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In a perturbative approach Einstein-Hilbert gravity is quantized about a flat background. In order to
render the model power counting renormalizable, higher order curvature terms are added to the action.
They serve as Pauli-Villars type regulators and require an expansion in the number of fields in addition to
the standard expansion in the number of loops. Renormalization is then performed within the Bogoliubov-
Parasiuk-Hepp-Zimmermann-Lowenstein scheme, which provides the action principle to construct the
Slavnov-Taylor identity and invariant differential operators. The final physical state space of the Einstein-
Hilbert theory is realized via the quartet mechanism of Kugo and Ojima. Renormalization group and
Callan-Symanzik’s equation are derived for Green’s functions and, formally, also for the S-matrix.
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I. INTRODUCTION

In the perturbative construction of Einstein-Hilbert (EH)
gravity on four-dimensional spacetime one splits the metric
gμν into a background ĝμν and oscillations hμν around it
which are quantized. Back in the 1970s quite a few attempts
were undertaken to formulate such models of quantized
gravity. Most influential were the pioneering papers of
’t Hooft and Veltman [1], in which explicit calculations
showed that in higher than one-loop order the theory
becomes intractable due to power counting nonrenormaliz-
ability. Many more papers dealt with the problem without
surmounting these difficulties (see e.g., [2]). Out of these
early papers we concentrate on two in which important
progress had been achieved and which were very helpful
for our own understanding.
Kugo and Ojima [3] provided a quantized model of EH

general relativity. In order to deal with the indefinite
metric problem which results after having replaced diffeo-
morphism invariance by an appropriate Becchi-Rouet-
Stora-Tyutin (BRST) invariance, they use their quartet
mechanism. Hence they realize unitarity. They base their
reasoning, remarkably enough, on a general solution of

the Slavnov-Taylor identity (ST) associated with the
BRST transformation without restriction by power count-
ing. This is, of course, motivated by the fact that the model
is power counting nonrenormalizable, hence quite rea-
sonable. The renormalization problem is left open.
Stelle [4] presented a complementary approach to quan-

tize classical relativity: he added the square of the Ricci
tensor and the square of the curvature scalar to the EH action.
This model is power counting renormalizable, but it is not
unitary. Looking at the propagator which has a falloff like
1=ðp2Þ2 for large p it is obvious that the lack of unitarity has
nothing to do with the gauge dependence of the model, but
originates from the invariantswhich contain four derivatives
of the metric.
Calculations to be presented below show that the gauge

fixing of [3] can also be used in the context, where the
square of the Ricci tensor and the square of the scalar
curvature are present in the action. Hence one has the
quartet mechanism at one’s disposal. Since the higher
derivative terms render the model power counting renor-
malizable, we could be led to interpret the regularizing
effect as Pauli-Villars type, which can be removed after
renormalization with a suitable scheme [5]. This turns out
to be wrong. We rather arrive at the conclusion that the
higher derivatives are tied fundamentally to the EH theory.
Their seemingly disastrous effect of causing negative
metric in state space can be overcome by a suitable
Lehmann-Symanzik-Zimmermann projection. The
dependence of the resulting theory from the additional
two coupling parameters however remains. Since this
enlarged model is power counting renormalizable, but
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depends crucially on a field of canonical dimension zero,
it contains infinitely many parameters, which are asso-
ciated with the redefinition of this field as a function of
itself. These generalized field amplitudes are, fortunately,
of gauge parameter type, and hence do not contribute to
physical quantities.
Before going into details of the realization of the model

we would like to present the argument why we are
convinced that the higher derivatives are necessary ingre-
dients for the definition of EH in quantum field theory.
Suppose we would like to gauge the translations in a

matter model, say a massless scalar field of canonical
dimension one, with the usual Noether procedure, then one
lets the parameter aμ of the translations depend on x and
couples the respective conserved current, the energy-
momentum-tensor Tμν (EMT), to an external tensor field
hμν. This entails the field hwith transformations dictated by
the local translations. These turn out to be just the general
coordinate transformations known from general relativity
(GR). If then the field h becomes a dynamical field with its
own invariant kinetic term, this kinetic term has to involve
four derivatives, if one wants to keep power counting
renormalizability: after all the EMT has canonical dimen-
sion four, i.e., the field h must have dynamical dimension
zero. The metric gμν which arises also in the course of the
Noether procedure is given by gμν ¼ ημν þ hμν—without
any parameter carrying dimension. This is quite reasonable
in QFT. In classical GR the metric may depend on
parameters which have mass dimension, but that is the
engineering dimension and not the dynamical one which it
has to be in quantum field theory, where the dimensions are
dictated by the kinetic terms. (The details of this derivation
can be found in [6–8]. However many other authors have
considered gauging translations, concluding that the result-
ing gauge theory is a gravitational theory with higher
derivatives, e.g., [9] and citations therein.)
We therefor continue with quantization, renormalization,

and analysis of the implications.
We choose the Bogoliubov-Parasiuk-Hepp-Zimmermann-

Lowenstein (BPHZL) renormalization scheme [10,11] for our
purposes. The auxiliary mass which is required in this
scheme, is put in by hand, but it serves very well to construct
finite Green’s functions since the higher derivatives rendered
the model power counting renormalizable. The main gain of
this version to deal with the UV infinities is that one has an
action principle [12] at one’s disposal which one would not
have in the power counting nonrenormalizable EH model.
The hurdle that this scheme is not BRST invariant can be
overcome by cohomology results existing in the literature
since the 1980s (see [13]). They become now powerful tools
because—supplemented by power counting—they exist also
analytically.
Even in this rather modest approach of quantizing

gravity, namely perturbation theory and flat background,
one encounters quite a few difficulties: the interaction is

nonpolynomial and the main field to start with has
canonical dimension zero, hence in a perturbative approach
one has an expansion in the number of loops and in the
number of fields—a situation familiar from supersymmet-
ric gauge theories [14]. The presence of a field with
vanishing canonical dimension, which goes hand in hand
with propagators falling off as 1=ðp2Þ2 for large p, points to
possible infrared problems already off-shell. Those will be
controlled by infrared power counting which is a built-in
instrument of the scheme.
The paper is structured according to the use of the

fundamental field hμν. In Secs. II–VII we take h at face
value and formulate in terms of it the standard invariants of
general relativity related to R;R2; RμνRμν—expanded in
terms of h. We call this the “special solution” (of diffeo-
morphism invariance). In the tree approximation we set up
the model, construct propagators, the ST identity, prove
unitarity of the S-matrix, make explicit the parameters of the
model and look at gauge parameter independence. In Sec. III
we start the renormalization by introducing an auxiliary
mass required in the BPHZL scheme which we use. Central
is then power counting: in the ultraviolet (UV) and infrared
(IR) region of momentum space integrations, and conver-
gence. It guarantees the existence of normal product inser-
tions and thus of Green’s functions: one-particle-irreducible
(1PI) or vertex functions, connected and general ones. We
then establish the ST to all orders of perturbation theory.
Thereby formal unitarity of the S-matrix is established.
Sections IV–VI are devoted to the derivation and use of
symmetric differential operators which yield parametric
differential equations: the Lowenstein-Zimmermann (LZ)
equation which shows that Green’s functions are ultimately
independent of the auxiliary mass; the renormalization group
(RG) equation which governs the change of the normaliza-
tion parameter; the Callan-Symanzik (CS) equation which
yields the scaling properties of Green’s functions. In Sec. VII
we project down to the EH theory. In Sec. VIII we study the
“general” solution, i.e., we replace the original field h by an
arbitrary function of itself hμν → F μνðhÞ. This is possible
due to the vanishing canonical dimension of h and this space
of functions F is swept out in the course of renormalization,
hence the study is necessary. Section IX is devoted to
discussions and conclusions.

II. TREE APPROXIMATION

For a decent perturbative treatment it is mandatory to set
up the first orders carefully. In the present context this refers
to the zero-loop order and the first and second order in the
number of fields.

A. The model and its invariances

As explained in the Introduction, we base our study of
EH in the more general context of permitting invariants
under diffeomorphisms up to fourth order in the derivatives.
Restricting ourselves to spacetimes which are topologically

STEFFEN POTTEL and KLAUS SIBOLD PHYS. REV. D 104, 086012 (2021)

086012-2



equivalent to flat ones we may use the Gauß-Bonnet
theorem and express the square of the Riemann tensor
in terms of the Ricci tensor and the curvature scalar

Z ffiffiffiffiffiffi
−g

p
RμνρσRμνρσ ¼

Z ffiffiffiffiffiffi
−g

p ð4RμνRμν − R2Þ: ð1Þ

Together with the cosmological constant a basis of invar-
iants is then provided by the terms in the following action:

Γclass
inv ¼

Z
d4x

ffiffiffiffiffiffi
−g

p ðc0κ−4 þ c3κ−2Rþ c2R2 þ c1RμνRμνÞ:

ð2Þ

Here κ denotes the gravitational constant. The invariance
under general coordinate transformations is to be translated
into Becchi-Rouet-Stora-Tyutin invariance with respective
gauge fixing. The field hμν is defined via

hμν ¼ gμν − ημν: ð3Þ

The propagators of h [Eqs (17)–(19)] will tell us that h has
canonical dimension 0, hence κ must not show up in its
definition.
The classical action

Γclass ¼ Γclass
inv þ Γgf þ Γϕπ þ Γe:f:; ð4Þ

Γgf ¼ −
1

2κ

Z
gμνð∂μbν þ ∂νbμÞ −

1

2
α0

Z
ημνbμbν; ð5Þ

Γϕπ ¼ −
1

2

Z
ðDμν

ρ cρÞð∂μc̄ν þ ∂νc̄μÞ; ð6Þ

Dμν
ρ ≡ −gμλδνρ∂λ − gνλδμρ∂λ þ ∂ρgμν; ð7Þ

Γe:f: ¼
Z

ðKμνshμν þ LρscρÞ ð8Þ

is invariant under the BRST transformation

sgμν ¼ κDμν
ρ cρscρ ¼ −κcλ∂λcρ; ð9Þ

sc̄ρ ¼ bρ; sbρ ¼ 0; ð10Þ

s0hμν ¼ −κð∂μcν þ ∂νcμÞ; ð11Þ

s1hμν ¼ −κð∂λcμhλν þ ∂λcνhλμ − cλ∂λhμνÞ: ð12Þ

In accordance with the expansion in the number of fields we
have introduced the transformations s0, s1 which maintain
the number, respectively, raise it by one. Kμν; Lρ are external
fields to be used for generating insertions of nonlinear field
transformations. The Lagrange multiplier bμ couples to ∂λhμλ

and thus fixes eventually these derivatives (deDonder like

gauge fixing). Since the terms R2; RμνRμν contain however
four derivatives one might be tempted to fix also the higher
derivatives in a corresponding manner, or only those. It turns
out that this is superfluous or even contradictory when using a
Lagrangemultiplier field b, so we stick to (5), (6) which is the
gauge fixing chosen in [3].

B. Propagators

The definition of the propagators as inverse of vertex
functions requires the knowledge of first and second orders
in the number of fields of (4). Since the cosmological term
contributes at first order in the field h we suppress it here in
the tree approximation by putting c0 ¼ 0 and in higher
orders by a normalization condition. (A classical argument
for this demand is that flat space should be a solution to the
h-field equations.) In Fourier space one arrives at

Γhμνhρσ ¼
1

4

X
KLr

γðrÞKLðPðrÞ
KLÞμνρσ; ð13Þ

Γbρhμν ¼ −
i
κ

�
1

2
ðθρμpν þ θρνpμÞ þ ωμνpρ

�
; ð14Þ

Γbρbσ ¼ −α0ηρσ; ð15Þ

Γcρc̄σ ¼ −ip2

�
θρσξðp2Þ þ ωρσ

1

2
ηðp2Þ

�
: ð16Þ

For theh-bilinear termswe introducedprojectionoperatorsP
(see the Appendix A) and general coefficient functions γ. It
will turn out that the propagators can be uniquely determined
for general scalar functions γðp2Þwith the projectors taking
care of the spin structure inherent in the terms of (2). In tree
approximation the values for γ are given by

γð2ÞTT ¼ −p2ðc1p2 − c3κ−2Þ; ð17Þ

γð0ÞTT ¼ p2

�
ð3c2 þ c1Þp2 þ 1

2
c3κ−2

�
; ð18Þ

γð1ÞSS ¼ γð0ÞWW ¼ γð0ÞTW ¼ γð0ÞWT ¼ 0: ð19Þ

The coefficients of Γbh and Γbb will turn out to be fixed,
whereas those of Γcc̄ again can be very general with tree
values ξ ¼ η ¼ 1.
The inversion equations to obtain the propagators read

for the bosonic fields

ΓhμνhαβG
hαβhρσ þ ΓhμνbλG

bλhρσ ¼ i
2
ðημρηνσ þ ημ

σην
ρÞ; ð20Þ

ΓhhGhb þ ΓhbGbb ¼ 0; ð21Þ

ΓbhGhh þ ΓbbGbh ¼ 0; ð22Þ
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ΓbρhαβG
hαβbσ þ ΓbρbλG

bλbσ ¼ −iηρσ: ð23Þ

For the ghosts they have the form

Γcρc̄λG
cλ c̄σ ¼ iηρσ: ð24Þ

For the hhhi propagators we introduce like for the
2-point-vertex functions an expansion in terms of pro-
jection operators

Ghh
μνρσ ¼ 4

X
KLr

hhhiðrÞKLðPðrÞ
KLÞμνρσ: ð25Þ

In order to solve the inversion equations we introduce

Gbh
ρμν ¼

κ

p2
ððpμθνρ þ pνθμρÞb1 þ pρωμνb2 þ pρθμνb3Þ;

ð26Þ

Ghb ¼ Gbh: ð27Þ

Here b1, b2, and b3 are arbitrary scalar functions such that
this is the most general expression compatible with
Lorentz invariance and naive dimensions.
The gauge parameter independent solutions hhhiðrÞKL turn

out to be

hhhið2ÞTT ¼ i

γð2ÞTT

; hhhið0ÞTT ¼ i

γð0ÞTT

; ð28Þ

whereas the “gauge parameter multiplet” is given by

hhhið1ÞSS ¼ 4iα0κ2

p2
; hhhið0ÞWW ¼ 4iα0κ2

p2
; ð29Þ

hhhið0ÞTW ¼ hhhið0ÞWT ¼ 0: ð30Þ

It is important to observe that the gauge parameter indepen-
dent part is determined by the coefficient functions γ, which
depend on the model, i.e., by the invariants and—as will be
seen later—by higher orders, whereas the gauge multiplet is
essentially fixed and only determined by the specific gauge
fixing. The remaining bosonic propagators read

hbρhμνi ¼
κ

p2
ððpμθνρ þ pνθμρÞb1 þ pρωμνb2 þ pρθμνb3Þ

ð31Þ

and

hbρbσi ¼ 0: ð32Þ

In the tree approximation b1 ¼ b2 ¼ 1 and b3 ¼ 0. The
antighost/ghost propagator has the general form

hc̄ρcσi ¼
−i
p2

�
θρσ
ξðp2Þ þ

1

2

ωρσ

ηðp2Þ
�
: ð33Þ

The tree approximation values are ξ ¼ η ¼ 1, such that

hc̄ρcσi ¼ −i
�
θρσ þ

1

2
ωρσ

�
1

p2
: ð34Þ

We note that hbbi ¼ 0, in accordancewith the field bρ to be a
Lagrange multiplier.
Another general remark is in order. In the Landau gauge

α0 ¼ 0 the two-point functions hhhi fall off for large jpj
like jpj−4, hence one has to associate to the field h the
canonical dimension zero. This implies that field mono-
mials ∂μh � � � h always have canonical dimension jμj ¼
degree of the multiderivative ∂μ, independent of the number
of fields h in the monomial.

C. The Slavnov-Taylor identity in tree approximation

Since the s variations of h, c are nonlinear in the fields,
they are best implemented in higher orders via coupling to
external fields [cf. (4)], hence the ST identity then reads

SðΓÞ≡
Z �

δΓ
δK

δΓ
δh

þ δΓ
δL

δΓ
δc

þ b
δΓ
δc̄

�
¼ 0: ð35Þ

Since the b equation of motion

δΓ
δbρ

¼ κ−1∂μhμρ − α0bρ ð36Þ

is linear in the quantized field b, it can be integrated
trivially to the original gauge fixing term. Thus it turns out
to be useful to introduce a functional Γ̄ which no longer
depends on the b field:

Γ ¼ Γgf þ Γ̄: ð37Þ

One finds

κ−1∂λ
δΓ̄
δKμλ

þ δΓ̄
δc̄μ

¼ 0 ð38Þ

as restriction. Hence Γ̄ depends on c̄ only via

Hμν ¼ Kμν −
1

2κ
ð∂μc̄ν þ ∂νc̄μÞ ð39Þ

and the ST identity takes the form

SðΓÞ ¼ 1

2
BΓ̄Γ̄ ¼ 0; ð40Þ

BΓ̄ ≡
Z �

δΓ̄
δH

δ

δh
þ δΓ̄

δh
δ

δH
þ δΓ̄
δL

δ

δc
þ δΓ̄

δc
δ

δL

�
: ð41Þ

This form shows that BΓ̄ can be interpreted as a variation
and thus (40) expresses an invariance for Γ̄.
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D. Unitarity in the tree approximation

The S operator can be defined [15] via

S≕Σ∶ZðJÞjJ¼0; ð42Þ

Σ≡ exp

�Z
dxdyΦinðxÞKðx − yÞz−1 δ

δJðyÞ
�
; ð43Þ

where J denotes the sources Jμν; j
ρ
c̄; j

ρ
c; j

ρ
b for the fields

hμν; c̄ρ; cρ; bρ, respectively, and their in-field versions are
collected in Φin. Kðx − yÞz−1 refers to all in-fields and
stands for the higher derivative wave operator, and hence
removes the complete (tree approximation) propagator
matrix. Σ would then map onto the respective large
Fock space of the higher derivative model. As mentioned
already the dynamical degrees of freedom which originate
from the higher derivatives are definitely unphysical;
therefore, they have to be removed before we consider
the S-matrix for the Einstein-Hilbert theory. Here in the tree
approximation this is trivial because all Green’s functions
are well defined. So we put simply c1 ¼ c2 ¼ 0. With this
the massive poles are absent, the wave operator is the one of
Einstein-Hilbert and we study just those unphysical degrees
of freedom which go along with that model. These differ
slightly from those studied by [3] because we employ a
different field h, but the general structure is the same
[cf. (353)]. Here we follow [16] and would like to show that
the S-matrix commutes with the BRST charge Q by
establishing the equations

