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We perform a covariant (Lagrangian) quantization of perturbative gravity in the background of a
Schwarzschild black hole. The key tool is a decomposition of the field into spherical harmonics. We fix
Regge-Wheeler gauge for modes with angular momentum quantum number l ≥ 2, while for low-multipole
modes with l ¼ 0 or 1—for which Regge-Wheeler gauge is inapplicable—we propose a set of gauge-fixing
conditions which are 2D background covariant and perturbatively well defined. We find that the
corresponding Faddeev-Popov ghosts are nonpropagating for the l ≥ 2 modes, but are in general nontrivial
for the low-multipole modes with l ¼ 0, 1. However, in Schwarzschild coordinates, all time derivatives acting
on the ghosts drop from the action and the low-multipole ghosts have instantaneous propagators. Up to
possible subtleties related to quantizing gravity in a space with a horizon, Faddeev’s theorem suggests the
possibility of an underlying canonical (Hamiltonian) quantization with a manifestly ghost-free Hilbert space.

DOI: 10.1103/PhysRevD.104.086008

I. INTRODUCTION

We would like to perform a perturbative quantization of
gravity in the background of a Schwarzschild black hole, in
a setting originally studied by Regge and Wheeler [1], and
later studied by Zerilli [2] and Martel and Poisson [3],
which was recently discussed in the context of quantization
in Refs. [4,5].
As is well known, a key obstacle to a straightforward

perturbative quantization of gravity is the presence of a
gauge symmetry—diffeomorphism invariance—which
leaves the naive Feynman path integral ill defined. A
procedure for defining the covariant (Lagrangian) path
integral for quantum field theories with gauge symmetries
was proposed in Refs. [6,7] and involves breaking the
gauge symmetry using a set of gauge-fixing conditions and
introducing compensating Faddeev-Popov (FP) ghost
fields, whose action is computed according to the rules
introduced in Refs. [6,7]. See Appendix A for a review.
In the past, such a quantization of gravity was performed

either in a general type of curved background satisfying
the Einstein field equations [7–10], with a background-
covariant and Lorentz-covariant gauge choice such as back-
ground-covariant harmonic gauge, or in a flat Minkowski

background [11–13] with either a Lorentz-covariant gauge
choice such as harmonic gauge or a non-Lorentz-covariant
gauge choice such as Dirac gauge [14].
In the background-covariant and Lorentz-covariant

harmonic gauge and its generalizations, the one- and
two-loop computations in gravity were performed in
Refs. [8,10,15–18]. In these gauges the FP ghosts are
propagating fields which give an important contribution
to the Feynman rules. In Refs. [8,10,17] the standard
background-covariant and Lorentz-covariant de Donder
gauge-fixing condition Fμ ¼ ∇νhνμ − 1

2
∇μhνν, linear in

the metric perturbation hμν, was used. In Ref. [18] the
choice of the gauge-fixing condition involved in addition
to the standard de Donder term a set of extra terms
nonlinear in hμν (for example, terms like hνλ∇λhμν), with
arbitrary, numerical or depending on scalars of the theory,
coefficients. The result, in this case of the two-loop UV
divergence in gravity, is independent of the seven addi-
tional parameters defining the generalized gauge-fixing
condition. The FP ghost contributions were computed in
these generalized classes of gauges according to standard
rules, and the final results were gauge independent, since
the FP ghosts were taken into account.
The correct Feynman path integral for computing loop

diagrams has been studied in both covariant (Lagrangian)
quantization and canonical (Hamiltonian) quantization; see,
for example, Refs. [7,11–13,19–21]. We describe the main
features of both ways of defining the perturbative Feynman
path integral in Appendices A and B, respectively.
Here we briefly discuss the relation between these two

types of quantization and their equivalence. In the covariant
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case, the gauge symmetry of the action S½ϕ� ¼ R LðϕÞ with
infinitesimal gauge parameters ξαðxÞ, α ¼ 1;…; m has to
be broken in order to lift the degeneracy of the kinetic terms
and define the propagators. This is accomplished by adding
a gauge-fixing condition to the classical theory, for exam-
ple, in the form χαðϕÞ ¼ 0, where the functions χαðϕÞ
depend on the fields ϕ of the classical action and possibly
their derivatives. The gauge-fixing functions χα transform
under infinitesimal gauge transformations as

δχα ¼ Qα
βξβ; ð1:1Þ

where Qα
β is in general some differential operator which

depends on the fields ϕ of the classical action and their
derivatives. This then defines the Lagrangian for the FP
ghosts corresponding to the given gauge-fixing condition
via

Lghost½C; C̄� ¼ C̄αQα
βCβ; ð1:2Þ

where C̄α, Cβ are known as FP antighosts and ghosts,
respectively. The gauge-fixing condition χα is viewed as
admissible provided det kQα

βk ≠ 0 and provided that
arbitrary field configurations ϕ can always be transformed
to configurations satisfying χαðϕÞ ¼ 0 via gauge trans-
formations respecting the boundary conditions (see
Sec. III C). Covariant quantization has relatively simple
rules which guarantee the gauge independence of the
physical observables in the theory.
One important feature of the covariant quantization is

that the local measure of integration is not strictly defined.
We refer to Ref. [20] where this issue was discussed in
detail. In particular, in the case that Qα

βðϕÞ is a local
function of fields without differential operators acting on
CβðxÞ, the relevant ghost action simply becomes
C̄αðxÞC̃αðxÞ, where C̃αðxÞ≡Qα

βðϕðxÞÞCβðxÞ. The corre-
sponding ghosts are nonpropagating and drop from
Feynman rules. The functional determinant resulting from
the transformation from C to C̃ may contribute to the local
measure of integration some field-dependent divergent term
proportional to δDð0Þ, where D is the dimension of the
spacetime on which x is a coordinate (in our case, we will
have D ¼ 2 since our fields will become effectively two-
dimensional after decomposition into spherical harmonics).
Terms of this nature can be neglected in a regularized
theory or can be shown to cancel, as explained in Ref. [20].
The canonical quantization procedure is more fundamen-

tal, being based on a canonical Hamiltonian, but it is also
more involved. The issue of unitarity of the Smatrix can only
be addressed in the canonical quantization method. However,
according to Refs. [11,13,19–21] the result of covariant
quantization is equivalent to the canonical one. In the
canonical formulation of theories with gauge symmetries,
one encounters first class constraints ϕαðpi; qiÞ ¼ 0, where
i ¼ 1;…; n runs over the naive configuration space and

again α ¼ 1;…; m. An additional set of conditions
χαðp; qÞ ¼ 0 has to be added to perform the canonical
quantization, and it is required that the Poisson brackets of
constraints with the additional conditions have a nonvanish-
ing determinant, det kfχα;ϕβgk ≠ 0.
There are two different classes of conditions χα. One

corresponds to the case of “unitary” Hamiltonians in gauge
theories, which have manifestly ghost-free underlying
Hilbert spaces; the other corresponds to the case of
“pseudounitary” Hamiltonians in gauge theories, which
have underlying state spaces with negative-norm ghost
degrees of freedom which must be quotiented out to yield
the physical Hilbert space. In the second case the S matrix
is pseudounitary in a space of states with the indefinite
metric. More details on this are in Sec. V.
We will show here that in the Regge-Wheeler gauge

[1–3] for gravitational perturbations with angular momen-
tum quantum number l ≥ 2, the corresponding FP ghosts
are nonpropagating and decoupled in the covariant quan-
tization method. In the low-multipole l ¼ 1, 0 sector in the
two-dimensionally background-covariant gauges we pro-
pose here, the FP ghosts are present and in general
propagating in covariant quantization. However, in
Schwarzschild coordinates in covariant quantization the
FP ghosts have “instantaneous” propagators containing
only space derivatives, which suggests that our covariant
quantization may have a corresponding canonical quanti-
zation which belongs to the first class of theories mentioned
above, with a unitary Hamiltonian and manifestly ghost-
free Hilbert space.
We will provide some evidence that this covariant result

is in agreement with one originating from a canonical
quantization, as would be expected according to Fadeev’s
theorem [11]. There may be subtleties in directly applying
the logic of Ref. [11] to the situation here, since
Schwarzschild coordinates are singular on the event hori-
zon, which was absent in the quantization theorems of
Refs. [11,13,19,20]. We leave the study and resolution of
such subtleties for future work.

