proceeding, a comment to §(y) =4 is in order.
Obviously there are infinitely many divergent diagrams
possible, even for every number N of external % lines.
This requires infinitely many parameters as normalizations.
Those are provided by the infinitely many arbitrary param-
eters which arise from the redefinition of / as a function of
itself. They are gauge type parameters and constitute only
wave function renormalizations hence are unphysical. This
will be discussed in detail later (see Sec. VIII).

We would like to prove convergence along the lines of
theorems established in [11]. In order to do so we formulate
a few conditions which will later turn out to be sufficient for
proving convergence. The first one reads
8(y) =d(y) +b(r) =r(y) —c(y)

and p(y) (C1)

(121)

with b(y) and ¢(y) being non-negative integers. b(y) > 0 is
obviously satisfied, but for c¢(y) we have to convince
ourselves that the bracket terms in (116) are greater or
equal to zero. Hence we need the more detailed information
given by the line balances

2y, = Z(Ch,i —npi)

i€y

— Z(Ch,i) —Nyie{Vien yie) yie) yeny  (122)
iey
Q’ICE' = Z(C n l) = ch,i _NC' (123)
i€pn icprn
We find
c(r) = Z (Chi—nni) + Z(Ch,i — Ny —2)
i€cy,co i€cy
+ Z(Cz,i —ngi—2)+ Z(l — Npgn)- (124)
iepn icpn

If the vertex i in question is not present in y, the respective
brackets just vanish. If this vertex is present in y, then
(cpi—np;) =2 and (c;; — ny; —2) > 0—both for 1PI y.
Since ¢; 4, = 2 the third bracket combines with the fourth
such that their sum is > 0—again for 1PI y—we find two
cases: either n;; =1 at vertex iy such that ng; =0
(otherwise y is not 1PI) or n;,; = 0 at vertex i such that
+1 from here and from ng ;, at most 1, i.e., —1 in the sum
(otherwise y is not 1PI), which together is O, i.e., non-
negative. Hence equations (121) are valid.

The next requirements refer to reduced diagrams
A = A/A,, ...A,, which are obtained from A by contracting
mutually disjoint, nontrivial 1PI subdiagrams 4; to points

(reduced vertices) V(4;) assigning (for the sake of power
counting) the unit polynomial of momenta to each V(1;).
For 1PI y one has the relations

d(y) = d(y/2...2 +Zd (125)

r(r) =r(r/A... (126)

+Z

Their analogs are also valid for connected diagrams. Now
one can formulate further conditions for convergence, i.e.,

8(r) Z d(y/A...2,) + Zé (127)
p(r) < r(y/ Ay ) + Zp (C3)  (128)
plr) <6(r)+1 (C4) (129)

for arbitrary reduced 1PI subdiagrams y/{4;} of I'. In order
to verify (127) one just inserts the values for the respective
degrees:

5(y) =4, (130)

8(r:) = 4, (131)

d(y) =4 =2V (y) =2V (y) + 212 (). (132)

d(y;) =4 =2V (y)) =2V (y,) + 21 o (y;),  (133)

d(y) =4 -2V (7) =2V (7) + 1c(7) —4n.  (134)
d(7)+ ) _8(r;) =4-2V(7)

| + iez{/;(—z + Cogr = Nega) (7). (135)

8(r) =424 =Ne(7) —2V(7). (136)

(We have used that ¢, 4, = 2.) The last inequality was to be
proved.

For the proof of (128) one treats first the case p(y) =
p(y;) = 4 and uses the fact that the line balances used for
proving (121) also hold for reduced diagrams. For the case
ply) =py)) =5=96(y)+1=256(y;) +1, which is the
upper bound admitted for the IR degrees, one finds also
that the desired inequality holds. (129) is satisfied by
definition.
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We can now refer to Theorem 4 in [11] in which it is
shown that these conditions being satisfied, Green’s
functions exist as tempered distributions, whereas for
nonexceptional momenta (Euclidean sense) vertex func-
tions exist as functions. Due to a theorem of Lowenstein
and Speer [19] in the limit ¢ — 0 Lorentz covariance is
also satisfied. An important improvement concerning
Lorentz covariance has been provided by [20]. If one
introduces Zimmermann’s € via a change of metric 77,, —
diag(1,—(1 —ie),—(1 —ie),—(1 —ie)) in addition to
multiplying each mass square by (1 — i¢), then Lorentz
covariance already holds for the right-hand side of ZI’s
before establishing the & — 0 limit. This is quite helpful
for actual work with ZI’s.

The above proof of convergence refers to diagrams
constructed out of vertices with vanishing Faddeev-
Popov charge. For installing the ST identity in higher
orders, one needs however diagrams which once contain
the vertex V() of types

_ 3forV(=
D(V(‘)) {
5forV(=

)= [cOOOh---h,
) [cD0DDOh-h,

i.e., of FP-charge —1. The UV and IR degrees become
respectively,

d(y) =4m(y)+> Dy+Y Dy +Dyo (138)
Vey Ley
r(y) =4m(y) + > Dy+> Dy +Dye.  (139)
Vey Ley
With (114) this results into (V=) € y)
(r) =4+ (Dy=4)+> (D, +4) (140)
Vey Ley
=4 —N; =2V 4 (Dyoy —4),  (141)
r(y) :4+Z(QV—4)+Z(2L +4) (142)
Vey Ley
=4-2V(©) 2V@7) 4 (D, —4)+ 20, +21 . (143)
As subtractions degrees we define
4 if Vo) ¢ 7
8(y) =d(y) +b(y) = 144
M=o ={7 V5T
4 if v ¢ y
=r(y)—cly) = 145
o) =rin -t ={ 3 10 0ET qas

The line balances read now

2 =D (i = nyi)

i€y

= Z(Ch,i)

i€y

—N,i € {v(e) yie) yie) vy yio))

(146)

2ICZ‘ = Z(Cc,i - ncz) = ch,i - Ncl € {V((/m)a V(_)}

iey iey
(147)

In order to verify (121) we have to show that

b(y) =6(y) —d(y) 2 0:

b(y) =5—dly) (148)
=5—442v) 4 2y — (DY —4) =21, (149)
=142V — 14+ “ne g — (1= 1 y0) (150)

i€prn '
m —|—Zl’lc¢ﬂ— cV( ) (151)

iepn

Here we have used the line balance for /,.; (122)and chosen
the more dangerous case Dy(—) =5.1If Ny = 0, there
must a +1 coming from the ¢z sum, because the FP charge
is conserved. Hence the inequality holds.

The control of

c(r) =r(r)—p(r) (152)
=4 -2v(s) —2ven o1, + 21+ (D(VZ))—-4)=5
(153)
= 2V —2vW@n) L o1, + 21 .+ (D(VEO))—4) -1
(154)
= 2V©@)) —2ven) 121, + 21
-1 for Dy =3
+ >0 (155)
+1 for QV(-) =5

is similar: On the vertices we have the information
Z (chi=npi) + Z(Ch,(/m — Nhgpr)
i€cy,cy,03 iepn

+ (Chyer = nype) +coyin 20, (156)

= 1: there is one c field in V(7). Inserting
=3 and

where ¢, (-
this into the more dangerous case Dy
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taking into account the terms —2V(3) —2v@n) _2

we get
c(r) = Z (Cni—nni) + Z(Ch,i =y —2)
i€cy,cy i€cy
+Z((1 =i —2)+ (2 —ng;)) (157)
iepn
+ (Cpyer —mpye) +1=n y =220, (158)

The two sums in the first line are non-negative for y1PL
The same is true as before for the sum in the second line.
In the third line we look at 1 + ¢, ) — 1y, yo) — 1y,

n.yo =1= ¢,y —n,yeo 22, (159)
neye) = 0= ¢y =nyyeo 2 1 (160)
Hence in both cases is 1+ ¢, o) —ny o) =gy 22

and thus ¢(y) > 0.
In order to check (127) we start with the case V(=) & y;,
1.e.,

d(y) =4 =2Va)(y) =2V (y)

-1 for Dy, =3
+2165(7) + _ , (161)
+1 for Dy =5
d(y;)) =4 -2V (y,) =2V (y;) + 21:(y;).  (162)
8(y)=5 and 6(y;) =4, (163)
diy) =4 F 1 -2V (y) =2V0n(y) + 21.:(y)  (164)

= S @ =2VE (1) = 2V ) + 2L, (r),

d(p) + _8(r) =4 F 1 -2V (7) —2v07(7)

+ 21,.(7)<5. (165)
The estimates for b(y) are also valid for b(j), hence this
inequality is satisfied.

For the case V(7)€ vi, the following equations are
relevant:

8(y) =56(y;) = 4i # ipd(y;,) = 5, (166)

d(y) =4 — 1(+1) = 2V (y) =2V (y) + 21 o (7).
(167)

d(y;) =4 =2V (y;) =2V (y;) + 21 1 (1,)i # o,
(168)

d(yi) =4 F 1 =2V (y, ) =2V (y, ) + 21 2 (1s)).
(169)

d(y) =4 F 1 -2V (y) =2V (y) 4 210(y)  (170)

-@4F1- 2V(C3)(}’i0) - 2‘/((/)")(71'0) +21:(7i,))

=S 2V () =2V () + 2L (7).
iig
7

d(p) + Y _8(ri) = 5=2V((7) = 2V(7) + 2 (7)<5.
(171)

Again, since the estimate for b(y) is also valid for b(7) the
inequality holds in this case, hence (127) is verified.

