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We explore the Liouvillian nonintegrability criteria for long quiver gauge theories which preserve
N ¼ 1 supersymmetry in 5D. We probe type IIB solutions with (an AdS6 factor) semiclassical strings
which capture the strong coupling dynamics of N ¼ 1 superconformal field theories (SCFTs) in 5D. Our
analysis reveals an underlying nonintegrable structure within some sub-sector of these 5D SCFTs. To
solidify our claim, we complement our analytic results through numerics. We estimate various chaos
indicators for the phase space which confirm the onset of a chaotic motion for these type IIB strings.
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I. OVERVIEW AND MOTIVATION

A. Type IIB solutions with AdS6 factor

Among the plethora of examples of superconformal field
theories (SCFTs) that exist in diverse dimensions [and
preserve different amounts of supersymmetry (SUSY)],N ¼
1 SCFTs in five dimesions are of particular interest. Starting
with the seminal work due to Seiberg [1] and thereby
subsequently followed by authors in [2–4], recently this
particular class of SCFTs has attracted a lot of attention in
the context of the holographic correspondence.
The bulk dual of these SCFTs is realized as a type IIB

solution with an AdS6 factor those preserving only half of the
total 32 supersymmetries in 10D. In the original construction
of [5–7], these type IIB solutions were realized as a warped
product of the form AdS6 × S2 × Σð2Þ where Σð2Þ is a two-
dimensional Riemann surface parametrized bymeans of some
complex coordinates (z; z̄). Furthermore, in the original con-
structions of [5–7], the warped factors of AdS6 as well as S2

line elements are defined in terms of the locally holomorphic
functions on the two-dimensional Riemann surface (Σð2Þ).
Following these developments, several other aspects

of N ¼ 1 quiver gauge theories in 5D have been explored
in the recent years. Let us review some of these results here.
A large class of 5D SCFTs and the RG flow between

these theories have been explored recently by authors in
[8]. Their analysis reveals an intriguing fact; namely they
show that the sphere-free energy for these theories
decreases as one RG flows from UV to IR.
Codimension 2 (surface) defects in 5D SCFTs have been

investigatedbyauthors in [9]using (p,q) fivebranewebswith

D3-branes. In a related study, nonlocal operators, for example
Wilson loops in 5D SCFTs have been constructed in [10].
Other than these, a series of papers [11–15] have been put
forward in the recent years those explore various other
properties of these5DSCFTsusing type IIBsolutions in10D.
In spite of these developments, several other field theoretic

aspects of 5D SCFTs are yet to be addressed. One of these
aspects include the possibility of finding integrability for
these 5D fixed points. In a holographic set up, this translates
into an equivalent question of showing integrability for the
classical 2D world sheet theory on AdS6 × S2 × Σð2Þ.
Showing classical integrability for 2D sigma models is in

general is a difficult task as there is no general prescription
for writing down the corresponding Lax pairs. An alter-
native approach might therefore be disproving the classical
integrability for these type IIB strings on AdS6 × S2 × Σð2Þ.
For the purpose of the present paper, we choose to work
with this second path where we probe the internal manifold
of the full type IIB background by various wrapped string
configurations. In a holographic framework, these solitons
capture the dynamics of long/heavy single trace operators
in the dual 5D SCFTs. The idea is to check the classical
nonintegrability for each of these configurations.
In this work, we adopt the recently proposed electrostatic

viewpoint [16] of type IIB solutions with an AdS6 factor.
1

Following this, we first review the basics of this
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1Typically, in an “electrostatic description” one classifies the
quiver using the so called Rank function [RðηÞ] which encodes all
the information about the color and flavor nodes of the quiver. In
electrostatic approach of [16], one can embed theN ¼ 1 quivers in
a Hanany-Witten brane setup that comprises of NS5-D5-D7–brane
intersections in 10D. HereD5s correspond to the color nodes of the
quiver whereas on the other hand, D7s are the flavor branes
localized along the internal manifold of the type IIB background.
For example, in this language T̃Nc;P quivers are characterized by a
linearly increasing Rank function [RðηÞ¼Ncη] for 0≤η≤ðP−1Þ
which is closed at η ¼ P by placing flavor branes at η ¼ P − 1.
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electrostatic framework of type IIB solutions which pre-
serve N ¼ 1 SUSY. The full 10D solution may be
expressed in terms of an AdS6 factor together with some
internal manifold (M4) that [contains a two sphere (S2)]
preserves the SUð2ÞR symmetry of the dual SCFTs in 5d. In
our analysis, we probe this internal space with various
semiclassical F1 strings.
The type IIB background, that we choose to work with

can be related to those obtained in [17] through S duality
[16]. In the string frame, the type IIB background reads
as2 [16]

ds2IIB ¼ f1ðσ; ηÞds2AdS6 þ ds2M4
ð1Þ

¼ f1ðσ; ηÞds2AdS6 þ f2ðη; σÞdΩ2ðχ; ξÞ
þ f3ðη; σÞðdσ2 þ dη2Þ ð2Þ

B2 ¼ f4ðσ; ηÞ sin χdχ ∧ dξ;

C2 ¼ f5ðσ; ηÞ sin χdχ ∧ dξ ð3Þ

e−2ϕ ¼ f6ðσ; ηÞ; C0 ¼ f7ðσ; ηÞ ð4Þ

f1 ¼
3π

2

�
σ2 þ 3 _V

∂2
ηV

�1=2

; f2 ¼ f1
∂2
ηV _V

3σΔ
; f3 ¼ f1

∂2
ηV

3 _V

ð5Þ

f4 ¼
π

2

�
η −

_V∂σ∂ηV

Δ

�
;

f5 ¼
π

2

�
V −

_V
Δ
ð∂ηVð∂σ∂ηVÞ − 3∂2

ηV∂σVÞ
�

ð6Þ

f6 ¼
12σ _V∂2

ηVΔ
ð3∂σV þ σ∂2

ηVÞ2
;

f7 ¼ 2

�
∂ηV þ 3 _V∂σ∂ηV

ð3∂σV þ σ∂2
ηVÞ

�
ð7Þ

Δ¼ 1

σ
ð2 _V− V̈Þ∂2

ηVþσð∂σ∂ηVÞ2; _Vðσ;ηÞ¼ σ∂σV: ð8Þ

The Bogomol’nyi-Prasad-Sommerfield conditions yield
the following partial differential equation for the potential
function Vðσ; ηÞ

∂σðσ2∂σVÞ þ σ2∂2
ηV ¼ 0; ð9Þ

that is required to be solved with appropriate boundary
conditions namely

V̂ðσ → �∞; ηÞ ¼ 0; Rðη ¼ 0Þ ¼ 0 ¼ Rðη ¼ PÞ: ð10Þ

The potential function V̂ ¼ σV satisfies Laplace equa-
tion of electrostatics with the boundary conditions

V̂ðσ; η ¼ 0Þ ¼ 0 ¼ V̂ðσ; η ¼ PÞ ð11Þ

where the range for holographic direction (η) is bounded
between 0 and P. Given the above electrostatic equiva-
lence, one can interpret RðηÞ as the charge distribution
[along the holographic axis (η)] between two conducting
planes placed at η ¼ 0 and η ¼ P [16].
The Hanany-Witten set up corresponding to (1)–(8)

consists of an intersection of NS5-D5-D7–brane configu-
ration in 10d. Clearly, the corresponding N ¼ 1 super-
conformal quiver must end at η ¼ P which is achieved by
placing flavor D7-branes at that point.
In the present paper, we restrict ourselves to σ ∼ 0 plane

while moving along the η direction of M4. Namely, we
consider a legitimate expansion of the potential function
V̂ðσ; ηÞ near σ ∼ 0 and estimate the corresponding metric
functions fiðσ; ηÞ. Under such circumstances, one therefore
expects a charge distribution between the conducting
planes at η ¼ 0 and η ¼ P. This depends on the location
of the flavor D7-branes along the η axis of M4. This is
equivalent of saying that the corresponding rank function
(RðηÞ) of the associated SUðNcÞ color (gauge) group is
piecewise linear in the interval 0 ≤ η ≤ P.