II. GRAVITY IN THE SCHWARZSCHILD BLACK
HOLE BACKGROUND

Consider a 4D asymptotically flat spacetime ðM; ḡμνÞ
whose spacetime manifold M ¼ M2 × S2 can be
endowed with coordinates ðxa; θAÞ, a ¼ 1, 2 in which
the metric takes the form

ḡμν ¼ gμν þ hμν; ð2:1Þ

where gμν is the metric of the Schwarzschild black hole
written in a “spherically symmetric” form

gμνdxμdxν ¼ gabdxadxb þ r2ðxÞdΩ2
2: ð2:2Þ

Here rðxÞ is defined globally and invariantly by
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4πrðxÞ2 ≡ AreaðSOð3Þ orbit of x in MÞ: ð2:3Þ

As noted in Appendix A, we work in the context of 4D
asymptotically flat general relativity, for which local diffeo-
morphisms [i.e., diffeomorphisms obeying certain falloff
conditions; see Sec. III C and Eqs. (3.14) and (3.15)] are
gauge symmetries which act infinitesimally as

δḡμν ¼ ∇̄ðḡÞ
μ ξν þ ∇̄ðḡÞ

ν ξμ; ð2:4Þ

where ∇̄ðḡÞ
μ denotes the (torsion-free) covariant derivative of

ḡμν and where we take the gauge parameter to be the
covector1 ξμ. In the context of the background field method
within which we will work, the diffeomorphism (2.4) acts
on the background gμν and perturbation hμν as

δgμν ¼ 0; δhμν ¼ ∇̄ðḡÞ
μ ξν þ ∇̄ðḡÞ

ν ξμ; ð2:5Þ

respectively. Note that in this context the diffeomorphisms
(2.4) are kept distinct from diffeomorphisms/coordinate
transformations of the background ðM; gμνÞ.
Our formalism (based on that of Ref. [3]) will be covariant

with respect to two-dimensional background diffeomor-
phisms/coordinate transformations of ðM2; gabÞ, i.e., diffeo-
morphisms/coordinate transformations of the background
ðM; gμνÞ which are constant on the two-sphere. Letting Da

and ϵab denote the covariant derivative and volume form of
ðM2; gabÞ, respectively, it is helpful to define

raðxÞ ¼ DarðxÞ and taðxÞ ¼ −ϵabrbðxÞ; ð2:6Þ

which are orthogonal (but not orthonormal) by construction.
Here and below all indices will be raised and lowered with
the 2D background metric gab. Here ta is a pseudovector
which agrees with the stationary Killing vector of the
Schwarzschild background up to its transformation proper-
ties under parity ϵab → −ϵab. Defining

fðrÞ ≔ gabrarb ¼ −gabtatb ¼ 1 −
2GM
r

; ð2:7Þ

we have that

gab ¼ 1

fðrÞ ð−t
atb þ rarbÞ: ð2:8Þ

Due to the warp factor r2ðxÞ, there are “cross-term”
Christoffel symbols for the coordinate systems (2.2) which
prevent the simple factorization

dxμ∇μ ≠ dxaDa þ dθADA; ð2:9Þ

where we have let ∇μ denote the covariant derivative of
ðM; gμνÞ and DA denote the covariant derivative of
ðS2;ΩABÞ. These “cross-term” Christoffel symbols are
given by

Γa
AB ¼ −rgabrbΩAB; Γμ

aB ¼ 1

r
raδ

μ
B: ð2:10Þ

The remaining “cross-term” Christoffel symbols vanish,
i.e., ΓA

ab ¼ 0.
“Schwarzschild coordinates,”

gabdxadxb ¼ −fðrÞdt2 þ dr2

fðrÞ ; ð2:11Þ

which will serve an important role in the latter part of this
paper, cover the right static patch (right outer domain of
communications) of the Schwarzschild black hole and are
adapted to its Z2 ⋊ R “static ⋊ stationary“ isometry. Here
the “radial coordinate” r is the function defined by Eq. (2.6)
and t is an affine parameter along the timelike orbits of ta

which obeys taDat ¼ 1 in the given patch. It is useful to
note that, in these coordinates,

radxa ¼ dr; ra∂a ¼ fðrÞ∂r; ta∂a ¼ ∂t: ð2:12Þ

Note that ta∂a ¼ ∂t is timelike throughout this patch,
asymptoting to a null (pseudo)vector along the event
horizon and a unit t translation at infinity. Note that the
slices fΣtg of constant t are everywhere spacelike and
constitute a family of Cauchy surfaces for this patch.

III. GRAVITATIONAL PERTURBATIONS IN THE
SPHERICAL HARMONIC BASIS

A. Decomposition into spherical harmonics

It is helpful to take advantage of the spherical iso-
metries and orientability of the background—and, in
particular, of the explicit spherical symmetry of our
background gauge choice (2.2)—to expand the metric
perturbation hμν in spherical harmonics of definite parity.
In the “spherical” coordinates (2.2), the components of hμν
transform under the action of the background SO(3)
spherical symmetry associated with each two-sphere of
fixed xa (and under parity ϵ → −ϵ) as three scalars hab,
two vectors haA, and one (symmetric) second-order tensor
hAB. We can thus resolve hμν into spherical harmonics of
definite parity via [1–3]

hμν ¼
 

pab pðþÞ
aB

pðþÞ
bA pðþÞ

AB

!
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

parity even

þ
 

0 pð−Þ
aB

pð−Þ
Ab pð−Þ

AB

!
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

parity odd

; ð3:1Þ

with
1The corresponding finite gauge transformation is the diffeo-

morphism generated by ḡμνξν.
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pab ¼
X∞
l¼0

X
jmj≤l

hlmab Y
lm; ð3:2Þ

pðþÞ
aA ¼

X∞
l¼1

X
jmj≤l

jlma Ylm
A ;

pð−Þ
aA ¼

X∞
l¼1

X
jmj≤l

hlma Xlm
A ; ð3:3Þ

pðþÞ
AB ¼ r2

�X∞
l¼0

X
jmj≤l

KlmΩABYlm þ
X∞
l¼2

X
jmj≤l

GlmYlm
AB

�

pð−Þ
AB ¼

X∞
l¼2

X
jmj≤l

hlm2 Xlm
AB: ð3:4Þ

Here YlmðθAÞ are the usual unit-normalized spherical
harmonics on S2. The even-parity vector and tensor spherical
harmonics are defined by Ylm

A ≡DAYlm and Ylm
AB≡

½DADB þ 1
2
lðlþ 1ÞΩAB�Ylm, respectively. The odd-parity

vector and tensor spherical harmonics are defined by Xlm
A ≡

−ϵABDBYlm and Xlm
AB ≡ − 1

2
½ϵACDCDB þ ϵB

CDCDA�Ylm,
respectively, where ϵAB is the volume form of the round unit
sphere and all indices have been raised and lowered
with ΩAB.
Note that pab can be regarded as anM2 tensor and an S2

scalar, paA as both anM2 vector and an S2 vector, and pAB

as an M2 scalar and an S2 tensor. The decomposition
(3.1)–(3.4) completely specifies the angular dependence of
the perturbation hμν. In particular, the coefficient functions
hlmab , j

lm
a , Klm, Glm, hlma , hlm2 are “angle independent”

(constant on the two-sphere and hence functions only of the
two-coordinate xa) and can be regarded as scalar, vector,
and tensor fields on M2.

B. Gauge freedom in spherical harmonics

Note that, since the different spherical harmonics decou-
ple from one another in the kinetic term of the action, we
can make independent gauge choices for each choice of
ð�Þlm. In order to understand how the gauge freedom
(2.5)

hμν → hμν þ ∇̄ðḡÞ
μ ξν þ ∇̄ðḡÞ

ν ξμ ð3:5Þ

acts on a given harmonic, we resolve the gauge parameter
ξμ into spherical harmonics as

ξμ ¼
�
Ξa;Ξ

ðþÞ
A

�
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
parity even

þ
�
0;Ξð−Þ

A

�
|fflfflfflfflffl{zfflfflfflfflffl}
parity odd

; ð3:6Þ

with

Ξa ¼
X∞
l¼0

X
jmj≤l

ξlma Ylm; ð3:7Þ

ΞðþÞ
A ¼

X∞
l¼1

X
jmj≤l

ξðþÞlmYlm
A ;

Ξð−Þ
A ¼

X∞
l¼1

X
jmj≤l

ξð−ÞlmXlm
A : ð3:8Þ

ξlma , ξðþÞlm, and ξð−Þlm are “angle independent” (constant
on the two-sphere and hence functions only of the two-
coordinate xa) and can be regarded as scalar and vector
fields on M2.
In terms of these variables the gauge transformation (2.5)

reads

δpab¼DaΞbþDbΞa−2Γ̂μ
abξμ;

δpaB¼DaΞBþDBΞa−
2

r
raΞb−2Γ̂μ

aBξμ;

δpAB¼DAΞBþDBΞAþ2rgabraΞbΩAB−2Γ̂μ
ABξμ: ð3:9Þ

The last term involves the linear tensor Γ̂ρ
μν which relates

the full ∇̄ðḡÞ
μ and background ∇ðgÞ

μ covariant derivatives:

Γ̂ρ
μνξρ ≡ ∇̄ðḡÞ

μ ξν −∇ðgÞ
μ ξν; ð3:10Þ

Γ̂ρ
μν ≡ 1

2
ḡρσð∇ðgÞ

μ hσν þ∇ðgÞ
ν hμσ −∇ðgÞ

σ hμνÞ: ð3:11Þ

The key fact that will be useful to us is that such terms do
not involve derivatives acting on the gauge parameters
ξμ ¼ ðΞa;Ξð�ÞÞ, and the contributions of such terms to any
FP ghost actions will therefore not involve derivatives
acting on ghosts. Since any such terms are at least linear in
hμν, they do not contribute to the ghost propagators, but
rather provide the couplings for interaction vertices of the
form C̄hnC, with n ≥ 1. It is important to stress here that
such terms only involve objects which, after decomposing
into spherical harmonics, have coefficients which are
proper scalars, vectors, or tensors on M2, which can be
understood after close inspection of Eq. (3.11).
In general, the terms (3.10) are complicated power series

in hμν which couple different harmonics of the expansions
(3.2)–(3.4), (3.7), and (3.8), and outside of the monopole
(l ¼ 0) sector we do not have explicit closed-form expres-
sions for the sums of these series. The general properties of
these terms that we will use are that 1) they do not
contribute to ghost propagators and 2) their decomposition
into harmonics/2D fields only involves proper representa-
tions of the Lorentz group (in particular, the coefficients of
all terms in the decomposition and expansion will be proper
Lorentz scalars). This latter fact will be used in Appendix C
where we study the beyond leading order in hμν part of the
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l ≥ 1 ghost actions. These general properties will be
sufficient to establish our results. In the monopole
(l ¼ 0) sector, we have been able to find an explicit
closed-form expression [Eq. (4.32)], valid to all orders
in perturbation theory which explicitly displays these two
properties.