We now have to verify (128). For the case V(=) ¢ y; we
find

r(y) =4 =2V (y) =2V (y) (172)
£ 20, (r) 20,0 () + ~1 forDy) =3 (173)

h\Y ce\V +1 forDyo, _5

r(yi) =4 =2V (y;) =2V (y;) + 20 (1:)

+21.:(7:), (174)
pr)=5 and p(r;) =4, (175)

r(7) =4 F 1 -2V (y) =2V (y) 4 21, (y)
+21.:(y) (176)

_2(4_2‘/(63) (r1) =2V (y) 20 (r:)+21c2 (71),

1

r(7)+)_p(r)=4F1-2V() (7)-2v P9 (7)

23 (7)+21 e (7)25. (177)
The estimates for ¢(y) are also valid for ¢(¥), hence this
inequality is satisfied.

For the case V(- e 7i, the following equations are
relevant:

p(ri) = 4(i # i), (178)

p(ro) = 5.

The equation for r(7) is unchanged, but due to the presence
of V=) in vi, the final equation reads

r(7)+ D _plr) =5 F 1-2VI9(7) =2V (7)

?
+21,,(7) + 21.:(7)>5. (179)
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The question then is whether &(7)=—2V(%)(7)—
2V (7) + 21,,,(7) + 21.:(7) > 1. As in (157) we rewrite
this expression explicitly in sums over vertices and their
line “occupation”

&y) = Z (cni—nni)(¥) + Z(Ch.i =y —2)(7)

i€cy,co i€c3
+ Z((l =i —=2)+(2=n;))(7)
i€pn
+ (epyor =mve) +(coyer =n.ye) =2 20.

(180)

The first two lines represent a situation without V(=) hence
the estimates as before apply, these contributions are non-
negative. For the third line we distinguish two cases:

@) (1,y0), = (neyi)y, =1 (otation: 73, = 7/71).
Here the bracket c,. ) — n. - vanishes. However
the first bracket (referring to the 4 lines) contributes
at least 2. Hence the total sum is non-negative.

2) (n.y0), = (”c.VH)%O = 0. Now since the c¢ line
starting at V(- goes straight through the whole
diagram y, it cannot form a cc loop (it carries an FP

charge). It must meet at least one ¢z vertex v 1

this vertex belongs to y; , it is contracted with V) to

form a new vertex in 7; which has one negative FP

charge. Then this is the previous case. If it does not

belong to y;, then this VS:’&”) appears as an ordinary
FP vertex in y;  and its contribution is covered by the
second line in (180). Hence the overall estimate
holds true and condition (128) is satisfied.

The condition (129), p(y) =5<6(y)+1=5+1, is
satisfied by the definition of the subtraction degrees. In the
context of condition (129) it is of quite some interest to
investigate whether the upper limit p(y) =6(y) + 1 is
consistent with all the other conditions. We start with
condition (121) p(y) < r(y). For 1PI diagrams y containing
the vertex V(=) this means to check whether

S(y) +1=6<r(y) =4-2V) -2y

" (181)

+ 20, + 21 + {

Rewritten in terms of line balances this means [see (157)]

0<-2+ Z (i = i) + Z(Ch.i —np;—2)

i€cy,c) i€cy

+ Z((l —npi—2) + (2= nz;))
iepn

ey —mpy) + (1= n,yo) + { (182)

+1°

Since the sums in the first and second line are non-negative
(see discussions above), this boils down to

-3

(cpyer — n;,y(—)) + (1 =n, o)+ { i > 0.

[Let us recall: the upper entry —3 stands for contributions
[c(0)3h- - h, lower entry —1 for [¢(9)°h---h to V(7]
But we only know for sure that (c;y) —ny,po)+
(1 =n,yo) >2. Hence, if this lower bound can indeed
be realized, the upper limit for p(y) would not be allowed in
the derivation of the ST. It would however be allowed for the
Green’s functions constructed out of [N P]} normal products.
If indeed p(y) = 68(y) + 1 cannot be used then the IR
subtractions within z(y) (83) are active i.e., UV subtractions
alone would not guarantee convergence. In QED p(y) =
5(y) + 1 is allowed, hence by (84) only UV subtractions are
active. To the contrary, as here, in Yang-Mills (YM) theory it
is not. Of course, at s = 1 the dependence on M disappears if
the LZ equation holds[cf. (295)]. Again, as for Lagrangian
vertices we can refer also in the present case to Lowenstein’s
theorem for convergence in the same sense as above.

C. Slavnov-Taylor identity

The ST identity which we have to establish to higher
orders takes the same form as in tree approximation, (35),
supplemented however by the m?-dependent gauge fixing,
(96), and Faddeev-Popov terms, (97), i.e.,

ol'oI" oI oI or
5(r)=/<§%+i§+b§> —0,  (183)

1
[y = —Z/dxdyh” (x)(9,b,

+ayb,,)(y){<4%+m2> (x_ly)z} (184)

—/%n"”bybw (185)
Ty = —% / dxdysh** (x)(9,¢,

+8ya,,)(y){<%+m2) (x—liy)z} (186)

The b, c-field equations of motion take now the form

or _ O 1
5b7 =K 1 /dyﬁ”hw,(y){ <477,'2 + m2> (x—y)z} - a()b/,,

(187)
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e R o Rl

(188)

Again the b-field equation can be integrated trivially back
to (184) and therefor the functional T can be introduced as
in the tree approximation

=Ty +TI. (189)

Equation (38) is changed into

T 0 1 T
1 gy, -2 (= m2) — L &,
. / Y 25[(;4,1()’){<4”2+m > (x—y)2}+5éu
(190)

whereas (39) becomes
1 _
H, (x) =K, (x)+ 3 dy(0,¢,

+ aya,,)(y){ (4% + m2> ﬁ} (191)

The relations (40) are unchanged:

1 . -
S(r) =5 BT =0, (192)

B_—/ ££+@i+g_é+££ (193)
U= | \6H6h ' 6h6H ' SLéc ' ScoL)

In the BPHZL renormalization scheme, the starting point
for establishing equations like the above ones, to all orders
is a ' with which one calculates accordingly subtracted
Feynman diagrams. Here we choose

Legr = I_‘ickfss + g+ Ty +Tep + T (194)
In addition to (2), (4), (184), and (186) one has to take into
account the changes caused by the auxiliary mass term in
(87) and (89). I',; will collect counterterms as needed. All
these expressions are to be understood as normal products,
i.e., insertions into Green’s functions with power counting
degrees 6 = p = 4.

Starting from Z, the generating functional for general
Green’s functions, and from the definition of S in (42) we
postulate

S§Z=0. (195)
Then the action principle yields

where Ay =[Az]3 is an integrated insertion with
Q4(Az) = +1. Again, by invoking the action principle
one can realize the b-field equation of motion (187), with
(190), now on the renormalized level, as a consequence of
(183). This admits (192) as a postulate and results into

SI)=A-T, (197)

1 -
EBFF = A+ 0O(hA). (198)
Here A = [A]3 with Qy,(A) = +1 does not depend on b
and ¢. These relations admit a cohomological treatment,
since
BeBr = 0, (199)
the latter being true as a necessary condition, if (192) is to
be satisfied. Since in the tree approximation (192) holds,
one has

bA=0 forb=DBr  with 6>=0 (200)
as the final consistency condition to be solved. The
standard way to solve this cohomology problem is to list
contributions to A by starting with terms depending on
external fields and then those consisting of elementary
fields only, i.e.,

A—/(KM,,A/‘”(h,c)+LpAp(h,c))+A(h,c). (201)

All terms are insertions compatible with [...]2
and Q% =+1. |[Recall that Q% (K)=-1 and
Q%" (L) = —=2.] In [21,22] it is shown that all these
contributions eventually are b variations. This is true even
for the A term. This means that pure gravity has no
anomalies, the solution reads:

A =bA (202)
with a A which can be absorbed into [t In the quoted
references the algebra leading to this result has been
performed by using cohomological methods. Without
power counting and convergence and not within a concrete
renormalization scheme, this represents a classical consid-
eration. In the present context we have, however, supplied it
with “analytic” information, i.e., assured the existence of
the relevant quantities as insertions into existing Green’s
functions. The result is thus that we have indeed a ST
identity which holds as inserted into general Green’s’s
functions of elementary fields, at nonexceptional momenta
and s = 1.

Along the lines given in the tree approximation, one can
now establish the unitarity of the S-matrix. It is however
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clear that such a construction is to a large extent purely
formal, because one has to go on-shell and hits physical IR
divergences there in many configurations of incoming and
outgoing particles.

Let us nevertheless sketch some of the required steps.
First of all the matrix of residua z~!' becomes relevant. Then
like in the tree approximation the state space operator
QBRST can be calculated with the same arguments as there:
only linear terms in the functional transformation contrib-
ute. They appear however with factors which have to be
shown via some tests on the ST to permit a multiplicative
renormalization of the tree approximation charge. With this
result one can deduce that the S-matrix maps physical states
onto physical states. These physical states have to be
constructed in two steps: In the first one a state |phys)
is called “physical” if it is annihilated by QBRST, ie.,

QP*$T|phys) = 0. (203)
This requirement defines a linear subspace in the full
indefinite metric Fock space and eliminates states with
negative norm. In the second step one forms equivalence
classes of physical states which differ only by the number
of particles which generate vanishing norm. The comple-
tion of this state of equivalence classes contains then only
states with nonzero norm. On this physical Hilbert space
the S-matrix is unitary. It is worthwhile to mention that this
construction has been shown to exist rigorously e.g., in the
context of Yang-Mills theory with complete breakdown of
internal symmetry to a completely massive theory [16].
Due to on-shell IR divergences it is only formally valid in
the present case. One can however expect that scattering
amplitudes which are not affected by IR-divergences are
physically meaningful.

Based on the ST one may construct Green’s functions of
BRST-covariant operators which are independent of gauge
parameters and could then serve as building blocks for
observables. But this will not be covered in this work and is
left for future research.