½S; ∶Σ∶�ZjJ¼0 ¼ −½Q; ∶Σ∶�ZjJ¼0 ¼ ½Q; S� ¼ 0; ð44Þ
where

S≡
Z �

Jμν
δ

Kμν
− jρc

δ

δLρ − jρc̄
δ

δjρb

�
with SZ ¼ 0: ð45Þ

The left-hand side of (44) is a commutator in the space of
functionals, i.e., of S, the ST operator, with the S-matrix

defined on the functional level via Z, the generating
functional for general Green’s functions. Now

½S; ∶Σ∶�ZjJ¼0 ¼ 0 ð46Þ

since the first term of the commutator vanishes because
S ¼ 0 for vanishing sources, the second term of the
commutator vanishes due to the validity of the ST identity.
The right-hand side of (44) is an equation in terms of

(pre-)Hilbert space operators: an S operator and BRST
charge, both defined on the indefinite metric Fock space of
creation and annihilation operators. The claim is that we
can find an operator Q such that the right-hand side
holds true.
We then know that a subspace defined byQjphysi ¼ 0 is

stable under S, hence physical states are mapped into
physical states.
To show that (46) indeed holds, we observe first that the

commutator ½S; ∶Σ∶� is of the form ½S; eY �. If ½S; Y�
commutes with Y, one can reorder the series into
½S; eY � ¼ ½S; Y�eY . This has to be evaluated. Since in the
tree approximation z ¼ 1, hence Kðx − yÞΦΦ0 ¼ ΓΦΦ0 , we
define for the explicit calculation

Y ≡
Z �

hμνΓhh
μνρσ

δ

δJρσ
þ hμνΓhb

μνρ
δ

δjbρ
þ bρΓbh

ραβ

δ

δJαβ

þ bρΓbb
ρσ

δ

δjbσ
þ cρΓcc̄

ρσ
δ

δjc̄σ
þ c̄ρΓc̄c

ρσ
δ

δjcσ

�
: ð47Þ

For the desired commutator one finds

½S; Y� ¼ −
Z �

hμνΓhh
μνρσ

δ

δKρσ
− cρΓcc̄

ρσ
δ

δjbσ
− c̄ρΓc̄c

ρσ
δ

δLσ

�
;

ð48Þ

so it clearly commutes with Y.
In the next step we have to consider ∶½S; Y�eY∶Z, i.e.,

terms of the type

−
Z

∶
�
hμνΓhh

μνρσ
δ

δKρσ
− cρΓcc̄

ρσ
δ

δjbσ
− c̄ρΓc̄c

ρσ
δ

δLσ

�
∶Yð1Þ � � �YðnÞ · ZðJÞjJ¼0 ð49Þ

i.e.,

−
Z

∶ðhμνΓhh
μνρσκD

ρσ
λ cλ − cρΓcc̄

ρσbσ − c̄ρΓc̄c
ρσcλ∂λcσÞ∶Yð1Þ � � �YðnÞ · ZðJÞjJ¼0:

These terms constitute insertions into the functional Z. A closer look in terms of Feynman diagrams reveals that due to
momentum conservation from Dρσ

λ cλ only terms linear in the fields survive and also the last term bilinear in c cannot
contribute—when going on mass shell they cannot develop particle poles. We arrive thus at

∶½S; Y�∶Z≕Σ
�Z

ð−hμνΓhh
μναβκð∂αcβ þ ∂βcαÞ þ cρΓcc̄

ρσbσÞ
�
∶ · ZðJÞjJ¼0: ð50Þ
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The second factors in the insertion are just the linearized
BRST variations of hαβ, respectively c̄σ. This suggests that
one introduce a corresponding BRST operator Q which
generates these transformations

QΓ≡
Z �

κð∂μcν þ ∂νcμÞ δ

δhμν
þ bρ

δ

δc̄ρ

�
Γ; ð51Þ

QZc ≡ −i
Z �

κ

�
∂μ δZc

δjcν
þ ∂ν δZc

δjcμ

�
Jμν þ

δZc

δjbρ
jc̄ρ

�
; ð52Þ

QZ≡ −
Z �

Jμνκ

�
∂μ δ

δjcν
þ ∂ν δ

δjcμ

�
þ jc̄ρ

δ

δjbρ

�
Z; ð53Þ

and to calculate the commutator ½Q; ∶Σ∶�ZjJ¼0. And, indeed
it coincides with the right-hand side of (50). Following
in detail the aforementioned diagrammatic analysis, we
have a simple interpretation: in the Green’s functions
Gðy; z1;…; znÞ a field entry has been replaced by the
linearized BRST transformation of it. Having established
(44) one can continue along the lines of [3], form within the
linear subspace of physical states equivalence classes by
modding out states with vanishing norm with the well-
known result that these factor states have nonvanishing norm
and the S-matrix is unitary.

E. Parametrization and gauge parameter independence

It is a necessary preparation for higher orders to clarify
which parameters the model contains and how they are
fixed. Also a glance at the free propagators, (28) versus
(29), shows that they differ in their falloff properties
depending on the value of the gauge parameter α0. Since
Landau gauge α0 ¼ 0 simplifies calculations enormously,
we would like to show that it is stable against perturbations.
Since these two issues are closely linked, we treat them
here together. Obvious parameters are the couplings c0, c1,
c2, and c3. In the next subsection we give a prescription,
how to fix them by appropriate normalization conditions.
Also obvious is the gauge parameter α0. It will be fixed by
the equation of motion for the b field. Since this equation is
linear in the b field it also determines its amplitude. Less
obvious is the normalization of the fields hμν, cρ and of the
external fields K, L. In order to find their amplitudes it is
convenient to inquire under which linear redefinitions of
them the ST (35) stays invariant. We define

ĥμν ¼ z1ðα0Þhμν; ĉρ ¼ yðα0Þcρ; ð54Þ

K̂μν ¼
1

z1ðα0Þ
Kμν; L̂ρ ¼

1

yðα0Þ
Lρ; ð55Þ

where we admitted a dependence on the gauge parameter
because we would like to vary it and detect in this way α0
dependence algebraically. Clearly, the values for z1 and y

have to be prescribed. It is also clear that with
α0-independent values for z1 and y the ST identity is
maintained. In order to make changes of α0 visible, we
differentiate (4) with respect to it, i.e.,

∂
∂α0 Γ ¼ ∂

∂α0 Γgf ¼
Z �

−
1

2

�
bμbνημν

¼ s
Z �

−
1

4

�
ðc̄μbν þ c̄νbμÞημν: ð56Þ

We observe that this is an s variation and thus, if we
introduce a fermionic partner χ ¼ sα0 and perform the
change

Γgf þ Γϕπ → Γgf þ Γϕπ þ
Z �

−
1

4

�
χðc̄μbν þ c̄νbμÞημν;

ð57Þ

we have

SðΓÞ þ χ∂α0Γ ¼ 0: ð58Þ

We carry over this extended BRST transformation to Z

ŜZ≡ SZ þ χ∂α0Z ¼ 0; ð59Þ

with the implication

∂χðŜZÞ ¼ 0 ⇒ ∂αoZ ¼ −S∂χZ ð60Þ

showing that α0 dependence is a BRST variation, hence
unphysical. This last equation can be easily checked on the
free propagators (for propagators connected and general
Green’s functions coincide).
Using for ZðJÞ the form

ZðJÞ ¼ exp

�
i
Z

Lint

�
δ

iδJ

��
Z0;

Z0 ¼ exp

�Z
iJhΦΦiiJ

�
ð61Þ

one obtains

∂α0ZðJÞ ¼ ∂α0Z0 · ZðJÞ ¼
�
∂α0

Z
iJhΦΦiiJ

�
· Z: ð62Þ

(Here J stands for the sources of all propagating fields Φ.)
Hence α0 dependence remains purely at external lines, if
one does not add α0-dependent counterterms, and then
vanishes on the S-matrix where these lines are amputated.
It also means that the power counting for the gauge
multiplet is irrelevant because this multiplet shows up
only as external lines.
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We now step back and analyze α0 dependence more
systematically. Equations (58) and (59) and the analogous
one for connected Green’s functions

SZc þ χ∂α0Zc ¼ 0; ð63Þ

where α0 undergoes the change

sα0 ¼ χ; sχ ¼ 0; ð64Þ

have to be solved. The right-hand side of (57) is a solution
of the extended gauge condition

δΓ
δbρ

¼ κ−1∂μhμρ − α0bν −
1

2
χc̄ρ: ð65Þ

Acting with δ=δbρ on the ST (58) we find that the ghost
equation of motion has changed accordingly,

GρΓ≡
�
κ−1∂μ δ

δKμρ
þ δ

δc̄ρ

�
Γ ¼ 1

2
χbρ: ð66Þ

As in (37) and (39) we introduce Hμν ¼ Kμν − 1
2κ ð∂μc̄ν þ

∂νc̄μÞ and Γ̄ by

Γ ¼ Γ̄þ
Z �

−
1

2
α0bμbνημν −

1

2κ
hμνð∂μbν þ ∂νbνÞ

−
1

4
χðc̄μbν þ c̄νbμÞημν

�
: ð67Þ

The extended ST reads in terms of Γ̄

SðΓÞ ¼ BðΓ̄Þ ¼ 0 ð68Þ

with

BðΓ̄Þ≡
Z �

δΓ̄
δK

δΓ̄
δh

þ δΓ̄
δL

δΓ̄
δc

þ χ
∂Γ̄
∂α0

�
: ð69Þ

Γ̄ satisfies the homogeneous ghost equation of motion

GΓ̄ ¼ 0: ð70Þ

We now have to find the most general solution of the ghost
equation (66) and the new ST (68). Due to dimension and
ϕπ-charge neutrality. Γ̄ can be decomposed as

Γ̄ ¼ ¯̄Γðh; c; K; L; α0Þ þ χ

Z
ðfKðα0ÞKhþ fLðα0ÞLcÞ:

ð71Þ

With the choice of linear dependence from h, however, we
certainly do not cover the most general case: due to the
vanishing dimension of hμν one could replace the linear factor
hμν by an arbitrary functionF μνðhÞ inKμνhμν. For simplicity
we discuss here the linear case, which continues (54),
whereas the nonlinear one will be treated below (see
Sec. VIII).
From (68) and (69) we deduce that

0 ¼ BðΓ̄Þ ¼ Bð ¯̄ΓÞjχ¼0 þ χ

Z �
−fHhμν

δ ¯̄Γ
δhμν

þ fHHμν δ ¯̄Γ
δHμν þ fLc

δ ¯̄Γ
δc

− fLL
δ ¯̄Γ
δL

�
þ χ

∂ ¯̄Γ
∂α0 : ð72Þ

At χ ¼ 0 follows first

Bð ¯̄ΓÞjχ¼0 ¼ 0; ð73Þ

and then

Z �
−fHhμν

δ ¯̄Γ
δhμν

þ fHHμν δ ¯̄Γ
δHμν þ fLc

δ ¯̄Γ
δc

− fLL
δ ¯̄Γ
δL

�

þ ∂ ¯̄Γ
∂α0 ¼ 0: ð74Þ

Equation (73) corresponds to (35); hence we know that the
general solution (of the linear case) is given by

¯̄Γ ¼ ĉ3κ−2
Z ffiffiffiffiffiffi

−g
p

Rðz1ðα0ÞhÞ þ ĉ1

Z ffiffiffiffiffiffi
−g

p
RμνRμνðz1ðα0ÞhÞ þ ĉ2

Z ffiffiffiffiffiffi
−g

p
R2ðz1ðα0ÞhÞ

þ ĉ
Z

ðκHμν

�
yðα0Þ
z1ðα0Þ

ð−∂μcν − ∂νcμÞ − yðα0Þð∂λcμhλν − cλ∂λhμν þ cλ∂λhμνÞ
�
− κyðα0ÞLρ∂λcρÞ: ð75Þ

Equation (75) inserted into (74) implies after some calcu-
lations that all ĉ are independent of α0, whereas the
functions fH;L satisfy the relations

∂α0z1 ¼ fHz1; ∂α0y ¼ −fLy: ð76Þ

All parameters ĉ can therefore be fixed by normali
zation conditions independent of α0. Since we shall
work in Landau gauge, α0 ¼ 0, the functions fH, fL will
be independent of α0, as well as z1 and y, hence
numbers.
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F. Normalization conditions I

In the tree approximation as studied in this section, the
free parameters of the model can be prescribed by the
following conditions:

∂
∂p2

γð2ÞTT jp2¼0 ¼ c3κ−2 ðcoupling constantÞ; ð77Þ

∂
∂p2

∂
∂p2

γð2ÞTT ¼ −2c1 ðcoupling constantÞ; ð78Þ

∂
∂p2

∂
∂p2

γð0ÞTT ¼ 2ð3c2 þ c1Þ ðcoupling constantÞ; ð79Þ

Γhμν ¼ −ημνc0 ≐ 0 ðcoupling constantÞ; ð80Þ

∂
∂pσ

ΓKμνcρ ¼ −iκðημσδνρ þ ηνσδμρ − ημνδσρÞ

ðamplitude of h and KÞ; ð81Þ

∂
∂pλ ΓLρcσcτ ¼ −iκðδρσηλτ − δρτηλσÞ

ðamplitude of c and LÞ: ð82Þ

Imposing the b equation of motion (36) fixes α0 and the b
amplitude. It is worth mentioning that the c1 contribution to
γð0Þ in (18) is an implication of the invariance under s1h,
and hence must not be postulated via some normalization
condition.

III. RENORMALIZATION

At first we have to specify the perturbative expansion in
which we would like to treat the model. Due to the
vanishing canonical dimension of the field hμν, we have
to expand in the number of this field. Second we expand as
usual in the number of loops. Next we have to choose a
renormalization scheme in order to cope with the diver-
gences of the loop diagrams. We shall use the Bogoliubov-
Parasiuk-Hepp-Zimmermann-Lowenstein scheme [11]
which is based on momentum subtractions and an auxiliary
mass in order to avoid spurious infrared divergences which
otherwise would be introduced by the momentum sub-
tractions when dealing with massless propagators.
The key ingredients of this scheme are the subtraction

operator acting on one-particle-irreducible diagrams (1PI)
and the forest formula which organizes the subtractions.
The subtraction operator reads

ð1 − τγÞ ¼ ð1 − tρðγÞ−1pγðsγ−1ÞÞð1 − tδðγÞpγsγÞ: ð83Þ

Here tdx1…xn denotes the Taylor series about xi ¼ 0 to order
d if d ≥ 0 or 0 if d < 0. γ denotes a 1PI diagram, pγ refers
to its external momenta, and sγ to an auxiliary subtraction

variable to be introduced. ρðγÞ and δðγÞ are the infrared and
ultraviolet subtraction degrees of γ, respectively. Those will
be specified below. As far as the forest formula is con-
cerned we refer to the literature (cf. [11,17]). For later use
we note that

ð1 − τγÞ ¼ ð1 − tδðγÞpγ Þ for ρðγÞ ¼ δðγÞ þ 1: ð84Þ

A. Auxiliary mass

In the BPHZ subtraction scheme one removes UV
divergences by suitable subtractions at vanishing external
momenta. In the massless case those would introduce
artificial (off-shell) IR divergences. Hence in an exten-
sion, the BPHZL scheme, one introduces an auxiliary
mass term of type M2ðs − 1Þ2 for every massless propa-
gator. Subtractions with respect to p, s performed at
p ¼ 0, s ¼ 0 take care of the UV divergences.
Subtractions with respect to p, s − 1 thereafter establish
correct normalizations for guaranteeing poles at p ¼ 0
and vanishing of three-point functions (of massless
fields) at p ¼ 0.
When trying to introduce such an auxiliary mass term

for the massless pole in the double pole propagators, one
encounters difficulties. Neither with a naive hh term nor
with a Fierz-Pauli type mass term can one invert Γhh to
propagatorsGhh such that the Lagrange multiplier field bρ
remains nonpropagating. But its propagation would
prevent its use in the quartet formalism of [3]. A glance

at the propagators (28) and the coefficients γðrÞKL, (17)
suggests that one replace the overall factor p2 in the γ’s by

p2 −m2 ≡ p2 −M2ðs − 1Þ2: ð85Þ

Here m2 denotes the auxiliary mass contribution. This
push in p2 still maintains restricted invariance, i.e., under
s0h, (see Sec. V B and Appendix B), and is fairly easy to
carry along as we shall see.
Accepting this change of vertices and propagators one

has to analyze in some detail what it implies. For the
propagators it is clear that the pole at p2 ¼ 0 is shifted, as
desired to a pole at p2 ¼ m2. It affects not only the invariant
parts but also the gauge fixing dependent propagators hbhi
and hc̄ci. This can be seen when performing push in Γ and
having a look at the inversion equations. The γ’s (17) then
read

γð2ÞTT ¼ −ðp2 −m2Þðc1p2 − c3κ−2Þ ð86Þ

⇒ m2γ̂ð2ÞTTðm2Þ ¼ m2ðc1p2 − c3κ−2Þ; ð87Þ

γð0ÞTT ¼ ðp2 −m2Þ
�
ð3c2 þ c1Þp2 þ 1

2
c3κ−2

�
ð88Þ
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⇒ m2γ̂ð0ÞTTðm2Þ ¼ −m2

�
ð3c2 þ c1Þp2 þ 1

2
c3κ−2

�
; ð89Þ

γð1ÞSS ¼ γð0ÞWW ¼ γð0ÞTW ¼ γð0ÞWT ¼ 0: ð90Þ

In the inversion equations one has products of γðrÞKL with its

direct counterpart hhhiðrÞKL, such that this change is not a
change there.
For gauge fixing terms we find the effect of push as

follows:

Γhb
μνρGbh ¼ i

2κ
ðηρμpν þ ηρνpμÞ

κ

p2
ðpμθνρ þ pνθμρ þ pρωμνÞ ðlocalÞ ð91Þ

¼ i
2κ

ðηρμpν þ ηρνpμÞ
p2

p2

κ

p2
ðpμθνρ þ pνθμρ þ pρωμνÞ ðlocalÞ ð92Þ

!push i
2κ

ðηρμpν þ ηρνpμÞ
p2 −m2

p2

κ

p2 −m2
ðθρμpν þ θρνpμ þ pρωμνÞ ð93Þ

⇒ Γðm2Þhbμνρ ¼
−im2

2κp2
ðηρμpν þ ηρνpμÞ ðnonlocalÞ; ð94Þ

⇒ Gbh
ρμν ¼

κ

p2 −m2
ðpμθρν þ pνθρμ þ pρωμνÞ ðmassive propagatorÞ ð95Þ

i.e., there appears an additional term in Γhb and the hbhi propagator becomes massive (with the auxiliary mass). In x space
the complete gauge fixing term reads

Γgf ¼ −
1

2κ

Z
dxdyhμνðxÞð∂μbν þ ∂νbμÞðyÞ

�
δðx − yÞ þ m2

ðx − yÞ2
�
−
α0
2

Z
ημνbμbν

¼ −
1

2κ

Z
dxdyhμνðxÞð∂μbν þ ∂νbμÞðyÞ

��
□

4π2
þm2

�
1

ðx − yÞ2
�
−
α0
2

Z
ημνbμbν: ð96Þ

A suitable Faddeev-Popov (FP) term is then

Γϕπ ¼ −
1

2

Z
dxdyDμν

ρ cρðxÞð∂μc̄ν þ ∂νc̄μÞðyÞ
�
δðx − yÞ þ m2

ðx − yÞ2
�

¼ −
1

2

Z
dxdyDμν

ρ cρðxÞð∂μc̄ν þ ∂νc̄μÞðyÞ
��

□

4π2
þm2

�
1

ðx − yÞ2
�
; ð97Þ

because it maintains the BRST doublet structure within the
gauge fixing procedure.
A comment to the “nonlocal” terms is in order. Our

writing is symbolic shorthand in order to have a simple
handling of these terms. Using the explicit form of s0h and
integration by parts, one may observe that the actual
nonlocal part is of projector type in terms of differential
operators—quite in line with its first appearance in p space.
There the projectors lead formally to direction-dependent
integrals. However Zimmermann’s ε, introduced as

p2 → p2 þ iϵðp2Þ; ð98Þ

guarantees absolute convergence, hence no serious problem
will arise once we have reliable power counting and

appropriate correct subtractions. Of course, at the physical
value s ¼ 1 it disappears anyway.
We therefore discuss in the next subsection power

counting and convergence with positive outcome, and
return thereafter to a discussion of the m2-dependent terms.
Before starting with the presentation of power counting, we
have to have a look at the basis of naively symmetric
insertions once we have introduced an auxiliary mass term.
Obviously we can introduce the following shift

Z ffiffiffiffiffiffi
−g

p
c3κ−2R →

Z ffiffiffiffiffiffi
−g

p �
c30κ−2 þ c31κ−1m

þ c32
1

2
m2

�
R: ð99Þ
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In the tree approximation these terms are invariant (and for
s ¼ 1 reduce to the original term), but in higher orders they
represent new and independent elements in the basis of
symmetric normal products with δ ¼ ρ ¼ 4 (cf. [18]). So,
we have to carry them along as vertices when studying
power counting.