C. Boundary conditions

In gravity, the issue of boundary conditions is especially
important, since this will affect the asymptotics of the
spacetime on top of which our fields propagate, as well as
important physical quantities such as the Arnowitt-Deser-
Misner (ADM) mass and the flux of gravitational radiation
measured at infinity. In the context of asymptotically flat
gravity that we consider here, this additional consideration
places a restriction on the asymptotic falloff of the gauge
parameters ξμ which relate physically equivalent field
configurations of hμν. All other choices of ξμ correspond
to “large” diffeomorphisms which act nontrivially on the
physical space of states.2

For 4D general relativity with asymptotically flat boun-
dary conditions3 [13,25,26],

hμν ∼
r→∞

O

�
1

r

�
; ∂ρhμν ∼

r→∞
O

�
1

r2

�
; ð3:12Þ

the gauge parameters that relate physically equivalent field
configurations of hμν are those which fall off at least as
fast as

ḡμνξν ∼
r→∞

O

�
1

r

�
; ḡμν∂ρξν ∼

r→∞
O

�
1

r2

�
; ð3:13Þ

or, in terms of the decomposition (3.7) and (3.8),

ξlma ∼
r→∞

O

�
1

r

�
; ∂rξ

lm
a ∼

r→∞
O

�
1

r2

�
; ð3:14Þ

and

1

r2
ξð�Þlm ∼

r→∞
O

�
1

r

�
;

1

r2
∂rξ

ð�Þlm ∼
r→∞

O

�
1

r2

�
: ð3:15Þ

In Eqs. (3.12)–(3.15) we work with the coordinates and
radial function (2.6) of the background (2.2), but these
statements hold more generally for any asymptotically
Minkowskian coordinate system where r ¼

ffiffiffiffiffiffiffiffiffiffi
kx⃗k2

p
is its

spatial radial function. Equation (3.13) can be easily proven

using the covariant phase space methods of Refs. [27,28].
The essential point is that an infinitesimal diffeomorphism
of an asymptotically flat metric represents a zero mode of
the (appropriately restricted) presymplectic form associated
with the 4D Einstein-Hilbert action (this is the precise sense
in which ξμ relates physically equivalent field configura-
tions) if and only if certain surface integrals at spacelike
infinity i0 vanish. With the asymptotically flat boundary
conditions (3.12), this requires the falloff conditions (3.13).
It is important that our gauge-fixing conditions χα be

chosen such that any field configuration of hμν can always
be put into a form satisfying χα ¼ 0 via a gauge trans-
formation whose generator satisfies Eqs. (3.14) and (3.15).
This will ensure that the corresponding gauge slice includes
(at least) one representative from each gauge equivalence
class of field configurations. We have been careful to check
that this is the case for each of the gauge-fixing conditions
chosen below.
The falloff conditions (3.14) and (3.15) exclude trans-

formationsof the form(3.5) forwhich thegaugeparametersξμ
donotvanishat infinity.Thisclarifiesan issue raised inRef. [3]
concerning the gauge fixing of the low multipole l ¼ 0, 1
modes. It was observed in Ref. [3] that their choice of gauge-
fixing conditions did not seem to fully determine the gauge,
since their conditionswere preserved by particular families of
additional gauge transformations, with particular generators
ξμðv; rÞ presented in ingoing Eddington-Finkelstein (EF)
coordinates. However, these generators all violate the con-
ditions (3.14) and (3.15); rather than falling off at large r, they
are either constant or grow with r.
After imposing the falloff conditions (3.14) and (3.15),

the gauge-fixing conditions for low multipoles suggested in
Ref. [3] in EF coordinates, or the coordinate-independent
ones suggested here, fully determine the gauge.4 Note that
such falloff conditions are also required in quantum field
theories with gauge symmetries in order to derive the Ward
identities which govern the physical observables.

D. Regge-Wheeler-Zerilli-Martel-Poisson gauge

Regge-Wheeler gauge [1] (see also Zerilli [2] and
Martel-Poisson [3]) was often used in studies of linearized
perturbations of the classical Einstein equations near the
Schwarzschild black hole background. We will now review
this gauge-fixing condition and its inapplicability for low-
multipole modes with l ¼ 0, 1, in anticipation of its use in
covariant quantization in Sec. IV below.
As noted above [see Eqs. (3.1) and (3.4)], after decom-

position into spherical harmonics, the gravitational field
hμνðxa; θAÞ becomes encoded in a set of functions which, as
noted above, may be regarded as 2D fields on M2. In the
notation of Ref. [3], these functions/2D fields are

2An example of a family of such “large” diffeomorphisms
which act nontrivially on the physical space of states of
asymptotically flat gravity are the BMS supertranslations
[22,23]. See, e.g., Ref. [24] for a recent review.

3As noted in Ref. [25], these asymptotics are slightly weaker
than requiring smoothness at future null infinity Iþ.

4They also already fully determine the gauge beyond linear
order in hμν.
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hlmðþÞ
ab ; jlmðþÞ

a ; KlmðþÞ;

GlmðþÞ; hlmð−Þ
a ; hlmð−Þ

2 l ≥ 2: ð3:16Þ

At l ≥ 2 all functions/2D fields in Eq. (3.16) are available,
while for low multipoles only a restricted set of fields is
available due to a lack of vector and/or tensor harmonics for
those modes. One finds for electric dipoles, magnetic
dipoles, and monopoles, respectively, the following fields:

h1mðþÞ
ab ; j1mðþÞ

a ; K1mðþÞ; l ¼ 1; even; ð3:17Þ

h1mð−Þ
a ; l ¼ 1; odd; ð3:18Þ

h00ðþÞ
ab ; K00ðþÞ; l ¼ 0: ð3:19Þ

All functions in Eqs. (3.16)–(3.19) can be regarded as fields
on M2: hab may be regarded as a tensor on M2, ja, ha as
vectors onM2, andK,G, h2 as scalars onM2. The angular
dependence of the perturbation hμν is encoded in the
discrete dependence of these fields on the labels ð�Þlm.
As also noted above [see Eqs. (3.7) and (3.8)], after

decomposition into spherical harmonics, the gauge param-
eters ξμðxa; θAÞ also become encoded in a set of functions
which may be regarded as 2D fields on M2. At l ≥ 2 for
each l, m there are four gauge symmetries. At l ¼ 1ðþÞ
there are three gauge symmetries for each m ¼ −1, 0, 1, at
l ¼ 1ð−Þ there is one gauge symmetry for each m ¼ −1, 0,
1 and at l ¼ 0 there are two gauge symmetries:

ξl≥2 ⇒ fξlmðþÞ
a ; ξlmðþÞ; ξlmð−Þg; ð3:20Þ

ξl¼1ðþÞ ⇒ fξ1mðþÞ
a ; ξ1mðþÞg; ð3:21Þ

ξl¼1ð−Þ ⇒ fξ1mð−Þg; ð3:22Þ

ξl¼0 ⇒ fξ00ðþÞ
a g: ð3:23Þ

All functions in Eqs. (3.20)–(3.23) can similarly be
regarded as fields on M2: ξa may be regarded as a vector
on M2 and ξð�Þ may be regarded as scalars on M2. The
angular dependence of the gauge parameter ξμ is similarly
encoded in the discrete dependence of these fields on the
labels ð�Þlm.
The Regge-Wheeler gauge condition for modes with

l ≥ 2 is

jlmðþÞ
a ¼ GlmðþÞ ¼ hlmð−Þ

2 ¼ 0: ð3:24Þ

It involves one vector and two scalars, leading to a total of
four gauge-fixing conditions. One can check that an arbitrary
configuration of the fields involved in Eq. (3.24) can always
be brought to Regge-Wheeler gauge by means of a gauge
transformation whose generator satisfies the falloff

conditions (3.14) and (3.15), so these facts together tell
us that there is always one and only one field configuration
of (the l ≥ 2 part of) hμν in each gauge equivalence class
which satisfies the Regge-Wheeler gauge condition (3.24).
This tells us that Regge-Wheeler gauge is a good gauge-
fixing condition for covariant quantization. Note that the
Regge-Wheeler gauge condition (3.24) is independent of the
choice of coordinates xa on M2.
Some of the fields involved in Eq. (3.24) are absent at

l < 2, as one can see in Eqs. (3.17)–(3.19). Therefore,
Regge-Wheeler gauge is not a valid gauge choice for low-
multipole modes with l < 2, and we will present an
alternative choice in Sec. IV below.