D. Normalization conditions II

The normalization conditions (78)—(82) have to be
modified such that they are compatible with higher orders
of perturbation theory: they have to be taken at values in
momentum space which are consistent with the subtraction
procedure. They read

B
a_p”(TzT)v:? = K, (204)
PR
7 3 g = 260 (205)
PR
0 =2(3¢; +c1), (206)

ap? op? T

Fhuv = —T]W/CO = 0, (207)
8 ; o SV vo SH v So
WFKM%‘FZ-::?‘Z = —ik(n"°8, + "5, —n"*55), (208)
0 .
= —ik(&ote = F1y).- (209)

—TI 2__ 2
817’1 Lycoer|”

Imposing the b equation of motion (36) still fixes a and the
b amplitude, whereas (208) again fixes the & and K
amplitudes.

IV. INVARIANT DIFFERENTIAL OPERATORS
AND INVARIANT INSERTIONS

Here we develop the concept of BRST-invariant differ-
ential operators and their one-to-one counterparts,
BRST-invariant insertions. One can essentially follow
the paper [23] and translate from YM to gravity.

Suppose a model satisfies the WI of a linear trans-
formation

Wer = /5a¢£ =0 (210)

o¢p

and 4 is a parameter of the theory (e.g., coupling, mass,
normalization parameter) of which the WI operator W*
does not depend. Then 10; commutes with W, i.e.,

[40,, W] = 0. (211)
Then the action principle tells us that
A0,I'=A,-T. (212)
Applying W* to (212) and using (211) we find
We(A;-T) = WA, + O(h4;) =0, (213)

which expresses the invariance of A, under the symmetry
transformation W: A0, and A, are called symmetric with
respect to the symmetry W<

For the I'-nonlinear BRST symmetry one has to proceed
slightly differently. We shall call an insertion A BRST
symmetric if to first order in €

(214)
forT,=T+eA-T with S)=0. (215)

If A is generated by a differential operator (212), this
differential operator will be called BRST symmetric.
Writing (214) explicitly we have

S(T) +eSrA -T = 0(e?), (216)
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S :/ ££+§i+££+gi+bé
"7 ) \6Kéh ' 6h6K ' SLéc ' ScSL T 6C
0
= 217
S (217)
i.e., the symmetry condition reads
SrA-T'=0. (218)

1

Ty + Ty = S (‘2;< / () (0,2, + apaﬂ)(y){ <4§2 + m2> (x_ly)z} _ / ‘;‘)nﬂvaﬂm).

[Note: the last term creates a contribution which has been
taken into account in (56), but not in (184).] When going
over to Z, the generating functional for the general Green’s
functions, it is clear that gauge fixing and the ¢z term

|

A comment is in order. Although later we shall exclusively
work in Landau gauge, we carry here the gauge parameter
ap along as preparation for the general solution with
arbitrarily many parameters z,,;. This facilitates the formu-
lation of the general version. Actually relevant at the end
are only the formulas with @y = y = 0. The explicit form of
Sr precisely defines how to perform the variation of the
fields [24]. The operator Sy is helpful for rewriting the
gauge fixing and ¢z contributions to the action (184):

(219)

|
vanish between physical states, because they are a BRST
variation.

A necessary condition for insertions to be BRST
symmetric is obtained by acting with §/6b on (214):

oA -T 0 or O 1
GA-T'=St———, G’ = 1 dyo,—+—1 2)— ¢, 220
"o m " [ P @) ) 220
I
For b-independent insert.ions A one must ensure the dim(A) = 4, 0n(A) = 0. (226)
homogeneous ghost equation
GA-T =0. (221) Here b = B, hence
= 11 el tary field 227
Using the gauge condition b=2 onall clementary fields. (227)
or, ST slass
oI _ o Pinv V) A
55— ~aon b+ k! / dyd, 1 (y) OH = S = g~ <0+ 0,
P
0 1 + aA(H;wCﬂ))’ (228)
X { <—2 + m2> 2}, (222) _
4 (x=y) b ’ i p
[)LP = ScP = K(Z@ H/lp + 28/1/(1‘[/,/1]’1 + H,{%(i)ph ))
one can reduce (220) to
(229)
BeA-T'=0. (223)
—k(L;0,¢" + 0,(L,c%)). (230)

In the tree approximation we have called this operator b.

Our next task is to construct a basis for all symmetric
insertions of dimension 4, ¢z charge 0, and independent of
b,—first in the tree approximation and then to all orders. A
systematic way to find them is to solve the cohomology
problem

bA =0 (224)

for A satisfying

(225)

In order to proceed we first separate the a, dependence

A =yA_+ A, (231)
We now define
_ b onh,c,H,L
b= (232)
0 on
and note that
Og,(by) =0 fory =h,c,H,L (233)

086012-17



STEFFEN POTTEL and KLAUS SIBOLD

PHYS. REV. D 104, 086012 (2021)

with b = 0, since T is independent of a. Equation (224)
implies
BA_ -8, Ay = 0.

bA, =0, (234)

g

hence

A =DbA_+ A,. (235)
Here AO is o independent and b invariant. Since ¢ does not
occur, a negative ¢z charge can only be generated by
external fields, hence

A= / (@) Hoh + fo(ao)L,c?).  (236)

which is the precise analog of Eq. (4.19) in [23], is certainly
a solution. However in the present case the field #** has
canonical dimension zero, whereas its counterpart in Yang-
Mills theory, the vector field A, has dimension one. So
every function F**(h) is also a solution. For the time being
we continue with (236) and discuss the general solution at a
later stage (cf. Sec. VIII). It is worth solving the subpro-
blem

Oy Do = 0, bA, =0 (237)
explicitly. We start listing the contributions to A, ordered
by their external field dependence, i.e.,

Ay = —fL(0)x / L,c*0;¢” + -+ (indep.of L), (238)

where f; (0) is an arbitrary number independent of o. With
(230) this term can be rewritten as

Ay = fL(O)B( / chﬂ) 4 ---(indep.of L),  (239)
Ay = 5/(fL(0)chﬂ) + - - (indep.of L). (240)
We next make explicit the H dependence
Bo=5 [(1LOL,e) + [ HuFf (o)
+---(L,H) — indep (241)
The postulate (237) reads
. S0 _
0=D0A,= [ (=2 FH) — HBF()
- /G5
+ (L, H) — indep. (242)

. / HCF™) 4+ (L,H) —indep.  (243)

and defines a transformation C as the coefficient of H in
(241):

CF(s) = BF) 4+ k(0" F2 + 81C”F’(‘i
A v
— C 8}LFI(4+))

)
(244)

This transformation is nilpotent and satisfies, due to (242),

CFy=0. (245)
One solution is
F’(‘i) =C(fy(0)h*). (246)
Since
C(W") = k(—=0"c" — 0"ct), (247)

it fits correctly to the H-dependent part of (228) in (242).
One thus arrives for this solution at

; / Fu(O)H, 1 = / H,,C(f(0)1™).  (248)

i.e., the H-dependent part in AO is also a variation. As
mentioned above this is not the most general solution, but
that will be treated later with the analogous outcome.

The remaining contributions to AO depend only on 4 and
must not depend on a,. The only invariants are the terms
appearing in I, They are not variations, but constitute
obstruction terms to the b cohomology. Altogether we thus
have

Ag=b / (FL(O)L,c” + f1(0)H,, )

+ / V—=9(&3R + & R* + &,R?). (249)

(The factors ¢ are independent of «,.) In tree approximation
we end up with five invariant insertions of dimension 4 and
¢r charge 0, which are independent of b, and satisfy the
ghost equation:

A, = 5<fL(ao) / L)
Ay =B (fH<ao> / H,,Dh/w),

(250)

(251)

086012-18



PERTURBATIVE QUANTIZATION OF EINSTEIN-HILBERT ...

PHYS. REV. D 104, 086012 (2021)

A, = C3K_2/1/—gK_2R
AL.] = cl/,/—gR"”Rm

A, = cz/,/—gRQ. (252)
(Here we renamed the couplings of the nonvariations.) In
higher orders we may define easily invariant insertions for
those which are not variations:

A

(i=1,2,3 no sum); (253)

0
= —I
Ci Cl acl

however, it is clear that the (s — 1)-dependent normal
products ¢z [k"'m [ \/=gR]} and c31/2[m? [ \/=gR]}
also belong to the basis in higher orders and make part
of I'y. Hence we define them also as invariant by the
respective derivation with respect to their coupling

A = C3p a—r, AC32 = C32—F. (254)

C3)
€31 Jcxy

Accordingly we change the notation ¢3 — c¢3y. The other
terms we also try to represent as symmetric differential
operators acting on I'.

We rewrite A :

8y = 5<fL(0’0)(‘10) / chﬂ)

or, or,
:;(f/L/Lc+fL/ (561+L 5Ll> (255)

ol ol
=;(f’L/LC+fL/<—c 5. TL 5L)

=—fiNTa+xf1 /LC,

(256)

(257)

where A/ denote a leg-counting operator. This suggests
defining A; to all orders by

AL T = fu(a)NoT = 1f} / Le,

A

It is to be noted that the y-dependent term in (258) is well
defined since L is an external field, hence the expression is
linear in the quantized field (c). A; does obviously not
depend on b,,, it satisfies the ghost equation and it fulfills
(223), since it can be written as

AL-F:—Bl:<fL/Lc),

(258)

(260)

and since By is nilpotent. Hence it is a BRST symmetric
operator to all orders.