B. Power counting and convergence

In the Landau gauge, α0 ¼ 0, the only nonvanishing
propagators are the following:

hhhið2ÞTT ¼ i

ðp2 −m2Þc1ðp2 − c3κ−2

c1
Þ
; ð100Þ

hhhið0ÞTT ¼ i

ðp2 −m2Þð3c2 þ c1Þðp2 þ c3κ−2

2ð3c2þc1ÞÞ
; ð101Þ

hbρhμνi ¼
1

p2 −m2
ðpμθνρ þ pνθμρ þ pρωμνÞ; ð102Þ

hc̄ρcσi ¼ −i
�
θρσ þ

1

2
ωρσ

�
1

p2 −m2
: ð103Þ

In addition to m ¼ Mðs − 1Þ one needs also Zimme-
rmann’s ε prescription (98). This will guarantee absolute
convergence of diagrams, once power counting is estab-
lished and subtractions are correctly performed.
Important to note: in all formulas to follow in this section

the replacement of c3 by the sum given in (99) is to be
understood. Relevant for power counting arguments is
never a coefficient in front of a vertex, but the number
of lines and derivatives at the vertex and its associated
subtraction degree. The hbhi propagator will be of no
relevance for reasons spelled out after (62).
Power counting is based on ultraviolet (UV) and infrared

(IR) degrees of propagators and vertices. The upper degree
degp;s gives the asymptotic power for p and s tending to
infinity; the lower degree deg

p;ðs−1Þ gives the asymptotic

power for p and s − 1 tending to zero. For propagators they
read

degp;sðhhhið2ÞTTÞ ¼ −4; deg
p;s−1ðhhhi

ð2Þ
TTÞ ¼ −2; ð104Þ

degp;sðhhhið0ÞTTÞ ¼ −4; deg
p;s−1ðhhhi

ð0Þ
TTÞ ¼ −2; ð105Þ

degp;sðhc̄ciÞ ¼ deg
p;s−1ðhc̄ciÞ ¼ −2: ð106Þ

As shorthand we write also deg≡ D̄L and deg≡DL. The
degrees of the vertices thus have the values

D̄Vðc1Þ ¼ D̄Vðc2Þ ¼ 4; D̄Vðc3Þ ¼ 2; D̄VðϕπÞ ¼ 2; ð107Þ

DVðc1Þ ¼ DVðc2Þ ¼ 4; DVðc3Þ ¼ 2; DVðϕπÞ ¼ 2: ð108Þ

Let us now consider a one-particle-irreducible (1PI)
diagram γ with m loops, Iab internal lines, a; b ¼ h; c; c̄,
and V vertices of type Vðc1;c2;c3;ϕπÞ or insertionsQi as well as
N amputated external lines. In the subsequent considerations
a more detailed notation is useful: Na are of type Φa, nai are
of type a and are attached to the ith vertex. Then with Qi

QiðxÞ ¼
� ∂
∂x

�jμijY
a

ðΦcai
a ðxÞÞ; ð109Þ

we first find for the UV and IR degrees of γ

dðγÞ ¼ 4mðγÞ þ
X
V∈γ

D̄V þ
X
L∈γ

D̄L ð110Þ

¼ 4mðγÞ þ 4Vðc1;c2Þ þ 2Vðc3Þ þ 2VðϕπÞ − 4Ihh − 2Icc̄;

ð111Þ

rðγÞ ¼ 4mðγÞ þ
X
V∈γ

DV þ
X
L∈γ

DL ð112Þ

¼ 4mðγÞ þ 4Vðc1;c2Þ þ 2Vðc3Þ þ 2VðϕπÞ − 2Ihh − 2Ic̄c:

ð113Þ

The topological relations

m ¼ I − V þ 1; ð114Þ

Na¼
X
i

nai;2Iaa¼
X
i

ðcai−naiÞ¼
X
i

cai−Na ð115Þ

permit one to rewrite these degrees as

dðγÞ ¼ 4þ
X
V∈γ

ðD̄V − 4Þ þ
X
L∈γ

ðD̄L þ 4Þ; ð116Þ

dðγÞ ¼ 4 − Nc̃ − 2Vðc3Þ; ð117Þ

rðγÞ ¼ 4þ
X
V∈γ

ðDV − 4Þ þ
X
L∈γ

ðDL þ 4Þ; ð118Þ

rðγÞ ¼ 4 − 2Vðc3Þ − 2VðϕπÞ þ 2Ihh þ 2Icc̄: ð119Þ

(Here c̃ stands for both, c and c̄.) The aim is now to associate
subtraction degrees to them which are independent of the
detailed structure of the respective diagrams. An obvious
choice is
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δðγÞ ¼ 4; ρðγÞ ¼ 4: ð120Þ

Before proceeding, a comment to δðγÞ ¼ 4 is in order.
Obviously there are infinitely many divergent diagrams
possible, even for every number N of external h lines.
This requires infinitely many parameters as normalizations.
Those are provided by the infinitely many arbitrary param-
eters which arise from the redefinition of h as a function of
itself. They are gauge type parameters and constitute only
wave function renormalizations hence are unphysical. This
will be discussed in detail later (see Sec. VIII).
We would like to prove convergence along the lines of

theorems established in [11]. In order to do so we formulate
a few conditions which will later turn out to be sufficient for
proving convergence. The first one reads

δðγÞ ¼ dðγÞ þ bðγÞ and ρðγÞ ¼ rðγÞ − cðγÞ ðC1Þ
ð121Þ

with bðγÞ and cðγÞ being non-negative integers. bðγÞ ≥ 0 is
obviously satisfied, but for cðγÞ we have to convince
ourselves that the bracket terms in (116) are greater or
equal to zero. Hence we need the more detailed information
given by the line balances

2Ihh¼
X
i∈γ

ðch;i−nh;iÞ

¼
X
i∈γ

ðch;iÞ−Nhi∈fVðc1Þ;Vðc2Þ;Vðc3Þ;VðϕπÞg; ð122Þ

2Icc̄ ¼
X
i∈ϕπ

ðcc;i − nc;iÞ ¼
X
i∈ϕπ

cc;i − Nc: ð123Þ

We find

cðγÞ ¼
X

i∈c1;c2

ðch;i − nh;iÞ þ
X
i∈c3

ðch;i − nh;i − 2Þ

þ
X
i∈ϕπ

ðcc̃;i − nc̃;i − 2Þ þ
X
i∈ϕπ

ð1 − nh;ϕπÞ: ð124Þ

If the vertex i in question is not present in γ, the respective
brackets just vanish. If this vertex is present in γ, then
ðch;i − nh;iÞ ≥ 2 and ðch;i − nh;i − 2Þ ≥ 0—both for 1PI γ.
Since cc̃;ϕπ ¼ 2 the third bracket combines with the fourth
such that their sum is ≥ 0—again for 1PI γ—we find two
cases: either nh;i0 ¼ 1 at vertex i0 such that nc̃;i0 ¼ 0

(otherwise γ is not 1PI) or nh;i0 ¼ 0 at vertex i0 such that
þ1 from here and from nc̃;i0 at most 1, i.e., −1 in the sum
(otherwise γ is not 1PI), which together is 0, i.e., non-
negative. Hence equations (121) are valid.
The next requirements refer to reduced diagrams

Λ̄ ¼ Λ=λ1;…λn, which are obtained from Λ by contracting
mutually disjoint, nontrivial 1PI subdiagrams λi to points

(reduced vertices) VðλiÞ assigning (for the sake of power
counting) the unit polynomial of momenta to each VðλiÞ.
For 1PI γ one has the relations

dðγÞ ¼ dðγ=λ1…λnÞ þ
Xn
i¼1

dðλiÞ; ð125Þ

rðγÞ ¼ rðγ=λ1…λnÞ þ
Xn
i¼1

rðλiÞ: ð126Þ

Their analogs are also valid for connected diagrams. Now
one can formulate further conditions for convergence, i.e.,

δðγÞ ≥ dðγ=λ1…λnÞ þ
Xn
i¼1

δðλiÞ; ðC2Þ ð127Þ

ρðγÞ ≤ rðγ=λ1…λnÞ þ
Xn
i¼1

ρðλiÞ; ðC3Þ ð128Þ

ρðγÞ ≤ δðγÞ þ 1 ðC4Þ ð129Þ

for arbitrary reduced 1PI subdiagrams γ=fλig of Γ. In order
to verify (127) one just inserts the values for the respective
degrees:

δðγÞ ¼ 4; ð130Þ

δðγiÞ ¼ 4; ð131Þ

dðγÞ ¼ 4 − 2Vðc3ÞðγÞ − 2VðϕπÞðγÞ þ 2Icc̄ðγÞ; ð132Þ

dðγiÞ ¼ 4 − 2Vðc3ÞðγiÞ − 2VðϕπÞðγiÞ þ 2Icc̄ðγiÞ; ð133Þ

dðγ̄Þ ¼ 4 − 2Vðc3Þðγ̄Þ − 2VðϕπÞðγ̄Þ þ Icc̄ðγ̄Þ − 4n; ð134Þ

dðγ̄Þ þ
X
i

δðγiÞ ¼ 4 − 2Vðc3Þðγ̄Þ

þ
X
i∈ϕπ

ð−2þ cc;ϕπ − nc;ϕπÞðγ̄Þ; ð135Þ

δðγÞ ¼ 4 ≥ 4 − Nc̃ðγ̄Þ − 2Vðc3Þðγ̄Þ: ð136Þ

(We have used that cc;ϕπ ¼ 2.) The last inequality was to be
proved.
For the proof of (128) one treats first the case ρðγÞ ¼

ρðγiÞ ¼ 4 and uses the fact that the line balances used for
proving (121) also hold for reduced diagrams. For the case
ρðγÞ ¼ ρðγiÞ ¼ 5 ¼ δðγÞ þ 1 ¼ δðγiÞ þ 1, which is the
upper bound admitted for the IR degrees, one finds also
that the desired inequality holds. (129) is satisfied by
definition.
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We can now refer to Theorem 4 in [11] in which it is
shown that these conditions being satisfied, Green’s
functions exist as tempered distributions, whereas for
nonexceptional momenta (Euclidean sense) vertex func-
tions exist as functions. Due to a theorem of Lowenstein
and Speer [19] in the limit ε → 0 Lorentz covariance is
also satisfied. An important improvement concerning
Lorentz covariance has been provided by [20]. If one
introduces Zimmermann’s ε via a change of metric ημν →
diagð1;−ð1 − iεÞ;−ð1 − iεÞ;−ð1 − iεÞÞ in addition to
multiplying each mass square by ð1 − iεÞ, then Lorentz
covariance already holds for the right-hand side of ZI’s
before establishing the ε → 0 limit. This is quite helpful
for actual work with ZI’s.
The above proof of convergence refers to diagrams

constructed out of vertices with vanishing Faddeev-
Popov charge. For installing the ST identity in higher
orders, one needs however diagrams which once contain
the vertex Vð−Þ of types

D̄ðVð−ÞÞ¼
�
3 forVð−Þ≃

R
c∂∂∂h���h;

5 forVð−Þ≃
R
c∂∂∂∂∂h���h;DðVð−ÞÞ¼D̄ðVð−ÞÞ;

ð137Þ

i.e., of FP-charge −1. The UV and IR degrees become
respectively,

dðγÞ ¼ 4mðγÞ þ
X
V∈γ

D̄V þ
X
L∈γ

D̄L þ D̄Vð−Þ ; ð138Þ

rðγÞ ¼ 4mðγÞ þ
X
V∈γ

DV þ
X
L∈γ

DL þDVð−Þ : ð139Þ

With (114) this results into ðVð−Þ ∈ γÞ

dðγÞ ¼ 4þ
X
V∈γ

ðD̄V − 4Þ þ
X
L∈γ

ðD̄L þ 4Þ ð140Þ

¼ 4 − Nc̃ − 2Vðc3Þ þ ðD̄Vð−Þ − 4Þ; ð141Þ

rðγÞ ¼ 4þ
X
V∈γ

ðDV − 4Þ þ
X
L∈γ

ðDL þ 4Þ ð142Þ

¼4−2Vðc3Þ−2VðϕπÞþðDVð−Þ−4Þþ2Ihhþ2Icc̄: ð143Þ

As subtractions degrees we define

δðγÞ ¼ dðγÞ þ bðγÞ ¼
�
4 if Vð−Þ ∉ γ

5 if Vð−Þ ∈ γ
; ð144Þ

ρðγÞ ¼ rðγÞ − cðγÞ ¼
�
4 if Vð−Þ ∉ γ

5 if Vð−Þ ∈ γ
: ð145Þ

The line balances read now

2Ihh ¼
X
i∈γ

ðch;i − nh;iÞ

¼
X
i∈γ

ðch;iÞ − Nhi ∈ fVðc1Þ; Vðc2Þ; Vðc3Þ; VðϕπÞ; Vð−Þg;

ð146Þ

2Icc̄ ¼
X
i∈γ

ðcc;i − nc;iÞ ¼
X
i∈γ

cc;i − Nci ∈ fVðϕπÞ; Vð−Þg:

ð147Þ

In order to verify (121) we have to show that
bðγÞ ¼ δðγÞ − dðγÞ ≥ 0:

bðγÞ ¼ 5 − dðγÞ ð148Þ

¼ 5 − 4þ 2Vðc3Þ þ 2VðVϕπÞ − ðD̄Vð−Þ − 4Þ − 2Icc̄ ð149Þ

¼ 1þ 2Vðc3Þ − 1þ
X
i∈ϕπ

nc̃;ϕπ − ð1 − nc;Vð−Þ Þ ð150Þ

¼ 2Vðc3Þ þ
X
i∈ϕπ

nc̃;ϕπ − ð1 − nc;Vð−Þ Þ: ð151Þ

Here we have used the line balance for Icc̄ (122)and chosen
the more dangerous case D̄Vð−Þ ¼ 5. If nc;Vð−Þ ¼ 0, there
must aþ1 coming from the ϕπ sum, because the FP charge
is conserved. Hence the inequality holds.
The control of

cðγÞ ¼ rðγÞ − ρðγÞ ð152Þ

¼ 4 − 2Vðc3Þ − 2VðϕπÞ þ 2Ihh þ 2Icc̄ þ ðDðVð−ÞÞ − 4Þ − 5

ð153Þ

¼ −2Vðc3Þ − 2VðϕπÞ þ 2Ihh þ 2Icc̄ þ ðDðVð−ÞÞ − 4Þ − 1

ð154Þ

¼ −2Vðc3ÞÞ − 2VðϕπÞÞ þ 2Ihh þ 2Icc̄

þ
�−1 for DVð−Þ ¼ 3

þ1 for DVð−Þ ¼ 5
≥ 0 ð155Þ

is similar: On the vertices we have the information

X
i∈c1;c2;c3

ðch;i − nh;iÞ þ
X
i∈ϕπ

ðch;ϕπ − nh;ϕπÞ

þ ðch;Vð−Þ − nh;Vð−Þ Þ þ cc;Vð−Þ ≥ 0; ð156Þ

where cc;Vð−Þ ¼ 1: there is one c field in Vð−Þ. Inserting
this into the more dangerous case DVð−Þ ¼ 3 and
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taking into account the terms −2Vðc3Þ − 2VðϕπÞ − 2
we get

cðγÞ ¼
X

i∈c1;c2

ðch;i − nh;iÞ þ
X
i∈c3

ðch;i − nh;i − 2Þ

þ
X
i∈ϕπ

ðð1 − nh;i − 2Þ þ ð2 − nc̃;iÞÞ ð157Þ

þ ðch;Vð−Þ − nh;Vð−Þ Þ þ 1 − nc;Vð−Þ − 2 ≥ 0: ð158Þ

The two sums in the first line are non-negative for γ1PI.
The same is true as before for the sum in the second line.
In the third line we look at 1þ ch;Vð−Þ − nh;Vð−Þ − nc;Vð−Þ ,

nc;Vð−Þ ¼ 1 ⇒ ch;Vð−Þ − nh;Vð−Þ ≥ 2; ð159Þ

nc;Vð−Þ ¼ 0 ⇒ ch;Vð−Þ − nh;Vð−Þ ≥ 1; ð160Þ

Hence in both cases is 1þ ch;Vð−Þ − nh;Vð−Þ − nc;Vð−Þ ≥ 2

and thus cðγÞ ≥ 0.
In order to check (127) we start with the case Vð−Þ ∉ γi,

i.e.,

dðγÞ ¼ 4 − 2Vðc3ÞðγÞ − 2VðϕπÞðγÞ

þ 2Icc̄ðγÞ þ
�−1 for D̄Vð−Þ ¼ 3

þ1 for D̄Vð−Þ ¼ 5
; ð161Þ

dðγiÞ ¼ 4 − 2Vðc3ÞðγiÞ − 2VðϕπÞðγiÞ þ 2Icc̄ðγiÞ; ð162Þ

δðγÞ ¼ 5 and δðγiÞ ¼ 4; ð163Þ

dðγ̄Þ ¼ 4 ∓ 1 − 2Vðc3ÞðγÞ − 2VðϕπÞðγÞ þ 2Icc̄ðγÞ ð164Þ

−
X
i

ð4 − 2Vðc3ÞðγiÞ − 2VðϕπÞðγiÞ þ 2Icc̄ðγiÞÞ;

dðγ̄Þ þ
X
i

δðγiÞ ¼ 4 ∓ 1 − 2Vðc3Þðγ̄Þ − 2VðϕπÞðγ̄Þ

þ 2Icc̄ðγ̄Þ≤
?
5: ð165Þ

The estimates for bðγÞ are also valid for bðγ̄Þ, hence this
inequality is satisfied.
For the case Vð−Þ ∈ γi0 the following equations are

relevant:

δðγÞ ¼ 5δðγiÞ ¼ 4i ≠ i0δðγioÞ ¼ 5; ð166Þ

dðγÞ ¼ 4 − 1ðþ1Þ − 2Vðc3ÞðγÞ − 2VðϕπÞðγÞ þ 2Icc̄ðγÞ;
ð167Þ

dðγiÞ ¼ 4 − 2Vðc3ÞðγiÞ − 2VðϕπÞðγiÞ þ 2Icc̄ðγiÞi ≠ i0;

ð168Þ

dðγi0Þ ¼ 4 ∓ 1 − 2Vðc3Þðγi0Þ − 2VðϕπÞðγi0Þ þ 2Icc̄ðγi0Þ;
ð169Þ

dðγ̄Þ ¼ 4 ∓ 1 − 2Vðc3ÞðγÞ − 2VðϕπÞðγÞ þ 2Icc̄ðγÞ ð170Þ

− ð4 ∓ 1 − 2Vðc3Þðγi0Þ − 2VðϕπÞðγi0Þ þ 2Icc̄ðγi0ÞÞ
−
X
i≠i0

ð4 − 2Vðc3ÞðγiÞ − 2VðϕπÞðγiÞ þ 2Icc̄ðγiÞÞ;

dðγ̄Þ þ
X
i

δðγiÞ ¼ 5 − 2Vðc3Þðγ̄Þ − 2VðϕπÞðγ̄Þ þ 2Icc̄ðγ̄Þ≤
?
5:

ð171Þ

Again, since the estimate for bðγÞ is also valid for bðγ̄Þ the
inequality holds in this case, hence (127) is verified.
We now have to verify (128). For the case Vð−Þ ∉ γi we

find

rðγÞ ¼ 4 − 2Vðc3ÞðγÞ − 2VðϕπÞðγÞ ð172Þ

þ2IhhðγÞþ2Icc̄ðγÞþ
�−1 forDVð−Þ ¼3

þ1 forDVð−Þ ¼5
; ð173Þ

rðγiÞ ¼ 4 − 2Vðc3ÞðγiÞ − 2VðϕπÞðγiÞ þ 2IhhðγiÞ
þ 2Icc̄ðγiÞ; ð174Þ

ρðγÞ ¼ 5 and ρðγiÞ ¼ 4; ð175Þ

rðγ̄Þ ¼ 4 ∓ 1 − 2Vðc3ÞðγÞ − 2VðϕπÞðγÞ þ 2IhhðγÞ
þ 2Icc̄ðγÞ ð176Þ

−
X
i

ð4−2Vðc3ÞðγiÞ−2VðϕπÞðγiÞþ2IhhðγiÞþ2Icc̄ðγiÞÞ;

rðγ̄Þþ
X
i

ρðγiÞ¼4∓1−2Vðc3Þðγ̄Þ−2VðϕπÞðγ̄Þ

þ2Ihhðγ̄Þþ2Icc̄ðγ̄Þ≥
?
5: ð177Þ

The estimates for cðγÞ are also valid for cðγ̄Þ, hence this
inequality is satisfied.
For the case Vð−Þ ∈ γi0 the following equations are

relevant:

ρðγÞ ¼ 5; ρðγiÞ ¼ 4ði ≠ i0Þ; ρðγ0Þ ¼ 5: ð178Þ

The equation for rðγ̄Þ is unchanged, but due to the presence
of Vð−Þ in γi0 the final equation reads

rðγ̄Þ þ
X
i

ρðγiÞ ¼ 5 ∓ 1 − 2Vðc3Þðγ̄Þ − 2VðϕπÞðγ̄Þ

þ 2Ihhðγ̄Þ þ 2Icc̄ðγ̄Þ≥
?
5: ð179Þ
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The question then is whether c̃ðγ̄Þ≡ −2Vðc3Þðγ̄Þ−
2VðϕπÞðγ̄Þ þ 2Ihhðγ̄Þ þ 2Icc̄ðγ̄Þ ≥ 1. As in (157) we rewrite
this expression explicitly in sums over vertices and their
line “occupation”

c̃ðγ̄Þ ¼
X

i∈c1;c2

ðch;i − nh;iÞðγ̄Þ þ
X
i∈c3

ðch;i − nh;i − 2Þðγ̄Þ

þ
X
i∈ϕπ

ðð1 − nh;i − 2Þ þ ð2 − nc̃;iÞÞðγ̄Þ

þ ðch;Vð−Þ − nh;Vð−Þ Þ þ ðcc;Vð−Þ − nc;Vð−Þ Þ − 2 ≥ 0:

ð180Þ

The first two lines represent a situation without Vð−Þ hence
the estimates as before apply, these contributions are non-
negative. For the third line we distinguish two cases:
(2) ðnc;Vð−Þ Þγ ¼ ðnc;Vð−Þ Þγ̄i0 ¼ 1 (notation: γ̄i0 ≡ γ=γi0).

Here the bracket cc;Vð−Þ − nc;Vð−Þ vanishes. However
the first bracket (referring to the h lines) contributes
at least 2. Hence the total sum is non-negative.

(2) ðnc;Vð−Þ Þγ ¼ ðnc;Vð−Þ Þγ̄i0 ¼ 0. Now since the cc̄ line
starting at Vð−Þ goes straight through the whole
diagram γ, it cannot form a cc̄ loop (it carries an FP

charge). It must meet at least one ϕπ vertex VðϕπÞ
� . If

this vertex belongs to γi0 , it is contracted with V
ð−Þ to

form a new vertex in γ̄i0 which has one negative FP
charge. Then this is the previous case. If it does not

belong to γi0 then this VðϕπÞ
� appears as an ordinary

FP vertex in γ̄i0 and its contribution is covered by the
second line in (180). Hence the overall estimate
holds true and condition (128) is satisfied.

The condition (129), ρðγÞ ¼ 5 ≤ δðγÞ þ 1 ¼ 5þ 1, is
satisfied by the definition of the subtraction degrees. In the
context of condition (129) it is of quite some interest to
investigate whether the upper limit ρðγÞ ¼ δðγÞ þ 1 is
consistent with all the other conditions. We start with
condition (121) ρðγÞ ≤ rðγÞ. For 1PI diagrams γ containing
the vertex Vð−Þ this means to check whether

δðγÞ þ 1 ¼ 6 ≤ rðγÞ ¼ 4 − 2Vðc3Þ − 2VðϕπÞ

þ 2Ihh þ 2Icc̄ þ
�−1
þ1

: ð181Þ

Rewritten in terms of line balances this means [see (157)]

0 ≤ −2þ
X

i∈c1;c2

ðch;i − nh;iÞ þ
X
i∈c3

ðch;i − nh;i − 2Þ

þ
X
i∈ϕπ

ðð1 − nh;i − 2Þ þ ð2 − nc̃;iÞÞ

þ ðch;Vð−Þ − nh;Vð−Þ Þ þ ð1 − nc;Vð−Þ Þ þ
�−1
þ1

: ð182Þ

Since the sums in the first and second line are non-negative
(see discussions above), this boils down to

ðch;Vð−Þ − nh;Vð−Þ Þ þ ð1 − nc;Vð−Þ Þ þ
�−3
−1

≥ 0:

[Let us recall: the upper entry −3 stands for contributionsR
cð∂Þ3h � � � h, lower entry −1 for

R
cð∂Þ5h � � � h to Vð−Þ.]

But we only know for sure that ðch;Vð−Þ − nh;Vð−Þ Þþ
ð1 − nc;Vð−Þ Þ ≥ 2. Hence, if this lower bound can indeed
be realized, the upper limit for ρðγÞ would not be allowed in
the derivation of the ST. It would however be allowed for the
Green’s functions constructed out of ½NP�44 normal products.
If indeed ρðγÞ ¼ δðγÞ þ 1 cannot be used then the IR
subtractions within τðγÞ (83) are active i.e., UV subtractions
alone would not guarantee convergence. In QED ρðγÞ ¼
δðγÞ þ 1 is allowed, hence by (84) only UV subtractions are
active. To the contrary, as here, in Yang-Mills (YM) theory it
is not. Of course, at s ¼ 1 the dependence onM disappears if
the LZ equation holds[cf. (295)]. Again, as for Lagrangian
vertices we can refer also in the present case to Lowenstein’s
theorem for convergence in the same sense as above.

C. Slavnov-Taylor identity

The ST identity which we have to establish to higher
orders takes the same form as in tree approximation, (35),
supplemented however by the m2-dependent gauge fixing,
(96), and Faddeev-Popov terms, (97), i.e.,

SðΓÞ≡
Z �

δΓ
δK

δΓ
δh

þ δΓ
δL

δΓ
δc

þ b
δΓ
δc̄

�
¼ 0; ð183Þ

Γgf ¼ −
1

2κ

Z
dxdyhμνðxÞð∂μbν

þ ∂νbμÞðyÞ
��

□

4π2
þm2

�
1

ðx − yÞ2
�

ð184Þ

−
Z

α0
2
ημνbμbν; ð185Þ

Γϕπ ¼ −
1

2

Z
dxdyshμνðxÞð∂μc̄ν

þ ∂νc̄μÞðyÞ
��

□

4π2
þm2

�
1

ðx − yÞ2
�
: ð186Þ

The b, c̄-field equations of motion take now the form

δΓ
δbρ

¼ κ−1
Z

dy∂μhμρðyÞ
��

□

4π2
þm2

�
1

ðx − yÞ2
�
− α0bρ;

ð187Þ
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δΓ
δc̄ρðxÞ

¼ −
Z

dyκ−1∂λ
δΓ

δKλρðyÞ
��

□

4π2
þm2

�
1

ðx − yÞ2
�
:

ð188Þ

Again the b-field equation can be integrated trivially back
to (184) and therefor the functional Γ̄ can be introduced as
in the tree approximation

Γ ¼ Γgf þ Γ̄: ð189Þ

Equation (38) is changed into

κ−1
Z

dy∂λ
δΓ̄

δKμλðyÞ
��

□

4π2
þm2

�
1

ðx − yÞ2
�
þ δΓ̄
δc̄μ

¼ 0;

ð190Þ

whereas (39) becomes

HμνðxÞ ¼ KμνðxÞ þ
1

2

Z
dyð∂μc̄ν

þ ∂νc̄μÞðyÞ
��

□

4π2
þm2

�
1

ðx − yÞ2
�
: ð191Þ

The relations (40) are unchanged:

SðΓÞ ¼ 1

2
BΓ̄Γ̄ ¼ 0; ð192Þ

BΓ̄ ≡
Z �

δΓ̄
δH

δ

δh
þ δΓ̄

δh
δ

δH
þ δΓ̄
δL

δ

δc
þ δΓ̄

δc
δ

δL

�
: ð193Þ

In the BPHZL renormalization scheme, the starting point
for establishing equations like the above ones, to all orders
is a Γeff with which one calculates accordingly subtracted
Feynman diagrams. Here we choose

Γeff ¼ Γclass
inv þ Γgf þ Γϕπ þ Γe:f: þ Γct: ð194Þ

In addition to (2), (4), (184), and (186) one has to take into
account the changes caused by the auxiliary mass term in
(87) and (89). Γct will collect counterterms as needed. All
these expressions are to be understood as normal products,
i.e., insertions into Green’s functions with power counting
degrees δ ¼ ρ ¼ 4.
Starting from Z, the generating functional for general

Green’s functions, and from the definition of S in (42) we
postulate

SZ ¼ 0: ð195Þ

Then the action principle yields

SZ ¼ ΔZ · Z ¼ ΔZ þOðℏΔZÞ; ð196Þ

where ΔZ ≡ ½ΔZ�55 is an integrated insertion with
QϕπðΔZÞ ¼ þ1. Again, by invoking the action principle
one can realize the b-field equation of motion (187), with
(190), now on the renormalized level, as a consequence of
(183). This admits (192) as a postulate and results into

SðΓÞ ¼ Δ · Γ; ð197Þ

1

2
BΓ̄Γ̄ ¼ ΔþOðℏΔÞ: ð198Þ

Here Δ≡ ½Δ�55 with QϕπðΔÞ ¼ þ1 does not depend on b
and c̄. These relations admit a cohomological treatment,
since

BΓ̄BΓ̄Γ̄ ¼ 0; BΓ̄BΓ̄ ¼ 0; ð199Þ

the latter being true as a necessary condition, if (192) is to
be satisfied. Since in the tree approximation (192) holds,
one has

bΔ ¼ 0 for b≡ BΓ̄class
with b2 ¼ 0 ð200Þ

as the final consistency condition to be solved. The
standard way to solve this cohomology problem is to list
contributions to Δ by starting with terms depending on
external fields and then those consisting of elementary
fields only, i.e.,

Δ ¼
Z

ðKμνΔμνðh; cÞ þ LρΔρðh; cÞÞ þ Λðh; cÞ: ð201Þ

All terms are insertions compatible with ½…�55
and Qϕπ ¼ þ1. [Recall that QϕπðKÞ ¼ −1 and
QϕπðLÞ ¼ −2.] In [21,22] it is shown that all these
contributions eventually are b variations. This is true even
for the Λ term. This means that pure gravity has no
anomalies, the solution reads:

Δ ¼ bΔ̂ ð202Þ

with a Δ̂ which can be absorbed into Γeff . In the quoted
references the algebra leading to this result has been
performed by using cohomological methods. Without
power counting and convergence and not within a concrete
renormalization scheme, this represents a classical consid-
eration. In the present context we have, however, supplied it
with “analytic” information, i.e., assured the existence of
the relevant quantities as insertions into existing Green’s
functions. The result is thus that we have indeed a ST
identity which holds as inserted into general Green’s’s
functions of elementary fields, at nonexceptional momenta
and s ¼ 1.
Along the lines given in the tree approximation, one can

now establish the unitarity of the S-matrix. It is however
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clear that such a construction is to a large extent purely
formal, because one has to go on-shell and hits physical IR
divergences there in many configurations of incoming and
outgoing particles.
Let us nevertheless sketch some of the required steps.

First of all the matrix of residua z−1 becomes relevant. Then
like in the tree approximation the state space operator
QBRST can be calculated with the same arguments as there:
only linear terms in the functional transformation contrib-
ute. They appear however with factors which have to be
shown via some tests on the ST to permit a multiplicative
renormalization of the tree approximation charge. With this
result one can deduce that the S-matrix maps physical states
onto physical states. These physical states have to be
constructed in two steps: In the first one a state jphysi
is called “physical” if it is annihilated by QBRST, i.e.,

QBRSTjphysi ¼ 0: ð203Þ

This requirement defines a linear subspace in the full
indefinite metric Fock space and eliminates states with
negative norm. In the second step one forms equivalence
classes of physical states which differ only by the number
of particles which generate vanishing norm. The comple-
tion of this state of equivalence classes contains then only
states with nonzero norm. On this physical Hilbert space
the S-matrix is unitary. It is worthwhile to mention that this
construction has been shown to exist rigorously e.g., in the
context of Yang-Mills theory with complete breakdown of
internal symmetry to a completely massive theory [16].
Due to on-shell IR divergences it is only formally valid in
the present case. One can however expect that scattering
amplitudes which are not affected by IR-divergences are
physically meaningful.
Based on the ST one may construct Green’s functions of

BRST-covariant operators which are independent of gauge
parameters and could then serve as building blocks for
observables. But this will not be covered in this work and is
left for future research.

D. Normalization conditions II

The normalization conditions (78)–(82) have to be
modified such that they are compatible with higher orders
of perturbation theory: they have to be taken at values in
momentum space which are consistent with the subtraction
procedure. They read

∂
∂p2

γð2Þ
TTjp¼0

s¼1

¼ c3κ−2; ð204Þ

∂
∂p2

∂
∂p2

γð2Þ
TTjp2¼−μ2

s¼1

¼ −2c1; ð205Þ

∂
∂p2

∂
∂p2

γð0Þ
TTjp2¼−μ2

s¼1

¼ 2ð3c2 þ c1Þ; ð206Þ

Γhμν ¼ −ημνc0 ¼ 0; ð207Þ

∂
∂pσ

Γ
Kμνcρjp2¼−μ2

s¼1

¼ −iκðημσδνρ þ ηνσδμρ − ημνδσρÞ; ð208Þ

∂
∂pλ ΓLρcσcτjp2¼−μ2

s¼1

¼ −iκðδρσηλτ − δρτηλσÞ: ð209Þ

Imposing the b equation of motion (36) still fixes α0 and the
b amplitude, whereas (208) again fixes the h and K
amplitudes.