B. Summary of results

Given the above set up (1)–(8), below we summarize the
key findings of the paper. We explore the strong coupling
dynamics of N ¼ 1 linear quivers by probing the type IIB
geometry (1)–(8) with various semiclassical F1 string
configurations.
(a) Our analysis reveals an intriguing fact—while certain

long operators (at strong coupling) exhibit a simple set
of dispersion relations, the N ¼ 1 superconformal
fixed point (in 5D) in general maintains some under-
lying nonintegrable structure with it. We confirm this
nonintegrable structure using both analytic as well as
numeric techniques.

(b) The analytic technique that we implement in this paper
is based on the rigorous mathematical formalism due
to Kovacic3 [18–19] that has been applied (in order to
unfold nonintegrability for a wider class of super-
symmetric gauge theories in diverse dimensions) with
a remarkable success in the recent years [20–27].
Following the methodology as discussed in

[20–21], we propose a consistent 1D reduction of
type IIB sigma model that fails to be compatible with
the criteria set by Kovacic which therefore disproves2See Appendix B of [16] for an illuminating discussion on the

mapping of type IIB solutions (1)–(8) to the original construction
by authors in [5]. This shows the equivalence between these two
approaches.

3See Section III A for a brief discussion on the algorithm due
to Kovacic.
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the Liouvillian integrability of the sigma model in
general. By virtue of the holographic correspondence,
this translates into the simple fact of the nonexistence
of the integrable structure for some specific (sub)
sector of N ¼ 1 SCFTs in 5D.

(c) In order to solidify our claim, we complement our
analytic results through numerical studies where we
estimate various chaos indicators [28–29] for the
theory under consideration. Our analysis reveals that
the nonintegrability in N ¼ 1 SCFTs triggers a
chaotic motion associated with the phase space tra-
jectories of the type IIB (super)strings which in turn
also destroys the so called Kolmogorov-Arnold-Moser
(KAM) tori [30–31] of integrable string trajectories.

(d) We now summarize our results by referring to the
different sections of the paper. In Sec. II we explore
certain class of long operators inN ¼ 1 SCFTs which
are dual to folded fundamental (F1) strings which are
allowed to pass through localized flavor D7-branes
along the internal space of the full type IIB solution.
Our analysis reveals a set of simple dispersion rela-
tions for these long operator states.4

However, the main analysis of our paper refers to Sec. III
where we focus on a particular winding string ansatz that
wraps the isometry of the internal two sphere (S2 ⊂ M4)
and fluctuates along the rest of the directions of the internal
manifold (M4). We show that a consistent 1D reduction of
the original sigma model fails to be compatible with
the analytic integrability criteria set by the Kovacic’s
algorithm [18–19].
In Sec. IV we further explore on the nature of this

nonintegrable deformation at the level of the Hamiltonian
dynamics. We estimate various chaos indicators for exam-
ple, the Lyapunov exponent as well as the Poincaré section
which together confirm the onset of a chaotic dynamics for
these type IIB strings.
Finally, we put forward some future remarks and draw

our conclusion in Sec. V.

II. SPECTRUM OF LONG OPERATORS
IN N = 1 SCFTs

We begin with the description of extended (as well as
folded) F1 string configurations that probe type IIB
geometry (1) along the η axis. While extended along
the η direction, these strings naturally meet the stack of
flavor D7-branes which are localized along M4. Our
goal would be to explore the imprint of these flavor D7-
branes on the associated spectrum of long operators
pertaining to N ¼ 1 superconformal quivers at strong
coupling.
In the supergravity approximation, these long (single-

trace) operators are dual to folded F1 strings whose

dynamics is encoded in the following sigma model
action5

SP ¼ 1

4π

Z
dτdσ̃LP; ð12Þ

LP ¼ −GMN∂τXM∂τXN þ GMN∂ σ̃XM∂ σ̃XN

þ 2BMN∂τXM∂ σ̃XN; ð13Þ

where we restrict ourselves only to the metric as well as the
NS-NS sector of the full type IIB solution (1)–(8).
The above Lagrangian (13) is supplemented with the

Virasoro constraints of the following form

Tττ ¼T σ̃ σ̃ ¼GMN∂τXM∂τXN þGMN∂ σ̃XM∂ σ̃XN ¼ 0; ð14Þ

Tτσ̃ ¼ GMN∂τXM∂ σ̃XN ¼ 0: ð15Þ

A. Long strings

To start with, we place F1 strings near the center (ρ ∼ 0)
of global AdS6. In particular, we consider long folded
string configurations those are extended through the flavor
D7-branes while simultaneously wrapping the S2 along its
equatorial plane.
These strings are therefore described by an embedding of

the following form,

t ¼ τ; η ¼ ηðσ̃Þ; σ ¼ σðσ̃Þ; χ ¼ π

2
; ξ ¼ lσ̃: ð16Þ

Given the above configuration (16), these strings are
naturally decoupled from the background NS-NS fluxes.
The effects of incorporating NS-NS coupling will be
discussed in the subsequent sections.
Below we summarize the set of equations that readily

follows from (13)

2f3σ00 ¼ ∂σf3ðη02 − σ02Þ − 2∂ηf3η0σ0 þ ∂σf1

þ l2∂σf2; ð17Þ

2f3η00 ¼ ∂ηf3ðσ02 − η02Þ − 2∂σf3η0σ0 þ ∂ηf1

þ l2∂ηf2; ð18Þ

where the prime corresponds to derivative with respect to σ̃.
The above set of equations (17)–(18) are supplemented

with Virasoro constraints of the following form

Tττ ¼ T σ̃ σ̃ ¼ −f1 þ l2f2 þ f3ðη02 þ σ02Þ ¼ 0; ð19Þ

Tτσ̃ ¼ 0: ð20Þ

4See Appendix A for a detailed discussion on the Liouvillian
(non)integrable structure for this particular stringy configuration. 5We set α0 ¼ gs ¼ 1.
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Below we explore the above set of equations (17)–(19)
for different choices of theN ¼ 1 linear quivers those were
proposed recently in [16].

1. T̃Nc;P quivers

The first example we consider is that of single-kink
quivers (T̃Nc;P) which are closed at η ¼ P by placing flavor
D7-branes at η ¼ P − 1.
The corresponding rank function is given by

RðηÞ ¼
�
Ncη 0 ≤ η ≤ ðP − 1Þ
NcðP − 1ÞðP − ηÞ ðP − 1Þ ≤ η ≤ P:

ð21Þ

In the supergravity approximation the associated poten-
tial function reads as [16]

V̂ðσ ∼ 0; ηÞ ∼ ηNcP log 2
π

−
πηðη2 þ 1ÞNc

24P
−
σηNc

2

þOðσ2=PÞ; ð22Þ

where the above expansion (22) is valid in the regimewhere
σ is finite and P ≫ 1.
On the other hand, an expansion near jσj → ∞ reveals a

potential function of the following form6

V̂ðσ → ∞; ηÞ ∼ P3Nc

π3
e−

πσ
P sin

�
π

P

�
sin

�
πη

P

�
: ð23Þ

Below, we explore the regime σ ∼ 0. The corresponding
metric functions [fiðσ; ηÞ] read as

f1ðσ ∼ 0; ηÞ ∼ 3π

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
η2

2
þ 12P2 log 2

π2
−
1

2

s
þOðσ2Þ; ð24Þ

f2ðσ ∼ 0; ηÞ ∼ −3ðπ2η2ð24P2 log 2 − π2ðη2 þ 1ÞÞ3=2Þffiffiffi
2

p ðπ4ð9η4 þ 12η2 − 1Þ − 576P4 log2 2þ 48π2ð1 − 6η2ÞP2 log 2Þ ; ð25Þ

f3ðσ ∼ 0; ηÞ ∼ 3π2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48P2 log 2 − 2π2ðη2 þ 1Þ

p þOðσ2Þ; ð26Þ

which clearly reveals that ∂σfiðσ ∼ 0; ηÞ ∼ 0. Therefore,
σ ¼ σ0 ¼ σ00 ¼ 0 is a natural solution of (17).
Using the above as the primary input, we compute the

energy (Esk) associated with the folded string configuration
which is dual to the conformal dimension associated with
long operators in N ¼ 1 single-kink quivers at strong
coupling

