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We consider type IIB 5-brane web diagrams for a 5D Sp(N) gauge theory with an antisymmetric
hypermultiplet and N, fundamental hypermultiplets. The corresponding 5-branes can be obtained by

Higgsing a 5-brane web for quiver gauge theory. We use the refined topological vertex formalism to

compute Nekrasov partition functions of 5D Sp(2) theories with one antisymmetric hypermultiplet and
flavors. Our results agree with the known results obtained from the Atiyah-Drinfeld-Hitchin-Manin
method. We also discuss a particular tuning of Kéhler parameters associated with this Higgsing.
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I. INTRODUCTION

A large class of five-dimensional (5D) A/ = 1 super-
symmetric gauge theories [1] can be constructed in type IIB
5-brane webs [2,3] or in M theory on Calabi-Yau threefolds
[4-7]. The duality between a 5-brane web in type IIB string
theory and a toric Calabi-Yau threefold in M theory [8]
enables one to utilize the topological string partition function
on a toric Calabi-Yau threefold to obtain the Bogomol’'nyi-
Prasad-Sommerfield partition function of a 5D gauge theory
on the dual 5-brane web [9-14]. The topological string
method known as (refined) topological vertex [15-19] thus
provides another powerful tool for computing the partition
function of 5D N = 1 gauge theories.

In recent years, there has been much progress on
understanding 5D N = 1 gauge theories from the perspec-
tive of type IIB 5-brane webs [20-28], revealing that an
even larger class of 5D A/ = 1 theories can be realized by
5-brane webs. For instance, 5D SU(2) theories with 5 <
N <7 hypermultiplets in the fundamental representation
(flavors) can be obtained by Higgsing of a 5-brane web for
T5, T4, and Tg theories, respectively [29]. It is straight-
forwardly generalized to a 5D SU(N) theory with 2N +
1 <Ny <2N + 3 flavors. The dual diagrams for these
5-brane webs are generically nontoric, as they can be
understood as a Higgsed diagram of certain quiver theories
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[22,23,30]. 5D SO(N)/Sp(N) (quiver) gauge theories with
the number of hypermultiplets in the fundamental repre-
sentation exceeding the bound in Ref. [7] can also be
constructed from 5-brane webs with the orientifold planes
by Higgsing [24,31]. Moreover, Sp(N) gauge theories with
the hypermultiplet in the antisymmetric representation [24]
and SO(N) gauge theories with hypermultiplets in the
spinor representation [32] are also constructed. Even G,
gauge theories with Ny < 6 flavors are represented by
5-brane webs [33]. Dual diagrams for such 5-brane webs
are generically nontoric, as they can be obtained by a
Higgsing of some certain quiver theory and also by
introduction of the orientifolds, implying that the corre-
sponding Calabi-Yau threefolds are nontoric.

The topological vertex formalism also has been imple-
mented to nontoric Calabi-Yau threefolds [20,34,35] by
tuning Kéhler parameters [36-39]. Even for a nontoric
diagram with an OS5 plane, (unrefined) topological vertex
formalism was newly proposed [40], which enables one to
compute the partition function for 5D G, gauge theories
based on a 5-brane web with an OS5 plane [33], which
agrees with the field theory results up to two instanton
contributions [41-46]. Though the topological vertex
formalism is applicable to 5D gauge theories of various
gauge groups, application of the topological vertex to
theories with a hypermultiplet other than the fundamental
hypermultiplet is still limited.

In this paper, we utilize the topological vertex to
compute the partition function for a 5D Sp(N) theory
with an antisymmetric hypermultiplet and N, <7 flavors.
The theory has the fixed point at UV where the global
symmetry is enhanced to Ey i x SU(2) [1,4-7]. The
partition function for a 5D Sp(N) theory with a massless
antisymmetric hypermultiplet and 5 < N, <7 flavors was
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already computed based on web diagrams of Higgsed Ty
theories [35]. Here, we consider 5D Sp(N) theories with a
massive antisymmetric hypermultiplet and N, flavors,
whose diagrams are obtained from Higgsing of a certain
quiver gauge theory [24,26]. To obtain the Nekrasov
partition function from the corresponding nontoric dia-
gram, one needs to properly tune Kéhler parameters
associated with the Higgsing. We find a proper tuning
for the Kihler parameters by comparing the partition
function obtained from the topological vertex result with
the known result from localization. As such Higgsed parts
of the 5-brane web are locally a 7', diagram, such tuning
can be also determined by considering tuning of a T,
diagram (7', tuning). Following Ref. [47], global symmetry
enhancement can be shown by redefining the gauge theory
parameters to make the fiber-base duality manifest.

The paper is organized as follows. In Sec. II, we discuss
5-brane configurations for 5D Sp(N) gauge theories with
one antisymmetric hypermultiplet and flavors. In Sec. 111,
we review the refined topological vertex formalism and
discuss a special tuning of Kihler parameters for a 5-brane
diagram for a T, theory, which is associated with the
Higgsing of 5-brane webs giving rise to Sp(N) gauge
theories with an antisymmetric hypermultiplet. In Sec. IV,
we compute the instanton partition function for Sp(2)
gauge theories with an antisymmetric hypermultiplet and
Ny < 4 flavors and also discuss Sp(3) gauge theory as an
example of generalization to a higher rank gauge group. We
then conclude with some remarks in Sec. V.

A Mathematica package for a refined topological vertex
for generic toric diagrams is accompanied and available at
the arXiv Web site or Ref. [48]. The package would be used
for more complicated toric diagrams.

II. 5-BRANE CONFIGURATIONS FOR Sp(N)
GAUGE THEORY WITH ANTISYMMETRIC
MATTER

From the perspective of type I’ string theory, 5D Sp(N)
gauge theories with N, hypermultiplets in the fundamental
representation (flavors) and one hypermultiplet in the anti-
symmetric representation are realized as N D4-branes near
the N, D8-branes on top of a single O8~ orientifold plane.
The theory has a superconformal fixed point that arises in the
infinite coupling limit of the gauge theory. It exhibits
SO(2Ny) x U(1); X SU(2) 4pisym global symmetry of fla-
vors, instanton number, and an antisymmetric hypermultiplet.
Atthe UV fixed point, the global symmetry is enhanced to [1]

FIG. 1.

Ey, 1 % SU(2) > SO(2N;) x U(1); x SU(2)

antisym antisym?

(2.1)

where E, refer to Eg, E;, and Eg; Es = Spin(10),
E,=SU(5), E5=SU(3) x SU(2), E, = SU(2) x U(1),
and E; = SU(2). The enhancement of global symmetry is
explicitly checked from the superconformal index based on
the Atiyah-Drinfeld-Hitchin-Manin (ADHM) method
[49,50]. Without any flavors, Sp(N) gauge theory with or
without antisymmetric hypers has the discrete theta param-
eters (angles) associated with 7, (Sp(N)) = Z,, referred to as
0 = 0, 7. Hence, there are two inequivalent pure Sp(N)
gauge theories: one with 6 = 0, denoted as Sp(N),, and the
other with 8 = z, denoted as Sp(N),. The origin of the
discrete theta parameters from type I theory is discussed in
Ref. [51]. We note that Sp(N ), theory with an antisymmetric
hypermultiplet enjoys enhanced global symmetry SU(2); x
SU(2) auisym at the UV fixed point, while Sp(N), theory with
an antisymmetric hypermultiplet has U(1); X SU(2) pisym-
Without antisymmetric matter, both theories have only U(1),
global symmetry, except for the Sp(1) theory, where the
global symmetry is enhanced to SU(2); D U(1),.

A 5D Sp(N) gauge theory can also be understood from
type 1IB string theory. In fact, a wide range of 5D NV =1
theories can be described by type IIB string theory, which
provides not only qualitative understanding but also quan-
titative aspects for SD gauge theories. To describe a 5D
Sp(N) gauge theory in type IIB string theory, one can
introduce an OS5 plane or an O7~ plane. As a representative
example, 5-brane webs for pure Sp(N) gauge theory are
depicted in Fig. 1. In 5-brane webs with an OS5 plane, when
one changes the coupling of the pure Sp(N) theory, the
brane configurations are deformed in two different ways.
These two different phases distinguish the discrete theta
angles for the pure Sp(N) theory [52]. One can also
compute the (unrefined) partition function of Sp(N) theory
with Ny <2N + 6 flavors based on a 5-brane web using
the topological vertex method [40].

5-brane configurations with an O7~ plane are, in
particular, interesting. An O7~ plane can be resolved into
a pair of two 7-branes of the same monodromy [53]. For
instance, suppose one resolves an O7~ plane in Fig. 2(a),
and then the resulting 5-brane configuration becomes a
5-brane configuration for an SU(N + 1), theory with the
Chern-Simons level x =2N + 6 —2|k| as depicted in
Fig. 2(b) and, hence, provides a diagrammatical account
for the duality between 5D Sp(N) gauge theory with

o7~

(a) A 5-brane web for Sp(N) with an O5 plane. (b) A 5-brane web for Sp(N) with an O7~ plane.
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(a) A deformation of a 5-brane web with an O7~ plane for pure Sp(2). (b) Resolution of an O7~ plane into a pair of 7-branes of

the charge (1,1) and (1,—1). The resulting diagram is pure SU(5) theory of Chern-Simons level —5.

Ny <2N + 6 flavors and SU(N + 1) gauge theory with
the same number of N flavors [23,54], where flavors in
5-brane webs are represented by D7-branes.

For Sp(N) gauge theory with an antisymmetric hyper-
multiplet, it is still a challenge to describe the theory based
on 5-brane webs with an OS5 plane. It is, however, possible
to describe antisymmetric matter of an Sp(N) theory using
O7~ planes. To realize an Sp(N) theory with an antisym-
metric hypermultiplet, one introduces two O7~ planes
horizontally separated on a 5-brane web, and N D5-branes
are placed parallel to two O7~ planes as depicted in Fig. 3.
An alternative description is to introduce a half NS 5-brane
stuck on one of the O7~ planes [24] as in Fig. 4. While the

5-brane description in Fig. 3 corresponds to an Sp(N)
theory with a massless antisymmetric hypermultiplet [29],
the 5-brane in Fig. 4 describes an Sp(N) theory with a
massive antisymmetric hypermultiplet, where the mass of
an antisymmetric hypermultiplet is parameterized by the
vertical distance between two O7~ planes.

The discrete theta parameters for Sp(N) gauge theory in
this 5-brane web with O7 -planes are realized as two
different resolutions of an O7~ plane into a pair of 7-branes
[24]. For instance, O7~ can be resolved either into a pair of
7-branes of the charges [1,—1] and [1, 1] or into a pair of
7-branes of the charges [2, —1] and [0, 1]. If one resolves
two O7~ planes into the same types of 7-brane pairs, then it

\\[11_1] //”[1,1]

1]
1,1

(@)

FIG. 3.