E. Comments on monopoles l = 0 and dipoles l = 1

An important feature of the low-multipole modes estab-
lished in Refs. [2,3] is the following. First off, the Regge-
Wheeler gauge is not valid and one has to impose a
different set of gauges at l ¼ 0, 1 since for these modes
some of the functions in Eq. (3.24) are absent. Examples of
such gauge conditions were proposed in Refs. [2,3], where
it was also observed that the classical equations of motion
for linearized perturbations in this sector have simple local-
in-time solutions.
This is associated with the feature of the low multipoles

l ¼ 0 and l ¼ 1 that they do not contain radiative degrees of
freedom. The gravitational perturbations near future null
infinity were studied in Ref. [3] in the retarded coordinate
system ðu; r; θ;ϕÞ, where u ¼ t − r − 2M lnðr=2M − 1Þ. It
was shown there that the energy carried away by the
gravitational radiation near future infinity at u; r → ∞ is
proportional to lðl − 1Þ. At the event horizon the radiation
was studied in advanced coordinates ðv; r; θ;ϕÞ, where
v ¼ tþ r − 2M lnðr=2M − 1Þ, and again the result is
proportional to lðl − 1Þ. In both cases the radiation involves
quadrupoles, and higher modes, monopoles, and dipoles
drop from radiation in agreement with the standard expect-
ation that l ¼ 0 and l ¼ 1 perturbations do not contain
radiative degrees of freedom.
In the absence of additional sources, all solutions of the

Einstein equations for perturbations with l ¼ 0, 1 can be
gauged away (according to Refs. [2,3]) by an appropriate
choice of coordinate transformation. In the presence of
additional sources, like a point particle of mass m0 moving
towards the black hole, or a particle orbiting a black hole
with a fixed angular momentum a, solutions for linearized
perturbations take a specific form. In the l ¼ 0 monopole
case one finds htt ∼

m0

r [2]. This solution provides a linear
correction to the black hole mass proportional to m0. In the
l ¼ 1 odd-parity (magnetic dipole) case, the perturbed
metric was shown to describe a slightly rotating black
hole: one finds (according to Ref. [2]) that the l ¼ 1
solution for odd-parity perturbations is of the form ∼ m0a

r2

which represents the linearization of the Kerr metric with
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respect to its angular-momentum parameter, determined
here by the angular momentum of the source.
In Ref. [3], where advanced time coordinates were used,

the monopole solution was hvv ∼ 2δM
r and the magnetic

dipole solution was hv ∼ 2δJ
r . This again confirms that

classical solutions for small perturbations lead to small
changes in the black hole mass (position of the horizon)
and add a small rotation. Finally, for the l ¼ 1 even-parity
(electric dipole) case, solutions for small perturbations are
vanishing, even in the presence of sources, and are inter-
preted as simply encoding a switch to a noninertial coor-
dinate system with respect to the original Schwarzschild
spacetime [3].

IV. COVARIANT QUANTIZATION OF
GRAVITY IN THE SCHWARZSCHILD

BACKGROUND

A. Gauge-fixed action

The general form of the BRST-invariant gauge-fixed
action [29,30] consists of three terms: the classical action,
the gauge-fixing part of the action, and the FP ghost action.
In the case of gravity it takes the form

Sgfðg; B; C̄; C; hÞ ¼ Sclðgþ hÞ þ
Z

Bαχαðg; hÞ

þ
Z

C̄αQα
βðg; hÞCβ; ð4:1Þ

where the gauge-fixing conditions χα ¼ 0 result from
integrating out the auxiliary fields Bα. The Feynman path
integral acquires the form shown in Eq. (A3).
We now propose the following (two-dimensionally)

background-covariant and perturbatively well-defined
gauge-fixing conditions, including the Regge-Wheeler case
(3.24) as well as a gauge fixing of the low-multipole
modes:

ja ¼ G ¼ h2 ¼ 0 l ≥ 2; even; odd;

K ¼ ja ¼ 0 l ¼ 1; even;

raha ¼ 0 l ¼ 1; odd;

K ¼ tarbhab ¼ 0 l ¼ 0; even: ð4:2Þ

All gauge-fixing functions here as well as in Eq. (3.24) are
2D scalars or vectors, with the exception of the case
tarbhab ¼ 0 which is a pseudoscalar. This simply means
that all auxiliary fields Bα for our choice of gauge-fixing
functions χα are 2D scalars or vectors, with the exception of
the case Btarbhab where B is a pseudoscalar, so that the
total

R
Bαχαðg; hÞ contribution to the action is a 2D Lorentz

scalar, including the monopole term Btarbhab. One can
check that arbitrary field configurations of hμν can be made
to satisfy Eq. (4.2) by acting with gauge transformations

whose generators satisfy Eqs. (3.14) and (3.15). Since
Eq. (4.2) also exhausts the gauge freedom (3.5), we see that
there is always one and only one field configuration of hμν
in each gauge equivalence class that satisfies the gauge
condition Eq. (4.2). This tells us that Eq. (4.2) is a good
gauge-fixing condition for covariant quantization.

B. Covariant quantization of the l ≥ 2 modes:
Decoupling of ghosts

We apply to our theory the DeWitt-Faddeev-Popov
procedure [6,7] for the covariant quantization of quantum
field theories with gauge symmetries; see Appendix A for a
short review. We choose the four Regge-Wheeler gauge-
fixing conditions used in [1–3] for all modes starting with
quadrupoles and above (l ≥ 2), is given, for each ðl; mÞ, in
Eq. (3.24). After writing the gauge symmetry (3.5) in terms
of the spherical harmonic decomposition (3.1)–(3.4) for the
gravitational field, we will show here that all FP ghosts
corresponding to the gauge-fixing conditions (3.24) for even
and odd l ≥ 2 modes decouple.
From Eq. (3.9), we see that the gauge transformation

(1.1) of each of the gauge-fixing functions in Eq. (3.24) is

δjðþÞ
a ¼ ξðþÞ

a þDaξ
ðþÞ −

2

r
raξðþÞ þ fðþÞ

a ½h; ξ�; ð4:3Þ

δGðþÞ ¼ 2

r2
ξðþÞ þ fðþÞ

ðGÞ½h; ξ�; ð4:4Þ

δhð−Þ2 ¼ 2ξð−Þ þ fð−Þ2 ½h; ξ�: ð4:5Þ

Here the last terms in these equations f½h; ξ� are functionals
of the background metric, the gauge parameters ξμ, and the
metric perturbation hμν or spacetime derivatives of hμν which
obey f½0; ξ� ¼ 0 and tensorial linearity in ξμ (and hence
linearity in ξa and ξð�Þ, with no dependence on derivatives of
ξa and ξð�Þ). These terms originate from the tensor (3.10)
which relates the covariant derivative of the background to
the full covariant derivative appearing in Eq. (3.9). As
explained above, the contribution to the ghost action due
to these terms does not involve derivatives acting on ghosts,
and since these terms are at least linear or higher power in h,
they do not contribute to the ghost propagators, but rather
define couplings for the interaction terms C̄hnC with n ≥ 1.
The total ghost Lagrangian is given by

C̄a

�
CðþÞ
a þ

�
Da −

2

r
ra

�
CðþÞ þ fðþÞ

a ½h; C�
�

þ C̄ðþÞ
�
2

r2
CðþÞ þ fðþÞ

ðGÞ½h; C�
�

þ C̄−ð2Cð−Þ þ fð−Þ2 ½h; C�Þ; ð4:6Þ
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where we have not specified the details of the interaction
terms. The odd-sector ghost action is algebraic and
decoupled from the even sector. We can integrate out

C̄ð−Þ which leads to the constraint 2Cð−Þ þ fð−Þ2 ½h; C� ¼ 0,
so that the odd ghost action vanishes.
We now integrate over C̄ðþÞ to find the constraint

2

r2
CðþÞ þ fðþÞ

ðGÞ½h; C� ¼ 0: ð4:7Þ

The remaining ghost Lagrangian is

C̄a

�
CðþÞ
a −

r2

2

�
Da−

2

r
ra

�
fðþÞ
ðGÞ½h;C�þfðþÞ

a ½h;C�
�
; ð4:8Þ

where we have used Eq. (4.7). To establish the perturbative
Feynman rules, we will now look only at the terms
quadratic in ghosts and antighosts, without couplings to
hμν (i.e., neglecting terms with f½h; C�), to find the ghost
propagators in the Regge-Wheeler gauge in the background
of the Schwarzschild black hole. We find that the terms
quadratic in quantum fields are just

C̄aðþÞCðþÞ
a : ð4:9Þ

Thus, the quadratic term for the remaining ghosts is
algebraic. We conclude that all ghosts for the Regge-
Wheeler gauge are nonpropagating and can therefore be
neglected for all even and odd l ≥ 2 modes. We study the
nonlinear part of the ghost action in Appendix C where we
argue that in Schwarzschild coordinates there are no time
derivatives acting on the ghosts at all in the l ≥ 2 sector.

C. Covariant quantization of the l = 1 even
(electric dipole) modes

From Eq. (3.9), we see that the gauge transformation
(1.1) of each of the gauge-fixing functions in the l ¼ 1 even
(electric dipole) part of Eq. (4.2) is

δjðþÞ
a ¼ ξðþÞ

a þDaξ
ðþÞ −

2

r
raξðþÞ þ fðþÞ

a ½h; ξ�; ð4:10Þ

δKðþÞ ¼ −
2

r2
ξðþÞ þ 2

r
raξðþÞ

a þ fðþÞ
ðKÞ½h; ξ�: ð4:11Þ

The total ghost Lagrangian is therefore given by

C̄a

�
CðþÞ
a þ

�
Da −

2

r
ra

�
CðþÞ þ fðþÞ

a ½h; C�
�

þ C̄ðþÞ
�
−

2

r2
CðþÞ þ 2

r
raCðþÞ

a þ fðþÞ
ðKÞ½h; C�

�
: ð4:12Þ

We integrate over C̄ðþÞ to obtain the constraint

CðþÞ ¼ rraCðþÞ
a þ r2

2
fðþÞ
ðKÞ½h; C�: ð4:13Þ

The remaining ghost Lagrangian is

C̄a

�
CðþÞ
a þ ðDa − 2raÞ

�
raCðþÞ

a þ r
2
fðþÞ
ðKÞ½h; C�

�

þ fðþÞ
a ½h; C�

�
: ð4:14Þ

The part of this Lagrangian quadratic in ghosts (which
defines their propagator) is now

C̄aðCðþÞ
a þ ðDa − 2raÞrbCðþÞ

b Þ: ð4:15Þ

Thus, there is in general a propagating ghost field CðþÞ
a .