Δ̂sk ∼ Esk ∼
1

π

Z
P

0

f1
dη
η0

∼
Z

P

0

dη
f1ffiffiffiffiffiffiffi
Λsk

p ; ð27Þ

where, we set the winding number l ¼ 1 together with

Λskðη; PÞ ∼ P2 logð4096Þ − 1

2
π2ð3η2 þ 1Þ

þ 7π4η4

P2 logð4096Þ þ � � � ; ð28Þ

f1ðη; PÞ ∼ 3P
ffiffiffiffiffiffiffiffiffiffi
log 8

p
−
π2ðη2 þ 1Þ

ffiffiffiffiffiffiffi
3

log 2

q
16P

þ � � � : ð29Þ

In view of (28)–(29), we see that the integral (27) yields a
finite answer

Δ̂skjP≫1 ∼
3P
2

∼
3

2Nc
QD7 ð30Þ

which shows that the dimension of the dual operator grows
linearly with the size of the quiver. Here,QD7 ¼ PNc is the
Page charge associated with flavor D7-branes [16].
A simple interpretation of the above result (30) comes

from a closer inspection of the sigma model potential for
F1 strings near flavor D7-branes. This readily follows from
the Lagrangian density (13)

Veffðη; PÞ ∼ 3P
ffiffiffiffiffiffiffiffiffiffi
log 8

p
þ
π2ð3η2 − 1Þ

ffiffiffiffiffiffiffi
3

log 2

q
16P

þ � � � ; ð31Þ

which shows that the potential is regular across the location
of D7-branes. In other words, the F1 string can smoothly
pass through flavor D7-branes without exhibiting any
divergences in the spectrum.

2. + P;Nc
quivers

The second example we consider is that of a linear quiver
(þP;Nc

) with a plateau region which corresponds to placing
stack of flavor D7-branes at η ¼ 1 and η ¼ P − 1. As we
shall see shortly that these quivers seek special attention
around the position η ∼ 1.6See Appendix B for a detailed discussion on the large σ limit.
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The corresponding rank function reads as

RðηÞ ¼

8>><>>:
Ncη 0 ≤ η ≤ 1

Nc 1 ≤ η ≤ ðP − 1Þ
NcðP − ηÞ ðP − 1Þ ≤ η ≤ P:

ð32Þ

The associated potential function when expanded near
σ ∼ 0 reads as

V̂ðσ; ηÞ
ðNc
4πÞ

∼ ηð6þ 4 log 2Þ − 4η log

�
π

P

�
− 2η log j1 − η2j

− ð1þ η2 − σ2Þ log
���� ηþ 1

η − 1

����; ð33Þ

where we have taken into account the large Pð≫1Þ limit.

A careful analysis reveals that the potential function (33)

V̂ðσ ∼ 0; η ∼ 1Þ
ðNc
4πÞ

∼ 6 − 4 log

�
π

P

�
þOðη − 1Þ ð34Þ

is indeed regular across the location of flavor D7-branes at
η ¼ 1. As a result, one should expect that the corresponding
metric functions [fiðσ; ηÞ] to be regular across η ∼ 1.
In order to estimate the η integral as before, we therefore

divide the entire domain of definition into three regions
namely (I) Region I (0 ≤ η ≤ 1 − δ), (II) Region II
(1 − δ ≤ η ≤ 1þ δ), and (III) Region III (1þ δ ≤ η ≤ P)
where the parameter δ is set to be zero towards the end of
the calculation.
After a careful analysis, the metric functions correspond-

ing Region I turn out to be

f1ðσ ∼ 0; η < 1Þ ∼ 3

2
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
η2

2
− 3 log

�
π

P

�
þ 3þ log 8

s
; ð35Þ

f2ðσ ∼ 0; η < 1Þ ∼ −
πη2ð−η2 − 6 logðπPÞ þ 6þ logð64ÞÞ3=2

3ð ffiffiffi
2

p ðη4 þ 8η2ðlogð π
2PÞ − 1Þ − 4ðlogð π

2PÞ − 1Þ2ÞÞ ; ð36Þ

f3ðσ ∼ 0; η < 1Þ ∼ −
3
�
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− η2

2
− 3 logðπPÞ þ 3þ logð8Þ

q �
η2 þ 6 logðπPÞ − 3ð2þ logð4ÞÞ : ð37Þ

Let us now explore spacetime solutions in Region II
which reveals

f1ðσ ∼ 0; η ∼ 1Þ ∼ 3
ffiffiffi
3

p
πffiffiffi
2

p kc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi����2 log�π

P

�
− 3

����
s

; ð38Þ

f2ðσ ∼ 0; η ∼ 1Þ ∼ 1

9
f1ðσ ∼ 0; η ∼ 1Þ; ð39Þ

f3ðσ ∼ 0; η ∼ 1Þ ∼ 9π2

4
f−11 ðσ ∼ 0; η ∼ 1Þ; ð40Þ

where the ratio, δ
σ ¼ kc is kept fixed in the limit δ → 0,

σ → 0.
Finally, we note down metric functions corresponding to

Region III. These solutions are a bit lengthy and are
therefore summarized in the Appendix C.
Combining all these pieces together, the conformal

dimension of the dual operator can be computed by
performing the η integral piece wise

Δ̂qp ∼
1

π

Z
1−δ

0

f1
dη
η0

þ 1

π

Z
1þδ

1−δ
f1

dη
η0

þ 1

π

Z
P

1þδ
f1

dη
η0

: ð41Þ

The first two terms on the right-hand side of (41) are
comparatively easy to evaluate. Notice that in each of these
integrals η0 can be substituted using the constraint (19).
Computing the first two integrals in the holographic limit
(πP ≪ 1) we find,

Δ̂qp ∼
ζðPÞ
2Nc

QD7; QD7 ¼ 2Nc ð42Þ

ζðPÞ ¼ 3

2
þ 1

π

Z
P

1

f1
dη
η0

; ð43Þ

while the remaining integral is indeed difficult to evaluate
for the entire range 1 ≤ η ≤ P. However, it is noteworthy to
mention that in the holographic limit (P ≫ 1) the dominant
contribution to ζðPÞ comes from this remaining integral.
One can perform numerical integration which reveals the

following set of data
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1

π

Z
P

1

f1
dη
η0

¼
8<:

156.603 P ¼ 100

235.671 P ¼ 150

314.739 P ¼ 200:

ð44Þ

From the above set of data, it is clear that for an increase
ΔP ¼ 50 there is an uniform increase (∼79) in the
corresponding value of the integral (44). In other words,
the function ζðPÞ increases linearly with P with a slope ∼ 3

2
.

Therefore the energy of the quiver is roughly proportional
to the size of the quiver

Δ̂qpjP≫1 ∼
3

2
P: ð45Þ

This is precisely what we have seen in the case of single-
kink quivers (30).