IV. INVARIANT DIFFERENTIAL OPERATORS
AND INVARIANT INSERTIONS

Here we develop the concept of BRST-invariant differ-
ential operators and their one-to-one counterparts,
BRST-invariant insertions. One can essentially follow
the paper [23] and translate from YM to gravity.
Suppose a model satisfies the WI of a linear trans-

formation

WaΓ≡
Z

δaϕ
δΓ
δϕ

¼ 0 ð210Þ

and λ is a parameter of the theory (e.g., coupling, mass,
normalization parameter) of which the WI operator Wa

does not depend. Then λ∂λ commutes with Wa, i.e.,

½λ∂λ;Wa� ¼ 0: ð211Þ

Then the action principle tells us that

λ∂λΓ ¼ Δλ · Γ: ð212Þ

Applying Wa to (212) and using (211) we find

WaðΔλ · ΓÞ ¼ WaΔλ þOðℏΔλÞ ¼ 0; ð213Þ

which expresses the invariance of Δλ under the symmetry
transformation Wa: λ∂λ and Δλ are called symmetric with
respect to the symmetry Wa.
For the Γ-nonlinear BRST symmetry one has to proceed

slightly differently. We shall call an insertion Δ BRST
symmetric if to first order in ϵ

SðΓϵÞ ¼ Oðϵ2Þ ð214Þ

for Γϵ ¼ Γþ ϵΔ · Γ with SðΓÞ ¼ 0: ð215Þ

If Δ is generated by a differential operator (212), this
differential operator will be called BRST symmetric.
Writing (214) explicitly we have

SðΓÞ þ ϵSΓΔ · Γ ¼ Oðϵ2Þ; ð216Þ
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SΓ ≡
Z �

δΓ
δK

δ

δh
þ δΓ

δh
δ

δK
þ δΓ
δL

δ

δc
þ δΓ

δc
δ

δL
þ b

δ

δc̄

�

þ χ
∂
δα0

; ð217Þ

i.e., the symmetry condition reads

SΓΔ · Γ ¼ 0: ð218Þ

A comment is in order. Although later we shall exclusively
work in Landau gauge, we carry here the gauge parameter
α0 along as preparation for the general solution with
arbitrarily many parameters znk. This facilitates the formu-
lation of the general version. Actually relevant at the end
are only the formulas with α0 ¼ χ ¼ 0. The explicit form of
SΓ precisely defines how to perform the variation of the
fields [24]. The operator SΓ is helpful for rewriting the
gauge fixing and ϕπ contributions to the action (184):

Γgf þ Γϕπ ¼ SΓ

�
−

1

2κ

Z
hμνðxÞð∂μc̄ν þ ∂νc̄μÞðyÞ

��
□

4π2
þm2

�
1

ðx − yÞ2
�
−
Z

α0
2
ημνc̄μbν

�
: ð219Þ

[Note: the last term creates a contribution which has been
taken into account in (56), but not in (184).] When going
over to Z, the generating functional for the general Green’s
functions, it is clear that gauge fixing and the ϕπ term

vanish between physical states, because they are a BRST
variation.
A necessary condition for insertions to be BRST

symmetric is obtained by acting with δ=δb on (214):

GΔ · Γ ¼ SΓ
δΔ · Γ
δb

; Gρ ≡ δ

δc̄ρðxÞ
þ κ−1

Z
dy∂λ

δΓ̄
δKρλðyÞ

��
□

4π2
þm2

�
1

ðx − yÞ2
�
: ð220Þ

For b-independent insertions Δ one must ensure the
homogeneous ghost equation

GΔ · Γ ¼ 0: ð221Þ

Using the gauge condition

δΓ
δbρ

¼ −α0ηρλbλ þ κ−1
Z

dy∂μhμρðyÞ

×

��
□

4π2
þm2

�
1

ðx − yÞ2
�
; ð222Þ

one can reduce (220) to

BΓ̄Δ · Γ ¼ 0: ð223Þ

In the tree approximation we have called this operator b.
Our next task is to construct a basis for all symmetric

insertions of dimension 4, ϕπ charge 0, and independent of
bρ—first in the tree approximation and then to all orders. A
systematic way to find them is to solve the cohomology
problem

bΔ ¼ 0 ð224Þ

for Δ satisfying

δΔ
δb

¼ 0; GΔ ¼ 0; ð225Þ

dimðΔÞ ¼ 4; QϕπðΔÞ ¼ 0: ð226Þ

Here b ¼ BΓ̄class
, hence

b ¼ s on all elementary fields; ð227Þ

bHμν ¼
δΓ̄cl

δhμν
¼ δΓclass

inv

δhμν
− κðHλμ∂νcλ þHλν∂μcλ

þ ∂λðHμνcλÞÞ; ð228Þ

bLρ ¼
δΓ̄cl

δcρ
¼ κð2∂λHλρ þ 2∂λ0 ðHρλhλ

0λ þHλ0λ∂ρhλλ
0 ÞÞ
ð229Þ

−κðLλ∂ρcλ þ ∂λðLρcλÞÞ: ð230Þ

In order to proceed we first separate the α0 dependence

Δ ¼ χΔ− þ Δ0: ð231Þ

We now define

b̄ ¼
�
b on h; c; H; L

0 on α0
ð232Þ

and note that

∂α0ðbψÞ ¼ 0 for ψ ¼ h; c; H; L ð233Þ
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with b̄2 ¼ 0, since Γ̄cl is independent of α0. Equation (224)
implies

b̄Δ− − ∂α0Δ0 ¼ 0: b̄Δ0 ¼ 0; ð234Þ

hence

Δ ¼ bΔ̂− þ Δ̂0: ð235Þ

Here Δ̂0 is α0 independent and b̄ invariant. Since c̄ does not
occur, a negative ϕπ charge can only be generated by
external fields, hence

Δ̂− ¼
Z

ðfHðα0ÞHμνhμν þ fLðα0ÞLρcρÞ; ð236Þ

which is the precise analog of Eq. (4.19) in [23], is certainly
a solution. However in the present case the field hμν has
canonical dimension zero, whereas its counterpart in Yang-
Mills theory, the vector field Aμ has dimension one. So
every function F μνðhÞ is also a solution. For the time being
we continue with (236) and discuss the general solution at a
later stage (cf. Sec. VIII). It is worth solving the subpro-
blem

∂α0Δ̂0 ¼ 0; b̄Δ̂0 ¼ 0 ð237Þ

explicitly. We start listing the contributions to Δ̂0 ordered
by their external field dependence, i.e.,

Δ̂0 ¼ −fLð0Þκ
Z

Lρcλ∂λcρ þ � � � ðindep: of LÞ; ð238Þ

where fLð0Þ is an arbitrary number independent of α0. With
(230) this term can be rewritten as

Δ̂0 ¼ fLð0Þb̄
�Z

Lρcρ
�
þ � � � ðindep: of LÞ; ð239Þ

Δ̂0 ¼ b
Z

ðfLð0ÞLρcρÞ þ � � � ðindep: of LÞ: ð240Þ

We next make explicit the H dependence

Δ̂0 ¼ b
Z

ðfLð0ÞLρcρÞ þ
Z

HμνF
μν
ðþÞðh; cÞ

þ � � � ðL;HÞ − indep: ð241Þ

The postulate (237) reads

0 ¼ b̄Δ̂0 ¼
Z �

δΓ̄cl

δh
FðþÞ −Hb̄FðþÞ

�

þ ðL;HÞ − indep: ð242Þ

≕ −
Z

HCFðþÞ þ ðL;HÞ − indep: ð243Þ

and defines a transformation C as the coefficient of H in
(241):

CFðþÞ ¼ b̄FðþÞ þ κð∂λcμFνλ
ðþÞ þ ∂λcνF

μλ
ðþÞ

− cλ∂λF
μν
ðþÞÞ: ð244Þ

This transformation is nilpotent and satisfies, due to (242),

CFðþÞ ¼ 0: ð245Þ

One solution is

Fμν
ðþÞ ¼ CðfHð0ÞhμνÞ: ð246Þ

Since

CðhμνÞ ¼ κð−∂μcν − ∂νcμÞ; ð247Þ

it fits correctly to the H-dependent part of (228) in (242).
One thus arrives for this solution at

b̄
Z

fHð0ÞHμνhμν ¼
Z

HμνCðfHð0ÞhμνÞ; ð248Þ

i.e., the H-dependent part in Δ̂0 is also a variation. As
mentioned above this is not the most general solution, but
that will be treated later with the analogous outcome.
The remaining contributions to Δ̂0 depend only on h and

must not depend on α0. The only invariants are the terms
appearing in Γclass

inv . They are not variations, but constitute
obstruction terms to the b̄ cohomology. Altogether we thus
have

Δ0 ¼ b
Z

ðfLð0ÞLρcρ þ fHð0ÞHμνhμνÞ

þ
Z ffiffiffiffiffiffi

−g
p ðĉ3Rþ ĉ1Rμν þ ĉ2R2Þ: ð249Þ

(The factors ĉ are independent of α0.) In tree approximation
we end up with five invariant insertions of dimension 4 and
ϕπ charge 0, which are independent of bρ and satisfy the
ghost equation:

Δ0
L ¼ b

�
fLðα0Þ

Z
Lρcρ

�
; ð250Þ

Δ0
H ¼ b

�
fHðα0Þ

Z
Hμνhμν

�
; ð251Þ
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Δc3 ¼ c3κ−2
Z ffiffiffiffiffiffi

−g
p

κ−2R

Δc1 ¼ c1

Z ffiffiffiffiffiffi
−g

p
RμνRμν

Δc2 ¼ c2

Z ffiffiffiffiffiffi
−g

p
R2: ð252Þ

(Here we renamed the couplings of the nonvariations.) In
higher orders we may define easily invariant insertions for
those which are not variations:

Δci ≔ ci
∂
∂ci Γ ði ¼ 1; 2; 3 no sumÞ; ð253Þ

however, it is clear that the (s − 1)-dependent normal
products c31½κ−1m

R ffiffiffiffiffiffi−gp
R�44 and c321=2½m2

R ffiffiffiffiffiffi−gp
R�44

also belong to the basis in higher orders and make part
of Γeff . Hence we define them also as invariant by the
respective derivation with respect to their coupling

Δc31 ≔ c31
∂

∂c31 Γ; Δc32 ≔ c32
∂

∂c32 Γ: ð254Þ

Accordingly we change the notation c3 → c30. The other
terms we also try to represent as symmetric differential
operators acting on Γ.
We rewrite Δ0

L:

Δ0
L ¼ b

�
fLðα0Þðα0Þ

Z
Lρcρ

�

¼ χf0L

Z
Lcþ fL

Z �
δΓ̄cl

δc
þ L

δΓ̄cl

δL

�
ð255Þ

¼ χf0L

Z
Lcþ fL

Z �
−c

δΓ̄cl

δc
þ L

δΓ̄cl

δL

�
ð256Þ

¼ −fLN LΓcl þ χf0L

Z
Lc; ð257Þ

where N denote a leg-counting operator. This suggests
defining ΔL to all orders by

ΔL · Γ ¼ fLðα0ÞN LΓ − χf0L

Z
Lc; ð258Þ

N L ≡
Z �

c
δ

δc
− L

δ

δL

�
¼ Nc − NL: ð259Þ

It is to be noted that the χ-dependent term in (258) is well
defined since L is an external field, hence the expression is
linear in the quantized field (c). ΔL does obviously not
depend on bρ, it satisfies the ghost equation and it fulfills
(223), since it can be written as

ΔL · Γ ¼ −BΓ̄

�
fL

Z
Lc

�
; ð260Þ

and since BΓ̄ is nilpotent. Hence it is a BRST symmetric
operator to all orders.
Finally we have to extend Δ0

H. We first rewrite it in the
form

Δ0
H ¼ b

�
fHðα0Þ

Z
Hμνhμν

�

¼ fHNHΓ̄cl − fHNHΓcl þ χf0H

Z
Hμνhμν: ð261Þ

Next we go over to Γcl in the variables K and c̄:

Δ0
H ¼ fHðNh − NK − Nb − Nc̄ þ 2α0∂α0 þ 2χ∂χÞΓcl

ð262Þ

þχf0H

�Z �
Kh − c̄

δΓcl

δb

�
þ 2α0

∂
∂χ Γcl

�
: ð263Þ

This suggests as definition of ΔH to all orders

ΔH · Γ ≔ fHN KΓ

þ χf0H

�Z �
Kh − c̄

δΓcl

δb

�
þ 2α0

∂
∂χ Γ

�
; ð264Þ

N H ≡ Nh − NK − Nb − Nc̄ þ 2α0∂α0 þ 2χ∂χ : ð265Þ

Or else

ΔH · Γ ≔ SΓ

�
fHðα0Þ

�Z �
Kh − c̄

δΓ
δb

�
þ 2α0

∂Γ
∂χ

��
:

ð266Þ

In view of

SΓSΓ ¼ 0 ð267Þ

for all Γ with SðΓÞ ¼ 0, ΔH is BRST symmetric once we
have verified that it is independent of bρ and satisfies the
ghost equation.

δ

δb
ðΔH · ΓÞ ¼ 0 ð268Þ

is readily checked in the form (264).

GðΔH · ΓÞ ¼ 0 ð269Þ

is best checked in the form (266) by observing that

G

�Z �
Kh − c̄

δΓ
δb

�
þ 2α0

∂Γ
∂χ

�
¼ 0; ð270Þ

and
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fG;SΓg ¼ 0 ð271Þ

(this latter property being due to GΓ ¼ −1=2χb).
To summarize in compact notation we denote the above

symmetric differential operators by

∇i ∈ fc1∂c1 ; c2∂c2 ; c30∂c30 ; c31∂c31 ; c32∂c32 ;N H;N Lg
ð272Þ

and have with (253), (254), (260), and (266) defined a basis
of symmetric insertions to all orders by

∇iΓ ≐ Δi · Γ: ð273Þ

The fact that symmetric differential operators and sym-
metric insertions are in one-to-one correspondence just
means that adding symmetric counterterms Δi to Γ is
renormalizing the corresponding quantity i indicated by ∇i
of the theory. Fixing the arbitrary parameters in the
symmetric insertions (250) is again performed by satisfying
normalization conditions and the present analysis shows
that the conditions (204) are appropriate. In higher orders
the Euclidean point−μ2 is relevant. α0 ¼ 0 and χ ¼ 0 are to
be chosen now. Once one has satisfied these normalization
conditions the theory is completely fixed.

V. REMOVING AUXILIARY MASS DEPENDENCE
VIA ZIMMERMANN IDENTITIES

Above we have introduced among the symmetric inser-
tions several which depend on the auxiliary mass. Here we
study to which extent they can be effectively removed by
using ZI’s [25].

A. Shift

In (99) we replaced c3κ−2 within γ
ðrÞ
KL, r ¼ 2, K ¼ L ¼ T

by c3κ−2 → c30κ−2 þmκ−1c31 þ 1
2
m2c32, where

m≡Mðs − 1Þ. On the level of symmetric insertions this
replacement corresponds to enlarging the basis of naively
BRST-invariant insertions with ρ ¼ δ ¼ 4 by
c31mκ−1

R ffiffiffiffiffiffi−gp
R and c32 1

2
m2

R ffiffiffiffiffiffi−gp
R, which are to be

taken into account in Γeff .
Then the question is whether one can via ZI’s eliminate

the m terms and maintain invariance. The sought invariant
½…�44 insertions are defined to all orders as symmetric
insertions via the invariant derivatives

�
κ−2

Z ffiffiffiffiffiffi
−g

p
R

�
4

4

¼ ∂
∂c30 Γ; ð274Þ

�
κ−1

Z ffiffiffiffiffiffi
−g

p
mR

�
4

4

¼ ∂
∂c31 Γ; ð275Þ

� Z ffiffiffiffiffiffi
−g

p 1

2
m2R

�
4

4

¼ ∂
∂c32 Γ; ð276Þ

and the symmetric counting operators N H;L. The relevant
ZI’s have the form

�
κ−2

Z ffiffiffiffiffiffi
−g

p
R

�
4

4

¼
�
κ−2

Z ffiffiffiffiffiffi
−g

p
R

�
3

3

þ ½…�44 ð277Þ

with ½…�44 ¼
� Z ffiffiffiffiffiffi

−g
p �

κ−2u0Rþ u31mκ−1Rþ u32
1

2
m2R

þ u1RμνRμν þ u2R2

�
þ uhN H þ ucN L

�
4

4

;

ð278Þ
�
κ−1

Z ffiffiffiffiffiffi
−g

p
mR

�
4

4

¼ m

�
κ−1

Z ffiffiffiffiffiffi
−g

p
κ−1R

�
3

3

þ ½…�44
ð279Þ

with ½…�44 ¼
� Z ffiffiffiffiffiffi

−g
p �

κ−2v30Rþ v0mκ−1Rþ v31
1

2
m2R

þ v1RμνRμν þ v2R2

�
þ vhN H þ vcN L

�
4

4

;

ð280Þ

and

� Z ffiffiffiffiffiffi
−g

p 1

2
m2R

�
4

4

¼ m

�Z ffiffiffiffiffiffi
−g

p 1

2
mR

�
3

3

þ ½…�44 ð281Þ

with ½…�44 ¼
� Z ffiffiffiffiffiffi

−g
p �

κ−2w30Rþw31mκ−1Rþw0

1

2
m2R

þw1RμνRμν þw2R2

�
þwhN H þwcN L

�
4

4

:

ð282Þ

All coefficients u, v, w are of order ℏ. The terms multiplied
by u0, v0, w0 respectively will be absorbed on the respective
left-hand side and then the respective line divided by
1 − u0, 1 − v0, 1 − w0, such that the normal products on
the right-hand side have the factors ð1 − u0Þ−1, ð1 − v0Þ−1,
ð1 − w0Þ−1 in the respective line. From this representation it
is then obvious that all ½…�33 insertions on the right-hand
side are symmetric, because all other insertions are sym-
metric. Since the relevant determinant in this linear system
of equations is clearly nonvanishing, one can solve for all
hard insertions ½R ffiffiffiffiffiffi−gp

Rðκ−2; mκ−1; 1
2
m2Þ�44 in terms of the

soft ones together with ðc1; c2;N H;LÞ terms. But those soft
insertions which contain the factorm vanish at s ¼ 1, hence
all hard m-dependent insertions have been eliminated. And
the hard insertion ½κ−2 R ffiffiffiffiffiffi−gp

R�44 has been effectively
replaced by its soft counterpart. These considerations are
crucial for deriving the parametric differential equations in
symmetric form and without m dependence at s ¼ 1.
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B. Push

Next we consider the problem of removing push by
using appropriate ZI’s. First we treat the contributions of
push to Γclass

inv [cf. (86)]. They occur in the second power of h
and have the form [see (87), (89)]

ΓðhhÞðm2Þ¼
Z

hμνðm2γ̂ð2ÞTTP
ð2Þ
TTþm2γ̂ð0ÞTTP

ð0Þ
TTÞμνρσhρσ: ð283Þ

In higher orders we have just the same terms, but now to be
understood as normal products ½…�44 in Γeff . We use the ZI

�Z
hμνðm2γ̂ð2ÞTTP

ð2Þ
TT þm2γ̂ð0ÞTTP

ð0Þ
TTÞμνρσhρσ

�
4

4

· ΓðhhÞ

¼ Mðs − 1Þ
�Z

hμνðmγ̂ð2ÞTTP
ð2Þ
TT þmγ̂ð0ÞTTP

ð0Þ
TTÞμνρσhρσ

�
3

3

· ΓðhhÞ þ ½corr:s�44 · ΓðhhÞ: ð284Þ

Here the γ̂’s are interpreted as differential operators andm≡Mðs − 1Þ is to be recalled. The corrections comprise first of all
the starting term from the left-hand side with a coefficient q ¼ OðℏÞ. We bring it to the left-hand side and divide by 1 − q.
This yields

�Z
hμνðm2γ̂ð2ÞTTP

ð2Þ
TT þm2γ̂ð0ÞTTP

ð0Þ
TTÞμνρσhρσ

�
4

4

· ΓðhhÞ

¼ Mðs − 1Þ
1 − q

�Z
hμνðmγ̂ð2ÞTTP

ð2Þ
TT þmγ̂ð0ÞTTP

ð0Þ
TTÞμνρσhρσ

�
3

3

· ΓðhhÞ þ
1

1 − q
½corr:s�44 · ΓðhhÞ: ð285Þ

As correction terms appear the hh-vertex functions with all
½…�44 insertions. We now can demand s0 invariance because

this is a linear transformation. Among the γ̂ðrÞK;L contribu-
tions precisely those with r ¼ 2; 0; K ¼ L ¼ T are s0
invariant (see Appendix B), hence they have been absorbed
already. The other contributions go with the symmetric

differential operators N H;L. These are however BRST
variations and thus vanish between physical states. There-
fore this part of push does at s ¼ 1 not contribute to
physical quantities.
The second (and last) appearance of push is within gauge

fixing and ϕπ terms.