Finally we have to extend A},. We first rewrite it in the
form

=0 () [ Hui)

= fuNuyla— fuNula +xfk / H, . (261)
Next we go over to I in the variables K and ¢:

Ay = fu(Ny—Ng —Nj = Nz + 2004, + 2%0,)T
(262)

, T, 9
+)(fH (/ <Kh —C 5b1> + 2a0@r‘cl>. (263)

This suggests as definition of Ay to all orders

AH = fHN](F

+xfu (/ (Kh - a?;‘) + 2a0%r> . (264)
Ny =N, —=Ng—Nj,—N:+ 2000, +2¢0,. (265)
Or else
st (1t [ (k1-2T) 4 20,T)).
(266)
In view of
SrSr=0 (267)

for all I' with S(I') = 0, Ay is BRST symmetric once we
have verified that it is independent of b, and satisfies the
ghost equation.

1)

%(AHT)—O (268)
is readily checked in the form (264).

G(Ay-T)=0 (269)

is best checked in the form (266) by observing that
or or
G Kh—¢— 20— | =0,
</ < ‘ 5b> o 3){)

(270)

and
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{G.S5:} =0 (271)

(this latter property being due to GI" = —1/2yb).
To summarize in compact notation we denote the above

symmetric differential operators by
V€ {c0,,,c20,,, 300 Nu. N}

(272)

C318c‘3] .30

€30 €37

and have with (253), (254), (260), and (266) defined a basis
of symmetric insertions to all orders by

V.I=A;-T. (273)
The fact that symmetric differential operators and sym-
metric insertions are in one-to-one correspondence just
means that adding symmetric counterterms A; to I is
renormalizing the corresponding quantity i indicated by V;
of the theory. Fixing the arbitrary parameters in the
symmetric insertions (250) is again performed by satisfying
normalization conditions and the present analysis shows
that the conditions (204) are appropriate. In higher orders
the Euclidean point —u? is relevant. ay = 0 and y = 0 are to
be chosen now. Once one has satisfied these normalization
conditions the theory is completely fixed.

V. REMOVING AUXILIARY MASS DEPENDENCE
VIA ZIMMERMANN IDENTITIES

Above we have introduced among the symmetric inser-
tions several which depend on the auxiliary mass. Here we
study to which extent they can be effectively removed by
using ZI's [25].

A. Shift
In (99) we replaced c3x2 withiny\e), r =2, K =L =T
by 3k = c30k72 + mrlesy + AmPes, where

m = M(s — 1). On the level of symmetric insertions this
replacement corresponds to enlarging the basis of naively
BRST-invariant  insertions with p=0=4 by
cyymk™" [\/=gR and c3,1m?* [\/=gR, which are to be
taken into account in ['gp.

Then the question is whether one can via ZI’s eliminate
the m terms and maintain invariance. The sought invariant
[...]+ insertions are defined to all orders as symmetric
insertions via the invariant derivatives

|:K'_2 / \/—_gRE :%r, (274)
{K—l / ¢_—ngE :%r, (275)
[t gl e

and the symmetric counting operators A ;. The relevant
ZI's have the form

|:K_2 / \/—_gR]z: {K_Z / \/—_gRﬁJr[...]j (277)

1
with [..]§= {/\/—9<K_2MOR+M31’"K_1R+u32§m2R

4
+ uR*R,, + u2R2> +u Ny + uCNL} ,
4

(278)

ot [ moma] =l [ vean] s
(279)

1
with [.]j= { /v_g<K_2U30R + vomk 'R + 3 EmzR

4
+ UIRW/R’W + 1]2R2> + ”hNH + UCNL:| s

250
and
Uﬁ%mzRﬁszﬁ%mREH...}j (281)

1
with []i: [/H(K—Zme—|—w31m1<‘1R—|—w0§m2R

4
+w R*R,, + w2R2> +wNy+ WCNL] .
4

(282)

All coefficients u, v, w are of order . The terms multiplied
by ug, vy, wy respectively will be absorbed on the respective
left-hand side and then the respective line divided by
1 —uy, 1 —vy, 1 —wy, such that the normal products on
the right-hand side have the factors (1 — uy)~!, (1 —vy)~!,
(1 — wg)~! in the respective line. From this representation it
is then obvious that all [...]} insertions on the right-hand
side are symmetric, because all other insertions are sym-
metric. Since the relevant determinant in this linear system
of equations is clearly nonvanishing, one can solve for all
hard insertions [ [ \/=gR(x™%, mx~',3m?)]} in terms of the
soft ones together with (¢, ¢5, Ny ;) terms. But those soft
insertions which contain the factor m vanish at s = 1, hence
all hard m-dependent insertions have been eliminated. And
the hard insertion [x™2 [\/=gR]; has been effectively
replaced by its soft counterpart. These considerations are
crucial for deriving the parametric differential equations in
symmetric form and without m dependence at s = 1.
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B. Push

Next we consider the problem of removing push by
using appropriate ZI’s. First we treat the contributions of
push to Fiﬂi“ [cf. (86)]. They occur in the second power of &
and have the form [see (87), (89)]
|

L 2A(2 ~(0) (0 .
sy (m?) = / B (2 QP+ m2p P e, (283)

In higher orders we have just the same terms, but now to be
understood as normal products |[...]; in [.z. We use the ZI

4
[ R PR Tl
4

= M(s—1) U we (my A PE + my

3
0 4
P'(T"lz)uvpahp :|3 : F(hh) + [COH'SH ' 1—‘(hh)~

(284)

Here the 7’s are interpreted as differential operators and m = M (s — 1) is to be recalled. The corrections comprise first of all
the starting term from the left-hand side with a coefficient ¢ = O(%). We bring it to the left-hand side and divide by 1 — ¢.

This yields

4
vr24(2) p2 +(0) (0 -
[ R+ ] T

M(s—1
_ M) [ [ i  mif

l1-¢q

As correction terms appear the hh-vertex functions with all

[...] insertions. We now can demand 8, invariance because

this is a linear transformation. Among the ?g)L contribu-

tions precisely those with r =2,0; K =L =T are 3,
invariant (see Appendix B), hence they have been absorbed
already. The other contributions go with the symmetric
|

1

T+ Ta)) = =3 [ (L1000, +2,8,)0)

1

The product in the last line is point split in (x <> y).
Divergences can be developed at coinciding points in such
a way that they can be controlled by a ZI

(1 (x) (0,2, + 0,8,) (y)m*]3 - T
= m[hm/(x>(8/45u + ayay)(y)m]% I

+ [corr.s]; - T (287)

Among the corrections, again, appears the normal product
of the left-hand side, which can be absorbed there, such that
on the right-hand side only all other insertions of dimension
4 and ¢r charge —1 show up. These are K, h*, L,c*
which are both naively defined because they are linear in
the quantized fields. At s = 1 they are the only surviving

3 1
0 vo
T'[z)ﬂupoh/ :|3 : l—‘(hh) + 1 -

- / 8 <h””(x)(8ﬂfb +0,8,)(7)

. [corr.s]} - Ty (285)

differential operators A'yy. These are however BRST
variations and thus vanish between physical states. There-
fore this part of push does at s =1 not contribute to
physical quantities.

The second (and last) appearance of push is within gauge
fixing and ¢z terms.

m2 v _ _ m2
S DR, + 0,6)0) s )

(286)

[

terms which contribute in (286) and then eventually vanish
after integration between physical states.

VI. THE INVARIANT PARAMETRIC
DIFFERENTIAL EQUATIONS

A. The Lowenstein-Zimmermann equation

Green’s functions must be independent of the auxiliary
mass M at s = 1, so one has to know the action of M9,, on
them. Since the ST identity does not depend on M, M0, is
a BRST-invariant differential operator and can be expanded
in the basis provided by (272). In fact with the ZI's (279)
and (281) and the discussion there we can consider the
basis of symmetric differential operators to be given by
€300¢,,> €10, €20, complemented with the symmetric
counting operators \ g ; . Furthermore we have shown that
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the contributions coming from push (285) and the con-
tributions from shift go at most into the symmetric counting
operators. Hence

MaMF = ( 0306”0 ﬂ%zclac] - ﬁ%ZC2acz

+ y‘;;ZN u+ 7N (288)
The coefficient functions f, y can be determined by testing
on normalization conditions. The test on (288) involving
external fields

0
—1FL c’c | PPyl — _ik(&t‘;r]ﬂr - 557716) (289)
op ’ s=1
implies
MaMapFLcc |I’2:*!‘2 (8 FLcc|p2:fuz) =0. (290)

Since the M derivative in the first term is not in conflict
with going to the argument of I, the first term vanishes and

hence y-* = 0. Quite analogously we may proceed for
a ; o SV vo SH v SO
o o Tkme, |2 2 = —ik(n'°8, +n*°8, — ;). (291)
Here this test on (288) yields
]WaMa FKc|p :714 yIﬂZ(_apFKc| 2-::7‘2)
- }’L ( 0 FKcl 2:,”2) =0. (292)
With the same argument as before, y1 = 0 and 7} =0

follows.
For obtaining the f functions we use the normalization

conditions (204) for y(TZT> and y%(v)r). The test

9 -

a_pz}/TT|p2::10 = C30K (293)

implies

J _
MaM 8—p2y'<1"12|1:2:210 + 30K 2 %320 = 0.

(294)
Since the normalization does not involve M, the first term is
zero, hence LZ = 0. It is clear that the other § functions
vanish too. Hence at s = 1 the LZ equation

MoyT|,_, =0 (295)

holds and reveals that the vertex functions are independent
of M at s = 1.