B. Adding R charge

We now generalize the previous analysis in the presence
of nonzero R-charge (J) which is the Cartan of the SUð2ÞR
symmetry of the internal S2. In the dual stringy picture this
corresponds to rotation of the string along the isometry
direction of S2.
The ansatz that we propose is of the form,

t ¼ τ; η ¼ ηðσ̃Þ; χ ¼ π

2
; ξ ¼ ωτ; ð46Þ

where, to begin with we set σ ¼ σ0 ¼ σ00 ¼ 0 as this turns
out to be a solution of the resulting equations of motion.
This is the simplest configuration that one could imagine
where the string is stretched along the holographic (η) axis
while also rotating along ξ.
The corresponding Lagrangian density is given by7

LP ¼ f1 − ω2f2 þ f3η02 ð47Þ

which is supplemented with the Virasoro constraints of the
following form

Tττ ¼ T σ̃ σ̃ ¼ −f1 þ ω2f2 þ f3η02 ¼ 0; ð48Þ

Tτσ̃ ¼ 0: ð49Þ

Given the above set up, below we estimate the energy
(Δ) as well as the R-charge (J) associated with long
operators corresponding to each of the above quivers.

1. T̃Nc;P quivers

Given the single-kink quivers as depicted in (21), the
energy (Δ̂sk) associated with the dual operator remains the
same as in (30).
On the other hand, the R-charge corresponding to these

dual operators is given by,

J¼−
1

4π

Z
2π

0

dσ̃
δLP

δ_ξ
¼ 1

π

Z
P

0

f2
dη
η0

¼
Z

P

0

dη
f2ffiffiffiffiffiffiffi
Λsk

p ; ð50Þ

where, in the holographic limit the denominator is given by
an expansion of the form (28).
The numerator (24), on the other hand, can be

expanded as

f2ðσ ∼ 0; ηÞjP≫1 ∼
π2η2

ffiffiffiffiffiffiffi
3

log 2

q
4P

þOð1=P3Þ: ð51Þ

Substituting (51) into (50) we finally obtain

J ∼
π2P

24 log 2
: ð52Þ

Combining (30) with (52), we therefore conclude

Δ̂sk ∼
36 log 2

π2
J ∼ 2J: ð53Þ

2. + P;Nc
quivers

A similar calculation as before reveals,

J ∼
1

π

Z
1−δ

0

f2
dη
η0

þ 1

9π

Z
1þδ

1−δ
f1

dη
η0

þ 1

π

Z
P

1þδ
f2

dη
η0

: ð54Þ

Like before, the dominant contribution to (54) comes
from the integral in the range 1 ≤ η ≤ P. We evaluate this
integral numerically for three different choices of P

1

π

Z
P

1

f2
dη
η0

¼
8<:

15.7793 P ¼ 100

23.7034 P ¼ 150

31.6258 P ¼ 200;

ð55Þ

which reveals that with an increaseΔP ¼ 50, the value of J
increases by an amount ∼8.
Therefore, we propose that in the large Pð≫ 1Þ limit

J ∼
4

25
P: ð56Þ

Combining (56) with (45) we find

Δ̂qp ∼
75

8
J ∼ 9J: ð57Þ7In the subsequent analysis we set ω ¼ 1 without any loss of

generality.
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C. Adding NS-NS flux

We now generalize our previous analysis by coupling the
sigma model with background NS-NS fluxes. Like before,
we restrict ourselves to the σ ¼ 0 plane and propose an
embedding of the following form

t ¼ τ; η ¼ ηðσ̃Þ; χ ¼ χðσ̃Þ; ξ ¼ τ; ð58Þ

which corresponds to extended F1 string configurations
those are stretched simultaneously along η and χ direction.
Our purpose would be to check whether the above
configuration (58) allows a sustainable configuration in
the large Pð≫1Þ limit.
The corresponding Lagrangian density turns out to be

LP ¼ f1 − f2 sin2 χ þ f2χ02 þ f3η02 − 2f4 sin χχ0: ð59Þ

Below, we note down the χ equation of motion that
readily follows from (59)

f2χ00 ¼ −
f4
2
sin 2χ − ∂ηf2η0χ0 þ ∂ηf4 sin χη0: ð60Þ

The corresponding Virasoro constraint reads as

−f1 þ f2χ02 þ f2 sin2 χ þ f3η02 ≈ 0: ð61Þ

Below we investigate each of the above equations (60)–
(61) considering both the examples of single kink as well as
quivers with a plateau.

1. T̃Nc;P quivers

Let us explore (60) in the holographic limit P ≫ 1. An
expansion of f4ðσ; ηÞ in the holographic limit reveals

f4ðσ ∼ 0; ηÞjP≫1 ∼
π3η3

2P2 log 2
þOð1=P4Þ; ð62Þ

which together with (51) yields an equation of the form

χ00

χ0
þ 2η0

η
≈ 0; ð63Þ

that has a simple solution of the form

χ0ðσ̃Þ ∼ C
η2

þOð1=PÞ; ð64Þ

where C is a constant of integration.
Notice that, the function (64) is singular as η approaches

zero. Therefore, in order for the Lagrangian (59) to be well
defined throughout the range 0 ≤ η ≤ P one must set
C ¼ 0. In other words, χðσ̃Þ ∼ constant in the strict holo-
graphic limit which naturally decouples the F1 string from
the background NS-NS fluxes. Therefore, our findings
essentially boil down to those in the absence of NS-NS
fluxes.
To see this explicitly, we plug (64) into (61) which

reveals

η0ðσ̃Þ ∼ 2
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffi
log 2

p
π

Pþ � � � : ð65Þ

Using (65), the spectrum of long operators finally meet
our expectation namely

Δ̂sk ∼
3

2
P: ð66Þ

A similar calculation for the R-charge can be carried out
in parallel which yields same answer as in (52).

2. + P;Nc
quivers

We adopt similar methodology for quivers with a plateau
where we estimate the metric functions [fiðσ ∼ 0; ηÞ] for
the range 1≲ η ≤ P as this produces dominant contribu-
tions to the integrals in the holographic limit.
Below, we summarize the metric functions fiðσ ∼ 0; ηÞ

in the large Pð≫πÞ limit

f1ðσ ∼ 0; ηÞ ∼ 3

ffiffiffi
3

2

r
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
η logðπPÞ
logðηþ1

η−1Þ

s
; ð67Þ

f2ðσ ∼ 0; ηÞ ∼ −9π2η2 logðπPÞ
2f1ð−2 log ðη2 − 1Þ þ η logðηþ1

η−1Þ − 2 logðπPÞ þ 4þ log 16Þ ; ð68Þ

f3ðσ ∼ 0; ηÞ ∼ 9π2

4f1
; ð69Þ

f4ðσ ∼ 0; ηÞ ∼
πðð5η2 þ 1Þ logðηþ1

η−1Þ − 2ηÞ
4ð−2 log ðη2 − 1Þ þ η logðηþ1

η−1Þ − 2 logðπPÞ þ 4þ log 16Þ : ð70Þ

NONINTEGRABILITY FOR N ¼ 1 SCFTS IN … PHYS. REV. D 104, 086010 (2021)

086010-7



Using (67)–(70), it is now straightforward to show that in
the strict holographic limit (πP ∼ 0) one has f4 ∼ ∂ηf4 ∼ 0.
On the other hand, a straightforward computation reveals

∂ηf2
f2

����
P→∞

∼
1

η
ð71Þ

which by virtue of (60) and following our previous
discussion yields a solution of the form

χ0ðσ̃Þ ∼Oð1=PÞ ∼ 0: ð72Þ

Therefore, to summarize, we conclude that in the strict
holographic limit, the NS-NS flux does not affect the
spectrum of long operators in N ¼ 1 SCFTs.