1]

/ N

(b)

Massless case: (a) 5-brane configuration for Sp(2), + 1AS, where resolving two O7~ planes into the same types of a 7-brane

pair (in this case, those of the 7-brane charges [1, 1] and [1, —1]) yields the discrete theta angle 8 = 0. (b) 5-brane configuration for

Sp(2), + 1AS, where resolving two O7~ planes into the different types of 7-brane pairs [in this case, ([1,1],[l,

([2,-1],10,1])] yields the discrete theta angle 6 = 0.

—1]) and

086004-3
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S [1,-1]

E [0,1]

N

(b)

FIG. 4. Massive cases: (a) A 5-brane configuration for Sp(2), + 1AS. (b) A 5-brane configuration for Sp(2), + 1AS. The 5-brane
diagrams in the bottom are obtained after pulling out 7-branes from 5-brane loops and performing SL(2, Z) transformations.

gives the discrete theta angle 8 = 0, while the resolution into
two different types of 7-brane pairs leads to the discrete theta
angle @ = . One can summarize 5-brane configurations for
Sp(N) theory with an antisymmetric hypermultiplet with the
discrete thetaangle & = 0 (Sp(N),, + 1 AS) and that with the
discrete thetaangle @ = 7 (Sp(N), + 1AS) as follows: Fora
massless antisymmetric hypermultiplet, it is depicted in
Fig. 3. For a massive antisymmetric hypermultiplet, it is
depicted in Fig. 4.

Flavors can be introduced by adding D7-branes. We list
some representative 5-brane webs for 5D Sp(N) gauge theory
with one antisymmetric hypermultiplet and N, flavors
[Sp(N) + 1AS + N/F] in Fig. 5. For web diagrams for
Sp(2) + 1AS + N /(< 8)F, see the Appendix in Ref. [55].

As one can see, 5-brane web diagrams for 5D Sp(N)
theories with an antisymmetric hypermultiplet have jumps
on the (p, ¢) plane. In other words, the corresponding dual
diagrams are nontoric. Such a 5-brane web can be regarded
as a Higgsed web diagram from some other (quiver) gauge
theories. For instance, as we will see in the later sections, a
5-brane web for 5D Sp(2), theory with an antisymmetric
hypermultiplet can be obtained from a Higgsing of a

SU(2) x SU(4) x SU(2) quiver theory as shown in
Fig. 6. Another example that we will discuss is a 5-brane
web for 5D Sp(3), theory with an antisymmetric hyper-
multiplet which can be obtained from a Higgsing of a
SU(2) x SU(4) x SU(6) x SU(4) x SU(2) quiver theory.
Likewise, 5D Sp(N), theory with an antisymmetric hyper-
multiplet can be obtained from a Higgsing of an SU(2)x
SU(4)x---xSU(2N)x---xSU(4)xSU(2) quiver theory.

III. TOPOLOGICAL VERTEX AND T, TUNING

In this section, we set up our convention and very briefly
review the refined topological vertex formalism, which
enables one to compute the Nekrasov partition function for
5D N =1 gauge theories, via geometric engineering
[13,17]. We also discuss Higgsing procedures associated
with Sp(2) gauge theories with antisymmetric matter. Our
convention closely follows that used in Ref. [56].

A. Brief review of topological vertex

5D N =1 gauge theory in a general Q background
can be engineered by some local toric Calabi-Yau

086004-4
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Sp(2) + 1AS + 1F
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/

\nd

Sp(2) + 1AS + 4F

FIG. 5.
are also considered in Sec. IV.

FIG. 6. A 5-brane web diagram for 5D SU(2) x SU(4) x
SU(2) quiver gauge theory and its Higgsed diagram giving rise
to a 5-brane web for 5D Sp(N), + 1AS.

threefold [13]. It is also described by type IIB 5-brane web
diagrams. Through various dualities, such 5-brane webs are
|

I P+ [T & q
Coultg)=q = 1> ZAW)Z(;)
n

Sp(2) + 1AS + 2F

ﬁﬁ
J .
N N
[ [

Sp(2) + 1AS + 3F

l;d

Sp(3) + 1AS

Some representative examples of 5-brane web Sp(N) gauge theories with one antisymmetry hypermultiplet and flavors, which

equivalent to toric diagrams for local Calabi-Yau threefold
in an A model [8]. The Nekrasov partition functions can,
thus, be given by topological string partition functions. In
what follows, we may use 5-brane webs and toric diagrams
in an interchangeable way. In the topological vertex
utilizing toric diagrams, one chooses the preferred direction
denoted by ||, assign Young diagram (u, v, ...) and Kihler
parameter Q. to edges, and the vertex factor to vertices and
then glues and performs the Young diagrams to get the
topological string partition functions

ALES Z H(edge factor) - H(vertex factor). (3.1)
i

The assignment of the vertex factor and the edge factor is
illustrated in Figs. 7 and 8. With the Q deformation
parameters g = e~ and t = e, the vertex factor is
defined as

nl+ 1A=l

2

s1t (T8 (a7 1), (3.2)

086004-5
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FIG. 7. Vertex factor assignment. The direction of the arrow on the edges can be chosen arbitrary, and the associated Young diagrams
get transposed when the arrow is flopped. Here ¢, ¢ are the Q deformation parameters g = e™, ¢ = e°!.

FIG. 8.

= L, (Q)fL(t,q)

The left figure is for nonpreferred edges and the second for preferred edges. The colors of letters do not matter, as the blue

framing number a A b equals red a A b, and blue ¢ A d equals red ¢ A d.

where

Z,(t.q) = [ 0 =gwiri7)1 (33)
(

i.j)Ev

and s,,, are skew Schur functions. The edge factor is
defined as

f;(l, q)framing numLu(Q)7 (34)
with
fz[;(t, q) = (_1 )|D‘IHDTZI\2q_H2H2’
_l
fu(t.q) = <%> Ltq),  L,(Q):= (-0, (3.5)

where f7(t, q) is for the edges along the preferred direction
and f(t, q) for other edges for nonpreferred directions.

After summing over Young diagrams along nonpreferred
directions by Cauchy identities (A1) and (A2), topological
string partition function (3.1) generically takes the follow-
ing form:

Z9P(Q;,t,q) = ZM . Z73vm, (3.6)
where Z¥ is a product of M(Q;,t,q)’s:
H M(in Z Q)
M == =D 27 3.7
[0, r.q) 57
with
Mg =[[0-0d5) (8

and Z*"™ is the terms which contain the Young diagram
sum along the preferred directions, which has the following
structure:

z2m =30l Iz, (1. 9)|P
U

H

IV (00 g7 N (0T

, 3.9
[IN,. Qi q7h) (39)
where
NZ,u(1. )I1* = Z,2(1,9)Z,(q. 1), (3.10)
© 1= qu[—jt,ujzi—i-&-l
N (03t q) = ———.  (3.11)
H igl I—Qq il
and

NBalf'_(Q; t CI) o= Nu@ <Q\/g’ t, q) s (312)

bt (011, q) = Ny, (Q\/—g; t, q), (3.13)

One can also think of Z¥ as the overall factor multiplied to
the terms which have the Young diagram sum. In other
words, ZM is the term that is obtained by setting the Young
diagrams along the preferred directions to (), or Z'?|, _.

B. T, diagram and T, tuning

As an instructive example, the 5-brane web or toric
diagram for 5D T, theory is depicted in Fig. 9. The
topological string partition function for the 7, theory is

086004-6
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straightforward to compute and is given by

where

ZP(01. Q0. Osit. q) = ZW. - Z3m, (3.14)
M(Qy. /L t.q)M(Qa, /L. 1. q)
gy - MOot M@ fit0) s

M(QIQZ’ q, t)

T, theory is, in fact, special in that the Young diagram sum part Z7" can be performed, yielding a compact form:

2 [T~

Zm = 37 (=03)H1g 12, (0. )| PSS )

14

M(Q3\/%’ t, Q)M(Q1Q2Q3\/%v t.q)

M(Q,05.1,q)M(Q,05.4.1)

We thus have

M(Q1 /51 )M (Qa [ 1.4)M(Q3 /1. 1.)M(210203, /1 1.4)

(3.16)

top _
ZT2 =

We note that the partition function Z7F is SL(2,Z)
invariant; hence, T, diagrams with different preferred
directions in Fig. 10 have the same partition function.
As discussed in Sec. II, 5D Sp(2) gauge theories with an
antisymmetric hypermultiplet can be obtained by Higgsing
a quiver gauge theory. The Higgsing here is locally the
Higgsing of a T, diagram which serves as building blocks.
When the preferred direction is chosen, there are four
possible Higgsings on a T, diagram. For convenience, we
call them cases A, B, C, and D as shown in Fig. 11. In
particular, case D is a typical configuration when flavors
are added. With the assignment of Kihler parameters in

t
—H
Qs !
v
Q1 Q3
—H—
q q

FIG.9. AT, diagram. The preferred directions are denoted by ||
along the horizontal edges. Q; are the Kihler parameters assigned
to the internal edges, and v is the Young diagram along the edge
associated with Q;. The empty Young diagram is given to six
external edges.

M(Q105.1,q)M(0,03.9.)M(Q,0,. 9. 1)

(3.17)

Fig. 9, case A is achieved by tuning the Kihler parameters
0, and Q, to a special value, case B by tuning Q; and Q5,
and case C by tuning Q, and Q5. Case D requires tuning of
all three Kihler parameters Q;, Q,, and Q5.

This Higgsing procedure corresponds to certain geo-
metric transitions [36-39], and the Kihler parameters

responsible for the Higgsings are tuned to be either \/é

or \/% [20,35]. We found the suitable choices for tuning

Kihler parameters that reproduce the partition functions for
5D Sp(N) + 1AS + N/F:

t
Case A: QIZQZZ\/a or .
! q
t
Case B: QI—Q3—\/:,
q
. _n |4
Case C: Q2—Q3—\/;,

Case D: Q] = Q2 = Q3, (318)

which is consistent with the result obtained from the
ADHM method. Here, for case A, either choice of

Kihler parameters \/é or \/% is allowed and leads to the

same result. As the 5-brane configuration in case D needs to
be glued to either of case A, B, or C Higgsed diagrams, the
tuning of Kihler parameter for case D is the same as the

086004-7
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q
F Qs SL(2.7) Q1

| e

Q1 Qs Q2
q

FIG. 10. T, diagrams related through SL(2, Z) transformation.

t
t
qal19

Case B

Case A

FIG. 11.
Higgsing.

value of the Kéhler parameter for the Higgsed diagram to
which case D is connected. As we will frequently refer to
when we compute the partition function in the next section,
we call these special tunings of Kihler parameters (3.19)
collectively “T, tuning.” A pictorial version of the T,
tuning is presented in Fig. 12.