In Schwarzschild coordinates (t, r), where ra ¼ ð0; 1Þ;
ra ¼ ð0; fÞ, Eq. (4.15) becomes

C̄tCðþÞ
t þ C̄rCðþÞ

r þ C̄tDtfCr þ C̄rðDr − 2ÞfCðþÞ
r : ð4:16Þ

This action is linear in CðþÞ
t , which we can therefore

integrate out to impose the constraint C̄t ¼ 0. The remain-
ing part of the Lagrangian quadratic in the ghosts is

C̄r½ðDr − 2Þf þ 1�CðþÞ
r : ð4:17Þ

The nonlinear part of this Lagrangian is studied in
Appendix C where we argue that in Schwarzschild coor-
dinates there are no time derivatives acting on the ghosts in
the l ¼ 1 even sector.

D. Covariant quantization of the l = 1 odd
(magnetic dipole) modes

In the l ¼ 1 odd (magnetic dipole) sector, there is a
single gauge symmetry ξ1mð−Þ for eachm ¼ −1, 0, 1, which
we fix using the 2D background-covariant gauge-fixing
condition

rahð−Þa ¼ 0: ð4:18Þ

From Eq. (3.9), we see that the gauge transformation (1.1)
of the gauge-fixing condition is

raδhð−Þa ¼ raDaξ
ð−Þ þ rafð−Þa ½h; ξ�: ð4:19Þ

This variation involves, at the quadratic level defining the
ghost kinetic term, a derivative of ξð−Þ. This means that in
general these ghosts are propagating and coupled to
gravitational modes. The corresponding ghost action isZ

C̄ð−Þðrað∂a þ VaðhÞÞÞCð−Þ; ð4:20Þ
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where the coupling raVaðhÞ represents vertices where the
ghosts for the l ¼ 1 odd modes interact with hμν.
In Schwarzschild coordinates where ra ¼ ð0; fÞ the

ghosts action simplifies to

C̄ð−Þfð∂r þ VrðhÞÞCð−Þ: ð4:21Þ

Here the propagator is instantaneous since the kinetic terms
have only r derivatives. There are no derivatives acting on
this ghost field at higher order in hμν, so in Schwarzschild
coordinates there are no time derivatives acting on the
ghosts at all in the l ¼ 1 odd sector.

E. Covariant quantization of the l = 0 (monopole)
modes: Results to all orders

In the l ¼ 0 (monopole) sector there is a single 2D vector

ξ00ðþÞ
a , a parameter of a gauge symmetry, which we fix
using the 2D background-covariant gauge-fixing condi-
tions

K ¼ tarbhab ¼ 0: ð4:22Þ

The first one (K ¼ 0) is a 2D scalar, while the second one
(tarbhab ¼ 0) is a 2D pseudoscalar since ta ¼ −ϵabrb is a
pseudovector.
The gauge transformation (1.1) of the gauge-fixing

conditions is now given by

tarbδhab ¼ tarbðDaξb þDbξa þ fab½h;K; ξ�Þ; ð4:23Þ

δK ¼ 2

r
raξa þ fðKÞ½h;K; ξ�; ð4:24Þ

which leads to a ghost Lagrangian

C̄ðKÞ
�
2

r
raCa þ fðKÞ½h; C�

�
þ C̄ðhÞðtarbðDaCb

þDbCa þ fab½h; C�Þ:Þ ð4:25Þ

We can integrate over C̄ðKÞ which imposes the constraint

2

r
raCa þ fðKÞ½h; C� ¼ 0: ð4:26Þ

The first term in the ghost action now vanishes. We now
note that, since fðKÞ½h; C� is a Lorentz scalar, it can only
depend on raCa (not the pseudoscalar taCa), so that

fðKÞ½h; C� ¼ f̂ðKÞ½h�raCa ð4:27Þ

for some functional f̂ðKÞ½h� of h00ab. This means that the
constraint (4.27) really reads

�
2

r
þ f̂ðKÞ½h�

�
raCa ¼ 0 ð4:28Þ

and so sets raCa ¼ 0 up to a local functional determinant.
Such changes of variables were discussed in the
Introduction below Eq. (1.2) and simply contribute a term
proportional to δ2ð0Þ to the local measure of integration.
We neglect these, following the arguments in Ref. [20].
The second term in the Lagrangian is

C̄ðhÞðtarbðDaCb þDbCa þ fab½h; C�Þ:Þ ð4:29Þ

In general, the kinetic term, coming from the part of the
action quadratic in ghosts, has both space and time
derivatives, and a coupling is present between the ghosts
and the 2D monopole sector metric h00ab, encoded in the
term C̄ðhÞtarbfab½h; C�.
However, in Schwarzschild coordinates, we find from

Eq. (4.28) that Cr ¼ 0 and Eq. (4.29) reduces to

C̄ðhÞfðrÞ
��

Dr −
f0

f

�
Ct þ ftr½h; Ct�

	
: ð4:30Þ

The propagator is again instantaneous since the kinetic
terms have only r derivatives, and the nonlinear term
ftr½h; Ct� has no derivatives acting on ghosts. Therefore,
there are again no time derivatives acting on the ghost fields
in Schwarzschild coordinates.

Explicit all orders in h00ab ghost action

The monopole l ¼ 0 sector has the advantage that
the relevant parts decouple from other modes even at
the nonlinear level. Therefore, we are able to find an
explicit expression for the ghost action, including all
nonlinear terms. With our gauge choices K ¼ tarbh00ab ¼ 0

a convenient parametrization for the remaining two
components of hab is

h00ab ≡ 1

fðrÞ2 Atatb þ Brarb: ð4:31Þ

The Lagrangian for the monopole ghosts is given exactly
(to all orders in hμν) by

C̄ðKÞ
�
2

r
1

1þ fðrÞB
�
raCa

þ C̄ðhÞ
��

ta∂a −
fðrÞðtb∂bBÞ
1þ fðrÞB

�
rcCc

þ
�
ra∂a −

fðrÞf0ðrÞ − ðrd∂dAÞ
fðrÞ − A

�
tcCc

	
: ð4:32Þ

Note that here the antighost field C̄ðhÞ is a 2D pseudoscalar,
the same as the corresponding auxiliary field B in Btarbhab
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in Sec. IVA, so the total ghost action is a scalar since C̄ðhÞ
multiplies a piece of the Lagrangian which is linear in ta.
Now we take into account Eq. (4.28) and we find that the

remaining ghost action is given by

C̄ðhÞ
�
ra∂a −

fðrÞf0ðrÞ − ðrd∂dAÞ
fðrÞ − A

�
tcCc: ð4:33Þ

In general, this describes propagating ghosts coupled to
monopole gravitational perturbations. However, in
Schwarzschild coordinates we find only space derivatives
acting on ghosts,

C̄ðhÞfðrÞ
�
∂r −

f0ðrÞ − ∂rh00tt
fðrÞ − h00tt

�
Ct: ð4:34Þ

Therefore, the propagator is instantaneous, as in the
cases above.

V. FADDEEV’S THEOREM AND A POSSIBLE
HAMILTONIAN ORIGIN

A. Gauges with unitary and pseudounitary
Hamiltonians

In the Hamiltonian formalism in gauge theories where
we have first class constraints ϕαðt; x⃗Þ and additional
conditions χαðt; x⃗Þ, the Poisson bracket

fχαðt; x⃗Þ;ϕβðt; y⃗Þg ¼ Mα
βδ3ðx⃗ − y⃗Þ ð5:1Þ

defines a differential operatorMα
β. As we suggested in the

Introduction, there are two different classes of gauge-
fixing functions χα which lead to either a theory with a
unitary Hamiltonian, or a theory with the pseudounitary
Hamiltonian.

1. Case of unitary Hamiltonian Hðp�;q�Þ
in gauge theories

The first class of conditions χαðp; qÞ is usually associated
with Lorentz-noncovariant gauges, like Coulomb gauge in
Yang-Mills theory or Dirac gauge in gravity. This class
includes all instances where the differential operator Mα

β

does not involve time derivatives. In such a case, there exists
a unitary Hamiltonian in a space with (n −m) physical
degrees of freedom ðp�; q�Þ, where � ¼ 1;…; ðn −mÞ and
which is manifestly ghost free.
In covariant quantization as defined in Ref. [11] one can

arrange that

δχα ¼ −fχα;ϕβgξβ ð5:2Þ

at χα ¼ ϕα ¼ 0. Therefore, the differential operator Mα
β

defined by the Poisson bracket (5.1) of canonical quanti-
zation actually defines the FP ghost action C̄αQα

βCβ in
covariant quantization. When the operator Mα

β has only

space derivatives, one finds that, though a nontrivial FP
ghost action is present in the covariant quantization, it has
the particular feature that the ghost propagators are
instantaneous.
It is known5 in the example of Coulomb gauge in Yang-

Mills theory that the ghost loops with instantaneous
propagators are canceled by the loops of the instantaneous
part of the gluon part of the propagator, to all orders in
perturbation theory [32]. It is also known that there are no
closed instantaneous loops when the Feynman rules are
deduced from the Hamiltonian path integral and the S
matrix is computed as the time-ordered product of the
unitary Hamiltonian. In this case the equivalence of
the Hamiltonian perturbative Feynman rules in QCD
[11,12,31] and the Lagrangian DeWitt-Faddeev-Popov
rules in QCD is clearly established. In gravity, in the
Dirac gauge [14] the ghosts in the covariant quantization
also have instantaneous propagators, whereas the under-
lying Hamiltonian is unitary and the Hilbert space of
physical degrees of freedom is ghost free [11,12].
In Appendix B we explain the general relation between

the original constrained canonical variables q and p in
Eq. (B3) and the independent physical canonical variables
ðq�; p�Þ in Eq. (B9).