III. LIOUVILLIAN NONINTEGRABILITY

A. The algorithm

The strong coupling behaviour of both T̃Nc;P as well as
þP;Nc

quivers are encoded in the dynamics associated with
type IIB strings those are described by the classical sigma
model Lagrangian of the form (13). Therefore, one way to
prove or disprove the integrability for these long quivers is
to adopt some algorithm that classifies the underlying
integrable structure associated with the phase space dynam-
ics of these (semi)classical strings. Below, we elaborate
more on this algorithm that drives the rest of our analysis.
To prove the integrability of the 2D sigma model (13)

one needs to find the corresponding Lax pairs that
reproduce the dynamics of the string in a consistent
manner. This is indeed a nontrivial task. Therefore, instead
of finding the Lax pairs, one should look for an alternative
that disproves integrability for some particular embedding
of these (semi)classical strings. This algorithm is named
after Kovacic [18–19] that tells us some set of rules to
classify the phase space dynamics and the associated
integrable structure.
To apply the machinery due to Kovacic, the first step is to

consider a consistent 1D truncation of the original sigma
model (13) and study the resulting dynamics. The trunca-
tion usually results in a set of coupled partial differential
equations which can be solved either numerically or
analytically. Following the algorithm closely, one can in
fact reduce these partial differential equations into a linear
second order differential equation called the normal varia-
tional equation8 (NVE)

ÿðτÞ þ BðτÞ_yðτÞ þAðτÞyðτÞ ¼ 0; ð73Þ

where A and B are (complex) rational functions.
Given the NVE (73), one concludes that the classical

phase of the string soliton is Liouvillian integrable if the

corresponding solution can be expressed in terms of simple
algebraic polynomials, harmonic functions, exponential or
logarithmic functions—collectively known as Liouvillian
form of solutions [20–26].
In his pioneering work [18], Kovacic has clearly stated

about the necessary (but not sufficient) conditions for NVE
to admit the Liouvillian form of solutions and prescribed an
algorithm to construct such solutions based on the notion of
the general SLð2; CÞ group of invariance of (73). Let us
elaborate on these conditions and summarize all the key
features.
To understand these conditions properly, one needs to

convert the NVE (73) into the familiar Schrödinger form

_ωðτÞ þ ω2ðτÞ ¼ VðτÞ ¼ 2 _B þ B2 − 4A
4

ð74Þ

by redefining the original variable as

yðτÞ ¼ e
R
ðωðτÞ−BðτÞ

2
Þdτ: ð75Þ

The NVE (73) allows a Liouvillian form of solution if the
function ωðτÞ turns out to be a simple algebraic polynomial
of degree 1, 2, 4, 6, or 12 [19]. In his original work [18],
Kovacic clearly mentioned about those necessary condi-
tions [26] that the potential function [VðτÞ] must satisfy for
the algorithm to be applicable in the first place.
These conditions essentially talk about the pole structure

of VðτÞ both for finite as well as large values of τ. They are
summarized quite nicely in the Appendix of [26]. Once one
of these criteria are satisfied then the algorithm can be
applied to categorize the solutions of (74) into one of the
above polynomials. On the other hand, if none of these
(minimal) criteria are satisfied, then the analytic solution of
(73) turns out to be non-Liouvillian and hence the corre-
sponding phase space dynamics is nonintegrable.
Below, we elaborate on this taking specific examples of

N ¼ 1 linear quivers in 5D.

B. 1D reduction

We begin by considering a consistent 1D reduction of the
original sigma model (13). To this end, we propose an
embedding of the following form

t ¼ τ; η ¼ ηðτÞ; χ ¼ χðτÞ; ξ ¼ leσ; ð76Þ

where, we place the string soliton at the center of AdS6 and
restrict ourselves to the σ ¼ 0 plane of the internal manifold
M4. For simplicity, we consider the coupling of the string
with the metric and the background NS-NS flux.
Using (76), the Lagrangian density for the reduced

model turns out to be8Here, by “dot” we mean derivative with respect to τ.

DIBAKAR ROYCHOWDHURY PHYS. REV. D 104, 086010 (2021)

086010-8



Lð1dÞ
P ¼ f1_t2 − f2 _χ2 − f3 _η2 þ l2f2 sin2 χ

þ 2lf4 sin χ _χ: ð77Þ

Below, we note down the conjugate momenta

pt ¼ E ¼ 2_tf1; ð78Þ

pχ ¼ −2f2 _χ þ 2lf4 sin χ; ð79Þ

pη ¼ −2f3 _η; ð80Þ

that lead to the Hamiltonian density of the following form

−Hð1dÞ ¼ −
E2

4f1
þ p2

η

4f3
þ 1

4f2
ðpχ − 2lf4 sin χÞ2

þ l2f2 sin2 χ: ð81Þ

Below, we note down the equations of motion that
readily follow form (77)

2f3η̈ ¼ ∂ηf2ð_χ2 − l2 sin2 χÞ − ∂ηf3 _η2

− 2l∂ηf4 sin χ _χ − ∂ηf1; ð82Þ

−f2χ̈ ¼ ∂ηf2 _η _χþl2f2 sin χ cos χ

− l∂ηf4 _η sin χ: ð83Þ

Finally, we note down the Virasoro constraints associ-
ated with the sigma model

−Hð1dÞ ¼ Tττ

¼ −f1 þ f3 _η2 þ f2 _χ2 þ l2f2 sin2 χ ¼ 0; ð84Þ

Tτσ̃ ¼ 0: ð85Þ

A straightforward computation further reveals

∂τTττ ¼ −2∂ηf1 _η ¼ 0; ð86Þ

which therefore demands that for (76) to be a consistent
embedding one must set η ¼ ηs ¼ constant. In other words,
the consistency requirement of the Virasoro constraint (86)
confines the stringy dynamics over the submanifold
R × S2. This further restricts the phase space dynamics
of the string soliton to the two-dimensional subspace
(of the full four-dimensional phase space) characterized
by fpη ¼ 0; η ¼ ηsg.
As we shall see, the reduced sigma model (77) allows

two possible forms of NVEs. The solitonic configuration
fails to be Liouvillian integrable if one of these NVEs does
not meet the Kovacic’s criteria those were elaborated above.

C. NVEs

1. Case I

In order to arrive at the corresponding NVEs, we choose
to work with the invariant plane fpχ ¼ 0; χ ¼ 0g [20–26]
in the phase space and consider fluctuations [yðτÞ]
normal to this plane. These fluctuations result in what
we identify as NVEs those were mentioned previously in
(73). Notice that the above subspace naturally solves (83)
as χ ¼ _χ ¼ χ̈ ¼ 0.
It is indeed quite straightforward to figure out this

constant (ηs) for the given choice of phase space variables.
A straightforward substitution into (82) reveals the
condition

∂ηf1ðσ ∼ 0; η ¼ ηsÞ ∼ 0: ð87Þ

For T̃Nc;P quivers (21), the condition (87) reveals

∂ηf1ðσ ∼ 0; η ¼ ηsÞjP≫1

∼ −
π2ηs

ffiffiffiffiffiffiffi
3

log 2

q
8P

−
π4ðη2s þ 1Þηs

128P3ð ffiffiffi
3

p
log

3
2 2Þ þ � � � ; ð88Þ

which allows a trivial real solution as, ηs ∼ 0.
For the range, η ≥ 1, a similar analysis for þP;Nc

quivers
(32) reveals an equation

ðη2s − 1Þ log
�
ηs þ 1

ηs − 1

�
þ 2ηs ¼ 0; ð89Þ

which can be solved using the method of transcendental
equations.
Finally, considering fluctuations δχ ∼ yðτÞ about this

invariant plane fpχ ¼ 0; χ ¼ 0g, and retaining ourselves
only up to leading-order one finds simple harmonic motion
(with a unique frequency ϖ ∼ l) of the following form

ÿðτÞ þϖ2yðτÞ ≈ 0; ð90Þ

which guarantees the trivial integrability of the type IIB
string soliton under consideration.
In fact, this result is quite reminiscent of what has been

observed previously in the context of type IIB AdS5 × S5

superstrings [20]. One therefore do not in fact need to go
through all the details of Kovacic’s algorithm those were
mentioned previously as the power of differential Galois
theory confirms the underlying integrable structure of (90).