We remark that the Young diagram sum part of the
partition function, Z7™ should be trivial for the Higgsed 7'
diagrams depicted in Fig. 11, and indeed 7', tuning satisfies

Z;"uzm|caseA,B,C.D =1 (319)

When applying the T, tuning to the partition function
computations, we found the following identities related to

geometric transitions [36] useful:
t /
Case C = \/g
t

Q2

v

oe——
t
Case A = \/g, \/j Q1 Qs
q
q

U t
Case B = \/j
q

FIG. 12. T, tuning: cases A, B, and C.

! t
¢ , f
alla
al q

Case C Case D

Four possible Higgsed T, diagrams. Each jump on a 7, diagram denotes a particular tuning of the Kihler parameters for

Nl;alfﬁr(\/%;t—l’q—l)
:{1 v=0, th}‘lf’_<\/z't_1 q_1>:{1 v=>0,
0 v#0, qg 0 v#0,

(3.20)

and many simplifications take place due to the following
relations:

N/m(l;t_lvq_l)séo, only lfﬂk(l,

t
N/m <_;t_1, 61_1> #0, onlyifu<a. (321)
q

It follows that in the unrefined limit ¢ = ¢, as illustrated in
Fig. 13, Eq. (3.21) becomes

FIG. 13. A un-Higgsed diagram in the unrefined limit repro-
duces the jump. In the diagram on the left, the Young diagram
sum is constrained such that u > a, while y =a, in the
unrefined limit.

086004-8
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Q2

vy

Q2

un-Higgsing Q33
—_

’
.

i

q

g as
q || o @ |
| Q7] V3 Qs | d
m 2

== +
, +

Qi " Qp

v2

% Qr Qu

m V1

Qra Qks

Qu N
N

FIG. 14. Un-Higgsing procedure for a 5-brane web for Sp(2) 4+ 1AS + 1F. Following T, tuning in Eq. (3.19), one can assign values
to Higgsed edges, where \/% or \/% in blue are tuned Kihler parameters.

NI ) #0, onlyif y=a, (3.22)

and, thus, further simplifies Z*"™ so that the partition
functions for 5D Sp(2) theories with one massless anti-
symmetric hypermultiplet are written as a product of two
Sp(1) theories [57].

In summary, 5-brane web diagrams for 5D Sp(2) +
1AS + 1F can be understood as a Higgsed web diagram of
a 5-brane web for the quiver gauge theory discussed in
Sec. II. To compute topological string partition function,
we consider the corresponding un-Higgsed S5-brane web
diagrams and implement a refined topological vertex. We
then perform the Higgsing on the un-Higgsed 5-brane web
diagrams by tuning Kéhler parameters via 7', tuning (3.19),
which yields that the topological string partition function as
a Young diagram sum over the preferred directions
Z\p = zM7zsum " Finally, by properly identifying Kihler

I

I

|

1
N /L____
N Q ,

N mi,
7
’

AY 7/
K= =
1

Lup

<G>
Ldown

17 S
s
-

FIG. 15. Auxiliary lines (in red) and instanton fugacity which
are projected lines when all edges are Higgsed. The instanton
fugacity u is then obtained via the conventional way as
Lyp X Lyown = u’.

parameters with 5D gauge theory parameters, we obtain the
Nekrasov partition function as an expansion of the instan-
ton fugacity. In Fig. 14, we depict this procedure of un-
Higgsing and T, tuning for a typical 5-brane web of Sp(2)
gauge theory with one antisymmetric hypermultiplet and
one flavor [Sp(2) + 1AS + 1F]. We note that one can
easily associate Kihler parameters with gauge theory
parameters by introducing auxiliary lines which are pro-
jected lines when an un-Higgsed diagram is Higgsed back.
For instance, the instanton fugacity for Sp(2) + 1AS + 1F
is obtained in the conventional way as L, X Ljoyn = u?, as
illustrated in Fig. 15.

IV. INSTANTON PARTITION FUNCTIONS

In this section, we use the topological vertex method to
obtain the refined Nekrasov partition function for Sp(2)
theory with one antisymmetric hypermultiplet and N
flavors [Sp(2) + 1AS + N,F]. As the corresponding
5-brane web diagrams are nontoric, we properly apply
the un-Higgsing and T,-tuning procedure discussed in
Sec. III.

Recall that the topological string partition function
obtained through the topological vertex factorizes into
the perturbative part ZM written in terms of M (0..1,9),
and the summation part Z°*™, summing over Young
diagrams along preferred edges:

Z\op = zM . zsum_ (4.1)
where each term contains a part of the field theory
perturbative contribution or instanton (nonperturbative)
contribution, in general:

M — Zpert-I(Ai’ yi) . Znonpen—I<Ai’ Vi u)’ (42)
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Zsum Zpert—II(Al_’ yi) . Znonpert—II(Al_’ Vi, u) (43)

Here u is instanton fugacity, A; Coulomb branch param-
eters, and y; fugacity for hypermultiplet fields. Nekrasov
partition function ZNk is then obtained as topological
string partition function Z'°P divided by the extra factor
7" that does not explicitly depend on the Coulomb
branch parameters A;. The resulting Nekrasov partition

function factorizes into the perturbative contribution and
the instanton contribution:

Z"P (A, yi, u) .
k L _ s
ZNe — Zexnaéyi’lu) — Zpert(Ahyi) .sttanton(Ai’yl_’ I/t).
(4.4)
By factorizing the extra part,
Zextra _ 7zpert extra(y‘) . Zinst extra(y' u) (4 5)
1 1 ’ .

one can do the recombination and find that the full
perturbative and instanton parts are obtained as

Zpert»I . Zpert—H
/S —— (4.6)

Zpert extra

nonpert-I | onpert-1I
Zinstamon — 4 z

inst extra
Z
nonpert- sum
Zronpert-l 7

- Zinst extra ’ zpert-1T

=1+ sz(Ai’yi)uk’
k=1

(4.7)

respectively, where Z,(A;,y;) is the k-instanton partition
function. Typically, it is computationally demanding to find
higher-instanton partition functions. Here, we also present
the results up to two instanton order.

We note that, for a given number of flavors, one can have
various S-brane web configurations via Hanany-Witten
transitions as well as flop transitions. Applying the topo-
logical vertex method, hence, may give seemingly different
partition functions. The partition functions are, however,
related by extra factors. After removing such extra factors,
one obtains the unique Nekrasov partition function for the
gauge theory. One can therefore choose a representative
5-brane configuration for Sp(N)+ 1AS +N,F and
compute the refined partition function as an expansion
of the instanton fugacity. Here, we, however, consider
only Sp(2) +1AS+N/F (N, =0, 1, 2, 3, 4) and
Sp(3) + 1AS, as the partition functions for higher ranks
or higher number of flavors takes a lot of time.

A. Sp(2),+1AS

As depicted in Fig. 16, the 5-brane web for Sp(2), +
1AS has three jumps associated with Higgsing of the
external edges. There are also two edges that are not
Higgsed, which are responsible for the mass of the hyper-
multiplet in the antisymmetric representation, given as the
separation between these two edges.

The 5-brane web can be obtained by Higgsing of a
5-brane web of a SU(2) x SU(4) x SU(2) quiver gauge
theory depicted in Fig. 17.

On each edge of the un-Higgsed web diagram in Fig. 17,
we assigned the Young diagrams «; and the Kihler
parameters Q; = e~'Li, where L; is the length of the
corresponding edge. It is easy to see that not all Kihler
parameters are independent. With the convention that

Qii..1=0,0;...0; (4.8)
we denote ten independent Kéhler parameters by Q;
(i=1,...,6,8,k4,F,B). Then other Kihler parameters
are expressed as

~ Og 4 0 058 k4
k= , = )
0, 03
O — 0r48k4 0 0r468
B=—, 7= ,
Qi35 Qi35
0248 Bkdk4 0288 B k4 k4
H=—2—, 2 =,
0135 Q113
O3 F i e 02248 8.F e e
O3 =— 7, Qu =", (4.9)
o 011335
To obtain the Nekrasov partition function for

Sp(2), + 1AS, one first needs to properly tune the
Kihler parameters associated with the external edges,
which reduces the un-Higgsed diagram in Fig. 17 to the
5-brane web for Sp(2), + 1AS given in Fig. 16. Recalling
the 7', tuning in Sec. III, we found that the correct tuning of
the Kihler parameters is given by

Qs

FIG. 16. A 5-brane web diagram for Sp(2), + 1AS. The
Kéhler parameter Qg assigned on an edge with the Young
diagram ag is the mass fugacity for the antisymmetric hyper-
multiplet.
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q q
Case B t t Case C
AR t t e
N 4
N 4
AN Qb2 L7
t N M oA t
1 N 4 1
L Q2 Q@3 " |
Q1 Q4
al Qg
Qr1 Qs " Q2
1
re) e}
w35 vl waq
Qka o Qi3
asg a5
. Qs Qs
1 , Q1 Q6" < 1
y [ - M 4
// Qll \\
// q q \\
. o
¢ CaseB

FIG. 17. An un-Higgsed diagram for Sp(2) + 1 AS, which is a 5-brane web for an SU(2) x SU(4) x SU(2) quiver gauge theory. By
Higgsing or tuning the Kihler parameters associated with external edges, one reproduces the 5-brane web given in Fig. 16.

Q1:Q2=Q3=Q4=\/§7 Q5:Q6:\/§ (4.10)

which correspond to two case B and one case C. Next, the
gauge theory parameters, two Coulomb branch parameters
A; and A,, the instanton fugacity u, and the mass fugacity
for an antisymmetric hypermultiplet Qg are assigned to the
following Kihler parameters:

A
Or = A%, Ou = I?ég Op = uhy’. (4.11)

sum o— .
ZSp(2)+1AS = Z[vy, 13, 03, V45 Qy, Oy, s, O]

Z;‘;’"(’Z)O +1as @s the summation over the Young diagrams
along preferred edges is given by

- Z Z Zsp(2)+1a8

V. ag.ay
V3.4

sum
ZSp(2)0+1AS

as.ag

Z[l/h U, U3, Vg5 A1, Ay, As, (XS]’
b] &2‘ ll] A(l4
D3Al/4 IXSAQS

(4.12)

with shorthand notation

4

_ ~ ~ lv3] lv3]
— u\ul|+|vz\+|v3|+\v4l,422\v]\+2\vz|A12lvs\+2\v4|Q8 s | | Z,(q.0)Z,1 (1. q)q\Ivz\lz+”73—\v4l+llu4ll2tHv]\\2—”73+\v4\+\|u3\|2
i i

1
X

i=1

2
szzp']" (A22)N1/2y']" (%)szyg (AIAZ)NUZ@ (M)quvz (%)waz (%)

1
X

Nu4ulT (AlAZ)Np_u/]T (M)N A

At

A
q uu/; (A_;)NIJ_/;U; (A_zq>NulTuZ (A_;)Nu{uz (A_zq)

At

086004-11



SHI CHENG and SUNG-SOO KIM PHYS. REV. D 104, 086004 (2021)

x (=1l sl glsl TT Z, (4, 1 Z4(1.9)

j=1458

Ly ey P+ lag g |2 =las o 1Pl 12 —lay [+ llad 12—l | +]lal |2+l | +]las P+ lag] 2
X q 2 I 2

NW<:7';>NW;<A';2'>NM<AI >Na4u2<:32;>Na4pr<A ANt (AEON, 1 (4,45)

it (G /DNt (5 [
Ny (52 [N ar (AL >Nwr< YL QS\/ ot GOVt (s /2

a4aT (A ) a4aT (A

t
X NU4(1](1)ND4{14(])N(15U'; (>’ (413)
T\4

X

where we used a shorthand notation N..(Q) for N..(Q; 7!, ¢7!), and it follows from Eq. (3.21) that the Young diagrams of
Ny, (1N, (1)Ny,, (é) in the last line satisfy vy = a;, v4 = a4, and v3 = as.