ðΓgf þ ΓϕπÞðm2ÞÞ ¼ −
1

2

Z �
1

κ
hμνðxÞð∂μbν þ ∂νbμÞðyÞ

m2

ðx − yÞ2 þDμν
ρ cρðxÞð∂μc̄ν þ ∂νc̄μÞðyÞ

m2

ðx − yÞ2
�

¼ −
1

2

Z
sΓ

�
hμνðxÞð∂μc̄ν þ ∂νc̄μÞðyÞ

m2

ðx − yÞ2
�
: ð286Þ

The product in the last line is point split in (x ↔ y).
Divergences can be developed at coinciding points in such
a way that they can be controlled by a ZI

½hμνðxÞð∂μc̄ν þ ∂νc̄μÞðyÞm2�44 · Γ
¼ m½hμνðxÞð∂μc̄ν þ ∂νc̄μÞðyÞm�33 · Γ
þ ½corr:s�44 · Γ: ð287Þ

Among the corrections, again, appears the normal product
of the left-hand side, which can be absorbed there, such that
on the right-hand side only all other insertions of dimension
4 and ϕπ charge −1 show up. These are Kμνhμν, Lρcρ

which are both naively defined because they are linear in
the quantized fields. At s ¼ 1 they are the only surviving

terms which contribute in (286) and then eventually vanish
after integration between physical states.

VI. THE INVARIANT PARAMETRIC
DIFFERENTIAL EQUATIONS

A. The Lowenstein-Zimmermann equation

Green’s functions must be independent of the auxiliary
massM at s ¼ 1, so one has to know the action ofM∂M on
them. Since the ST identity does not depend onM,M∂M is
a BRST-invariant differential operator and can be expanded
in the basis provided by (272). In fact with the ZI’s (279)
and (281) and the discussion there we can consider the
basis of symmetric differential operators to be given by
c30∂c30 , c1∂c1 , c2∂c2 complemented with the symmetric
counting operators N H;L. Furthermore we have shown that
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the contributions coming from push (285) and the con-
tributions from shift go at most into the symmetric counting
operators. Hence

M∂MΓ ¼ ð−βLZ30 c30∂c30 − βLZ1 c1∂c1 − βLZ2 c2∂c2

þ γLZh N H þ γLZc N LÞΓ: ð288Þ

The coefficient functions β, γ can be determined by testing
on normalization conditions. The test on (288) involving
external fields

∂
∂pλ ΓLρcσcτ jp2¼−μ2

s¼1

¼ −iκðδρσηλτ − δρτηλσÞ ð289Þ

implies

M∂M∂pΓLccjp2¼−μ2
s¼1

− γLZc ð∂pΓLccjp2¼−μ2
s¼1

Þ ¼ 0: ð290Þ

Since the M derivative in the first term is not in conflict
with going to the argument of Γ, the first term vanishes and
hence γLZc ¼ 0. Quite analogously we may proceed for

∂
∂pσ ΓKμνcρ jp2¼−μ2

s¼1

¼ −iκðημσδνρ þ ηνσδμρ − ημνδσρÞ: ð291Þ

Here this test on (288) yields

M∂M∂pΓKcjp2¼−μ2
s¼1

− γLZh ð−∂pΓKcjp2¼−μ2
s¼1

Þ
− γLZc ð−∂pΓKcjp2¼−μ2

s¼1

Þ ¼ 0: ð292Þ

With the same argument as before, γLZc ¼ 0 and γLZh ¼ 0

follows.
For obtaining the β functions we use the normalization

conditions (204) for γð2ÞTT and γð0ÞTT. The test

∂
∂p2

γð2ÞTT jp2¼0
s¼1

¼ c30κ−2 ð293Þ

implies

M∂M
∂

∂p2
γð2ÞTT jp2¼0

s¼1

þ c30κ−2βLZc30 ¼ 0: ð294Þ

Since the normalization does not involveM, the first term is
zero, hence βLZc30 ¼ 0. It is clear that the other β functions
vanish too. Hence at s ¼ 1 the LZ equation

M∂MΓjs¼1 ¼ 0 ð295Þ

holds and reveals that the vertex functions are independent
of M at s ¼ 1.

B. The renormalization group equation

The RG equation formulates the response of the system
to the variation of the normalization parameter μ [see
(204)], where e.g., couplings or field amplitudes are
defined. Since the ST operator does not depend on μ,
the partial differential operator μ∂μ is symmetric and can be
expanded in the basis (272). Quite analogously to the LZ
equation (by removing push and shift) we end up with

μ∂μΓjs¼1 ¼ ð−βRG30 c30∂c30 − βRGc1 c1∂c1 − βRGc2 c2∂c2

þ γRGh N H þ γRGc N LÞΓjs¼1: ð296Þ

We observe that some normalization conditions involve μ,
hence performing derivatives with respect to μ does not
commute with choosing arguments for the relevant vertex
functions, and we expect nontrivial coefficient functions.
Again we start with those tests which involve external
fields, i.e.,

∂
∂pλ ΓLρcσcτ jp2¼−μ2

s¼1

¼ −iκðδρσηλτ − δρτηλσÞ: ð297Þ

Now μ∂μ does not commute with choosing a μ-dependent
argument, hence

μ∂μ
∂
∂pλ ΓLρcσcτ jp2¼−μ2

s¼1

þ iγRGc κðδρσηλτ − δρτηλσÞ ¼ 0 ð298Þ

which determines γRGc . For the normalization condition

∂
∂pσ ΓKμνcρ jp2¼−μ2

s¼1

¼ −iκðημσδνρ þ ηνσδμρ − ημνδσρÞ ð299Þ

the structure is exactly the same as in the preceding
example such that the result is

μ∂μ
∂

∂pσ ΓKμνcρ jp2¼−μ2
s¼1

þ ðγRGc − γRGh Þiκðημσδνρ
þ ηνσδμρ − ημνδσρÞ ¼ 0: ð300Þ

This equation gives γRGh . The β functions will be deter-
mined by the normalization conditions for the couplings.
The normalization condition

∂p2γð2ÞTT jp2¼0
s¼1

¼ c30κ−2 ð301Þ

is independent from μ hence it implies

μ∂μ∂p2γð2ÞTT jp2¼0
s¼1

¼ 0 ¼ −βRG30 c30κ−2 þ 2c30κ−2γRGh : ð302Þ

This determines βRGc30 . The other normalization conditions,
however, depend on μ and thus result in
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μ∂μ∂p2∂p2γð2ÞTT jp2¼−μ2
s¼1

¼ 2c1βRG1 − 2c1γRGh ; ð303Þ

μ∂μ∂p2∂p2γð0ÞTT jp2¼−μ2
s¼1

¼ −6c2βRGc2 þ 2c1βRG1

þ 2ð3c2 − c1ÞγRGh : ð304Þ

These equations determine βRG1 , βRG2 . These coefficient
functions depend on the product μκ. Since we work in
Landau gauge, they do not depend on a gauge parameter.

C. The Callan-Symanzik equation

The CS equation describes the response of the system to
the variation of all parameters carrying the dimension of
mass. Here M, μ, and κ. The variation of M has been
covered by the LZ equation with the result that Green’s
functions do not depend on it at s ¼ 1. The variation of μ
has been treated as well. As far as κ is concerned, it is
crucial to observe that the ST identity depends on it, hence
it does not per se give rise to a symmetric differential
operator. However acting with −κ∂κ on Γclass we find

−κ∂κΓclass ¼ ð2c3∂c3 þ ðNb − 2α0∂α0Þ
− NK − NLÞΓclass: ð305Þ

Hence the combination

−κ∂κ − 2c30∂c30 − ðNb − 2α0∂α0Þ þ NK þ NL ð306Þ

is independent of κ on Γclass, the variation of κ is just
balanced by the other derivatives; this combination forms a
differential operator which commutes with the ST identity,
and thus is symmetric.
In higher orders we can therefore expand this operator in

the basis of (268) and obtain

ð−κ∂κ − 2c30∂c30 − ðNb − 2α0∂α0Þ þ NK þ NLÞΓjs¼1

¼ ð−β30c30∂c30 − βc1c1∂c1 − βc2c2∂c2 þ γhNH

þ γcN LÞΓjs¼1; ð307Þ

where the contributions going with the variation of c31, c32
have been eliminated with the ZI’s (279) and (281). Like
for the LZ equation (288) the coefficient functions vanish,
since the normalization conditions and the differential
operator are not in conflict with each other, i.e.,

ð−κ∂κ − 2c30∂c30 − ðNb − 2α0∂α0Þ þ NK þ NLÞΓjs¼1 ¼ 0:

ð308Þ

We eliminate in the RG equation (296) the hard insertion
c30∂c30 and add the result to (308) obtaining the CS
equation in its conventional form

ðμ∂μ − κ∂κ − 2c30∂c30 − ðNb − 2α0∂α0Þ þ NK þ NL

þ βCS1 c1∂c1 þ βCS2 c2∂c2 − γCSh N H − γCSc N LÞΓjs¼1

¼ αCS
�
κ−2

Z ffiffiffiffiffiffi
−g

p
R

�
3

3

· Γjs¼1: ð309Þ

The coefficient functions are of order OðℏÞ. Their values
have to be determined by testing the normalization con-
ditions and taking care of the soft contribution. The
differential operator can be interpreted as a symmetrized
version of the dilatations and the equation then says that in
the deep Euclidean region the soft breaking on the right-
hand side becomes negligible and the hard breaking is
parametrized by the functions β and γ. Between physical
states only the β’s would be relevant.
Before testing (309), we have to note that all coefficient

functions start with order OðℏÞ. This is clear for β’s and γ’s
because they were introduced via the action principle after
having applied the symmetric differential operator to Γ. But
contrary to more conventional models this is here also true
for αCS, because it was traded against the hard insertion
½R ffiffiffiffiffiffi−gp

R�44. This has to do with the special character of the
symmetric differential operator and the κ dependence of Γ:
The EH action depends on κ which carries dimension, but
acts as a mass term only relative to the higher deriva-
tive terms.
We test on

∂
∂pλ ΓLρcσcτ jp2¼−μ2

s¼1

¼ −iκðδρσηλτ − δρτηλσÞ: ð310Þ

In order to understand the impact of the symmetric differ-
ential operator we start with the tree approximation and find

ð−κ∂κ þ 1Þ ∂
∂pλ Γ

ð0Þ
Lρcσcτ

¼ 0; ð311Þ

which is correct, since μ∂μ − 2c30∂c30 does not contribute
and from counting operators onlyNL does. In higher orders
μ∂μ no longer commutes with going to the desired value for
p, whereas κ∂κ − 2c30∂c30 þ NL does, hence

μ∂μ
∂
∂pλ ΓLρcσcτ jp2¼−μ2

s¼1

− γCSc ð−iÞκðδρσηλτ − δρτηλσÞ

¼ αCS
�
κ−2

Z ffiffiffiffiffiffi
−g

p
R

�
3

3

· ∂pλΓLρcσcτ jp2¼−μ2
s¼1

: ð312Þ

Herewith γCSc is determined. (The α term contributes not
earlier than in two loops, since we are concerned with 1PI
diagrams.)
We test on

∂
∂pσ ΓKμνcρ jp2¼−μ2

s¼1

¼ −iκðημσδνρ þ ηνσδμρ − ημνδσρÞ ð313Þ
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and, again, because also the term −κ∂κ − 2c30∂c30 þ NK

commutes with going to a specific value of p, we find in
higher orders

μ∂μ
∂

∂pσΓKμνcρ jp2¼−μ2
s¼1

−ðγCSh −γCSc Þiκðημσδνρþηνσδμρ−ημνδσρÞ

¼αCS
�
κ−2

Z ffiffiffiffiffiffi
−g

p
R

�
3

3

·
∂

∂pσΓKμνcρ js¼1: ð314Þ

This yields eventually γCSh . With the same argument αCS and
the βCS1;2 are given by

μ∂μ∂p2γð2ÞTT jp2¼−μ2
s¼1

− 2c30κ−2γCSh

¼ αCS
�
κ−2

Z ffiffiffiffiffiffi
−g

p
R

�
3

3

· Pð2Þ
30 Γjs¼1; ð315Þ

μ∂μ∂p2∂p2γð2ÞTT jp2¼−μ2
s¼1

− 2c1βCS1 − 2c1γCSh

¼ αCS
�
κ−2

Z ffiffiffiffiffiffi
−g

p
R

�
3

3

· Pð2Þ
1 Γjs¼1; ð316Þ

μ∂μ∂p2∂p2γð0ÞTT jp2¼−μ2
s¼1

þ 6c2βCS2 − 2c1βCS1

þ 2ð3c2 − c1ÞγCSh ¼ αCS
�
κ−2

Z ffiffiffiffiffiffi
−g

p
R

�
3

3

· Pð0Þ
2 Γjs¼1:

ð317Þ

Equation (315) determines αCS and (316), (317) determine
βCS1;2, respectively. The symbolsP stand for projectors of Γhh

into the components

P30 → ∂p2γð2ÞTTðp2Þ; P1 → ∂p2∂p2γð2ÞTTðp2Þ;
P2 → ∂p2∂p2γð0ÞTTðp2Þ: ð318Þ

These are part of the full vertex functions of higher orders.
Clearly those admit also the expansion in the projector
basis as in the classical approximation. Also the coefficient
functions of the CS equation depend only on μκ, besides the
parameters c1, c2, c30.

VII. TRACES OF THE EINSTEIN-HILBERT
THEORY

It has already been observed by [4] that the introduction
of RμνRμν and R2 in the classical action leads to a
regularization of the h-field propagator analogously to
the Pauli-Villars regularization (cf. [26]). This regulari-
zation is not sufficient to render the model finite, but it
becomes power counting renormalizable. This implies
that all standard tools of, say, BPHZL renormalization
become available. Furthermore, the BPHZL renormaliza-
tion scheme may be formulated with such regularization,

but has been shown to be independent of it [5,20] provided
the regulator-free model is finite. Unsurprisingly, it can be
shown that in our construction the limit c1, c2 → 0 exists
up to one-loop diagrams so that the result of [1] can be
recovered. For diagrams of higher loop order, new
divergencies occur which are not treated by the subtrac-
tions in the BPHZL scheme. Those additional divergen-
cies can be verified by setting the UV degrees in (104) and
(105) equal to −2 and subsequently following the argu-
ment in Sec. III B with these new degrees. This just means
for our work that beyond one loop we have to take
nonvanishing parameters c1 and c2 and have to examine in
which sense we find the EH theory in our model.

A. Projection to Einstein-Hilbert

We still have to check in some detail how the S-matrix
(42) is affected by this limit. The factor Kðx − yÞ is the

wave operator of the free theory, hence given by Γð0Þ
ΦiΦj

(recall that the fields Φ are the free Φin fields). At c1 ¼
c2 ¼ 0 the hh submatrix has only p2 contributions, no
ðp2Þ2, hence projects to the pole at p2 ¼ 0 (for s ¼ 1), as
desired. The matrix z−1, commonly the wave function
renormalization matrix, is here in fact the matrix r of the
residues of the poles, since the h wave function has been
fixed in (400) (and the others by the b equation of motion).
Contributions of the possible second singularity of the
propagator are projected to zero because no respective
factor in the numerator, coming from Φin, is available.
Hence for physical quantities they are always projected to
0, as we have seen for the S-matrix.
Before the fields Φin project to the mass shells, one can

introduce a Φin ¼ zΦin with the implication z−1TKðx − yÞ
z−1 ¼ ΓΦðxÞΦðyÞ—here the full ΓΦΦ. Then one can use the
results of ST etc., and derive in analogy to the tree
approximation that the commutator of ∶Σ∶with ST generates
again QBRST as needed.
A comment is in order. The reason for going via c1, c2

from the very beginning can be understood just as a means
to avoid “unnecessary” even higher derivative counterterms
(confer [2]). This can be seen as follows: Starting with c3
terms alone, one realizes in one loop that higher derivative
counterterms are required. Absorbing these and transition-
ing into a new propagator, the power counting becomes the
same as in the ðc1; c2; c3Þ model. This roundabout pro-
cedure has been circumvented by starting immediately with
all terms guaranteeing power counting renormalizability. In
this context, it is quite natural to consider even higher
orders of derivatives of the metric in the classical action,
which would render the model super-renormalizable (con-
fer [27]). However, these higher orders do not have a
regularizing effect at the order ℏ so that the occurring
divergencies have to be treated separately. Thus the analytic
structure of such models is obscured to a certain extent.
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B. Parametric differential equations of the S-matrix

It is of quite some interest to investigate how the S-matrix
behaves under RG transformation and under scaling, i.e.,
under action of the CS operator.
First we need the expressions of the symmetric differ-

ential operators N H;L [cf. (266) and (260)] when they act
on Z:

N HZ≡ i
Z �

−Jh
δ

δJh
− K

δ

δK
þ jc̄

δ

δjc̄

�
Z;

N LZ≡ i
Z �

−jc
δ

δjc
− L

δ

δL

�
Z: ð319Þ

Next we introduce

ŜðJÞ≡ ∶Σ∶ZðJÞ; ð320Þ

a kind of off-shell S-matrix. In order to see how the
S-matrix transforms under the RG we look at

μ∂μŜðJÞ¼∶ðμ∂μYÞeY∶ZðJÞþ∶Σ∶μ∂μZðJÞ;

Y≡
Z

dxdyΦinðxÞKðx−yÞz−1 δ

δJ
;

Kðx−yÞ¼Γð0Þ
ΦΦ;μ∂μY

¼
Z

dxdyΦinðxÞKðx−yÞðμ∂μz−1Þ
δ

δJ
¼0 ð321Þ

with z−1 being the residue matrix of the poles at p2 ¼ 0. In
the hh sector these residues are independent of μ: for the
spin two part directly as guaranteed by the subtraction
scheme (204); in the spin zero part then indirectly via ST.
In the bh mixed sector they are μ independent because
they are directly determined by the gauge fixing which is
independent of it.
In the second term of (321) the operators N do not

contribute, because they are BRST variations and therefore
mapped to zero by ∶Σ∶. The final outcome is

μ∂μS ¼ ð−βRG30 c30∂c30 − βRG1 c1∂c1 − βRG2 c2∂c2ÞS: ð322Þ

For S-matrix elements which exist, regarding the infrared,
this relation applies. It is remarkable that (although here it is
formal in many cases) this is the analog to the result which
Zimmermann has derived axiomatically for massless ϕ4

theory [28].
With completely analogous arguments one can derive the

CS equation for the S operator, i.e.,

ðμ∂μ − κ∂κ − 2c30∂c30 þ βCS1 c1∂c1 þ βCS2 c2∂c2ÞS

¼ αCS
�
κ−2

Z ffiffiffiffiffiffi
−g

p
R

�
3

3

· S

¼ αCS
��

κ−2
Z ffiffiffiffiffiffi

−g
p

R

�
3

3

�
Op
: ð323Þ

The qualification is as before: the equation is meaningful
only for matrix elements which exist regarding the infrared.
It shows however in those cases how scaling is realized.