B. The renormalization group equation

The RG equation formulates the response of the system
to the variation of the normalization parameter u [see
(204)], where e.g., couplings or field amplitudes are
defined. Since the ST operator does not depend on g,
the partial differential operator 0, is symmetric and can be
expanded in the basis (272). Quite analogously to the LZ
equation (by removing push and shift) we end up with

_ RG RG
ﬂaur|s:1 - (_ﬂ30 CSOvaO c cl c _ﬂcz c2602

YRON i + 7% GNL)F\\ 1- (296)
We observe that some normalization conditions involve u,
hence performing derivatives with respect to u does not
commute with choosing arguments for the relevant vertex
functions, and we expect nontrivial coefficient functions.
Again we start with those tests which involve external
fields, i.e.,

0
a—plFL/,c c’

—iK (361 — (297)

| 2,_1”2 - 64)’7}»(7)'
Now ud, does not commute with choosing a y-dependent
argument, hence

0
8 FL ercz|p_:_#2 + l]/c

[z a a1 (55777,11

= &n,) =0 (298)

which determines yRG. For the normalization condition

0
86

——Tgm,

= —ik(n'°8, + n*°5 —n*5;)  (299)

s
=1

the structure is exactly the same as in the preceding
example such that the result is

0

'uaﬂ a 0FK” |F2::*]Il2 + (}/IC{G - }/ﬁc)i’((’/lﬂgél/j)

+ n*°8, — n**85) = 0. (300)
This equation gives th The p functions will be deter-

mined by the normalization conditions for the couplings.
The normalization condition

2 .
8[,2}/(TT)|IT‘2::]0 = C30k 2 (301)
is independent from y hence it implies
(302)

2 —
l‘auapZ?(TT)h?jO =0 = —fiF 30k + 2c30k 2y} ¢

This determines S&o. The other normalization conditions,
however, depend on yu and thus result in
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40,020, zyTT| Pyt = 2¢, %6 = 2¢yR6,  (303)
8 8 20 zyTT ,,2,,,,2 = —6¢, IEZG + 2¢ ﬂRG
+2(3¢; — ¢p)yRC. (304)

These equations determine SRS, BRG. These coefficient
functions depend on the product ux. Since we work in
Landau gauge, they do not depend on a gauge parameter.

C. The Callan-Symanzik equation

The CS equation describes the response of the system to
the variation of all parameters carrying the dimension of
mass. Here M, u, and k. The variation of M has been
covered by the LZ equation with the result that Green’s
functions do not depend on it at s = 1. The variation of u
has been treated as well. As far as « is concerned, it is
crucial to observe that the ST identity depends on it, hence
it does not per se give rise to a symmetric differential
operator. However acting with —kd, on I'¥'®% we find

—kO TN = (2¢30,, + (N}, — 2a90,,)

— Ng — N )relss, (305)

Hence the combination

—K'aK - 2c30803o - (N - 2(1080,0) + NK + NL (306)
is independent of x on I'®®% the variation of k is just
balanced by the other derivatives; this combination forms a
differential operator which commutes with the ST identity,
and thus is symmetric.

In higher orders we can therefore expand this operator in

the basis of (268) and obtain

(=Kk0¢ = 2300, — (N = 2004,) + Ng + Ny )T
= (=$30¢300cy = Be,€10¢, = P, €20, + YN n
+ 7CNL)F\S=1v (307)

where the contributions going with the variation of ¢3;, ¢3,
have been eliminated with the ZI's (279) and (281). Like
for the LZ equation (288) the coefficient functions vanish,
since the normalization conditions and the differential
operator are not in conflict with each other, i.e.,

(_Kal(

—2C308 —(Nb—2a0(90,0)+N,(—|-NL)F‘S:1 :O

(308)

€30

We eliminate in the RG equation (296) the hard insertion
¢300.,, and add the result to (308) obtaining the CS
equation in its conventional form

(/48 —K'a —2C308L‘20 —<
+p75¢10., + 5320, = 1Ny —

=a"s |:K_2 / \/—_gRL o N

20!08(,0) +NK +NL
SNL)F\S=1

(309)

The coefficient functions are of order O(#). Their values
have to be determined by testing the normalization con-
ditions and taking care of the soft contribution. The
differential operator can be interpreted as a symmetrized
version of the dilatations and the equation then says that in
the deep Euclidean region the soft breaking on the right-
hand side becomes negligible and the hard breaking is
parametrized by the functions # and y. Between physical
states only the f’s would be relevant.

Before testing (309), we have to note that all coefficient
functions start with order O(#). This is clear for #’s and y’s
because they were introduced via the action principle after
having applied the symmetric differential operator to I". But
contrary to more conventional models this is here also true
for a®S, because it was traded against the hard insertion
[[ \/=9R];. This has to do with the special character of the
symmetric differential operator and the x dependence of I':
The EH action depends on k which carries dimension, but
acts as a mass term only relative to the higher deriva-
tive terms.

We test on

0

a a1 _ik(&;nir - (310)

FL c"c’| 27—[;:2 - 5€77/16)
In order to understand the impact of the symmetric differ-
ential operator we start with the tree approximation and find

9 o)
(_K6K+ l)a—pﬂFchocr :O, (311)
which is correct, since ud, — 2c30,,, does not contribute
and from counting operators only N; does. In higher orders
u0, no longer commutes with going to the desired value for

p» whereas k0, — 2¢30,..,, + N, does, hence

0
a}la 1FLCC

3
= oC8 |:K_2/ /—gR:| -aszL”( Cz‘pz,,ﬂz
3

2**;42 _ycs( ) (épnlr - Tr]/la)

(312)

Herewith y$S is determined. (The a term contributes not
earlier than in two loops, since we are concerned with 1PI

diagrams.)
We test on
9 H 1O SV Vo UL SO
apg C/, /72;*]142 = _lK(T'] 6p + ’7 5% - ’7 5/7) (313)
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and, again, because also the term —«0, —2c¢300,,, + Ng
commutes with going to a specific value of p, we find in
higher orders

0
ﬂaﬂ FFK*‘”CP

= (75 =SSk (8% + oo — v 5)

ol o3

This yields eventually y$5. With the same argument a5 and
the 7 are given by

S I (314)

2 _
,uaﬂﬁpzy(TT)hz:: > — 2030k 7258

n
1

3
il R LD

a 8 26 27TT » :,#2 _2C1ﬂCS 2C1]/%S
_ acs[ / ﬁR} o, (316)
a 8 28 2}/TT » 7,;‘2 +6C2ﬂ 2C1ﬁ(1:S

3
+2(3¢; = Cl)?’gs =a“® [K_z / \/—_QR] : Pg))r\s=l~
3
(317)
Equation (315) determines a®® and (316), (317) determine
1C§ respectively. The symbols [P stand for projectors of ',
into the components

Py — 0 27/”(F2”12<p2)’ Py - apzaﬂzy(TzT)(pz)’

[FD2—>8 20 27/TT< ) (318)
These are part of the full vertex functions of higher orders.
Clearly those admit also the expansion in the projector
basis as in the classical approximation. Also the coefficient
functions of the CS equation depend only on px, besides the
parameters ¢y, ¢», C3q-

VII. TRACES OF THE EINSTEIN-HILBERT
THEORY

It has already been observed by [4] that the introduction
of R*R,, and R? in the classical action leads to a
regularization of the h-field propagator analogously to
the Pauli-Villars regularization (cf. [26]). This regulari-
zation is not sufficient to render the model finite, but it
becomes power counting renormalizable. This implies
that all standard tools of, say, BPHZL renormalization
become available. Furthermore, the BPHZL renormaliza-
tion scheme may be formulated with such regularization,

but has been shown to be independent of it [5,20] provided
the regulator-free model is finite. Unsurprisingly, it can be
shown that in our construction the limit ¢, ¢, — 0 exists
up to one-loop diagrams so that the result of [1] can be
recovered. For diagrams of higher loop order, new
divergencies occur which are not treated by the subtrac-
tions in the BPHZL scheme. Those additional divergen-
cies can be verified by setting the UV degrees in (104) and
(105) equal to —2 and subsequently following the argu-
ment in Sec. III B with these new degrees. This just means
for our work that beyond one loop we have to take
nonvanishing parameters ¢, and ¢, and have to examine in
which sense we find the EH theory in our model.

A. Projection to Einstein-Hilbert

We still have to check in some detail how the S-matrix
(42) is affected by this limit. The factor K(x —y) is the

wave operator of the free theory, hence given by FEI(,)}(D]

(recall that the fields @ are the free ®;, fields). At ¢ =
¢, = 0 the hh submatrix has only p? contributions, no
(p?)?, hence projects to the pole at p?> = 0 (for s = 1), as
desired. The matrix 77!, commonly the wave function
renormalization matrix, is here in fact the matrix r of the
residues of the poles, since the 7 wave function has been
fixed in (400) (and the others by the b equation of motion).
Contributions of the possible second singularity of the
propagator are projected to zero because no respective
factor in the numerator, coming from ®,,, is available.
Hence for physical quantities they are always projected to
0, as we have seen for the S-matrix.

Before the fields @;, project to the mass shells, one can
introduce a ®;, = z®;, with the implication z~'TK(x — y)
7= Lo (x)o(y—here the full I'pe. Then one can use the
results of ST etc.,, and derive in analogy to the tree
approximation that the commutator of : X: with ST generates
again QBRST as needed.

A comment is in order. The reason for going via ¢y, ¢,
from the very beginning can be understood just as a means
to avoid “unnecessary” even higher derivative counterterms
(confer [2]). This can be seen as follows: Starting with c3
terms alone, one realizes in one loop that higher derivative
counterterms are required. Absorbing these and transition-
ing into a new propagator, the power counting becomes the
same as in the (cy, ¢y, c3) model. This roundabout pro-
cedure has been circumvented by starting immediately with
all terms guaranteeing power counting renormalizability. In
this context, it is quite natural to consider even higher
orders of derivatives of the metric in the classical action,
which would render the model super-renormalizable (con-
fer [27]). However, these higher orders do not have a
regularizing effect at the order 7# so that the occurring
divergencies have to be treated separately. Thus the analytic
structure of such models is obscured to a certain extent.
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B. Parametric differential equations of the S-matrix

It is of quite some interest to investigate how the S-matrix
behaves under RG transformation and under scaling, i.e.,
under action of the CS operator.