1. Perturbative contribution

With these assignments of Kihler parameters, we can express the topological string partition function

Z?/};(2)0+1AS = Zgz)@)o-&-lAS ’ Zssli;r?z)OHAs’ (4.14)
where Z{) (2),+1as takes the following form:

Z%)(Z)OJAAS = Zg;IE_ZI)OJr]AS ) Zg;rzgf)?:ms’ (4.15)
where

pert-1 M(Ast / L q)M(A s ) 1 q) (QS\/%’ Z q)

Sp(2)g+1AS — 2
o M(A2, 1, Q)M (3,1, )M(A1 Ay, 1, q)M (A2, 1, q)M(Ay%, g, )M (G- \/5 q.1)
1
Zottias = 1 (416

Here we neglected unimportant factors like M(1,¢, ¢) on the right-hand side of Eq. (4.15). We note that, in general, Z"
contains terms depending on the instanton fugacity u, but, in this case, Z” is independent of u. We found, in fact, that
zroneertl — 1 even with flavors up to N F=3.

The perturbative contribution from the summation part of partition function is also independent of instanton fugacity and
is obtained by setting v, = v, =v3 =1, =

Zperz I)IOHAS Z Z[0,0,0,0;a, a4, as, ag), (4.17)

ap,a4,0s5,08

where it follows from Eqs. (3.20) and (3.21) that a; 4 <v4 = 0 and as < v3 = (), which yields

half,+
Zpert 11 ‘a ‘ Mg 117 H ”" 7 zNhalf Nhalf,+ No’ <QF 4)
Sp(2)y+1AS — E (=1) || T(% il (Q3)Nog " (Qs)

s Nhalf+(Q8 F k4 )

T, partition function
M(Qsy/t g OM (G /1.4 OM(QsA Az 4. . )M\ [1.4.1)
- M(Alle,I)M(/T;»QJ)M(AlszCI,) (0s%.7.9)

(4.18)
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where we reorganized M (e, ¢, ¢) to express ZP°I as a compact form. We note that, even though we add flavors, ZPe! ig
unaltered at least for Ny < 4. Taking into account the extra factor associated with an antisymmetric hypermultiplet, the
stringy contribution from two parallel external edges in Fig. 16 is given by

1
Zextra — . 419
& M(Qs.1.q) (4.19)

One obtains from Eq. (4.6) that the full perturbative part of the partition function
Zpert -1 pert-IT

pert Sp(2)y+1AS ~ “Sp(2),+1AS
Sp(2)0+lAS ngtra

M(QSAIAZ\/. ICT \/ 2 CI)M(QSA1 \/%7 1.q) M(QI:,IL\Z \/57 1, Q)M(QS\/%» t.q)°
M(A1A27tv‘])M(AlA%CIat)M<,4_2’t’q>M(A_2’Q7t) M(A%, 1. q)M (A%, q. )M(A2?, 1. )M (A2, q. 1)
(4.20)

which exactly agrees with the result obtained from the localization computation (B1). With a proper normalization, the full
perturbative part can be expressed as

pert
Zpert’ o Sp(2),+1AS
Sp(2)o+1AS —
e M(Qg\/%, LQ)Z
g Attt a gt Vairs 05| Ar
(I-¢q)(1-1) (I-g)(1-1) A,

! _ SU(2)
= QI)E?qu)z(\l/?z()zz [0s]) AlAy +O(AL A,

where )(iUQ)[Qg] = Qg + Qg7! is the character associated with the mass fugacity of the antisymmetric hypermultiplet.

From here on, we use the following simpler notation ;(ﬁU(Z) = )(ﬁU@) [Qg] for the character associated with the mass of an
antisymmetric hypermultiplet in the n-dimensional representation of SU(2).

2. Instanton contribution

The instanton contribution is obtained from Eq. (4.9). For n-instanton partition function Z,,, one restricts the power of the

instanton fugacity to be n; in other words, uliltlaltlsltleal = 3n - Ag Zno?pjnles(u,Ai,yi) =1, the one-instanton

contribution is given by

vy wy w34 €{0L0} Z”l Ay, 05,008 Z[l/l,l/z,l/3,1/4,(ll,a4,a5,ag}
Zone -instanton __ and oy | Fea s g =1 (4 21)
Sp(N)+1AS — Zpert -1l ’ :
Sp(2),+1AS

which actually is already quite lengthy if one sums over the contributions of |a;| + |ay| + |as| + |ag| < 6. Since Eq. (3.21)
leads to constraints @, a4 < 14 and a5 < v3, and other terms do not satisfy this constraint just equal to zero, Z; can be
further simplified:

Zo“f’(“‘)“f{lg’g‘ zpertll — ZZ{I} 0,0,0;0,0,0, 8] +Z[0,{1},0,0;0,0,0, a5] + Z[0,0.{1},0; 0,0, 0, ag]
s V), Va,V3,U4 ay,04,05,08

Z[0,0,{1},0:0.0.{1},as] + Z[0.0.0,{1};0,0,0, ag) + Z[0, 0,0, {1}: 0, {1}, 0, ag]
Z[0,0,0,{1}:{1},0,0,a5] + Z[0,0.0,{1}; {1}, {1}, 0, ag]. (4.22)

where {1} stands for Young diagram [J. By expanding Eq. (4.21) with respect to the Coulomb branch parameters, we get

’
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SU(2)
9+t q+1—aiy
Zone -instanton __ __ 1 A2 +A2 + 7 AA
SPNIAS = [T gy = A A T - g A
(q2+qt+t2)(q+t—\/a)(§‘](2)) 3443 (‘]+f)2<4+f\/a)(gw2)) 242
(A1A5 + ATA)) + A2A
(1-q)g(1 -1t S (1=q)q(1=1)1 !
@)
(¢ + qt+ 22 (q+ 1= /air, )
(1-q)?(1-1)7 A+ 041 AY). (4.23)

We now compare the one-instanton contribution with the known result, which we summarized in Eq. (BS). The relevant
part (N, = 0) is given as follows:

+

+

. ) R st
1 1 2 sinh Z£%. 2 sinh £% — 2 ginh £4.M¢ ) ginh T2
Zone -instanton __ 2 2 2 2
1AS — - I R T - mte
Sp(N)+ 2 \2 sinh &2 5= 2 sinh —a‘; €2 sinh “2;6* 2 sinh*5=
+ +
1 2 cosh@2 cosh'”iTaz—2 cosh%Z <:osh"zT+€+ 424
s 1 €. Fe_ Fa,+e, +aprte, s q mtey ( ! )
2 s1nhT 2 coshTZ cosh 5 2 sinh 5

With the identification A| := e, A, = e®, and Qg := ¢ with m being the mass of the antisymmetric hypermultiplet and

the Omega deformation parameters ¢ = ¢™2, t = ¢!, and €, = elfz, the expansion of Eq. (4.24) in terms of A; and A,
agrees with our result (4.23).

Similarly, the two-instanton contribution is given by

> > Zv1, v, v, V43 01, g, Q5 i)
a1,a4,05,08  vy,w0v3,me{H, 0, O, 0}
tho instanton __ [v1 |4 |v2 |+ vs|+|va|=2 (4.25)
Sp(N)+1AS Zpert -11 )
Sp(N)+1AS

which can also be reduced by constraints a;, a4 < v4 and a5 < v3. With the assignment of Kihler parameters in terms of
(A;, u,y;), the two-instanton contribution can be expanded as

(2)

Womsanon (q+t)(q+t_\/aXSU )

ZEP( )il/gs = (1 _ q)2(1 _ t)zz (A%Al +A2A?)

(g +0(q3"? = a1 + @) (1 + 05" +2(g + (1 + q1) +3g1 + ¢ + P)
(1—q2(1+q)(1 = 0)2(1 +1)

+ O(A}:A3), (4.26)

+

A3AT

where ;(3 =02+ 1+ 0572

3. Enhancement of global symmetry

With a proper normalization, the partition function for Sp(2) + 1AS + nF with enhancement symmetry can be
expressed as

Zpen LV - ~ o
__ DAY (szk i) = 1 Y AT (@27)

M(Qs, /5 1.4)?

where y[it, ¥;] is some characters for the enhanced global symmetry written in terms of the redefined fugacities of instanton
and hypermultiplets and /T, are redefined parameters.

As Sp(2), + 1AS is rank 2 E; theory, its global symmetry is enhanced to SU(2) at the UV fixed point which was
explicitly shown through superconformal index computation [49]. At the level of partition function, the enhancement of
global symmetry can also be shown by taking into account the fiber-base duality. Following Ref. [47], we redefine the
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Coulomb branch parameters

to make the fiber-base duality manifest

U< ul, Op < Qp,

(4.28)

Qs < Os. (4.29)

For Sp(2), + 1AS, we indeed find that Eq. (4.27) is expressed in terms of the characters of the enhanced SU(2) global

symmetry:

SU((2) SU(2
(q+0pl) 5, ga+i=var @A | (+a)pllg+i— Jai'?)

Z =1
Sp(2)y+1AS + (1 _ q)(l _ [) 2 +

+

(I-—gq)(1—1) A,
(g +0(g3"? = a1 + @) (1 + 05" + (g +0)(1 + q1) + qt) At

(1-q)*(1-1) At

where y,[u] = /u + \/Lﬁ is the character of the enhanced

SU(2) global symmetry and ;(ﬁU@ are the characters for the
antisymmetric hypermultiplet. From Eq. (4.30), one sees
the enhancement of global symmetry is SU(2),x
SU(2)g, as expected.