2. Case II

We now look for a different possibility, where we try to
figure out the NVEs considering an expansion about some
fixed fpη; ηg plane of the four dimensional phase space.
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To start with, an obvious choice would be look for
solutions subjected to the constraint pη ∼ _η ¼ 0. A natural
choice that is consistent with this constraint also amounts to
set η̈ ¼ 0. Finally, a straightforward computation reveals
that, ∂ηfijη¼0 ¼ 0 for i ¼ 1, 2, 3, 4.
To summarize, we therefore conclude that η ¼ _η ¼ η̈ ¼

0 is a consistent choice to start with which also solves the η-
equation (82). Our goal would be to consider fluctuations
about this fpη ¼ 0; η ¼ 0g plane and obtain the corre-
sponding NVE.
Substituting this ansatz into (83), we obtain the corre-

sponding solution to the χ- equation in terms of Jacobi
amplitudes

χðτÞ ¼ am

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc1 þ l2Þðc2 þ τÞ2

q ���� l2

c1 þ l2

�
; ð91Þ

where c1 and c2 are the integration constants.
Using (91), we finally arrive at the NVE corresponding

to T̃Nc;P quivers (21)

ÿðτÞ þAðτÞyðτÞ ≈ 0; ð92Þ

where we identify the coefficient as

AðτÞ ¼ 2l2 sin2 χ − c1 −
1

4
: ð93Þ

The general solution of (92) is quite complicated due to
the presence of the function AðτÞ, hence the corresponding
solution is non-Liouvillian. This particular string embed-
ding therefore clearly indicates the signature of nonintegr-
ability in the system.
Setting the integration constants to zero, and considering

an expansion for small parameter range (τ ≪ 1) it is
possible to simplify the function

AðτÞ ∼ 2l2 tanh2
� ffiffiffiffiffiffiffiffiffi

l2τ2
p �

−
1

4

∼ 2l4τ2 −
1

4
; ð94Þ

which leads to solutions in terms of special parabolic
cylindrical functions of the form

yðτÞ ¼ c1D−1
2
þ i

8
ffiffi
2

p
l2

�
ð1þ iÞ

ffiffiffi
4

p
2lτ

�
þ c2D−1

2
− i
8
ffiffi
2

p
l2
ðð−2Þ3=4lτÞ: ð95Þ

Looking back at the Schrödinger form (74), we notice
that the potential function VðτÞ ¼ −AðτÞ which makes the
exact solution of ωðτÞ quite difficult. In fact, for the small
parameter range τ ≪ 1, the solution manifests itself in the
form of special parabolic cylindrical functions those were

mentioned in (95). This further confirms the non-
Liouvillian nature of solutions for the NVE (92).
To summarize, our analysis reveals the existence of at

least one particular phase space configuration that does not
meet the Liouvillian integrability criteria those were men-
tioned previously. Based on the notion of holography, this
naturally leads us to conjecture about the nonintegrability
of N ¼ 1 linear quivers in 5D.

IV. NUMERICS

We now aim to decode the signatures of the above
nonintegrability in terms of various physical phenomena
associated with the dynamical phase space under consid-
eration. One natural quest along this direction would be to
search for possibilities of a chaotic motion for these type
IIB strings by computing appropriate chaos indicators.
For the purpose of our present analysis, we look for two

such indicators namely (i) the Lyapunov exponent and
(ii) the Poincaré section. Below, we elaborate on each of
these entities in detail. Finally, it is noteworthy to mention
that the nonintegrability does not necessarily imply a
chaotic motion, although the reverse is always true.

A. Chaos

The purpose of this section is to complement our
analytical finding through numerics. In particular, we
estimate the Lyapunov exponents (λ) for the type IIB
strings under consideration. This amounts of solving the
set of equations (82)–(83) for a given choice of the initial
conditions. These initial conditions are set in such a manner
so that the Hamiltonian constraint (81) vanishes identically.
This naturally identifies the corresponding energy (E) of
the string soliton and/or the long quiver. For technical
simplicity, we explore these exponents for T̃Nc;P quivers
(21) only.
The nonzero Lyapunov exponent, in some sense, is a

measure of the chaotic dynamics associated with a
Hamiltonian system [28–31]

λ ¼ lim
τ→∞

lim
ΔX0→0

1

τ
log

ΔXðX0; τÞ
ΔXðX0; 0Þ

: ð96Þ

Typically, (96) serves the purpose of a quantitative
measurement of the rate of separation between two nearby
trajectories (in the phase space) for a small change in the
initial conditions. Here, X0 corresponds to the initial phase
space data while the function ΔXðX0; τÞ measures the
separation between two infinitesimally close trajectories at
sufficiently late times, for a small change in the initial
conditions.
Notice that, since the phase space of the present solitonic

configuration is four dimensional fη; χ; pη; pχg therefore in
principle there exist four Lyapunov exponents for the
system whose sum vanishes to zero namely

P
4
i¼1 λi ¼ 0.
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However, for the present analysis, we look for the largest
possible Lyapunov associated with the solitonic configu-
ration which is sufficient to convince about the chaotic
dynamics of the phase space.
To begin with, we place the string soliton near the north

pole of S2 (as this naturally reduces the energy of the string)
and explore the time evolution of the system. The initial
conditions for Fig. 1(a) correspond to setting, χð0Þ ¼
0.05; ηð0Þ ¼ 0.01; _χð0Þ ¼ 0.01 and _ηð0Þ ¼ 0.001. These
initial conditions suggest that we place the string solitons
far away from the flavor D7 branes. This fixes the energy of
the string soliton to be E ∼ 0.02 such that the constraint
(84) is identically satisfied. From Fig. 1(a), it is quite
evident that the Lypunov (λ) asymptotically approaches to
some nonzero value. This clearly signifies the onset of
chaos and hence nonintegrability associated with the
solitonic configuration.

We further excite these strings (Fig. 1(b)) by placing
them slightly away from the north pole. The initial
conditions in this case correspond to setting χð0Þ ¼
0.2; ηð0Þ ¼ 0.01; _χð0Þ ¼ 0.01 and _ηð0Þ ¼ 0.001. This fixes
the energy of the string E ∼ 0.09 which suggests that these
solitons posses larger energy than those previous ones. Like
before, we observe a nonzero value of the Lyapunov
exponent (λ) which signals the persistence of chaotic
motion associated with these type IIB strings.
Let us now consider a situation in which strings are

initially placed closer to the flavor D7-branes. This is
achieved by choosing an appropriate initial condition for
the holographic coordinate η. In Fig 2 we show the
corresponding plots for the Lyapunov exponents as the
string approaches closer to the location of the flavor D7-
branes which for the present example corresponds to,
η ∼ 100. From Fig. 2 it is evident that the string becomes

(a) (b)

FIG. 1. We plot the Lyapunov exponents (λ) for T̃Nc;P quivers. We set P ¼ 100 and l ¼ 5 for each of these plots. (a) Single-kink
profile that corresponds to a low-energy quiver, (b) Single-kink profile that corresponds to a higher excited state of the quiver. In the dual
string theory picture, these plots correspond to strings those are less energetic and are located far away from the flavor D7-branes.