First we need the expressions of the symmetric differ-
ential operators Ny [cf. (266) and (260)] when they act
on Z:

o o o
Z=i[ (-0, -kZ 4.2z
N /( "ol 5K+]Céjz>

o o
Z=i[(-j.—-L)z
M ’/< o 5L>

Next we introduce

(319)

S(J)=:2:2(J), (320)

a kind of off-shell S-matrix. In order to see how the
S-matrix transforms under the RG we look at

u0,8(0) = : (ud, Y)e" :Z(1) + 1540, Z(J).
1
Y= @, (x)K(x—y)z7'—
[ vk (x5
K(x_y):FEI()))D’ﬂauY

— [ @y (K -0, 5 =0 (321)

oJ

with z~! being the residue matrix of the poles at p> = 0. In
the hh sector these residues are independent of u: for the
spin two part directly as guaranteed by the subtraction
scheme (204); in the spin zero part then indirectly via ST.
In the bh mixed sector they are u independent because
they are directly determined by the gauge fixing which is
independent of it.

In the second term of (321) the operators N do not
contribute, because they are BRST variations and therefore
mapped to zero by :XZ:. The final outcome is

/’Laﬂs = (_ﬁggcwacm _ﬁlchlacl _ﬁ2RGC2802)S' (322)

For S-matrix elements which exist, regarding the infrared,
this relation applies. It is remarkable that (although here it is
formal in many cases) this is the analog to the result which
Zimmermann has derived axiomatically for massless ¢*
theory [28].

With completely analogous arguments one can derive the
CS equation for the S operator, i.e.,

(10, — KO, — 2300, + ﬂ?sclacl + ﬁgsczﬁcz)S

casfer [ v s

ol [

The qualification is as before: the equation is meaningful
only for matrix elements which exist regarding the infrared.
It shows however in those cases how scaling is realized.

(323)

VIII. GENERAL SOLUTION OF THE SLAVNOV-
TAYLOR IDENTITY

As mentioned at the end of Sec. II B the propagators for
the field A#*¥ require one to consider it as a field with
canonical dimension zero. It is thus impossible to distin-
guish via power counting between s and an arbitrary
function /' (h). This is familiar from supersymmetric gauge
theories where in linear realization of supersymmetry the
real gauge superfield ¢(x, 6, 9), known as the “vector
superfield,” also has vanishing canonical dimension [14].
One can take over from there mutatis mutandis the treat-
ment of such fields. In the present context this means in
particular that for finding the general solution of the
Slavnov-Taylor identity one just chooses a special one,
here h* = hy’, with its transformation law (9) 8h}" =
O, (hy) and replaces it by a general invertible function F (k)

Fr(h) =z, " + ZanFﬁf’k(w). (324)

n.k n

Here n = 2,3, ...;k = 1,2, ...kpa(n) and F!", denotes the
most general contravariant two-tensor in flat Minkowski
space which one can form out of n factors of 4 and which
does not contain terms with 7 as factor. The reason for this
restriction will be explained at the end of this section.

The coefficients have been denoted z,;, because the
redefinition 7 — F is just a generalized wave function
renormalization, the standard one being given by F(h) =
z1h leading to H = z7'H in the ST identity.

A remark is in order. That the nonlinear redefinition
F'".(h) is not a formal exercise, but indeed necessary in the
course of renormalization, has been shown explicitly, e.g.,
in (1.7) of [29]. It is also to be noted that at every order » in
the number of field % there are only finitely many free
parameters z,; to be prescribed by normalization condi-
tions (Sec. VIII D).

A. Tree approximation

On the level of the functional ' =T* this change
manifests itself in the form

[(h,c,H,L)=T%(h,2,H,L), (325)
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where l_“s(fz, ¢, H, f,) is the special solution of (40) with &,
¢, H, L replaced by

LUV v ( 4y a g vr-1(7],
= ), = [ HOE )
(326)
P — P 7P — ! 2
& =z, L —Z—Lp. (327)

Again inspired by the case of supersymmetry [30] (Sec. 5.
4, p. 68), we shall now show that the parameters z,,;, n > 2
are of gauge type, hence unphysical. At the same time this
represents a second way to find the general solution of the
ST identity. We start from an arbitrary invertible function M
and its BRST variation N,

MH(h) = a, h* + nzl;an,k(h---h)ﬂ . 8M=N, (328)

n

where n =2,3,... and k = 1, ..., ko (1) being the num-
ber of two-tensors which can be formed out of n factors &
without #,,. [ky.(n) is finite for every n.] Both are
composite hence we couple them to external fields M
and V. M will serve as defining a new, nonlinear gauge

1

[y =—
o ok

1
(D, M"b, +0,M"b,) — 5 / nb,b,, (329)

giving rise to the gauge condition

or 1

&= 9,MP — b 330
&b, xk ’ (330)

or 1 or
—=-0,———b". 331
b, koM, (331)

To this gauge fixing the ¢z term

1 o .

Ly = ~3 N*(0,¢, + 0,¢,) (332)

and the ST

ST 6T 6T ST oT T
S(F)=/<§%+b§—/\4w+i§> =0 (333)

are suitable. Gauge condition (330) and ST identity (333)
lead to the ghost equation of motion

(334)

which has the general solution

1 —
r— / <_§ W‘”bﬂ») +(h.c. KL M N, (335)

1
M’ = M= (9,b, +0,b,). (336)

N’ :N—%(aﬂéu +0,¢,), (337)

= Ah) + /(KO(h, ¢) + M'M(h) + N'N(h, c)
—L,(c*;c)). (338)

We now demand BRST invariance, i.e., (333), providing
the linearized transformation law

Brhv = O+, Brct = —xct,c*,

(339)

calculate the effect on (335) and find the conditions

BrO =0, (340)
B:M =N, (341)
BN =0, (342)
BiA = 0. (343)

The solution of (340) we know from the first part of this
section to be

SF1(h .
0 = QF o) — / ( )Qs(h, Niery  (344)

oh

F being given from (324) and z; = 1. Since By is nilpotent
on functionals 7 (A, ¢)

BI%T:O, (345)
(342) follows from (341) with
_ oM
N =B:M = | dxO(x) ———
: / *0(x) Sh(x)
SF (h(x)) . » SM(h)
= | axdyZ—2""" 0 (h, 346
[P e s 646)
N 1) N
=/|d h ——M(F~'(h))|; . 47
] 50, ) S MG gy (347)
Equation (343) is solved by
A =T (F(h)). (348)
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with IS being given by (2). Therefore the general solution of the ST identity (333) is given by

myv

mnv

C(h,c,K,L, M',N'") = [rcld“(iz) + / dxdyK (x)

+ / dxdyN (x)Qy(h, ¢)(y)

+ /(—KL,,C’@,{C” + M'M +N'N +n*b,b,).

In order to compare this general solution with the previous
one, we define a new gauge function by

M = M(F'(h)) (350)
with associated
T(h, e, K. L, M/, ')
= [miiiy + [ ark0, 6,00
+/M@N%mmwx>5meu
+ / <M’M’(i¢) L 9,0,y ] »
x / (L, deh). (351)
where
_ / de(x)%(Zgy””W (352)

This shows that the solution (349) corresponding to a
function F(h) and a gauge function M (k) is modulo the
canonical transformation 4 — i = F(h) and K — K(K, h)
equivalent to the solution corresponding to F (k) = h and
gauge function M = M(F~'(h)).

At this stage we are able to explain the restrictions on
F(h) mentioned at the beginning of this section. We want
the transition 4~ — F(h) to be a canonical transformation.
But then the one-particle states associated with the two
fields must be the same (up to a numerical factor). Then F
must start with z;#** and must not contain 7**h*,.

In [6,7] the conformal transformation properties of the
energy-momentum tensor (EMT) in massless ¢* theory
have been studied. In that context redefinitions of 4#¥ [8] as
here had to be understood because they governed the
renormalization of the EMT. There admitting an #** would
have mixed renormalization of the EMT as a whole with
that of its trace and was therefore forbidden altogether.
Hence here, too, one does not admit it at any power of 4.

8F ! (h(x))
Sh(y)

MP%mﬂ

Q,(h.c)(y)

5
Sh(y)

h=F(h)

(349)

[

It is worth mentioning that in the same reference the
BRST transformations of #*¥ and their algebra had been
derived in the form of local Ward identities for translations
in spacetime. Their explicit solution, i.e., representation on
h*, turned out to be unstable, namely just admitting the
transition A** — F*(h). So, that represents a welcome,
independent and explicit proof of the considerations here
on the general solution of the ST identity.

As a further interesting byproduct of this redefinition
question, we would like to mention that the transition from
W = g™ — " to the Goldberg variable 1" = \/=gg" —
n* implies changing one-particle states. This can be seen as
follows:

S99 = g+ (353)
Py (354)
= (g D ), (359)
g lqﬂbhﬁ 4 (1 (h*)? + 1 h"ﬁh(,/;>
2 8 4
= % he " + O(h?). (356)

The h-linear term proportional to ##¥ generates new one-
particle poles relative to the original /¥, as can be seen by
comparing the (hh) propagators in our approach with those
of [4,3]. They belong to the spin O part of the full field A**
and will eventually be eliminated from the physical
spectrum, but they have to be taken care of. Hand in hand
with this goes a change of the BRST transformation
from 8h* — ghH.