B. Sp(2), +1AS

We now discuss Sp(2) gauge theory with the discrete
theta angle @ = z and an antisymmetric hypermultiplet. A
5-brane web configuration is given in Fig. 18, from which
one can read off the relations between Kéhler parameters:

FIG. 18. An

un-Higgsed 5-brane
Sp(2), + 1AS. The numbers in red denote framing numbers
associated with edges.

web diagram for

(1-q)*(14+q)(1—1)*(1+1) A3

+ O(A,% A7), (4.30)
|
O = QS,k4’ b= M O — Qo4 S
(0] O3 Q135
0, = Q2,4,6,8’ = Q&,b,k4’ = Q8.F.k4$k4’
0135 013 o
Ous — Q2,2,4,8,8,F.k4,k4, 0, = Qz,2,4,4.6,8.8,b,F,k4.k4,k4_
011335 0113355
(431)

By the T, tuning, the correct tuning for Kéhler parameter
given is as follows:

01 =0,=0;=04= g, Q5:Q6=\/§.

t
(4.32)

Independent Kihler parameters are assigned with gauge
theory parameters

A

Or =AY, Ou = 4,05 0, = uA,. (4.33)
2

It is then straightforward to compute ZP! and ZpPert1l
which shows that the full perturbative part Z‘;‘;}z)” 1as 18
the same as that of Sp(2), + 1AS, as expected.

1. Instanton contribution

We now consider the instanton contribution for
Sp(2), + 1AS. To obtain the instanton contributions, the
summation part of the topological string partition function
is needed:
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:K@
FIG. 19. Sending Q4 — 0 implies A — 0. According to T, tuning, each jump on the four corners of the middle diagram provides a
trivial contribution, namely, 1, or extra factors if the AS is massive, so Sp(2), + 1AS reduces to SU(2),.

Qra — 0

ZSp0),11A8 = Z Z Z3p(2)+1as * termMS,,

Vy,Va,V3,l4 A1 ,Q4,05,008
R e Y e e LA [

terms, := (_1)\1/1HlvzHM|+|y4\A\1U3|—\D4|A|2D1Hl/z|q — f 5 (434)

’

where Zs‘"(“>+1AS is defined in Eq. (4.13).

The one- and two-instanton contributions then take the form

onelnsmon — \/ﬁ
Zg o) iAs = m(& +4,)
_ o 9tt  [ su@ q+t
T ()(2 (Qs) + \/q_)A Ay(A] + Ay) + O(A % 457). (4.35)
two-1nstanton __ qt(q + t) 2 2 qt
Zgyartins = T g0 =AW +42) + o e e
2lg Vet 41N 4242 2.4.2
(1= q)2(1 =1 ( (QS) + pr ) 174" + O(A 1% Ay%). (4.36)

2. Reduction to SU(2),

When the antisymmetric matter AS is massless, the corresponding 5-brane web becomes two copies of Sp(1), theories
as depicted in Fig. 3. This means that the corresponding partition function factorizes to

Zsun(q 2),+1AS — Zmner layer ° Zouter layer — ZSU(Z)ﬂ : ZSU(2)][/. (437)

In fact, by applying the 7', tuning, one can check that the partition Sp(N) + 1AS + N/F also factorizes to N copies of
Sp(N) + 1AS + NF in the massless limit of antisymmetric hypermultiplet AS.

Regardless of the antisymmetric matter being massless or massive, brane webs of Sp(2), , + 1AS are reduced to the
webs of SU(2),_, as the Coulomb branch parameter A; — 0 or, equivalently, Q4 — 0. This is because, in the topological
vertex, each internal edge is associated with (—Q)‘”| and so, if Q — 0, only trivial Young diagram v = () contributes.' This
reduction is illustrated in Fig. 19. By taking the Coulomb branch parameter A; — 0 or Q4 — 0, one gets the constraints”
v3="0,v4=0,a =0, a, =0, and as = | for the un-Higgsed diagram in Fig. 18. Hence, Zsy()» = 1 and Z — Zgy(o) .
Through this reduction, we reproduce the partition function for SU(2),:

"This means (length of line - c0) =~ (Q = 0) ~ (v — @) ~ (cut internal line).
2y =0 and v, = () force a; = 0, ay = 0, and as = () through Eq. (3.20).
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Nek __ ~pert ins
ZSlef(2>,, - ZSU<2),[ ’ Zgl[s]t(a;)t:n’
instamon ‘U |+|U2‘ ‘Dl‘+|y2‘ 7Hb{H2+Hb2H BHLIHZJFHUQHZ 7 2 7 2
Zigtmon — N (= 1)klthel g Vg7, (1, 9) P20, (1 9|
12812
» 1
qu,y{(QF; t_17 q_l)sz,z/]"(QFé; t_lv q_l) '
1
pert _
Zsv), = (4.38)

M(Qp:t,q)M(Qr;q.1)’

which is the same as the result in Ref. [17]. This is a trivial consistency check for the partition function of the Sp(2) theory
to satisfy. If an antisymmetric hypermultiplet is massive, one, of course, needs to remove the extra factor arising from the
mass of an antisymmetric hypermultiplet.

C. Sp(2) +1AS +1F

Three equivalent webs related through Hanany-Witten moves were depicted in Fig. 20. We choose the first web in Fig. 20
for computation, as it shows fiber-base duality. Its un-Higgsed diagram is depicted in Fig. 21. The relations between Kihler
parameters are given by

O3 14 08 14 Q2438 02368
On = Qu=—"""— Op=—" 0; =

0, O3 Q135 Q135
2458k k, 02888k, ki 0u = O8 F ky ey Ous = 022488.F kyky
= 2 = 33 =, y=—,
Qi35 Q113 0, 011335
Oty m O34
O, =—2, Qp, =—=. (4.39)
myy Q3 f3 sz

Following T, tuning, we assign values to tuned Ké&hler parameters

Q1 =0 =03=0= \/?, Qs = Q6 = \/Z, Qp, =Qp, =0y, = \/?, (4.40)

which corresponds to two case B, one case C, and one case D. Next, we apply the conventional method on auxiliary lines to
find the relations between Kéhler parameters and instanton fugacity u, and L, and L, can be read off from the diagram,
as discussed in Fig. 15:

Ly = \/%~ 00040, = \/%' 04010 . Liown = g—f’;,
0/ u

Lup * Lgown = u? = Op = (441)

V030140,

L % N/ N/

N v A h

FIG. 20. Some equivalent webs for Sp(2) + 1AS + 1F.
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q
t
1
1
1
q I
t 1 ’
! Q
\\\ Qg 1 f1 p
\\ lel VS// t
\\ ’ sz
< Qb2 L,
D H -
4
Qs Q3" ! Sam,
Q1 Q4
aq g
Q1 B . Q2
4
e Ts) Qb wag
H
Qra v Qk3
ag as
% 5%
7 6
[ N
q ’ Y N q
b - H \
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FIG. 21. An un-Higgsed diagram for Sp(2) + 1AS + 1F.

Hence, in order to reproduce the Nekrasov partition function, independent Kahler parameters should be assigned with

A uA,? y
= A2, =1 =22 =21 4.42
QF 2 Qk4 A 2Q8 QB \/y_l le A ) ( )

where y; = e~ and m, is the mass of the flavor.
In this case, case D comes from adding flavor F and leads to a geometric transition-related term (3.20) in the partition
function, which gives the constraint v5 = (). Thus, the summation part Z**™ can be reduced:

sum — .
ZSp(2)+1AS+1F = E E Z[IJ],IJ2,IJ3,I/4,IJ5,(X],(X4,(15,ag]
V1,V2,V3,V4,V5 01,02,03,04

Z Z Z[Vl,Vz,V3,V4,@;al,m,as,ag], (4.43)

V1,Up,U3,14 O,0,03,04

which differs from the summation part of Sp(2) + 1AS by a term termsly,]:

Z ()1 1AS+IF = Z Z Z%;l(nz)HAs'terms[ylL

V1,Vp,V3,04 Q04,005,008

_ g lHlvp [ +Hv3 | +lval
2

terms(y,] =y, N (Z;) N (?) Ns?lf’_(Azyl)N}:?lf’_ (Aiy1), (4.44)
: ]

where Z;‘;‘& +1as 18 defined in Eq. (4.13).
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1. Perturbative contribution
We find that the fundamental hypermultiplet does not contribute to ZP*!l but adds to ZP**! the term Zj™:

pert-11 _ pert-II
Zsp2)+1ASnF = Zsp2)+1A8° (4.45)
pert-I o per(] pel’l
ZSp(2)+1AS+nF Z 2)+1AS HZ Qm (446)

SR O SR G (O BT

where Z%en(Qmi) is the contribution of the flavor F to the perturbative part. In total, the fully perturbative part for
Sp(2) + 1AS + 1F is given by

Zpen 1 pert-II
pert Sp(2 )+1AS+1F Sp(2)y+1AS+1F _ pert pert
ZSp(2)+1AS+1F Zethra - ZSp(2)+1AS ’ ZF (le)7 (448)
3

which exactly agrees with localization computation (B1). With proper normalization, the perturbative part can be
expanded as

pert SU(2 33 SU((2 SU(2
Zpomsir _ | Va bl (@ = e+ vangs" )

Moy frrgr  (-a(-1 ’ (1-g)*(1=1)? 1
Llatn- vas'® A qt(q+t)x§U(2)[y1]+(qt(1+qt)—(q+t)(q2+t2—612t2—1))A2
<1—q><1—r> A, (1-gP(1+q)(1-1)*(1+1) ?
+ O(A 1 ALY,

where )(gU(Z) [

SU(2) [

_ _ SU(2 _
vl =+t AP = 4+ 1472, and 157 = 05 + 05

2. Instanton contribution

The instanton contribution is obtained by Eq. (4.9). As Z""etl — 1 in this case, the one-instanton contribution is
given by

Zal,(u,as,aS Z vy g w3 v €{0.0} Z[D] »Ua, U3, Uy, 0’ ap, Ay, as, ag]
Zone instanton i e e Y o (4 49)
Sp(2)+1AS+I1F — Zpert 1l : :
Sp(2)+1AS+IF

By expanding it with respect to Coulomb branch parameters, we obtain

ZOHC -instanton — \/a\/y_l

Sp(2 )+1AS+1F (1 _ q)(l _ t)

q+t
(1=q)(1 =1)\/yi
2
q+1— g’ A (g+1)(q+1—air'?