VIII. GENERAL SOLUTION OF THE SLAVNOV-
TAYLOR IDENTITY

As mentioned at the end of Sec. II B the propagators for
the field hμν require one to consider it as a field with
canonical dimension zero. It is thus impossible to distin-
guish via power counting between h and an arbitrary
function h0ðhÞ. This is familiar from supersymmetric gauge
theories where in linear realization of supersymmetry the
real gauge superfield ϕðx; θ; θ̄Þ, known as the “vector
superfield,” also has vanishing canonical dimension [14].
One can take over from there mutatis mutandis the treat-
ment of such fields. In the present context this means in
particular that for finding the general solution of the
Slavnov-Taylor identity one just chooses a special one,
here hμν ≡ hμνs , with its transformation law (9) shμνs ≡
QsðhsÞ and replaces it by a general invertible functionF ðhÞ

F μνðhÞ ¼ z1hμν þ
X
n;k

znkF
μν
n;kðh…h|ffl{zffl}

n

Þ: ð324Þ

Here n ¼ 2; 3;…; k ¼ 1; 2;…kmaxðnÞ and Fμν
n;k denotes the

most general contravariant two-tensor in flat Minkowski
space which one can form out of n factors of h and which
does not contain terms with ημν as factor. The reason for this
restriction will be explained at the end of this section.
The coefficients have been denoted znk because the

redefinition h → F is just a generalized wave function
renormalization, the standard one being given by F ðhÞ ¼
z1h leading to Ĥ ¼ z−11 H in the ST identity.
A remark is in order. That the nonlinear redefinition

Fμν
n;kðhÞ is not a formal exercise, but indeed necessary in the

course of renormalization, has been shown explicitly, e.g.,
in (1.7) of [29]. It is also to be noted that at every order n in
the number of field h there are only finitely many free
parameters zn;k to be prescribed by normalization condi-
tions (Sec. VIII D).

A. Tree approximation

On the level of the functional Γclass ≡ Γs this change
manifests itself in the form

Γ̄ðh; c;H; LÞ ¼ Γ̄sðĥ; ĉ; Ĥ; L̂Þ; ð325Þ

PERTURBATIVE QUANTIZATION OF EINSTEIN-HILBERT … PHYS. REV. D 104, 086012 (2021)

086012-25



where Γ̄sðĥ; ĉ; Ĥ; L̂Þ is the special solution of (40) with h,
c, H, L replaced by

ĥμν ¼ F μνðhμνÞ; Ĥμν ¼
δ

δĥμν

Z
HμνF−1

μν ðĥÞjĥ¼F ðhÞ

ð326Þ

ĉρ ¼ zccρ; L̂ρ ¼ 1

zc
Lρ: ð327Þ

Again inspired by the case of supersymmetry [30] (Sec. 5.
4, p. 68), we shall now show that the parameters znk; n ≥ 2
are of gauge type, hence unphysical. At the same time this
represents a second way to find the general solution of the
ST identity. We start from an arbitrary invertible functionM
and its BRST variation N,

MμνðhÞ¼ a1hμνþ
X
n;k

an;kðh � � �h|fflffl{zfflffl}
n

Þμν; sM¼N; ð328Þ

where n ¼ 2; 3;… and k ¼ 1;…; kmaxðnÞ being the num-
ber of two-tensors which can be formed out of n factors h
without ημν. [kmaxðnÞ is finite for every n.] Both are
composite hence we couple them to external fields M
and N . M will serve as defining a new, nonlinear gauge

Γgf ¼
1

2κ

Z
ð∂μMμνbν þ ∂νMμνbμÞ −

1

2

Z
ημνbμbν; ð329Þ

giving rise to the gauge condition

δΓgf

δbμ
¼ 1

κ
∂λMλν − bμ; ð330Þ

δΓ
δbμ

¼ 1

κ
∂λ

δΓ
δMλμ

− bμ: ð331Þ

To this gauge fixing the ϕπ term

Γϕπ ¼ −
1

2

Z
Nμνð∂μc̄ν þ ∂νc̄μÞ ð332Þ

and the ST

SðΓÞ≡
Z �

δΓ
δK

δΓ
δh

þ b
δΓ
δc̄

−M
δΓ
δN

þ δΓ
δL

δΓ
δc

�
¼ 0 ð333Þ

are suitable. Gauge condition (330) and ST identity (333)
lead to the ghost equation of motion

δΓ
δc̄μ

− κ−1∂λ
δΓ

δN λμ
¼ 0; ð334Þ

which has the general solution

Γ ¼
Z �

−
1

2
ημνbμbν

�
þ Γ̄ðh; c; K; L;M0;N 0Þ; ð335Þ

M0 ¼ M −
1

2κ
ð∂μbν þ ∂νbμÞ; ð336Þ

N 0 ¼ N −
1

2
ð∂μc̄ν þ ∂νc̄μÞ; ð337Þ

Γ̄ ¼ ΛðhÞ þ
Z

ðKOðh; cÞ þM0MðhÞ þN 0Nðh; cÞ

− Lμðcλ∂λcμÞÞ: ð338Þ

We now demand BRST invariance, i.e., (333), providing
the linearized transformation law

BΓ̄h
μν ¼ Oμν; BΓ̄c

μ ¼ −κcλ∂λcμ; BΓ̄c̄μ ¼ bμ;

ð339Þ

calculate the effect on (335) and find the conditions

BΓ̄O ¼ 0; ð340Þ

BΓ̄M ¼ N; ð341Þ

BΓ̄N ¼ 0; ð342Þ

BΓ̄Λ ¼ 0: ð343Þ

The solution of (340) we know from the first part of this
section to be

O ¼ QF ðh;cÞ ¼
Z

δF−1ðĥÞ
δh

Qsðĥ; cÞjĥ¼F ðhÞ; ð344Þ

F being given from (324) and z1 ¼ 1. Since BΓ̄ is nilpotent
on functionals T ðh; cÞ

B2
Γ̄T ¼ 0; ð345Þ

(342) follows from (341) with

N ¼ B̄Γ̄M ¼
Z

dxOðxÞ δM

δĥðxÞ

¼
Z

dxdy
δF−1ðĥðxÞÞ

δĥðyÞ Qsðĥ; cÞðyÞ
δMðhÞ
δhðxÞ ð346Þ

¼
Z

dyQsðĥ; cÞðyÞ
δ

δĥðyÞMðF−1ðĥÞÞjĥ¼F ðhÞ: ð347Þ

Equation (343) is solved by

Λ ¼ Γclass
inv ðF ðhÞÞ; ð348Þ
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with Γclass
inv being given by (2). Therefore the general solution of the ST identity (333) is given by

Γðh; c; K; L;M0;N 0Þ ¼
�
Γclass
inv ðĥÞ þ

Z
dxdyKðxÞ δF

−1ðĥðxÞÞ
δĥðyÞ Qsðĥ; cÞðyÞ

þ
Z

dxdyN ðxÞQsðĥ; cÞðyÞ
δ

δĥðyÞMðF−1ðĥÞÞðxÞ
�





ĥ¼F ðhÞ

þ
Z

ð−κLμcλ∂λcμ þM0M þN 0N þ ημνbμbνÞ: ð349Þ

In order to compare this general solution with the previous
one, we define a new gauge function by

M̂ ¼ MðF−1ðĥÞÞ ð350Þ

with associated

Γðh; c; K; L;M0;N 0Þ

¼
�
Γclass
inv ðĥÞ þ

Z
dxK̂ðxÞQsðĥ; cÞðxÞ

þ
Z

dxdyN 0ðxÞQsðĥ; cÞðyÞ
δ

δĥðyÞ M̂ðĥÞðxÞ

þ
Z �

M0M̂0ðĥÞ þ 1

4κ2
ð∂μ∂νĥ

μνÞ2
��





ĥ¼F ðhÞ

− κ

Z
ðLμcλ∂λcμÞ; ð351Þ

where

K̂ ¼
Z

dxKðxÞ δF
−1ðĥðyÞÞ
δĥðxÞ






ĥ¼F ðhÞ

: ð352Þ

This shows that the solution (349) corresponding to a
function F ðhÞ and a gauge function MðhÞ is modulo the
canonical transformation h → ĥ ¼ F ðhÞ andK → K̂ðK; hÞ
equivalent to the solution corresponding to F ðhÞ ¼ h and
gauge function M̂ ¼ MðF−1ðhÞÞ.
At this stage we are able to explain the restrictions on

F ðhÞ mentioned at the beginning of this section. We want
the transition h → F ðhÞ to be a canonical transformation.
But then the one-particle states associated with the two
fields must be the same (up to a numerical factor). Then F
must start with z1hμν and must not contain ημνhλλ.
In [6,7] the conformal transformation properties of the

energy-momentum tensor (EMT) in massless ϕ4 theory
have been studied. In that context redefinitions of hμν [8] as
here had to be understood because they governed the
renormalization of the EMT. There admitting an ημν would
have mixed renormalization of the EMT as a whole with
that of its trace and was therefore forbidden altogether.
Hence here, too, one does not admit it at any power of h.

It is worth mentioning that in the same reference the
BRST transformations of hμν and their algebra had been
derived in the form of local Ward identities for translations
in spacetime. Their explicit solution, i.e., representation on
hμν, turned out to be unstable, namely just admitting the
transition hμν → F μνðhÞ. So, that represents a welcome,
independent and explicit proof of the considerations here
on the general solution of the ST identity.
As a further interesting byproduct of this redefinition

question, we would like to mention that the transition from
hμν ¼ gμν − ημν to the Goldberg variable h̃μν ¼ ffiffiffiffiffiffi−gp

gμν −
ημν implies changing one-particle states. This can be seen as
follows:

ffiffiffiffiffiffi
−g

p
gμν ¼ ημν þ h̃μν; ð353Þ

gμν ¼ ημν þ hμν; ð354Þ

h̃μν − hμν ¼ ð ffiffiffiffiffiffi
−g

p
− 1Þðημν þ hμνÞ; ð355Þ

h̃μν ¼ hμν −
1

2
ημνhλλ þ ημν

�
1

8
ðhααÞ2 þ

1

4
hαβhαβ

�

−
1

2
hααhμν þOðh3Þ: ð356Þ

The h-linear term proportional to ημν generates new one-
particle poles relative to the original hμν, as can be seen by
comparing the hhhi propagators in our approach with those
of [4,3]. They belong to the spin 0 part of the full field hμν

and will eventually be eliminated from the physical
spectrum, but they have to be taken care of. Hand in hand
with this goes a change of the BRST transformation
from shμν → sh̃μν.

B. Gauge parameter independence for the general case

In the previous subsection we have seen that the field
hμν can be replaced by a general, invertible function F of
itself, (324), and that the parameters znk; n ¼ 2; 3.::;
k ¼ 1; 2;…; kmaxðnÞ are gauge type parameters. Like
for α0 we would like to show that the dependence of
the Green’s functions from these parameters can be
controlled by a suitable change of the ST identity [see
(58) and (59)]. Hence we introduce anticommuting
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parameters χnk which form together with znk doublets
ðznk; χnkÞ under BRST transformations

sznk ¼ χnk; n ¼ 2; 3;…; k ¼ 1; 2;…; kmaxðnÞ;
sχnk ¼ 0: ð357Þ

They contribute to the ST identity

SðΓÞ þ χnk∂znkΓ ¼ 0; ŜZ≡ SZ þ χnk∂znkZ ¼ 0:

ð358Þ

If we succeed in proving these generalized ST identities
we know that the parameters znk generate unphysical
insertions. We just differentiate (358) by χnk and obtain

∂znkZ ¼ −S∂χnkZ ¼ iS½Δ−
ðnkÞZ�ðJ; K; LÞ; ð359Þ

where Δ− is an insertion of dimension 4 and ϕπ charge
−1, generated by ∂χnk. Whereas for the doublet ðα0; χÞ we
had to enlarge the gauge fixing, we can proceed here more
directly because the parameters znk show up only in the
redefinition of h. It is readily seen that one has to change
only Γ̄ into

Γ̄ðh; c;H; L; znk; χnkÞ

¼ Γ̄sðĥ; ĉ; Ĥ; L̂Þ þ
X
nk

χnk

�Z
KμνG

μν
nk þ rnk

�Z
Lμcμ

��

ð360Þ

with

ĥ ¼ F ðh; znkÞ; Ĥ ¼ δ

δĥ

Z
HF−1ðĥ; znkÞjĥ¼F ðh;znkÞ;

ð361Þ

ĉ ¼ yðznkÞc; L̂ ¼ 1

yðznkÞ
L; ð362Þ

Gnkðh; znkÞ ¼ −
∂

∂znk F
−1ðh; znkÞjĥ¼F ðh;znkÞ;

rnk ¼ −
1

yðznkÞ
∂

∂znk yðznkÞ ð363Þ

and yðznkÞ is a general function of its arguments. From the
preceding subsection we know that for χnk ¼ 0 this is the
general solution of the ST identity. For χnk ≠ 0 one has to
go through (358) to convince oneself that this is the case.
The parameters znk, yðznkÞ will be fixed by normalization
conditions. We choose the following:
The normalization condition (82) fixes yðznkÞ ¼ 1,

hence rðznkÞ ¼ 0 (note: n ≥ 2). In order to fix znk one
has to look in the general solution of the ST identity at the

term
R
HμνsF μν ¼ R P

n;k znkHμνsðh…hÞμν, where s
denotes the standard BRST transformation of h, and to
project such that e.g.,

∂pΓHcPðh…h|ffl{zffl}
n

Þjp¼0 ¼ znk: ð364Þ

Here P denotes a suitable projector. We do not work out the
details of its definition.

C. Gauge parameter independence in higher orders

The aim is now to prove (59) and (358) to all orders of
perturbation theory. Taken together

SðΓÞ þ
�
χ∂α0 þ

X
n;k

ðχnk∂znkÞ
�
Γ ¼ 0;

SZ þ
�
χ∂α0 þ

X
n;k

ðχnk∂znkÞ
�
Z ¼ 0: ð365Þ

We start from

Γsðh; c; c̄; b; K; LÞ ¼ Γ̄sðh; c; c̄; K; LÞ

−
1

2κ

Z
dxdyhμνðxÞð∂μbν þ ∂νbμÞðyÞ

×

��
□

4π2
þm2

�
1

ðx − yÞ2
�

−
1

2
α0

Z
bμbνημν: ð366Þ

Γ̄sðh; c; c̄; K; LÞ ¼ ΓsðclassÞ
inv ðhÞ

−
1

2

Z
dxdyQsμνðxÞð∂μc̄ν þ ∂νc̄μÞðyÞ

×

��
□

4π2
þm2

�
1

ðx − yÞ2
�

þ
Z

ðKμνQsμνðh; cÞ − κLμcλ∂λcμÞ

−
1

4
χðc̄μbν þ c̄νbμÞημνÞ: ð367Þ

The b-dependent terms can be trivially regained from the
gauge condition

δΓs

δbρ
¼ κ−1

Z
dy∂μhμρðyÞ

��
□

4π2
þm2

�
1

ðx − yÞ2
�

− α0bρ −
1

2
χc̄ρ; ð368Þ

whereas the ghost equation of motion reads
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δΓs

δc̄ρðxÞ
¼ −

Z
dy∂λ

δΓs

δKλρðyÞ
��

□

4π2
þm2

�
1

ðx − yÞ2
�

þ 1

2
χbρ: ð369Þ

The general solution has been obtained on the classical
level, (360), as

Γ̄ðh; c;H; L; znk; χnkÞ
¼ Γ̄sðĥ; ĉ; Ĥ; L̂Þ

þ
X
nk

χnk

�Z
KμνG

μν
nk þ rnk

�Z
Lμcμ

��
ð370Þ

with hatted fields given in (361). Due to the presence of the
parameter doublets the ST identity has the form

SðΓÞ ¼ BðΓ̄Þ ð371Þ

≡
Z �

δΓ̄
δH

δΓ̄
δh

þ δΓ̄
δL

δΓ̄
δc

�
þ χ

∂Γ̄
∂α0 þ

X
n;k

χn;k
∂Γ̄
∂zn;k ¼ 0:

ð372Þ

The nonlinear operator Bðγ̄Þ and the linear operator

Bγ̄ ≡
Z �

δγ

δH
δ

δh
þ δγ

δh
δ

δH
þ δγ

δL
δ

δc
þ δγ

δc
δ

δL

�

þ χ
∂
∂α0 þ

X
n;k

χn;k
∂

∂zn;k ð373Þ

satisfy the identities

BγBðγÞ ¼ 0 ∀ γ; ð374Þ

BγBγ ¼ 0 if BðγÞ ¼ 0: ð375Þ

Since the classical action satisfies the ST identity, we have
for the tree approximation from (375)

b2 ¼ 0 for b≡ BΓ̄class
; ð376Þ

i.e., b is nilpotent.
The action principle tells now that

SΓ ¼ ½Δ�55 · Γ ¼ ΔþOðℏΔÞ; ð377Þ

where Δ is an insertion with UV ¼ IR degree ¼ 5 and
Qϕπ ¼ 1, and we have on the right-hand side separated the
trivial diagram contribution (tree diagrams) from higher
orders (loop diagrams). If we do not admit counterterms
depending on α0, which is possible since the b equation of
motion can be integrated trivially, we can discard in the
following the contribution of the doublet (α0, χ) and have to

discuss only the doublets ðznk; χnkÞ. Equation (376) leads
then to the consistency condition

bΔ ¼ 0; ð378Þ
which is a classical equation. Furthermore gauge condition
(368) and ghost equation of motion (369) imply that the
local functional Δ only depends on the fields h, c, H, L.
The general solution of (378) is given by

Δ ¼ bΔ̂þ rAðh; cÞ; ð379Þ

where Δ̂ is an integrated local insertion (functional of h, c,
H, L) with UV ¼ IR dimension 4 and Qϕπ ¼ 0. A
represents an anomaly, i.e., has the same properties as
Δ̂, but is not a b variation. For znk ¼ 0 we know already
(cf. Sec. III C) that the decomposition in (379) is valid and
noAðh; cÞ exists. For znk ≠ 0 noA can be generated either,
but we have to show that the remaining terms form a b
variation.
This part of the proof relies only on the doublet structure

of ðznk; χnkÞ and can therefore be taken over literally from
[14] [Appendix D, formulas (D.18)—(D.32)], with the
result, that the cohomology is trivial and thus (379) verified
with A ¼ 0.
In the context of BRST-invariant differential operators

we shall need a corresponding analysis for insertions with
the quantum numbers of the action, i.e., UV ¼ IR
dimension ¼ 4 and Qϕπ ¼ 0. The field dependent part
was treated above in Sec. II E, where we constructed the
general solution of the ST identity. Γclass

inv turned out to be the
only obstruction to the cohomology, whereas all external
field-dependent terms are b variations. The gauge param-
eter dependence is also covered in [14] (Appendix D) with
the result that the terms of Γclass

inv can only have gauge-
parameter-independent coefficients, whereas the external
field-dependent terms are multiplied with functions of
those such that the products are variations under the general
gauge-parameter-dependent terms. For later use we list
them here. A basis of dimension-4, ϕπ charge-0 b-invariant
insertions is provided by

Γinv ¼
Z ffiffiffiffiffiffi

−g
p ðc0 þ c1RμνRμν þ c2R2 þ c3RÞðh; znkÞ;

ð380Þ

Δ1ðh; c; H; znk; χnkÞ ¼ b

�
d1ðz1Þ

Z
Hμνhμν

�
; ð381Þ

Δnkðh; c;H; znk; χnkÞ ¼ b

�
dnkðzn;kÞ

Z
Hμνðh…h|ffl{zffl}

n;k

Þμν
�
;

ð382Þ

PERTURBATIVE QUANTIZATION OF EINSTEIN-HILBERT … PHYS. REV. D 104, 086012 (2021)

086012-29



Δcðh; c; LÞ ¼ b

�
ec

Z
Lμcμ

�
: ð383Þ

Recall that counterterms must not depend on α0, we work in
Landau gauge, α0 ¼ 0, hence there is also no χ present.
These b-invariant insertions are in one-to-one correspon-

dence to b-symmetric differential operators

c0∂c0Γ ¼
Z ffiffiffiffiffiffi

−g
p

c0; ð384Þ

c1∂c1Γ ¼
Z ffiffiffiffiffiffi

−g
p

c1RμνRμν; ð385Þ

c2∂c2Γ ¼
Z ffiffiffiffiffiffi

−g
p

c2R2; ð386Þ

c3∂c3Γ ¼
Z ffiffiffiffiffiffi

−g
p

c3κ−2R; ð387Þ

½d1ðz1ÞN h þ bðd1ÞN ð−Þ
h �Γ ¼ Δ1; ð388Þ

½dn;k∂zn;k þ bðdn;kÞ∂χn;k �Γ ¼ −Δn;k þOðhnþ1Þ; ð389Þ

½ecN c þ bðecÞN ð−Þ
c �Γ ¼ −Δc: ð390Þ

Here we have defined combinations of counting operators

Nϕ ≡
Z

ϕ
δ

δϕ
ð391Þ

for the fields:

N hΓ≡ ½Nh − NK − Nc̄ − Nb þ 2α0∂α0 þ 2χ∂χ �Γ; ð392Þ

N ð−Þ
h Γ≡

Z
Kh −

Z
c̄
δ

δb
Γ − 2α0∂χΓ; ð393Þ

N cΓ≡ ½Nc − NL�Γ; ð394Þ

N ð−Þ
c Γ≡ −

Z
Lρcρ ð395Þ

and went back from the variable Hμν in (380) to the
variables Kμν, c̄.

D. Normalization conditions III

The normalization conditions (204)–(208) have to be
supplemented by those introducing znk and read now

∂
∂p2

γð2Þ
TTjp¼0

s¼1

¼ c3κ−2; ð396Þ

∂
∂p2

∂
∂p2

γð2Þ
TTjp2¼−μ2

s¼1

¼ −2c1; ð397Þ

∂
∂p2

∂
∂p2

γð0Þ
TTjp2¼−μ2

s¼1

¼ 2ð3c2 þ c1Þ; ð398Þ

Γhμν ¼ c0 ¼ 0; ð399Þ

∂
∂pσ

Γ
Kμνcρjp2¼−μ2

s¼1

¼ −iκðημσδνρ þ ηνσδμρ − ημνδσρÞ; ð400Þ

∂pΓKcPðh…h|ffl{zffl}
n

Þjp2¼−μ2
s¼1

¼ znk; ð401Þ

∂
∂pλ ΓLρcσcτjp2¼−μ2

s¼1

¼ −iκðδρσηλτ − δρτηλσÞ: ð402Þ

Imposing the b equation of motion (36) still fixes α0 and the
b amplitude, whereas (204) again fixes the h amplitude. P
projects to the kth independent term in

P
n;kðh…h|ffl{zffl}

n

Þμν.

IX. DISCUSSION AND CONCLUSIONS

In the present paper we propose the perturbative
quantization of classical Einstein-Hilbert gravity. The
version which we discuss has as background ordinary
Minkowski space on which the respective theory deals
with a massless spin two field with interactions provided
by classical EH. The problem of power counting non-
renormalizability is overcome in two steps. First we
introduce the higher derivative terms R2, RμνRμν which
make the model power counting renormalizable, create
however negative norm states, hence can only be consid-
ered as a Pauli-Villars regularization. Then there are
two spin two fields in the model, their combined propa-
gator yielding dynamic dimension 0 to the combined field
h. In a second step we perform momentum space sub-
tractions according to the Bogoliubov-Parasiuk-Hepp-
Zimmermann-Lowenstein scheme, treating the R term
as an oversubtracted normal product with subtraction
degrees d ¼ r ¼ 4. This takes correctly into account the
vanishing naive dimension of the combined field h.
Since this model is closed under renormalization, we have

at our disposal the full machinery of the BPHZL scheme, in
particular the action principle, which admits the systematic
construction and proof of the Slavnov-Taylor identity, i.e.,
formal (pseudo)unitarity, and parametric partial differential
equations. Those are the Lowenstein-Zimmermann equation,
which says that Green’s functions are independent of the
auxiliary mass termM which belongs to the scheme. Further
there are the renormalization group and Callan-Symanzik
equation. These control completeness of the parametrization
and scaling, respectively.
The final step of establishing a quantized EH theory

cannot be taken since the regulators cannot be eliminated in
a controlled way. The model has to stay as such, which
suggests that the higher derivative terms in the action
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constitute an essential part of the theory, for which traces of
the Einstein-Hilbert action have to be extracted. However
physical states for the EH theory can be constructed,
according to the standard quartet mechanism of [3]:
projecting out states with negative norm and then forming
equivalence classes of states with vanishing norm. The full
S-matrix, which is derived from ST, is thus restricted to EH
theory, but its unitarity is questionable. Even if the latter
would hold, the dependence on the parameters c1 and c2
presumably prevails nevertheless.
Next we mention a few items in which the present paper

differs from previous attempts to solve the quantization
problem. First of all we do not rely on an invariant
regularization, i.e., the regularization employed in dimen-
sional renormalization, which, it seems, has been used
exclusively in the past. The BPHZL renormalization
scheme requires that power counting is such that conver-
gence results, e.g., for Green’s functions. This we provide
here. Then the study of anomalies is constructively pos-
sible. We can thus safely use results obtained in the past in
many papers by purely algebraic reasoning (cf. [13,31]).
Those can now be completed with a power counting based,
“analytic” treatment. This refers not only to anomaly
discussions, but also to the so-called Batalin-Vilkovisky
formalism (in quantum field theory). The latter has been
invoked for quantum gravity, specifically also for EH, in
[32]. Although therein many innovative concepts have been
introduced, the construction suffers from the lack of
renormalizability. In the presumably simplest context we
present a solution for this, which is lacking a proof of
unitarity though. The hope then is that this example is
fruitful in that wider range. For instance, when invoking the
principle of generalized covariance (cf. [33]) one always
relates two systems of manifold plus metric. One of them
could then just be ours with Minkowski space plus metric,
and fluctuations around it.
Another aspect concerns the field variable hμν. In the

literature most commonly used is the Goldberg variable
hμν ¼ ffiffiffiffiffiffi−gp

gμν − ημν, whereas we use hμν ¼ gμν − ημν.
These variables are not equivalent (in the sense of point
transformations), but differ by unphysical degrees of free-
dom. Our variable has the advantage that two-point
functions (1PI and propagator) have fewer components
in the spin expansion to be dealt with.
Let us also recall that our way of proceeding forced us to

treat the fundamental field h as a field of vanishing
canonical dimension. It is then mandatory to discuss
nonlinear field redefinitions. They are quite analogous to
those which one has to face in a power counting non-
renormalizable formulation, but can here be handled in a
completely controlled manner like in supersymmetric
Yang-Mills theories when supersymmetry is linearly
realized.
In the context of the CS equation and in view of the RG

equation one comes in the vicinity of the concept of

“asymptotic safety” [34], where one deals directly with
the infinite dimensional space of interactions with
arbitrarily high dimension which we (by purpose)
avoided. It would be interesting to see where our proposal
is to be detected there. Similarly one could repeat the
analysis of [35] under the present auspices. There one
worked in Euclidean space and with the full, nonuni-
tary model.
By its very nature, our approach differs from the treat-

ment as effective theory [36], where one tries to find
quantum effects of gravity without constructing a funda-
mental quantized model of it—as one can formulate a
model of mesons and hadrons without recurrence to QCD
with its unsolved problem of confinement.
Extension of the present work to include matter seems to

be most straightforward for scalar fields. Then one could
contribute to the study of observables [37] and spontaneous
scale symmetry breaking [38], having at one’s disposal a
power-counting renormalizable model. Adding vector
fields of matter would also not require serious changes.
Once fermions are introduced one should employ the
vierbein formalism. In that context it should be particularly
rewarding that one can now safely discuss chiral anomalies
which are otherwise not easily handled. Also supergravity
theories would deserve new interest.
Some new ideas or methods seem to be required, if one

wants to go over to curved background. In particular
normalization conditions and asymptotic limits pose prob-
lems which in the present, flat background case are absent.
A recent study on the formulation of perturbative gravity in
the presence of a cosmological constant [39] tackles the
challenge of developing new tools and uses a prescription
to treat new degrees of freedom, which is described in [40].
Another candidate as far as methods are concerned is
provided by the fairly recent work of one of the present
authors (S. P.) [41]. There the BPHZ scheme has been
extended to analytic (curved) spacetimes; i.e., propagators,
power counting, and the like are those of curved spacetime.
Massive and massless models can be treated on an equal
footing. For a graviton field details would have to be
worked out. The problem of normalization conditions
seems to be linked to asymptotic properties of the space-
time manifold which, regarding physics, is absolutely
plausible. This could be an interesting area of future
research.
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APPENDIX A: NOTATION AND CONVENTIONS

1. Geometry

In this work, we employed the conventions below, which
are the “timelike conventions” of Landau-Lifschitz (cf. [42]):

flat metric∶ ημν ¼ diagðþ1;−1;−1;−1Þ;

Christoffel∶ Γσ
μν ¼

1

2
gσρð∂νgρμ þ ∂μgρν − ∂ρgμνÞ;

Riemann∶ Rλ
νρσ ¼ ∂ρΓλ

νσ − ∂σΓλ
νρ þ Γλ

τρΓτ
νσ − Γλ

τσΓτ
νρ;

Ricci∶ Rμν ¼ ∂σΓσ
μν − ∂νΓσ

μσ þ Γσ
μνΓ

ρ
σρ − Γρ

μσΓσ
νρ;

curvature scalar∶ R ¼ gμνRμν:

2. Projection operators

In order to cope with the spin properties of the field hμν it
is useful to introduce projection operators. They are known
at least since [43] and we shall use a notation due to [44].
Based on the transverse and longitudinal projectors for
vectors

θμν ≡ ημν −
pμpν

p2
; ωμν ≡ pμpν

p2
ðA1Þ

the projectors are defined as

Pð2Þ
TTμνρσ ≡ 1

2
ðθμρθνσ þ θμσθνρÞ −

1

3
θμνθρσ; ðA2Þ

Pð1Þ
SSμνρσ ≡ 1

2
ðθμρωνσ þ θμσωνρ þ θνρωμσ þ θνσωμρÞ; ðA3Þ

Pð0Þ
TTμνρσ ≡ 1

3
ðθμνθρσÞ; ðA4Þ

Pð0Þ
WWμνρσ ≡ ωμνωρσ; ðA5Þ

Pð0Þ
TWμνρσ ≡ 1ffiffiffi

3
p θμνωρσ; ðA6Þ

Pð0Þ
WTμνρσ ≡ 1ffiffiffi

3
p ωμνθρσ: ðA7Þ

They satisfy the closure relation

ðPð2Þ
TT þ Pð1Þ

SS þ Pð0Þ
TT þ Pð0Þ

WWÞμνρσ ¼
1

2
ðημρηνσ þ ημσηνρÞ:

ðA8Þ

3. Tables

We list dimensions d, ϕπ charge Qϕπ of (functions of)
fields and parameters in the theory. For propagating and
external fields we have

hμν c c̄ b Kμν Hμν Lρ

d 0 0 2 2 3 3 3

Qϕπ 0 þ1 −1 0 −1 −1 −2
Functions of (external) fields have

ĥμν Gμν Ĥμν Mμν Nμν Mð0Þ N ð0Þ

d 0 0 3 0 1 4 3

Qϕπ 0 0 −1 0 −1 0 −1
The parameters follow:

κ α0 χ znk χnk
d −1 0 0 0 0

Qϕπ 0 0 −1 0 −1

APPENDIX B: s0 INVARIANCE

In Sec. V B we need the fact that Γinv
hh ðm2Þ is invariant

under the Abelian BRST transformation

s0hμν ¼ −κð∂μcν þ ∂νcμÞ: ðB1Þ
We check this for

Γinv
hh ¼

Z
h

�X
rKL

γðrÞKLP
ðrÞ
KL

�
h; ðB2Þ

the projectors understood as expression in terms of differ-
ential operators which (as seen from Fourier transform)
admits integration by parts. For r ¼ 2, 0 it is readily derived
that the variation vanishes due to the transversality of the
projectors. Hence the respective γ’s are not restricted. For
the other components we find

s0

Z
hðγð1ÞSSP

ð1Þ
SS Þh ¼ −4

Z
γð1ÞSS ðθνρ∂σcν þ θνσ∂ρcνÞhρσ;

ðB3Þ

s0

Z
hðγð0ÞWWP

ð0Þ
WWÞh ¼ −4

Z
γð0ÞWW∂λcλωμνhμν; ðB4Þ

s0

Z
hðγð0ÞTWP

ð0Þ
TWÞh ¼ −

Z
γð0ÞTWh

μνθμν
2ffiffiffi
3

p ∂λcλ; ðB5Þ

s0

Z
hðγð0ÞWTP

ð0Þ
WTÞh ¼ −

Z
γð0ÞWT

2

3
∂λcλθρσhρσ: ðB6Þ

Cancellation between different spin components cannot

take place, hence these γðrÞKL vanish. But this situation is
precisely realized in the tree approximation. Let us remark
that for the Goldberg variable hμν ¼ gμν − ημν and its
respective s0 variation an analogous result can be derived.
However a relation between the TT components r ¼ 2, 0
will be only established by the s1 variation which is
nonlinear.
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APPENDIX C: PARTIAL FRACTIONS

In Landau gauge the free propagators have only two
nonvanishing spin components,

hhhið2ÞTT ¼ −i
p2 −m2

·
1

c1p2 − c3κ−2
;

hhhið0ÞTT ¼ i
p2 −m2

·
1

ð3c2 þ c1Þp2 þ 1
2
c3κ−2

: ðC1Þ

Their decomposition into partial fractions reads

hhhið2ÞTT ¼ 1

c3κ−2 − c1m2
·

i
p2 −m2

þ −i
c3κ−2ðp2 − c3

c1κ2
Þ ;

pole∶ p2 ¼ m2; resjm2¼0 ¼
i

c3κ−2
;

pole∶ p2 ¼ c3
c1κ2

; res ¼ −i
c3κ−2

; ðC2Þ

hhhið0ÞTT ¼ −1
c3κ−2 − 2ð3c2 þ c1Þm2

·
2i

p2 −m2

þ 1

c3κ−2
·

2i

p2 þ c3κ−2

2ð3c2þc1Þ
;

pole∶ p2 ¼ m2; resjm2¼0 ¼
−2iκ2

c3
;

pole∶ p2 ¼ −
c3κ−2

2ð3c2 þ c1Þ
; res ¼ 2iκ2

c3
: ðC3Þ

In the spin two parts the massless pole has positive residue,
the massive pole instead has negative residue. Hence the
first is physical, the second is not. In the spin zero
contribution the situation is reversed. When projecting to
the massless contributions in the asymptotic limit this spin
zero part belongs to the negative metric contribution and
has to be canceled in the quartet mechanism.
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