2. Case of pseudounitary Hamiltonian in gauge theories,
HðqA;pA;ηa;PaÞ

The other class involves situations where the condition
χα ¼ χαðq; p; λ; _λÞ depends not only on the naive canonical
variables ðq; pÞ, but also on Lagrange multipliers λ and
their time derivative _λ, where the Lagrange multipliers
originate from the imposition of the constraints in the
Hamiltonian form of the action:

Sðq; p; λÞ ¼
Z

dt ðpi _qi −Hðq; pÞ − λαϕ
αðq; pÞÞ: ð5:3Þ

For example, in QCD the field A0 is a Lagrange multiplier
since the classical action does not depend on ∂0A0. In the
Lorentz-covariant gauge ∂μAμ ¼ 0, there is a time deriva-

tive of the Lagrange multiplier λ ¼ A0, since ∂0A0 ¼ _λ.
The set of canonical coordinates ðq; pÞ is now enlarged

by the Lagrange multipliers and their canonical momenta
so that the total naive phase space is spanned by ðqA; pAÞ,
with A ¼ 1;…; nþm. This allows for the accommodation
of Lorentz-covariant gauges, like Feynman gauge in Yang-
Mills theory and de Donder type gauges in gravity. In this
case, one must add to the system 2m additional degrees of
freedom ðηa;PaÞ, a ¼ 1;…; 2m, with opposite statistics,

5We are grateful to A. Weinstein and M. Shifman for the
clarifying discussion of this issue, namely, the absence of ghosts
in the canonical Feynman rules in the Coulomb gauge in Yang-
Mills theory [11,12,31], and the presence of instantaneous ghosts
as well as instantaneous gluons in the covariant Feynman rules.
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which correspond to propagating FP ghosts and antighosts.
The net number of commuting minus anticommuting
canonical variables is nþm − 2m ¼ n −m, in agreement
with the counting of physical states ðq�; p�Þ in the unitary
gauges described above, where neither Lagrange multi-
pliers nor FP ghosts/antighosts are propagating degrees of
freedom. The Hamiltonian in such an extended space
ðqA; pA; ηa;PaÞ defines an Smatrix which is pseudounitary
in a state space with indefinite metric, as explained
in Ref. [20].
Examples of gauges with pseudo-unitary Hamiltonian in

gravity include harmonic/de Donder gauge, which has
propagating (noninstantaneous) FP ghosts in the covariant
quantization method. The underlying Hamiltonian in this
class of gauges is pseudounitary. The proof of the unitarity
of the S matrix in this class of gauges, where ghost degrees
of freedom appear even in the canonical/Hamiltonian
construction, follows only because of the equivalence of
this S matrix to the one in the class of gauges with the
ghost-free unitary Hamiltonian.

B. l ≥ 2

Our four gauge-fixing functions, for each ðl; mÞ with
l ≥ 2, are χα ¼ fja; G; h2g. To leading order in hμν they
transform under the four gauge parameters ξα ¼
fξa; ξðþÞ; ξð−Þg with the same l and m via

δχα ¼ −fχα;ϕβgξβ þOðhμνÞ; ð5:4Þ

where the first term on the right-hand side of Eq. (5.4) is
given by the leading-order terms in Eqs. (4.3)–(4.5). The
corresponding leading-order ghost action—in particular,
the ghost kinetic term—is associated with the determinant
of the matrix det kfχα;ϕβgk ≠ 0 as explained in Eq. (B5),
which is given by

det

0
BB@

1 Da − 2
r ra 0

0 2
r2 0

0 0 2

1
CCA ¼ det

0
BB@

1 0 0

0 2
r2 0

0 0 2

1
CCA: ð5:5Þ

Such a determinant is algebraic and will contribute to the
action as δ2ð0Þ. Therefore, in both covariant and canonical
quantization we do not expect propagating ghosts for
the modes with l ≥ 2. One can further show that in
Schwarzschild coordinates, time derivatives of ghosts
are absent even in the higher-order terms. Thus, the
absence of a nontrivial ghost action for the l ≥ 2 modes
provides evidence that a unitary Hamiltonian is available
for these modes.

C. l = 1 even

Our three gauge-fixing functions, for each m ¼ −1, 0, 1,
are χα ¼ fja; Kg. To leading order they transform under the

three gauge parameters ξα ¼ fξa; ξðþÞgwith the samem via
the Poisson bracket δχα ¼ −fχα;ϕβgξβ þOðhμνÞ given by
the leading-order terms in Eqs. (4.10) and (4.11). The
corresponding determinant det kfχα;ϕβgk is given by

det

0
@ 1 Da − 2

r ra
2
r r

a − 2
r2

1
A ¼ det

�
−

2

r2

�

− det

�
2

r
ra
�
Da −

2

r
ra

��
:

ð5:6Þ

In Schwarzschild coordinates, with ra ¼ ð0; 1Þ and
ra ¼ ð0; fÞ, this becomes

det

0
@ 1 Da − 2

r ra
2
r r

a − 2
r2

!






Schld

¼ det

�
−

2

r2

�

− det

�
2fðrÞ
r

�
Dr −

2

r

��
:

ð5:7Þ

Note that this determinant has only space derivatives.
Therefore, we can deduce from the canonical quantization in
Schwarzschild coordinates that the FP ghosts in a covariant
quantization will have an instantaneous propagator. One can
further show that in Schwarzschild coordinates, time deriv-
atives of ghosts are absent even in the higher-order terms.
Again, the absence of the time derivatives in the ghost action
for l ¼ 1 even modes provides evidence that the unitary
Hamiltonian is available for these modes.

D. l = 1 odd

Our one gauge-fixing function, for each m ¼ −1, 0, 1,
is χα ¼ frahag which to leading order transforms under
the gauge parameter ξα ¼ fξð−Þg with the same m via the
Poisson bracket δχα ¼ −fχα;ϕβgξβ þOðhμνÞ given by
the leading-order terms in Eq. (4.19). In Schwarzschild
coordinates we see that the corresponding determinant is
given by det kfχα;ϕβgk ¼ detðDrÞ, which involves a
derivative operator in the r direction only. The corre-
sponding FP ghost action shown in Eq. (4.20) is not
vanishing but leads to ghost loop diagrams with an
instantaneous propagator.
Thus, the ghost action for magnetic dipoles, which

has only space derivatives in the action in Schwarzs-
child coordinates, provides evidence that the unitary
Hamiltonian is available for these modes.

E. l = 0

In Schwarzschild coordinates we have the two gauge-
fixing conditions χα ¼ fK; htrg and the two gauge
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parameters ξr, ξt. The determinant of the corresponding
Poisson bracket δχα ¼ −fχα;ϕβgξβ is given to all orders in
h00ab by

det

0
BBB@

2
r

fðrÞ
1þfðrÞhrr 0

fðrÞ
�
∂t −

fðrÞ∂thrr
1þfðrÞhrr

�
fðrÞ

�
∂r −

f0ðrÞ−∂rhtt
fðrÞ−htt

�
1
CCCA

¼ det

0
@ 2

r
fðrÞ

1þfðrÞhrr 0

0 fðrÞð∂r −
f0ðrÞ−∂rhtt
fðrÞ−htt Þ

1
A: ð5:8Þ

Here again we can see that the determinant of the
Poisson bracket is in agreement with the expression for
the action of the FP ghosts in the covariant method. There
are only space derivatives on monopole FP ghosts.
Therefore, in the covariant quantization they have instanta-
neous propagators and it is expected that their loops will
cancel with the instantaneous part of the gravitational
fields.
Time derivatives in Schwarzschild coordinates explicitly

vanish to all orders here. Thus, the ghost action for
monopoles, which has only space derivatives in the action,
provides evidence that the unitary Hamiltonian is also
available in the monopole sector.

VI. DISCUSSION

A rather surprising feature of the covariant quantization
of perturbative gravity in the Schwarzschild black hole
background in Regge-Wheeler gauge is that FP ghosts are
absent (i.e., decoupled) for all modes with the exception of
monopoles and dipoles. These latter modes are known to be
related to the ADM mass and angular momentum of the
perturbed black hole; for example, on shell and to linear
order, they are known to encode the linearized perturbation
of the ADM mass and the linearized rotation of the
perturbed black hole solution in the presence of sources
[1–3].
In the well-known background-covariant and Lorentz-

covariant gauges in Refs. [8,17,18] the gauge-fixing
functions—e.g., for de Donder gauge Fμ ¼ ∇ðgÞ

ν hνμ−
1
2
∇ðgÞ

μ hνν—depend on background-covariant derivatives of
the gravitational perturbation hμν. The ghosts are propagat-
ing due to the tensorial nature of the gravitational perturba-

tions δhμν ¼ 2∇̄ðḡÞ
ðμ ξνÞ which involve both space and time

derivatives acting on ξν. In gravity, Dirac gauge [14] is the
only one known to have FP ghosts with instantaneous
propagators in a covariant quantization, as shown in
Refs. [11–13], and to have a unitary Hamiltonian (in the
sense described in Sec. VA above).
Here we have studied covariant quantization of

perturbative gravity in a Schwarzschild back hole

background, using the Regge-Wheeler [1–3] framework
where the quantum fields are expanded in spherical
harmonics. In the Schwarzschild black hole background
there is a natural split of the space into a warped product
M ¼ M2 × S2 of two 2D submanifolds. All dependence
on the S2 is encoded in the discrete indices of the
harmonics, l, m and �. For each (l, m, �), the quantiza-
tion is reduced to a quantization of a quasi-two-
dimensional theory on M2 [with the additional informa-
tion of a radial function rðxÞ]: the gravity perturbations
with fixed values of (l,m,�) depend only on xa, a ¼ 1, 2,
the two coordinates ofM2. For low multipoles, for which
the Regge-Wheeler gauge condition is not valid, we have
proposed a two-dimensionally background-covariant set
of gauges in Eq. (4.2). They can can be written out
using any choice of coordinates including, for example,
Schwarzschild, Eddington-Finkelstein, or Kruskal-
Szekeres coordinates. We found the following.
(1) For all even and all odd modes with l ≥ 2, the

corresponding FP ghosts are not propagating: their
kinetic terms do not contain derivatives.