(A +Ay) + (A3 +A})

)\/y—l(A%Al + A1A3)

o= gU-nym N T T (—gl-nva
(qtlt)—(q;(i__f)r_f— 2 i + 04D, (430

which equals the localization result (BS) with Ny =1, y; = e™, and Qg = e™.
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Similarly, the two-instanton contribution is given by

3 > Zlv1, v, 3,14, 0; 01, 04, v, g
a1,04,05,08 vy ,va,v3,v4€4H, O, O, 0} (4 51)
tho-mstanton [v1[+[ve|+|vs|+|ra|=2 ’
Sp(2)+1AS+1F — zpert-I1 ’

which can be expanded in terms of A; and Aj;:

qt(q + )y qiy
tho -instanton 2 1L A2 — —AA
Sp(2)+1AS+IF — (1—q)2(1+q>(1—t)2(1+t)( >+ )+(1—q)2(l—t)2 1442

2/qi(q + 1) — quys’?
- \/;(_ q)2>(] _t)ﬁ (A34; + AA}) + O(AT; A37). (4.52)

3. Enhancement of global symmetry

Nekrasov partition functions of Sp(2), + 1AS + N/F enjoy global symmetry enhancement with properly shifting of
parameters (A;, u, y;). With the help of fiber-base duality, this shift can be found. The exchanging symmetry between A, and
A, preserves, so following the argument in Ref. [47] we shift

Al = Alu%, Az = Azu%. (453)
According to the webs in Fig. 21, the global symmetry of Sp(2)+ 1AS+1F is supposed to be

G =SU(2)g, x E; = SU(2)p, x SU(2) x U(1). We define two new fugacities u; and u, for SU(2), xU(1),,,
respectively. The fiber-base duality

QB <~ QF’ Q8 g Q87 le <~ Qmp (454)

through shifts, becomes

u, < uyt, Uy <> Uy, A <A, A, < A, (4.55)

which along with Eq. (4.53) determine the relations between u and fugacities u; , as follows:

- 1oL - 11 7 _1 1
A = uiu, Ay, Ay = uiu,"A,, u=uju,", vy = ) (4.56)
VU1

These relations are similar to relations for SU(2) + 1F in Ref. [47]. Once again, we note that Sp(2) + 1AS + NF is
similar to SU(2) + N/F. We indeed find that shifted partition functions can be expressed in terms of the characters of
enhanced SU (2)Q8 x E; global symmetry as expected

Vi + w53 P [uy) RSN
1 qiiu, 2 X2 )3 q )(2 1

Zsp)+ias+1F = 1 = (I-q0-0 2 (1 (- t) A,
_\/Zl—(uz"'uzﬁ(z ) (—vais" +1+qt)A
(1-gq)*(1—1)? 1
(a4 009" =g+ @)1+ 025" + (g + 01+ qn) + 91 AF
(1-q(1+q)(1=1)*(1+1) A3
+ O(4%; 43), (4.57)
where )(;Um [uy] = uy + uyl.
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FIG. 22. SU(2),+ IF and SU(2), + 1F are equivalent via two flops.
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FIG. 23. The un-Higgsed diagram for Sp(2), + 1AS + 1F, with framing numbers in red assigned.

4. Sp(2), +1AS +1F
Just like the fact that SU(2), + 1F and SU(2), + 1F are equivalent up to flops, there is equivalence

Sp(2)y + 1AS + 1F = Sp(2), + 1AS + IF, (4.58)
related through flops. By taking the mass of 1F to infinity to decouple flavor, one can obtain Sp(2),+ 1AS and

Sp(2), + 1AS, respectively. Similar to the flops illustrated in Fig. 22, Kihler parameters of Sp(2), + 1AS + 1F and of
Sp(2), + 1AS + 1F are related through transformation’

Or = O, O = O Op = 030,0r014Q,» O, = (08°0r0140,,) 7" (4.59)

Following T, tuning in Sec. III, we find the correct tuned Kihler parameters for the un-Higgsed diagram of Sp(2), +
1AS + 1F depicted in Fig. 23 are given as follows:

*The parameters on the left-hand side of arrows are for Sp(2), + 1AS and the right side for Sp(2), + 11AS.
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01=0,=03=04= \/g 0Os = Qs = Oy, _Qf6_Qf56_\/§v (4.60)

and independent Kéhler parameters are assigned with gauge theory parameters

A uA 3
4,2, - -2 =, 4.61
Or =4, Ora 1,05 Oy \/y_% o 3 A, ( )

where y; = ™3,
We find the perturbative part is equal to Eq. (4.48), and the one-instanton contribution obtained from Eq. (4.49) can be
expressed as

one-instanton _ \/a (C] + t)\/y_
ZSp(z)”HAsHF - (1 _ q)(l _ t)\/y_3<A1 +A2) +7(1 _ q)(l —3t)
V(g + 1= vas'?) (q+1)(q +1—vais"™)

(I-¢g)(1-1) (1=q)(1 = 1)\/q1\/y3
V(g + 0%(g + 1= Vi)
(I-¢)(1-1)qt

(A2 +A%)

_I_

AjAy —

(A1A2% + AZA %)

+

A2A2 4+ O(ALLA), (4.62)

which equals Eq. (4.50) as expected. The two-instanton contribution was checked to agree with Eq. (4.52). The topological
string partition functions between Sp(2), , + 1AS + 1F are equal through transformation (4.59). By taking the mass 5 for
flavor to infinity to decouple flavor, namely, Q,,, — 0, one can reproduce the topological string partition function
for Sp(2), + 1AS.

D. Sp(2) +1AS +2F

For Sp(2) + 1AS + 2F, there are many equivalent web configurations related through Hanany-Witten moves, and some
of them are depicted in Fig. 24. The Nekrasov partition functions for web configurations in Fig. 24 become equivalent, once
extra factors were removed:

Ztop Ztop Ztop Z'op
7Nek _ “Sp(2)+1AS+2F\\ _ “Sp(2)+1AS+2F~  “Sp(2)+1AS+2F!  “'Sp(2)+1AS+2F~//
Sp(2)+1AS+2F — Zextra - Zextra | 7extra - Zextra | 7extra - Zextra | 7extra
Og = Og Il Oy = Og
Ny=2 o
__ pert pert k
= Z§oyas 1] Z87(Qn)- <1 +> u Zk(Ai’yi))' (4.63)
i= k=1
pert instanton
Sp(2)+1AS+2F Sp(2)+1AS+2F

We checked this equivalence up to two-instanton contributions, which is consistent with the fact that Nekrasov partition
functions are insensitive to Hanany-Witten moves.

_
N N N F

M

Lr ¥ \ \

FIG. 24. Some equivalent webs related through Hanany-Witten moves for Sp(2) + 1AS + 2F.
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FIG. 25. The un-Higgsed diagram for Sp(2) + 1AS + 2F//.

As a representative example, consider the first web in Fig. 24. This contains no extra factor other than Z‘Z‘S‘ra and also of
reflection symmetry. For its un-Higgsed diagram depicted in Fig. 25, the associated tuned Kihler parameters are found to be
the following:

t

Q=0 =0=0~= an - Qf4 = Qf34 = \/?’ Qs = Q¢ = Qfs Qfo = Qfss = \/; (4'64)

The relations between independent Kihler parameters and (A;, u,y;) are

Ay MAzz 2 V3
Or=A4"  Qu=—, QOg=—7-x. Q. =", 0, =". 4.65
4 g “ Ay Qg i VY23 A A ( )

Similar to Sp(2), + 1AS + 1F, geometric transition relevant terms (3.20) caused by tuned parameters (4.64) give rise to
constraints on Young diagrams: v4 = () and v; = (). Hence, the summation part of the topological string partition function
can be reduced to

Z5) ) 1as 128 = Z Z;‘I‘,’(‘;)HAS - terms[y;] - terms|y,],
oy iy y ity
v+l . .
terms|[y,] =y, N e (A )N‘;jlf—G 2>N};;‘lf’ (Ayy2) N (A y,), (4.66)
2 1 1

where terms|[y;] is defined in Eq. (4.44).
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1. Perturbative and instanton contributions

The normalized perturbative part can be expressed as

pert SU(2 SU(2
Zpoymsiar V@i Pl 60wl L a0 = vaie" A

M(Qg\/%,t,q)zi (1-¢)(1-1) ol-g)(1-1) A
Vai(l + gt = a0 P ) + 150 P lys) e
- 5 A+ O(AT; A7),
(1—¢)*(1=1)?
where 15" [y] =y, + L 5" = 0s + 05, and 137% = Q3 + 1+ 05>

2. Instanton contributions

The one-instanton contribution can be expanded:

ne-instanton _\/qt q-+t 2 5
ZO e( )iellAngZF (1 _ q)(l _ [))(2{))2/3](142 +Al) + (1 — q)(l _ t))(Qb’Zfi](AZ +A1)
SU(2) SU(2)
q+1— /40 (g+0(g+1=-+atx; ) > >
AlA; — ASA; +A A
+ (1 - q)(l —t) )(2[)’23] 142 (1 — q)(l — t)ﬁ )(2[)’2/3]( 5A1 + A 2)
(g+1(q+ 1= vair, ")
where we define y,[y.] = /3. +—= \/_, Y23 = yoy3, and y, 3 = Vz . To match the one-instanton contribution with localization

result when N, = 2, we define y, = "™, y; =™, Qg =", A} = ¢, and A, = e* for Eq. (B5).
Similarly, the two-instanton contribution can be obtained and expanded as

qt(2 + xa[y2/3])
(1=g)*(1 1)

_ SU(2)
- e ] + o) (A3 + Ah]) + 0T 4, (4.68)

tho -instanton ql(l +qr+ (q + t))(l +)(2[y2/3])

SR o = TR+ g1 - 021 o) 2T AD T

ArA,

3. Enhancement of global symmetry

Because of enhancement, the Nekrasov partition function can be written in terms of characters of the global symmetry
group. Following Ref. [47], the shifted Coulomb branch parameters for this theory are given by

~ 1 ~

A=A, A, = A (4.69)

The global symmetry of Sp(2) + 1AS + 2F should be G = SU(2)Q x E3 = SU(2)o, x SU(2); x SU(3);, 5,5, We

define new fugacities i for SU(2); and §,, ¥, and §; for SU(3);, 5, 5., * respectively. The fiber-base duality for the diagram
in Fig. 25 is

QB g QFv Q8 g QS? sz <~ Qm37 (470)

which by new parameters (A;, i, j;) can be represented as

i il §1 < Vs, J3 < 33, A < A, Ay < A,. (4.71)

*For SU(3), 73,55 = 1.