(a) (b)

FIG. 2. We plot the Lyapunov exponents (λ) for T̃Nc;P quivers. We set P ¼ 100 and l ¼ 5 for each of these plots. (a) Single-kink
profile that corresponds to a quiver with lower energy, (b) Single-kink profile that corresponds to a higher excited state of the quiver. In
the dual string theory picture, these plots correspond to highly energetic strings those are located nearer to the flavor D7-branes.
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more and more energetic as it approaches the flavor branes.
In other words, more energy needs to be supplied while
moving the string closer to the location of the flavor branes.
For our case, the initial positions for the string are set as
ηð0Þ ¼ 15 [Fig. 2(a)] and ηð0Þ ¼ 75 [Fig. 2(b)] which
correspond E ∼ 1944 and E ∼ 17655 respectively.

B. Poincaré section

Usually, for an integrable system the phase space
trajectories lie on the KAM torus [28]. Generally, for an
integrable system with N conserved charges (Qi)—the
corresponding KAM torus is N dimensional. The trajecto-
ries over the KAM torus are completely specified in terms
of these N conserved charges (Qi).
One elegant way to check the underlying integrable

structure of the dynamical phase space is to take a 2D
circular cross section of these KAM tori and see whether a
large number of foliated circular KAM curves survive the
external perturbation applied to the Hamiltonian of the
system. These 2D cross sections of the foliated KAM tori
are known as the Poincaré section. As per the KAM
theorem, any nonintegrable perturbation added to the
original integrable Hamiltonian destroys some of these
KAM tori and thereby the foliated circular KAM curves
those span the associated 2D Poincaré sections. As the
strength of the nonintegrable deformation increases
further, more and more KAM tori will be destroyed which
will result in a seemingly random motion in the phase
space.
In order to probe these Poincaré sections corresponding

to N ¼ 1 quivers in 5D, we solve the corresponding
Hamiltonian dynamics that results from (82). Like before,
we set the energy (E ¼ E0) of the string at some particular
value which satisfies the Hamiltonian constraint (84) for
some given set of initial conditions namely, ηð0Þ ¼ 0.01
and pχð0Þ ¼ 0. Given these initial conditions, we generate
a random data set by choosing pη ∈ ½0; 10� which fixes the

corresponding χð0Þ such that the constraint (84) is always
satisfied.9

Finally, with the help of this initial data set, we carry out
a numerical simulation of the Hamilton’s equations of
motion

_χ ¼ −
1

2f2
ðpχ − 2lf4 sin χÞ; ð97Þ

_pχ ¼ l2

�
f2 þ

f24
f2

�
sin 2χ −

lf4
f2

pχ cos χ; ð98Þ

_η ¼ −
pη

2f3
; ð99Þ

_pη ¼
E2

4f21
∂ηf1 −

p2
η

4f23
∂ηf3 −

∂ηf2
4f22

ðpχ − 2lf4 sin χÞ2

−
l
f2

∂ηf4 sin χðpχ − 2lf4 sin χÞ

þ l2∂ηf2 sin2 χ; ð100Þ

and plot all the points on the fpη; ηg plane every time the
trajectories pass through χðtÞ ¼ 0 hyperplane. Which
therefore represents a two-dimensional projection of a
three dimensional hyperplane in the phase space.
For an integrable phase space configuration, a naive

expectation would be to see the patches of circular KAM
curves through this 2D projection. For the present analysis,
the phase under consideration is four dimensional namely it

FIG. 3. We plot the Poincaré section for T̃Nc;P quivers. We set P ¼ 100 and l ¼ 5 for each of these plots. (a) Single-kink profile that
corresponds to a low energy quiver, (b) Single-kink profile that corresponds to a higher excited state of the quiver. In the dual string
theory picture, these plots correspond to a phase space configuration with less energetic strings those are located far away from the flavor
D7-branes.

9Following our previous discussion, we stick to a configuration
where the energy (E) of the soliton is the lowest possible. This
corresponds to strings located away from the flavor D7-branes.
For our purpose, it is sufficient to explore the Poincaré section for
these low energy strings since the increase in E would enhance
the possibilities of a more random motion which will destroy the
associated KAM tori in the phase space.
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is characterized by the axes fχ; pχ ; η; pηg. In case of an
integrable phase space, one would therefore expect the
trajectories to be aligned along the two dimensional torus.
Poincaré section of this torus would therefore unveil
circular patches indicating the presence of different reso-
nant tori.
From above Fig. 3 however, we do not see any evidence

for such closed patches. As mentioned above, these
Poincaré sections are obtained for strings sitting at the
north pole (χ ¼ 0). As our analysis reveals, at low enough
energies the trajectories in the phase space are more
organized than its high-energy counterparts. Most of the
string orbits are localized near the north pole of S2 while
the strings can move along the holographic direction (η)
[Fig. 3(a)]. However, as the energy increases, the string
starts moving with higher momentum (pη) which by virtue
of (100) reveals that the solitonic orbits are no longer
localized near the north pole of S2. In other words, the
string starts moving randomly along the two sphere which
results in a chaotic distribution of points along the Poincaré
section [Fig. 3(a)]. The distribution of the these points
(along Poincaré section) become more and more sparse as
the corresponding energy (E) of the soliton increases.
To summarize, both these analyses accumulate enough

evidence for the underlying nonintegrable structure of the
N ¼ 1 SCFTs in 5D.

V. SUMMARY AND FINAL REMARKS

To conclude, the present analysis reveals the existence of
yet another class of strongly coupled nonintegrable SCFTs
among the plethora of examples those are floating in the
AdS=CFT landscape. These are theN ¼ 1 SCFTs living in
5Dwhose dual stringy counter part is described by type IIB
supergravity solutions in AdS6 × S2 × Σð2Þ.
Our analysis reveals that these 5d theories are Liouvillian

nonintegrable in the sense of [18–19]. We further comple-
ment our claim through numerics where we estimate the
corresponding Lyapunov exponent as well as the Poincaré
section for the dynamical phase space under consideration.
As a future remark, it is worthwhile to mention that it will
be really nice to consider an S dual of these type IIB
solutions and check whether the Liouvillian nonintegrabil-
ity of the transformed background is still preserved. In fact,
as a first step, one should construct the corresponding S
dual background and perform an analysis of various field
theory observables for example—the Page charges as well
as the central charges corresponding to different N ¼ 1
quivers.
It will be also interesting to explore whether it is possible

to implement the algorithm for a more generic class of
quivers in 5D. These are the quivers with unbalanced nodes
—for example, XNc;M theories as discussed in [10] and the
(YNc

) quivers which are not S dual to themselves. In
principle, the algorithm should be also be applicable for

these theories based on the notion of the SLð2; CÞ invari-
ance of the space of solutions for complex partial differ-
ential equations which emerge from studying the dynamics
of the string soliton over complex manifold.
We hope to be able to address some of these issues in the

near future.
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APPENDIX A: NONINTEGRABILITY OF LONG
EXTENDED STRINGS

Let us briefly discuss the Liouvillian nonintegrability for
long strings passing through flavor D7-branes located along
the internal manifold (M4) of the full type IIB solution. The
dynamics of these strings are described in (17)–(18).
Clearly, a choice σ00 ¼ σ0 ¼ σ ¼ 0 solves (17) which we

therefore choose to be the reference plane about which the
normal fluctuations (δσ ∼ yðσ̃Þ) are considered.
Substituting this choice into (18), we find

η00 ≈
�
l2 −

1

4

�
ηþ � � � ; ðA1Þ

where we stick to the large P limit while taking the specific
example of T̃Nc;P quivers (21).
The above equation (A1) is solved for

ηsðσ̃Þ ≃ e−γσ̃ þOð1=P2Þ; ðA2Þ

where, γ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
l2 − 1

4

q
.