(2) All even and all odd dipole modes with l ¼ 1, and
monopole modes with l ¼ 0, have nontrivial FP
ghosts in covariant quantization, since their kinetic
terms involve derivatives.

In the special case of Schwarzschild coordinates our
results are as follows.
(1) In Schwarzschild coordinates, the low-multipole

ghosts have no time derivatives, only space deriv-
atives. Their propagators are therefore instantane-
ous, as in Coulomb gauge in QCD [11,12,31] and
Dirac gauge in gravity [11–13].

(2) We have provided evidence that with our choice of
gauge-fixing functions our covariant quantization
rules when viewed in Schwarzschild coordinates
are consistent with the existence of an underlying
unitary Hamiltonian in a manifestly ghost-free
Hilbert space with a positive-definite metric, as
suggested by Faddeev’s theorem [11].

An open issue which needs to be addressed with regard
to a potential canonical quantization of gravity in the black
hole background concerns the fact that the existing con-
structions of the canonical (Hamiltonian) path integral in
Refs. [11–13,19,20] were only performed in a flat
Minkowski background. Meanwhile, in the black hole
background in Schwarzschild coordinates there is an event
horizon along which the relevant coordinates break down.
The concept of the Hamiltonian and the Hilbert space of
states might be more subtle, if well defined at all.
Nevertheless, Faddeev’s theorem [11], valid at least in

the flat Minkowski background, suggests that a ghost-free
unitary Hamiltonian ought to exist for the gauge-fixing
conditions studied here in the black hole background in
Schwarzschild coordinates. Namely, we have found that in
the covariant quantization in Schwarzschild coordinates,
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there are no time derivatives acting on the ghost fields. This
suggests that such a Hamiltonian, if explicitly constructed,
might belong to the class we described in Sec. VA, the case
of the unitary ghost-free Hamiltonian Hðp�; q�Þ depending
on (n −m) degrees of freedom described by 2ðn −mÞ
canonical variables ðp�; q�Þ.
The reason this is a likely outcome of the canonical

quantization is that the case of the pseudounitary
Hamiltonian in a Hilbert space of states with an indefinite
metric, also described in Sec. VA, HðqA; pA; ηa;PaÞ,
would be inconsistent with the absence of time derivatives
acting on the ghosts, which we found in this paper. Here,
A ¼ 1;…; nþm involves commuting fields, and a ¼
1;…; 2m involves anticommuting fields. The total counting
of degrees of freedom is therefore nþm − 2m ¼ n −m.
But we have just shown that all of our anticommuting fields
(FP ghosts and antighosts) have no time derivatives, so they
are not expected to contribute to a space of states with an
indefinite metric in a process of canonical quantization.
Note that in Eddington-Finkelstein and Kruskal-

Szekeres coordinates the situation is different and has to
be studied separately. Although we have performed a
covariant quantization which is valid in any of these
coordinate systems, the canonical quantization is still to
be explored.
To summarize, it would be very interesting to perform a

canonical quantization of gravity in the Schwarzschild
black hole background in the class of gauges presented
here. We leave this for future work.
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APPENDIX A: DEWITT-FADDEEV-POPOV
COVARIANT QUANTIZATION OF GRAVITY

We consider 4D asymptotically flat Einstein gravity in the
background of a Schwarzschild black hole ðM; gμνÞ. The
total classical action depends on ḡμν ¼ gμν þ hμν, where hμν

is the quantized perturbative gravitational field (graviton
field) and the background field is the Schwarzschild black
hole metric gμν. The action Sðgþ hÞ is invariant under the
gauge symmetries

δhμν ¼ ∇̄ðgþhÞ
μ ξν þ ∇̄ðgþhÞ

ν ξμ; δgμν ¼ 0; ðA1Þ

where ∇̄ðgþhÞ
μ is the covariant derivative operator of the full

metric gþ h.
Due to the gauge symmetries the naive path integral

Z
DheiSðgþhÞ ðA2Þ

has to be defined using the DeWitt-Faddeev-Popov pro-
cedure [6,7]. This procedure in the simple case suitable for
our purpose involves a set of gauge-fixing conditions
χαðg; hÞ ¼ 0 which constrain the gravitational fields. The
path integral becomes

Z
DhJχðg; hÞδðχαðg; hÞÞeiSðgþhÞ: ðA3Þ

Here the Jacobian Jχðg; hÞ is defined by the variation of the
gauge-fixing function χαðg; hÞ under the gauge symmetry
with the parameters ξβ,

Jχðg; hÞ ¼ exp Tr ln Qα
βðg; hÞ; ðA4Þ

where

δχα ¼ Qα
βðg; hÞξβ: ðA5Þ

This Jacobian can also be written with the help of the FP
ghosts [6] as follows:

Jχ ¼
Z

DC̄αDCβe
i
R

d4xC̄αðxÞQα
βðg;hÞCβðxÞ: ðA6Þ

When Qα
βðg; hÞ is a local function of ðg; hÞ without

differential operators acting on CβðxÞ, the relevant ghost
action becomes C̄αðxÞC̃αðxÞ, where C̃αðxÞ ¼ Qα

βðg; hÞ
CβðxÞ. The corresponding ghosts are nonpropagating and
drop from Feynman rules. When Qα

βðg;hÞ involves differ-
ential operators with time and space derivatives, the corre-
sponding ghosts are propagating and generically give
important contributions to the Feynman diagrams. When
Qα

βðg; hÞ involves a differential operator with only space
derivatives, the corresponding ghosts are said to have
“instantaneous” propagators.
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APPENDIX B: FADDEEV-FRADKIN-VILKOVISKY
CANONICAL QUANTIZATION OF GRAVITY

In this Appendix, we would like to present a brief
summary of the most relevant results obtained in
Refs. [11,13,19,20] concerning the canonical quantization
of gravity. We would like to stress that the standard
Faddeev-Fradkin-Vilkovisky quantization of gravity was
formulated in the context of a flat Minkowski background,
whereas in this paper we perform the quantization in the
Schwarzschild black hole background using the covariant
quantization method developed by DeWitt [7–10].
It might be useful to clarify the relevant observation

made by Weinberg on p. 41 of Ref. [33]. He noticed that in
“theories like general relativity there is no way of choosing
a coordinate system in which the ghosts decouple. Such
theories may be dealt with by the BRST-quantization
method described at the end of the previous section, using
BRST invariance to prove that the S matrix in a physical
ghost-free Hilbert space is unitary.”
To clarify this statement we need to explain the precise

meaning of the words “the ghosts decouple”: one has to
make a clear distinction between ghosts decoupling in a
covariant BRST quantization procedure and in canonical
quantization. For example, one may wonder what exactly
the statement above means for, e.g., Dirac gauge [14] in
view of the fact that in Refs. [11–13] gravity was
canonically and covariantly quantized in the Dirac gauge,
with no FP ghosts appearing in the canonical quantization.
The clarified statement is: in canonical quantization in
Dirac gauge in gravity there is a unitary Hamiltonian and
there are no FP ghosts. In covariant quantization in the
Dirac gauge, using the BRST method, there are FP ghosts
with instantaneous propagators. To explain this we proceed
with a review of the results in Refs. [11–13].
The Faddeev-Fradkin-Vilkovisky construction involves

defining the canonical (Hamiltonian) Feynman integral for
systems with singular Lagrangians, which have the prop-
erty that the equation

pi ¼
∂Lðq; _qÞ

∂ _qi ðB1Þ

cannot be solved for _qi as a function of the qi’s and pi’s,
which is a constrained system studied first by Dirac. The
Hamiltonian Hðqi; piÞ; i ¼ 1;…; n depends on 2n varia-
bles. For such singular Lagrangians with m gauge sym-
metries, the naive canonical variables ðqi; piÞ of the naive
phase space Γ satisfy a set of first class constraints

ϕαðq; pÞ ¼ 0; α ¼ 1;…m: ðB2Þ

These are in involution with each other as well as with the
Hamiltonian. The constraints define a surface M of
dimension (2n −m) in Γ.