086004-24



REFINED TOPOLOGICAL VERTEX FOR A 5D Sp(N) GAUGE ... PHYS. REV. D 104, 086004 (2021)

Then reparameterization can be fixed:

PO — PO — 3.3 uy y
Ap = A1/ 5253, Ay = Ay\/ 5293, u=53,"y3% Y2 = = 2, Y3 = \/;‘; (4.72)

V3

By taking these new parameters (4.72) into the normalized Nekrasov partition function, we indeed see the enhanced global
symmetry:

SUQ2)r~7. SU3) 1~ SU22)
a5 gt vas A

“ooprasiar =1 (=01 - -0 A
_Varas" [K\@&¥@+1+mﬁg%jmm+0ﬁw%ﬂ+wﬂ+qm%w%ﬂy
(1=q)(1-1)? 1 I=qPU+ -0+ 7
(g + 001 +¢*+2) = (¢ +7) + qi(1 + 905" 2 @5 )

A2
(1-gP(1+q)(1-1)*(1+1) ’

N (q+0(ad"? = V@t + (1 + 05" + (g + (1 + q1) + g A L oA,

(1-g)*(1+q)(1—1)*(1+1) A3
where
1
LM =vVait—. APE=a+1+a BB =50+ 5+ s
Vi
3
~ ~— ~— ~— Y] 1 V)
x§U<3)[y} :y11+y21+y31, )(gU(B)M :Z§+yi'
=171

4. Connected case D

Case D can be connected to other case D by adding fundamental flavors F or Hanany-Witten moving D7-branes on brane
webs. For Sp(2) + 1AS + 2F, the fourth brane web shown in Fig. 24 is one typical example, whose un-Higgsed diagram is
depicted in Fig. 26. Apart from the same tuned Kihler parameters in Eq. (4.64), there is one additional case D on the left top
of the diagram in Fig. 26. According to the discussion in Sec. III B, the tuned Kihler parameters for case D should be
determined by either of case A, B, C, or D it connects. We notice that for this diagram the tuned Ké&hler parameters for this
case D are

Qf9 = Qfl() = Qf9| = \/g (473)

We observed that if we draw a horizontal line in orange on the web, all tuned Kihler parameters on the upper half-plane
were given the value \/é and all tuned parameters on the lower half-plane \/g in this assignment of ¢ and ¢ on the diagram in

Fig. 26. The associated gauge theory parameters for the un-Higgsed diagram in Fig. 26 are related to Kdhler parameters by

A uAy’ N1 Y2
Or =47  Qu=—rrHr, QOp= s Q= Q=7 4.74
d ? “ A Qs g VYivY2 A A ( )
The extra factors here are of the following:
1 1
Zextra _ (475)

// 7M(;]v_;’q’ t)M(j;_;’Q’ ) (u\/y1y27 q7 t)M(éu\/y1y27 Q7t) ’
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FIG. 26. The un-Higgsed diagram for Sp(2) + 1AS + 2F~//.

where the instanton-dependent extra terms can be extracted
by expanding the partition function and then picking up
terms that break ¢, r-exchanging symmetry. The partition
function obtained is the same as the web in Fig. 25, and,
hence, we do not show the result again.

E. Sp(2) +1AS +3F
The un-Higgsed diagram for this theory is depicted in

Fig. 27. Following the discussion in Sec. III B, the tuned
Kihler parameters are determined to be

O1=0=03=00=0y=0f=0, =0, =1/

Qs =06=0s, =0y, = \/g

The maps between Kéihler parameters and gauge theory
parameters (A;, u,y;) are

A] MA22
Or = A%, Ou=7"7" Op=——.
F 2 kd 4,05 B VoW
Vi Y2 )3

=, m, = o e = ==, 4.77
O =3 Ow=. Q=2 @7
where y; = e~ are mass parameters. Similar to
Sp(2)o +1AS + N;F(N; =1,2),  constraints  from

Nekrasov factors (3.20) appear in the partition function
and give rise to constraints on various Young diagrams:
vs =0, vs = ), and v; = (). Hence, the summation part of
topological string partition function Z*"™ can be reduced to
the following:
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FIG. 27. The un-Higgsed diagram for Sp(2) + 1AS + 3F.
S — sum
Z5) by 1a813F = Z Zgyt) 1 1as - terms[y,] - terms|y,] - terms|y,],
ol sy iy
half,— - half,— half,— half,— half,—
Na, (Al)’3) u4 (A )N r( i)Nﬁ (A2y3)Ny? (X—T)Nﬁ‘ (A1y3)
terms[y3] = - 2 3 4 ’

il ol +lv3 | +lval
2

Y N*;j#f--(Al

)’3)Ngjrlf’_(141)’3 )

where terms|y,| and terms|[y,] are defined in Eqs. (4.44) and (4.66), respectively. The extra factors for this theory are

given by
Tt exti
ZCXtE‘l)JrlASJr%F = Zpe(e)+r1aAs+3F Zm;t( e)xf?AsHF
B 1 1
M(Q44Qm] Qm3 Qf] Qst f, Q)M(Q44Qm] Qm31 f, Q) M(Q22Qm11 szz’ q, I)M(QZZng Qf'34Q1n11 szz, q, t)
1 1
= : . . (4.78)
My ys3.t, q)M(W,t, q) M(u /}IY2 o q)M( vnz .q.1)
1. Perturbative contribution
We obtain the perturbative part
Zpert -1 Zpert—H N;=3
1t Sp(2)+1AS+3F  “Sp(2)+1AS+3F It rt
ZPC( )+1AS+3F Zextra Zpen extra Zpe +1AS H Zpe (Qm (479)

Sp(2)+1AS+3F

which can be expanded as
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pert SU(4 SU(3
ZSp(2)+1AS+3F 1 \/_)(6 [] qtye ()[y

Mo frnap  (1-0(i=9 (-1

2
g+ 0(g+ i+ gt 1)+ D] 2" b)
(=g -7)
(g0 = va'™ A _vail +ar = ad" g ),

D (1= q)2(1 — 1)

]2

A3

A3

SU((2 SU((2
Ll 0™ = VI + L+ 0" + @+ 0L+ a) + a0 A e o)
2 2 A2 1>
(1= P+ ) (1= 0*(1+1) A3
SU(4 _ SU4 . ;
where y Wy = Loyt and)(ls( bl = Zi<j1+yiyi+%yj+;_}+f;_'i'5

2. Instanton contributions

The one-instanton contribution can be expanded as

g+t U@
(=)=
q+ 1= s (a+0(a+1= v svw

O R S 0=y " .

x (AZA, + A,A2) + 4T t<)1(i1 +)t(_1\_/z_)h );(SU 1AL+ O(43.43), (480

- t
Zone instanton \/q_ }(SU(“) [y] (A2 +A1) +

Sp(2)+1AS+3F — (1-q)(1-1) 4 [](A2+A2)

where

V1 n VY2 n VY3 ,
VANV A ERRVATRVA TR VATRVADS
IR LN/ PV E VA TIVA T SNRVA TIVA Py
4 VY1Y2Y3 \/_ \/_ \/—

We checked that Eq. (4.80) agrees with the localization result in Appendix B [Eq. (B5)] and by mapping parameters
yi=eM, y3=¢€",y,=e, Qg =e", A| =™, and A, = e®.
Similarly, we obtain the two-instanton contribution

W I = Vyiy2ys +

4 4 4 4
Zevorinstanton _at +anrg" D + (g + D ) atze- ) + 210 b))
SPQFIASTIF (1 _ 21 4 ¢)(1 = 1)2(1 + 1) (1-q)*(1-1)?
Va2 + Vil + 2025 D] = (g + 0L+ g0) = qt = (@ + 2) + a1 DD + 1)
(1-gP(1-1)?

(A3 + A7) + ArA,

x (A3A| + A,A%) + O(A2; AY),

where

)(10 Zyz
i=1

05 =3+ vy — 4+ =123
Vi y]y 5 ;” YV Y

>This definition of character is a bit different here. One can use the LieART package in Ref. [58] to get characters in omega basis and
then do a transformation y, — y,, y3 — V” 2. y1 = /Y1Y2y3 to get this definition. We remind that all characters in this paper are
obtained by using LieART.
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3. Enhancement of global symmetry

We shift Coulomb branch parameters to the gauge parameters

2

~ 2 ~ 2
Al = Alus'Nf = All/l%, A2 = A2M8_Nf = A2L£ . (481)

it

The global symmetry of Sp(2) + 1AS + 3F should be G = SU(2)Q x Ey = SU(2)Q x SU(5)5, ;-1....5- Here we define
new fugacities ¥, ..., y5 for E.° By observing the diagram in Fig. 27, we notice that the fiber-base duality leads to

QB <~ QF’ QS <~ QS’ sz <~ Qm3’ Qm] < Qm]’ (482)

or it takes the following relations in terms of gauge theory parameters:
Vi< 3o, V3 < V4. Al < Ay, Ay < A, (4.83)

Combining Eqgs. (4.82) and (4.83), we express the Kéhler parameters in terms of the gauge theory parameters:

- . A Y334 33 Y49
0r =A%,  05=4%, OQu==—1, Qn =222 Q=22 Q=22 (4.84)
AyAg A, A

In addition to Eq. (4.77), we find the reparameterization of the gauge theory parameters as follows:

R T~ o V394 V335 V4¥s
A=AV, Ay = Ayn\/ P9, u=y-r Vi =4/, Vo =4 | T = /=== 4.85
: : ! ? ? ! ! Y2ys g Yaya Y2y3 ( )

By expressing the normalized Nekrasov partition function in terms of the parameters (A;, ii, 7;), we see the enhancement of
global symmetry as follows:

~ SU((2 ~
Vi [i] 1 a+t=vam A (qtr"? = /a1 + gl

R T R ><1—r> i, (=gi-nz
LA+t g+n - (g + £)s* 3] + (1 + g3 ] + ar(a + 0rss ] 5
(1= + (1 -0 (1+71) ’
(a0’ = vai( + o)+ 025" + (g + (1 + a1 + 1) A
<1— 91+ q) (1= 02(1 +1) A
+m gt(q + 05" + Va1 + ) + (g 01 = (g = 025" + - il 42
(1= (=0 (1+q)(1+71) A,
O(A%;A), (4.86)

where characters are defined as’
- - 1 Viy;
= E Vo apll=) y~—-)~1»’ 2 =3) 3+ Y =

i i i i#k VK
¥,
255 =2 Jit+ D 5
i ik Yk Vil

"Here, we choose orthogonal bas1s in LiIGART.
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F. Sp(2) + 1AS +4F

1. The un-Higgsed T, diagram

There are many equivalent webs for this theory as depicted in Fig. 28. We choose the first web for computation, as it
contains a Higgsed T, diagram, which has not been discussed in the previous examples. We find 7', tuning still works for
this Higgsed 7, diagram, which implies that 7', tuning could be used for generic Higgsed 7'y diagrams. The un-Higgsed
diagram for the first web in Fig. 28 is shown in Fig. 29. Following the discussion in Sec. III B, we find the tuned Kihler
parameters are as follows:

QO =0=0=0%u= Qfl sz = Qf33 = Qf4 = Qf9 = Qflﬂ - \/%’

Qs = Q6 =0y, = Qy, = \/Z, Op, =Qp, = =0p, = \/? (4.87)