B. Gauge parameter independence for the general case

In the previous subsection we have seen that the field
h* can be replaced by a general, invertible function F of
itself, (324), and that the parameters z,,n = 2,3...;
k=1,2,... ky(n) are gauge type parameters. Like
for ap we would like to show that the dependence of
the Green’s functions from these parameters can be
controlled by a suitable change of the ST identity [see
(58) and (59)]. Hence we introduce anticommuting
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parameters y,; which form together with z,, doublets
(Zni» xni) under BRST transformations

n=23 .. k=12, .. kux(n),

(357)

BZnk = Xnk>

Sxak = 0.
They contribute to the ST identity

S(F) +){nkaznkr == O’ SZ =857 +)(nk8anZ =0.

(358)

If we succeed in proving these generalized ST identities
we know that the parameters z,, generate unphysical
insertions. We just differentiate (358) by y,, and obtain

9, 2Z=-80, 7= iS[A@k)Z](J’ K,L),

Znk

(359)

where A~ is an insertion of dimension 4 and ¢z charge
—1, generated by J, . Whereas for the doublet (a. ) we
had to enlarge the gauge fixing, we can proceed here more
directly because the parameters z,,, show up only in the
redefinition of 4. It is readily seen that one has to change
only T into

C(h,c.H, L, Zyg Ju)

:]:‘S(}Al,é,ﬁ],l:)+ E ank[/KquﬁZJf’"nk{/LuC””

nk
(360)
with
~ A 19 —1/7
h = F(h,zu), H = a7 HF (s 2ic) lh—p(h )
(361)
&= y(zuw) ) (362)
¢ =Y(Zu)c, = )
¢ Y(Znk)
h 9 h
Gnk( 7an) = _3an}— ( vznk)|ft=f(h,z,,k)’
1 0
o =—————(z, 363
Tk y<znk) 8any<z k) ( )

and y(z,;) is a general function of its arguments. From the
preceding subsection we know that for y,, = O this is the
general solution of the ST identity. For y,; # 0 one has to
go through (358) to convince oneself that this is the case.
The parameters z,,;, y(z,;) Will be fixed by normalization
conditions. We choose the following:

The normalization condition (82) fixes y(z,x) =1,
hence r(z,;) =0 (note: n >2). In order to fix z,;, one
has to look in the general solution of the ST identity at the

term [ H,,8F" = [Y zuH,8(h...h)"*, where 3
denotes the standard BRST transformation of /4, and to
project such that e.g.,

apFHcP(h. . h) lp=0 = Zuk- (364)
——

n

Here P denotes a suitable projector. We do not work out the
details of its definition.

C. Gauge parameter independence in higher orders

The aim is now to prove (59) and (358) to all orders of
perturbation theory. Taken together

S0)+ (200, + Ekjo(a))r _o,

SZ + (;(a{,o + Z(;(nkazl,k)>z =0. (365)
n.k

We start from
I*(h,c,c,b,K,L) = I_“(h,c, ¢, K, L)

1
- ﬂ/ dxdyh””(X)(a,,b,, + 8I/bﬂ)(y)

(B0 !
— 4+ m -
4z (x—y)?
1

—2ao/b#by71*”’.

D(h,c.e, K, L) = T2 ()

inv

1
B E/ dxdy Q™ (x) (8;451/ + avaﬂ)(y)

Al )l

+ /(Kﬂst”’“(h, c) —KL#CﬂaAC”)

[ = v
- Z)((Cﬂbu + Cubﬂ)rlﬂ )

(366)

(367)

The b-dependent terms can be trivially regained from the
gauge condition

ort ’ E 5 1
g = [ @0 h”ﬂ(y){<4n2+m ) (x—y)z}

1

- a()bp _5)(5,;,

(368)

whereas the ghost equation of motion reads
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s 2,5 o) o)

1
= b (369)

2

The general solution has been obtained on the classical
level, (360), as

f(h, C, H, L, an’}(nk)
=T¥(h,e,H.L)

+ Z:jfk [ / K Gl + Tk [ / L,lc"H (370)

with hatted fields given in (361). Due to the presence of the
parameter doublets the ST identity has the form

S(r) = B(I) (371)
or o or ol or or
:/[@EJri%} * Daq nz,;x”"‘ank:o
(372)

The nonlinear operator 5(7) and the linear operator

_=/[ﬁ£ o0 [ors Qi}
") |6HSh 6S6hSH SLéc S¢Sl
+;(aia0 + %;xn,k % (373)
satisfy the identities
B,B(y) =0 Vy, (374)
B,B, =0 if B(y)=0. (375)

Since the classical action satisfies the ST identity, we have
for the tree approximation from (375)

b> =0 forb=DB; (376)
i.e., b is nilpotent.
The action principle tells now that
ST =[A]Z-T = A+ 0(hA), (377)

where A is an insertion with UV = IR degree = 5 and
Q4. = 1, and we have on the right-hand side separated the
trivial diagram contribution (tree diagrams) from higher
orders (loop diagrams). If we do not admit counterterms
depending on &, which is possible since the b equation of
motion can be integrated trivially, we can discard in the
following the contribution of the doublet (, y) and have to

discuss only the doublets (z,, x,«). Equation (376) leads
then to the consistency condition

bA =0, (378)

which is a classical equation. Furthermore gauge condition
(368) and ghost equation of motion (369) imply that the
local functional A only depends on the fields &, ¢, H, L.
The general solution of (378) is given by
A = BA + rA(h, ), (379)
where A is an integrated local insertion (functional of £, c,
H, L) with UV =IR dimension 4 and Q,, =0. A
represents an anomaly, i.e., has the same properties as
A, but is not a b variation. For z,; = 0 we know already
(cf. Sec. III C) that the decomposition in (379) is valid and
no A(h, ¢) exists. For z,, # 0 no A can be generated either,
but we have to show that the remaining terms form a b
variation.

This part of the proof relies only on the doublet structure
of (2, xnr) and can therefore be taken over literally from
[14] [Appendix D, formulas (D.18)—(D.32)], with the
result, that the cohomology is trivial and thus (379) verified
with A = 0.

In the context of BRST-invariant differential operators
we shall need a corresponding analysis for insertions with
the quantum numbers of the action, ie., UV =IR
dimension =4 and Q,4, = 0. The field dependent part
was treated above in Sec. Il E, where we constructed the
general solution of the ST identity. {2 turned out to be the
only obstruction to the cohomology, whereas all external
field-dependent terms are b variations. The gauge param-
eter dependence is also covered in [14] (Appendix D) with
the result that the terms of ¥ can only have gauge-
parameter-independent coefficients, whereas the external
field-dependent terms are multiplied with functions of
those such that the products are variations under the general
gauge-parameter-dependent terms. For later use we list
them here. A basis of dimension-4, ¢z charge-0 b-invariant
insertions is provided by

Fipy = / V—=g(co+ ciR*R,, + c2R* + ¢3R) (h, 2,).

(380)

b Ho i) = 8| diGz) [ | s)

Ank(h7 ¢, H, ana)(nk) =b |:dnk(zn,k) / H/w(\h' . _h/)ﬂl/:| s
nk

(382)
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Ay(hc.L) = B{ec/Lﬂc"} (383)

Recall that counterterms must not depend on «, we work in
Landau gauge, ay = 0, hence there is also no y present.

These b-invariant insertions are in one-to-one correspon-
dence to b-symmetric differential operators

COaCOF = / \/—_gC(), (384)

Claclrz /\/—gCIlele, (385)

cr0c, I = / /—gc,R?, (386)

c30c; = / \/—gcsk R, (387)

[di ()N + BN} IT = A1 (388)

[dn.kaz,,,k + b(dn.k)a)(n.k}r = _An,k + O(hn+1)’ (389)
[e.N, + b(e )N = —A,. (390)

Here we have defined combinations of counting operators

NhFE {Nh_NK_NZ‘_Nb—i_ZaOaaO+2/Y6)(]F’

(391)
for the fields:
(392)
NOr = -0
, I'= [ Kh— C%F — 2a08)(1“, (393)
NCF = [NL _NL]F’

E—/ch”

and went back from the variable H,, in (380) to the

variables K, c.

(394)

N (395)

D. Normalization conditions III

The normalization conditions (204)—(208) have to be
supplemented by those introducing z,; and read now

0
8—])2%@‘,,;0 = 3672, (396)
o 0
@ =-2¢, (397)

ap? op? T

a 0 (o

aipzaipzyTT‘pZ;_lyz = 2(3C2 + Cl), (398)
Fh;w = Co = 0, (399)
O = k(S + oSl — ), (400
8—19(; ](/wcﬂ‘lﬂ;?ﬂ - _IK(’/I P +1n%0 —1n /))’ ( )
aPFKcP(h...]’Z)| 22 = Znko (401)

N——— s=1

9 .

——T 2o = —ik(8oie — Fine). (402)

opt Leere "

Imposing the b equation of motion (36) still fixes a and the
b amplitude, whereas (204) again fixes the 4 amplitude. P
projects to the kth independent term in ), ,(h...h)".

n

IX. DISCUSSION AND CONCLUSIONS

In the present paper we propose the perturbative
quantization of classical Einstein-Hilbert gravity. The
version which we discuss has as background ordinary
Minkowski space on which the respective theory deals
with a massless spin two field with interactions provided
by classical EH. The problem of power counting non-
renormalizability is overcome in two steps. First we
introduce the higher derivative terms R?, R'R,, which
make the model power counting renormalizable, create
however negative norm states, hence can only be consid-
ered as a Pauli-Villars regularization. Then there are
two spin two fields in the model, their combined propa-
gator yielding dynamic dimension O to the combined field
h. In a second step we perform momentum space sub-
tractions according to the Bogoliubov-Parasiuk-Hepp-
Zimmermann-Lowenstein scheme, treating the R term
as an oversubtracted normal product with subtraction
degrees d = r = 4. This takes correctly into account the
vanishing naive dimension of the combined field A.