For such Lagrangians Lðq; _qÞ all equations of motion,
including the constraints, can be obtained from the con-
strained action

Sðq; p; λÞ ¼
Z

dt ðpi _qi −Hðq; pÞ − λαϕ
αðq; pÞÞ: ðB3Þ

For such systems the Feynman path integral is not well
defined unless an additional set ofm conditions χαðq; pÞ on
the canonical variables is introduced. These conditions,6

χαðq; pÞ ¼ 0; ðB4Þ

define a submanifold Γ� inM. These functions must satisfy
the condition that

det kfχα;ϕβgk ≠ 0 ðB5Þ

since only in this case can the surface Γ� be defined. Here
ff; gg are Poisson brackets in Γ. Here we remind the reader
that, as explained near Eq. (5.2), in covariant quantization
one can arrange that at χα ¼ ϕα ¼ 0 the variation of the
function χα is

δχα ¼ −fχα;ϕβgξβ: ðB6Þ

Therefore, the Poisson bracket

fχαðt; x⃗Þ;ϕβðt; y⃗Þg ¼ Mα
βδ3ðx⃗ − y⃗Þ ðB7Þ

of the canonical quantization defines (via Mα
β) the FP

ghost action C̄αQα
βCβ in covariant quantization.

A convenient choice is when fχα; χβg ¼ 0, in which case
we can perform a canonical transformation in Γ to obtain
the new canonical variables

p0
α ¼ χαðp; qÞ ¼ 0; q0α ¼ q0αðp�; q�Þ; ðB8Þ

where q0α and p0
α are canonically conjugate, and where the

q0α are parametrized by the physical canonical variables q�,
p�, which are independent coordinates on Γ�. Therefore, on
Γ� we are left with 2ðn −mÞ independent canonical
variables ðp�; q�Þ. In such a case, the correct Feynman
integral can be given in a canonical/Hamiltonian form asZ Y

t

dp�dq�

2π
expfi½p� _q� −Hðp�; q�Þ�dtg: ðB9Þ

6A more general choice of conditions is χaðq; p; λ; _λÞ where
there is a dependence on the Lagrange multiplier and its time
derivatives. In these cases the underlying Hamiltonian was also
constructed, and depends on (nþm) degrees of freedom. The S
matrix in this case is pseudounitary, since the Hilbert space has an
indefinite metric [20]. This case includes Lorentz-covariant
gauges like a harmonic gauge.
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This Hamiltonian defines the unitary S matrix and depends
on the 2ðn −mÞ physical canonical variables, i.e., on
(n −m) physical degrees of freedom. The Hilbert space
of physical states has a positive-definite metric and is
manifestly ghost free.
The basic result of Faddeev-Fradkin-Vilkovisky in

Refs. [11,13,19,20] for the class of constraints in
Eq. (B4) is that the path integral in Eq. (B9) based on a
unitary Hamiltonian can be given in the form correspond-
ing to a covariant quantization as defined in Refs. [6,7],
where the constraint function χαðq; pÞ defines a gauge-
fixing function χαðϕÞ, depending on the classical fields of
the theory. In addition, observables computed using this
path integral will be independent of the specific choice of
the additional condition/gauge-fixing function.
A simple example of this situation is the Coulomb gauge

in QCD. In this case there is a unitary Hamiltonian with
only physical degrees of freedom. In the notation of
Ref. [11] there is a constraint with the Lagrange multiplier
A0. The configuration space coordinate is qi ¼ Ai with
canonical conjugate pk ¼ Ek ≡ F0k. The constraint and an
additional condition are

ϕðq; pÞ ¼ ∂kEk þ ½Ak; Ek�; χðq; pÞ ¼ ∂iAi: ðB10Þ

The Poisson bracket fχα;ϕβg is computed in this case and
it gives

fχα;ϕβg ¼ −½δαβ∂i∂i þ ϵαβγAγ
k∂k�δ3ðx⃗ − y⃗Þ: ðB11Þ

It is clear from this example why the determinant of the
Poisson bracket at equal times fχαðq; pÞ;ϕβðq; pÞg can
only produce space derivatives, and not time derivatives.
The quantization of gravity in Dirac gauge performed in

Refs. [11–13] has the same property: there is a unitary
Hamiltonian with only physical degrees of freedom. In the
covariant Lagrangian quantization there are ghosts, but
only with instantaneous propagators.

APPENDIX C: NONLINEAR PART OF THE
GHOST ACTION IN SCHWARZSCHILD

COORDINATES

Here we will argue that the higher order in hμν part of the
ghost action corresponding to the gauge-fixing conditions
(4.2) does not involve time derivatives acting on ghosts
when written in Schwarzschild coordinates.

1. l ≥ 2 modes

We expect that the scalar fðþÞ
ðGÞ½h; C� in Eq. (4.4) can

depend on the scalars raCa and CðþÞ (but not on the
pseudoscalar taCa) so that the constraint (4.7) can be
expanded as

2

r2
CðþÞ þ f̃ðþÞ

ðGÞ½h�CðþÞ þ f̂ðþÞ
ðGÞ½h�rbCb ¼ 0; ðC1Þ

which allows us to express CðþÞ as a multiple (with an hμν-
dependent coefficient) of raCa. It follows that, after

imposing this constraint, fðþÞ
ðGÞ½h; C� depends only on rbCb,

fðþÞ
ðGÞ½h; C� → −F̂½h�rbCb: ðC2Þ

We similarly expect that the vector fðþÞ
a ½h; C� appearing in

Eq. (4.3) depends on Ca and on rarbCb (since CðþÞ is now a

function of rbCb), i.e., f
ðþÞ
a ½h; C� ¼ α½h�Ca þ β½h�rarbCb,

so that the residual ghost action (4.8) reads

C̄að1þ α½h�ÞCa þ C̄a

�
r2

2

�
Da −

2

r
ra

�

× F̂½h�rbCb þ β½h�rarbCb

�
: ðC3Þ

In Schwarzschild coordinates (t, r), where ra ¼ ð0; 1Þ;
ra ¼ ð0; fÞ, there is a dependence on Ct only in the first
term,

C̄tð1þ α½h�ÞCt; ðC4Þ
so we can integrate over Ct to impose the constraint C̄t ¼ 0,
which reduces the ghost action to

C̄r r
2

2

�
Dr þ

�
β½h� − 2

r

��
fðrÞCr: ðC5Þ

We thus find that in Schwarzschild coordinates, the ghost
action does not contain any time derivatives acting on the
ghost fields even at the higher order in hμν level. This
indicates that the ghost-free unitarizing Hamiltonian may be
expected in this sector of the theory.

2. l = 1 even modes

The argument is about the same as in l ≥ 2 case. As
argued above, we expect that the higher order in hμν terms
f½h; C� may depend on C̄a contracted with rarbCb or Ca. In
Schwarzschild coordinates they therefore depend on
C̄rQ½h�Cr, C̄aDaQ½h�Cr, or C̄tQ½h�Ct, where Q½h� is some
functional of hμν which does not contain differential oper-
ators acting on Ct or Cr. We therefore expect that the higher
order in hμν terms will not change the condition C̄t ¼ 0,
which we derived earlier at leading order in hμν. We
therefore expect that terms with time derivatives acting on
ghosts will not appear at higher orders in hμν, since the only
terms with derivatives will be C̄aDaCr → C̄rDrCr. We
therefore expect that the higher order in hμν ghost action
for the l ¼ 1 even modes will be given by an expression
analogous to the one in Eq. (C5) with all time derivatives
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acting on the ghosts dropping from this expression in
Schwarzschild coordinates.
In the case of l ¼ 1 odd modes and l ¼ 0 modes the

absence of time derivatives in Schwarzschild coordinates to
all orders was already demonstrated in Secs. IV D and IV E,
respectively.

APPENDIX D: COMMENTS ON
GRAVITATIONAL PROPAGATOR IN THE

BLACK HOLE BACKGROUND

In Ref. [4] an expression for the tensorial part of the
gravitational propagator in Regge-Wheeler gauge for the
even modes was proposed as

Pabcd ¼ 1

4
flðk2Þðηacηbd þ ηadηbcÞ; ðD1Þ

where

flðk2Þ ¼ −
4R2

S

ðλþ 1Þ −
2R4

Sk
4

ðλþ 1Þðλ − 3Þðk2 þ R−2
S λÞ ; ðD2Þ

and λ≡ l2 þ lþ 1. The relevant part of the effective two-
dimensional theory was taken in the form

S2d ¼
X
l;m

1

4

Z
d2xðhablmΔ−1

abcdh
cd
lm þ hablmΔ−1

L;abKlm

þKlmΔ−1
R;abh

ab
lm þKlmΔ−1KlmÞ ðD3Þ

for all l. It was important in Eq. (D3) that Klm ≠ 0.

Meanwhile, our results show that the action in the cases
l ¼ 0, 1 has to be considered separately from l ≥ 2 cases
since in these cases Regge-Wheeler gauge fixing with
Klm ≠ 0 is not valid. In particular, as we see from
Eq. (4.2) that, for low multipoles l ¼ 0, 1,

Klm ¼ 0; l ¼ 0; 1: ðD4Þ

It is therefore not surprising that the propagator in
Eqs. (D1)–(D2) has strange properties, noticed in
Ref. [4]: the l ¼ 0 mode causes a change in sign in the
second term, and the l ¼ 1 mode has a pole.
Thus, the derivation of the propagator (D1)–(D2) from

the action (D3) is not valid for low multipoles. Instead, for
l ¼ 0, 1 one should consider the action (D3) with Klm ¼ 0,

S2d ¼
X

l¼0;1;m

1

4

Z
d2xhablmΔ−1

abcdh
cd
lm: ðD5Þ

Even this action is still a bit dangerous, since the gauge-
fixing condition tarbhab ¼ 0 still has to be added, to
account for the monopole ghosts.
We leave the derivation of the full graviton propagator in

the Schwarzschild black hole background for future work.
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