Using (A2), the corresponding NVE turns out to be

y00ðσ̃Þ þ Bðσ̃Þy0ðσ̃Þ þAðσ̃Þyðσ̃Þ ≈ 0; ðA3Þ

where the individual coefficients are identified as

Bðσ̃Þ ¼ π2ηsη
0
s

24P2 log 2
; ðA4Þ

Aðσ̃Þ ¼ −
�
1

2
þ π2ðl2η2s þ η02sÞ

24P2 log 2

�
: ðA5Þ

Clearly, the general solution of (A4) is non-Liouvillian.
However, if we retain ourselves to the strict supergravity
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(P → ∞) limit then the solution is of course Liouvillian,

yðσ̃Þ ∼ e
σ̃ffiffi
2

p
. This is the limit in which the dispersion

relation(s) (30) has been computed.
As a special note, below we express the potential

function associated with the corresponding Schrödinger
form

−Vðσ̃Þ ≃ −
1

2
þ π2l2

24P2 log 2
e−2γσ̃ þOð1=P4Þ; ðA6Þ

which reveals a solution of (74) in terms of special
functions namely a combination of Bessel functions
coupled together with the Gamma functions. On the other
hand, in the strict holographic limit (P → ∞), the solution
[ωðσ̃Þ] corresponding to the Schrödinger equation (74)
manifests itself as a polynomial of degree one, which
confirms the Liouvillian integrability of the (long) string
soliton in the above limit.
To summarize, we notice that it is the presence of flavor

D7-branes which spoils the integrability. Setting, P → ∞
corresponds to the fact that we place the flavor branes at
infinity—as a consequence of this the string never meets
the flavor branes. This is the limit in which the dispersion
relation(s) (30) has been obtained. These are the massive
string states which in fact cannot be excited.

APPENDIX B: A NOTE ON THE
LARGE σ LIMIT

Below, we enumerate the metric functions [fiðσ; ηÞ] and
their derivatives in the large σ limit. Given the potential
function as in (23), the corresponding metric functions
read as

f1ðσ; ηÞ ∼
3

ffiffiffi
3

p
P

2
þ 1

4

ffiffiffi
3

p
3πσ þOð1=PÞ; ðB1Þ

f2ðσ; ηÞ ∼
ffiffiffi
3

p
π2η2

2P
þOð1=P2Þ; ðB2Þ

f3ðσ; ηÞ ∼
ffiffiffi
3

p
π2

2P
þOð1=P2Þ; ðB3Þ

f4ðσ; ηÞ ∼
4π3η3

3P2
þOð1=P3Þ; ðB4Þ

f5ðσ; ηÞ ∼ −
3ðπ3η3NcÞ

2P2
þOð1=P3Þ; ðB5Þ

f6ðσ; ηÞ ∼
4N2

c

3
þOð1=PÞ; ðB6Þ

f7ðσ; ηÞ ∼ −2Nc þOð1=PÞ: ðB7Þ

Using the above metric forms (B1)–(B7), we find

η̈ ≈ ηð_χ2 − l2 sin2 χÞ; ðB8Þ

−ηχ̈ ≈ 2_η _χþl2η sin χ cos χ: ðB9Þ

In order to check the Liouvillian nonintegrability
criteria, we set χ̈ ¼ _χ ¼ χ ¼ 0 which clearly solves (B9).
In other words, we choose to work with an invariant plane
fpχ ¼ 0; χ ¼ 0g in the phase space and thereafter consider
fluctuations about this plane.
Given the above choice, from (B8) we find

ηðτÞjχ∼0 ∼ aτ þ b: ðB10Þ

Substituting (B10) into (B9) and considering fluctua-
tions δχ ∼ yðτÞ, the corresponding NVE turns out to be

ÿðτÞ þ BðτÞ_yðτÞ þAðτÞyðτÞ ≈ 0; ðB11Þ

where we define coefficients as BðτÞ ¼ 2a
aτþb and

AðτÞ ¼ l2 < 0.
The corresponding solution turns out to be Liouvillian

namely

yðτÞ ∼
e−

ffiffiffiffiffiffi
−l2

p
τ
�
c2e2

ffiffiffiffiffi
−l2

p
τffiffiffiffiffiffi

−l2
p þ 2c1

�
2ðaτ þ bÞ ; jτj ≪ 1: ðB12Þ

The potential function for the Schrödinger equation (74)
turns out to be

VðτÞ ¼ −l2; ðB13Þ

which is quite analogous to the case of simple harmonic
motion as discussed in Sec. III C 1 which for small enough
fluctuations jyðτÞj ≪ 1 yields a solution of the form

ωðτÞ ∼ −l2τ ðB14Þ

which is a polynomial of degree one.
Let us now look at the other possibility namely to set,

η̈ ¼ _η ¼ η ¼ 0 which clearly solves (B8). Substituting this
choice into (B9) we find

χ̈ þ 2gðτÞ_χ þ l2 sin χ cos χ ≈ 0; ðB15Þ

where we introduce limη→0
_ηðτÞ
ηðτÞ ¼ gðτÞ.

Naturally, any possible solution of (B15) is quite non-
trivial which when substituted back into the NVE corre-
sponding to fluctuations [δη ∼ yðτÞ] about the hyperplane
fpη ¼ 0; η ¼ 0g yields solutions which are non-Liouvillian
in nature.
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APPENDIX C: SPACETIME SOLUTIONS [f iðσ;ηÞ] FOR η > 1

Below we summarize metric components for the range 1 ≤ η ≤ P. We first note down

f1ðσ ∼ 0; ηÞ ∼ 3
ffiffiffi
3

p

2
ffiffiffi
2

p π

ffiffiffiffiffiffiffiffiffiffiffi
a1ðηÞ
b1ðηÞ

s
; ðC1Þ

where we denote the individual entities as

a1ðηÞ ¼ −ðη2 þ 1Þ log
�
ηþ 1

η − 1

�
þ ηð−2 log ðη2 − 1Þ þ 6þ log 16Þ − 4η log

�
π

P

�
; ðC2Þ

b1ðηÞ ¼ log

�
ηþ 1

η − 1

�
: ðC3Þ

Next, we note down the function f2 which can be schematically expressed

f2ðσ ∼ 0; ηÞ ∼ a2ðηÞ
b2ðηÞ

ðC4Þ

in terms of other functions

a2ðηÞffiffiffi
3

p
π
¼

�
ðη2 þ 1Þ log

�
ηþ 1

η − 1

�
− 2ηð− log ðη2 − 1Þ þ 3þ logð4ÞÞ þ 4η log

�
π

P

��
2

; ðC5Þ

b2ðηÞ ¼ c2ðηÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ðη2 þ 1Þ logðηþ1

η−1Þ þ 4ηð− log ðη2 − 1Þ þ 3þ logð4ÞÞ − 8η logðπPÞ
logðηþ1

η−1Þ

vuut ; ðC6Þ

c2ðηÞ ¼ −2ðη2 þ 3Þ log2
�
ηþ 1

η − 1

�
þ ð−2 log ðη2 − 1Þ þ 4þ logð16ÞÞ2 þ 16 log2

�
π

P

�
: ðC7Þ

Finally, we note down the metric component

f3ðσ ∼ 0; ηÞ ∼ −
a3ðηÞ
b3ðηÞ

; ðC8Þ

where we identify individual entities as

a3ðηÞ ¼
ffiffiffi
3

2

r
π log

�
ηþ 1

η − 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ðη2 þ 1Þ logðηþ1

η−1Þ þ ηð−2 log ðη2 − 1Þ þ 6þ logð16ÞÞ − 4η logðπPÞ
logðηþ1

η−1Þ

vuut ; ðC9Þ

b3ðηÞ ¼ ðη2 þ 1Þ log
�
ηþ 1

η − 1

�
− 2ηð− log ðη2 − 1Þ þ 3þ logð4ÞÞ þ 4η log

�
π

P

�
: ðC10Þ
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