Since this model is closed under renormalization, we have
at our disposal the full machinery of the BPHZL scheme, in
particular the action principle, which admits the systematic
construction and proof of the Slavnov-Taylor identity, i.e.,
formal (pseudo)unitarity, and parametric partial differential
equations. Those are the Lowenstein-Zimmermann equation,
which says that Green’s functions are independent of the
auxiliary mass term M which belongs to the scheme. Further
there are the renormalization group and Callan-Symanzik
equation. These control completeness of the parametrization
and scaling, respectively.

The final step of establishing a quantized EH theory
cannot be taken since the regulators cannot be eliminated in
a controlled way. The model has to stay as such, which
suggests that the higher derivative terms in the action
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constitute an essential part of the theory, for which traces of
the Einstein-Hilbert action have to be extracted. However
physical states for the EH theory can be constructed,
according to the standard quartet mechanism of [3]:
projecting out states with negative norm and then forming
equivalence classes of states with vanishing norm. The full
S-matrix, which is derived from ST, is thus restricted to EH
theory, but its unitarity is questionable. Even if the latter
would hold, the dependence on the parameters ¢; and c,
presumably prevails nevertheless.

Next we mention a few items in which the present paper
differs from previous attempts to solve the quantization
problem. First of all we do not rely on an invariant
regularization, i.e., the regularization employed in dimen-
sional renormalization, which, it seems, has been used
exclusively in the past. The BPHZL renormalization
scheme requires that power counting is such that conver-
gence results, e.g., for Green’s functions. This we provide
here. Then the study of anomalies is constructively pos-
sible. We can thus safely use results obtained in the past in
many papers by purely algebraic reasoning (cf. [13,31]).
Those can now be completed with a power counting based,
“analytic” treatment. This refers not only to anomaly
discussions, but also to the so-called Batalin-Vilkovisky
formalism (in quantum field theory). The latter has been
invoked for quantum gravity, specifically also for EH, in
[32]. Although therein many innovative concepts have been
introduced, the construction suffers from the lack of
renormalizability. In the presumably simplest context we
present a solution for this, which is lacking a proof of
unitarity though. The hope then is that this example is
fruitful in that wider range. For instance, when invoking the
principle of generalized covariance (cf. [33]) one always
relates two systems of manifold plus metric. One of them
could then just be ours with Minkowski space plus metric,
and fluctuations around it.

Another aspect concerns the field variable A**. In the
literature most commonly used is the Goldberg variable
W =\/=gg" —n", whereas we use h" =g —n'".
These variables are not equivalent (in the sense of point
transformations), but differ by unphysical degrees of free-
dom. Our variable has the advantage that two-point
functions (1PI and propagator) have fewer components
in the spin expansion to be dealt with.

Let us also recall that our way of proceeding forced us to
treat the fundamental field 4 as a field of vanishing
canonical dimension. It is then mandatory to discuss
nonlinear field redefinitions. They are quite analogous to
those which one has to face in a power counting non-
renormalizable formulation, but can here be handled in a
completely controlled manner like in supersymmetric
Yang-Mills theories when supersymmetry is linearly
realized.

In the context of the CS equation and in view of the RG
equation one comes in the vicinity of the concept of

“asymptotic safety” [34], where one deals directly with
the infinite dimensional space of interactions with
arbitrarily high dimension which we (by purpose)
avoided. It would be interesting to see where our proposal
is to be detected there. Similarly one could repeat the
analysis of [35] under the present auspices. There one
worked in Euclidean space and with the full, nonuni-
tary model.

By its very nature, our approach differs from the treat-
ment as effective theory [36], where one tries to find
quantum effects of gravity without constructing a funda-
mental quantized model of it—as one can formulate a
model of mesons and hadrons without recurrence to QCD
with its unsolved problem of confinement.

Extension of the present work to include matter seems to
be most straightforward for scalar fields. Then one could
contribute to the study of observables [37] and spontaneous
scale symmetry breaking [38], having at one’s disposal a
power-counting renormalizable model. Adding vector
fields of matter would also not require serious changes.
Once fermions are introduced one should employ the
vierbein formalism. In that context it should be particularly
rewarding that one can now safely discuss chiral anomalies
which are otherwise not easily handled. Also supergravity
theories would deserve new interest.

Some new ideas or methods seem to be required, if one
wants to go over to curved background. In particular
normalization conditions and asymptotic limits pose prob-
lems which in the present, flat background case are absent.
A recent study on the formulation of perturbative gravity in
the presence of a cosmological constant [39] tackles the
challenge of developing new tools and uses a prescription
to treat new degrees of freedom, which is described in [40].
Another candidate as far as methods are concerned is
provided by the fairly recent work of one of the present
authors (S.P.) [41]. There the BPHZ scheme has been
extended to analytic (curved) spacetimes; i.e., propagators,
power counting, and the like are those of curved spacetime.
Massive and massless models can be treated on an equal
footing. For a graviton field details would have to be
worked out. The problem of normalization conditions
seems to be linked to asymptotic properties of the space-
time manifold which, regarding physics, is absolutely
plausible. This could be an interesting area of future
research.
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APPENDIX A: NOTATION AND CONVENTIONS
1. Geometry

In this work, we employed the conventions below, which
are the “timelike conventions” of Landau-Lifschitz (cf. [42]):

flat metric: n* = diag(+1,-1,-1,-1),

, 1
Christoffel: T7,, = 2.6 (0,9p + 0ugpw = Do),

Riemann: R*,,, = 0,I, — 0,1, + T4 s, =4 T

vp vp»

Ricci: R, = 8,1, — 0,I%, + I, — IIY

vp»

curvature scalar: R = ¢"R,,.

2. Projection operators

In order to cope with the spin properties of the field 2+ it
is useful to introduce projection operators. They are known
at least since [43] and we shall use a notation due to [44].
Based on the transverse and longitudinal projectors for
vectors

_ PuDy _ PuPv
0 v =NMw — s o, = (Al)
H 7 » i P’
the projectors are defined as
2 1 1
P’(I"lzyp/m' = E (eﬂpaba + 6/40'61//)) - g 9/4119/)6’ (A2)
1
1
P<SS>WU =3 (@05 + 0,50, + 0,005 + 0,,0,,), (A3)
1
0
PO, = 3 (0050). (A4)
0
P%Wpa = W, Wpgs (A5)
P = =0 (A6)
pep V3
1
P =—w,0 (A7)

WTuvpo \/§ Y po-

They satisfy the closure relation

1

2 1 0 0

(P74 PSS+ PR+ P = 5 (gt + Mualy):
(A8)

3. Tables

We list dimensions d, ¢r charge Q,, of (functions of)
fields and parameters in the theory. For propagating and
external fields we have

Op. 0 +1 -1
Functions of (external) fields have

oo 1, M e
d 0 0 3 0 1 4 3
Oy O 0 —1 0 -1 0 —1

The parameters follow:

K 20 X Znk  Xnk
d -1 0 0 0 0

Qpe 0 0 -1 0 -1

APPENDIX B: 3, INVARIANCE

In Sec. VB we need the fact that T'I¥(m?) is invariant
under the Abelian BRST transformation

Boh = —k(OMc¥ + 0 ct). (B1)
We check this for
Finv — h (’) P(") ]’l (Bz)
hh YrrLtkL |1
rKL

the projectors understood as expression in terms of differ-
ential operators which (as seen from Fourier transform)
admits integration by parts. For r = 2, 0 it is readily derived
that the variation vanishes due to the transversality of the
projectors. Hence the respective y’s are not restricted. For
the other components we find

§0 / h(YéIS)PgIS))h = _4/7/(SIS) (eb/)aacy + gyﬁa/)cb)hpgv

(83)
3, / Iy P )h = =4 / Y Oici@, hY, (B4)
2
0) 0 0) 1w
o [ R = = [ e, <o, (B9
2
0 0 0 ne
s [ WP == [ k30, (B6)

Cancellation between different spin components cannot
take place, hence these yg vanish. But this situation is
precisely realized in the tree approximation. Let us remark
that for the Goldberg variable h* = ¢*¥ — ¥ and its
respective 8 variation an analogous result can be derived.
However a relation between the 7T components r = 2, 0
will be only established by the 8; variation which is
nonlinear.
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APPENDIX C: PARTIAL FRACTIONS

In Landau gauge the free propagators have only two
nonvanishing spin components,

—i 1

(hh)$ 3

pP—m 'clpz—cyc_z’
i 1
. . Cl1
p*—m* (3cy+cp)p* +Eesk? (€

0

—
=

(hh)

—
—

Their decomposition into partial fractions reads

<hh>(TzT): -21 22 l 2 -2 _2l G\
c3k>—cym® p*—m* ¢k (pT - Cl;(z)
i
pole: p? = m?, res|,2_g = ——=5,
C3K
C3 —I
pole: p? = —=, res = —, (C2)
ciK C3K

-1 2i
w9 — )
(ke c3k 2 =23cy + ¢)m* p*—m?
N 1 2i
o 2
KT Pt g T
—Dix?
pole: p? = m?, res|,2_o = K ,
C3
) . 2
3K 2ix
ole: p2=——" | res = —. C3
P p 2(36’2 + C]) C3 ( )

In the spin two parts the massless pole has positive residue,
the massive pole instead has negative residue. Hence the
first is physical, the second is not. In the spin zero
contribution the situation is reversed. When projecting to
the massless contributions in the asymptotic limit this spin
zero part belongs to the negative metric contribution and
has to be canceled in the quartet mechanism.
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