With the help of auxiliary lines, the relations between Kéhler parameters and gauge theory parameters (A;, u, y;) can be
determined as follows:

A uA,? v
QF:A229 Qk4:—l’ Q :427 Qm,- :A_l’
1

4.88
AyQ3 ? VY1Y2Y3Ya ( )

where y; = e~ i = 1, 2, 3, 4, are mass parameters. Just like Sp(2), + 1AS + NfF(Nf = 1,2, 3), geometric transition-
related terms (3.20) given by tuning Kihler parameters provide constraints on various Young diagrams v; = (),
i =5, ...,13. Hence, the summation part of the partition function was reduced as

3
2)+1AS+4F = Z Zsum %) HIAS terms|[y,| - Hterms[yi],

V)34 i=1
(ll.(lz.(lS ll4

Zbu

B0l Y i Y e 2

Vi > Nhalf <v4 )NE;ﬂf (M )Nhalf (A2y4>Nh7qlf,— (A1y4)

T he 2 [yyaya ) ashalf,— Yvayva | ahalf— (A [yivava ) ashalf.— Yivava)
thlf u - [y1yaya 1Y2)4 N u2 1Y2Y4 N u 1Y2Y4
v \4 ¢ V3 N, Al q V3 vy 7 V3 vy 61‘ V3

terms|y,|’ (4.89)

_/
P G

7y Vo
N B B ]
FIG. 28. Some equivalent webs related through Hanany-Witten moves for Sp(2) + 1AS + 4F.
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Case B
I
1
1
1
1
1
1
t o ==
e
L7 IQF,
Vi ]
7 QFs51
Qry 12 o 4
Fe F1o
QFg v
vz Qr
1 @F
L7 |QFy X
e 1%
. 11 Ory, :
p Qryg ,
.
7 I
7 I
e
’ 1
7 1
Qss ’ |
.
e 1
’ 1
.
4 1
’ 1
e Q77 |
’ ]
e
‘ :
e Qo6 X Qs5
t ’
’ 1
4 1
Y
‘ :
4
t
Qy i 1
9 //Qfg :
| vg |
Q1o I I
1 1
1 1
1 1
1 1
Qm 1 Qm 1
44 4
1 Qm 1
1 2 1
1 ]
1 ]
1 1
Qr ! ! Qf
33\ 1 Qray Qfs 1 1
_______ - Q S
N7 my Vs,
Qry | Qmay t L7 | Qe
N Qp2 ,
D f A
N e e
L@y QRa,” |/ Qmy
Qmx_@1° Q4 t
%1 aq
Qk1 QB . Qk2
L
re) re)
w35 wr waq
H
Qka v Qk3
asg as
. Qss Qs
R Qe | Qmg
q Iz 3 Nl
- —— +H - -
. N
’ Qi1 N
, N Qfs
,/ Q7n33 ’/6\\
, q e
e Qfsg |
1
| Qfg
1
1
1
1

FIG. 29. An un-Higgsed diagram for Sp(2) + 1AS + 4F. The type of tuned parameters on the right top are found to be type case B.
The red dashed lines in the diagram are auxiliary lines.
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2. Perturbative contribution
We obtain the perturbative part

Zpert 1 ZP"'rt -II Ny=4

pert Sp(2)+1AS+4F ~ “Sp(2)+1AS+4F _ pert pert

Z§p(2) +1AS H4F = Zexta, zpert extra = Zsp2)+1AS H Ze (Om). (4.90)
O - i=l
where Z&" g given by
__ rzpert extra
VARRIES Zsp(2)+1As+4F Zgl;t( e)xf?ASMF

B 1

M(y1y3:t, )M y1ys, 1, ) MG, g, )M(E3% g, 1)

1

X

M(u, 22, 1, q)M(ut | 22, 1. q)M (/57525395 1. )M (% /57525395 1.9)

The normalized perturbative part can be expanded as®

Zoyasear _ | _ VA oD Va1 + gt vas V)
M(Qsfrrqp (1= a)1=1) ’ (T=q)*(1=1)? ‘
< atzy P +qt(2)(§§)(8)[y]—)(3?(8>[y]2)+"'> 22 +(q+t) N A1
21— gP (1~ 1)? 21 = ¢)(1-7) == A
(a4 (g2 = agi(+ @)1+ 025" + (g + 01+ q1) +91) A
(L= gL+ =071+ A3

+\@(‘q1(C1+t))(3 "+ v (1 + g + (g + 01 = (= 025"+ )z D
(1-9P(1+q)(1-1)(1+1)

A2
xA—l—I—(’)(A%;A%), (4.91)
2

SO(8 — SO(8 .
Where)(gl, ( )[y] = Z?yl—'—yll and)(28( )[y] - Zt#]yyl + +}_I’ L= 17""4'

yiv; Y

3. Instanton contributions

For the un-Higgsed diagram in Fig. 29, ZM contains instanton-dependent terms Z""P'! £ 1 We remove instanton

extra factors and find that the terms in the first term of Eq. (4.8) are the following, which could contribute to the instanton
part:

t-1 Y1y Ly RARZY L [YiYa
ZI;(;)IEP;;IAS+4F - M(u yaya® 9. t)M(u q \/ yaya’ 9 t)M(u \/ y2yy’ 4 I)M(u q'\/ y2y3’ g, [>
inst extra u P2 ) 5/2 )
Zp(2) 1 1AS 14F M(A—]#1 /%ﬁ“ t, q)M(uAlﬁ1 /y‘iéy“,t, q)
M( uy /34, )M(uj A t)M(u\/ylyzym, t, q)M<u\/y1yzy3y4, q. t)

5/2 ) 5/2 ) Y
(MAZ z‘s/2 /)lﬁyzt’t’ q>M<X ;5/2 /\1V2\4 1 q>

X

(4.92)

®In orthogonal basis of LieART.
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In addition, after taking into account the contributions of Z**™ given in Eq. (4.89), we obtain the one-instanton contribution,

which can be expressed as

Zone instanton _ \/a ){g o(8)
Sp(2)+1AS+4F — (I—q)(1=n"*

q+t—\/_)(2 o)

=gy 2

](As +4y) +

Y ylArA; -

q-+t
(1-q)(1-1)

(q+0)(q+1—val®) so1s)
<1—><1—tw A U

SO(8
220 Vh1(43 + A

t t—
x (434, + AA3) + 4T ()1(‘”) — t)’fz D oAy, @499)
where
i Yiv Yy ..
)(gf)(S)[y]: Z ﬁ +\/_7 k\/_l7 Dk l=1,...4,
Srr A RVAIVATVAT] \/)Tz
YiVj ..

Z VYVt ————+ /T Lk l=1,..4 4.94
8 ,#Z#k:# s \/y SDATI B (4.94)

In order to compare with localization result (B5) with
Ny =4, wedefine Qg = ™, A = e, Ay = ™, and y; =
e™ (i =1,...,4) to make characters manifest.

4. Cross AS subweb

One can perform Hanany-Witten moves to make one D7-
brane downward to infinity, which could cross the AS
subwebs as depicted in Fig. 30. For this diagram, 7', tuning
is still correct and leads to the correct partition function. One
can count the number of different types of Higgsed T’
subwebs and would find that there are three case B, one case
C, and three case D on this diagram. Apart from the same
tuned Kihler parameters (4.76) for Sp(2) + 1AS + 3F,
there are two additional tuned Kéhler parameters associated

Q’mz A\ le

Qm QS

FIG. 30. Hanany-Witten moving of flavors could create over-
lapped lines on the subweb that represents antisymmetric
matter AS.

with the case B type of Higgsed 7', subweb on the left bottom
of this diagram, as shown in Fig. 31:

le = ng =\

p (4.95)

G. Sp(3), +1AS

For higher rank cases, as there are more Young diagrams
to be summed over, the computation is more involved.
Since the computation is straightforward, we skip the
computations. Instead, as a representative example for
higher rank cases, we discuss Sp(3),+ 1AS and the
structure of the partition function.

Before discussing massive AS cases of the partition
function for Sp(3), + 1AS, let us first discuss the massless

limit of AS with Qg = \/g. Then the partition function

factorizes:

ZSp(3)+1AS - Zfirst layer Zsecond layer Zthird layer
= Zsu2)(Qr, O8) - Zsu()

X <QFQ1<42 ) QBQk42 —>
q q
Zsu)(Qr0n, >0k, 0501, *0r%). (4.96)

where we choose Qp, Qp, Qu, and @), as independent
parameters. At the massless limit, the diagram turns out to
be isolated webs as depicted in Fig. 32. Turning on the mass
parameter for AS leads to the left web in Fig. 33. The
associated tuned Kihler parameters to its un-Higgsed
diagram are given by
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Q Q
f33 , Qf34 Qfg f1
_______ \\V7 le VS//________
Qpry N Qmag 4 Qpfy
N ! 7
S QZQH L
. z 7
| \Q2 Q3, | le
Q'm.Q Q1> 7Qa
a7 Qg
Qr1 QB L Q2
A
Ve V. N O 0O
w33 /N X F < ag
H
Qra vy Qk3
og as
Qs N
Qm, Q7 ) Qe . | \9m3
7 B, i
7 B - N
QL1
Qg3 // Qm \\ Qf5
_______ Vs 44 QmasN_ Y6\ _______
1 Q Q |
' Qo f56 | Qfe
Q92| I
- | | \
I I
u |
I I
Case B

FIG. 31. The un-Higgsed diagram of the web depicted in Fig. 30. The Higgsed T, subdiagram on the left bottom is of type case B.

N s
~ s

——
|
s |
d
~——— =
| |
‘ 0
N
N
| _
/s N

s N
s N

FIG. 32. When AS is massless, the web of Sp(3) + 1AS factorizes and, thus, Sp(3) + 1AS equals SU(2) x SU(2) x SU(2).

01 =0,=03=04= an = Qflz - Qfm = Qf|4 = Qf21 = szz = Qf23 = Qf24 - \/%’

Qs = Q¢ = Qf31 = Qf32 = Qf33 = Qf34 = Qf43 = Qf44 = \/2 (497)

Gauge theory parameters (A;, u) should be assigned to the following independent Kihler parameters:
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[
11 N s Q
—an \\ ___f Qoo t__/// ; f21
N 2 QB 1 ha
Qny : \\Qz Il l 20, Yz
t Q1™ oy
ay
Qi1 Qp Q2
vy
Il
- Qs3 J  Qr Qus
. X
Q n
Qra Qk3
’ P Il as
4
th : Q/s, \\(\25 | q
Ry ML % Ny \@hs
Qf/u /// q Qu q \\ Qf:n
41 7 hN 7131
| , Qh, N |
, :qu/ms v Qs ™ Qs !
I Qf 5 I g
1 “ Qs Vs Qfs, Qs 1
______ y !
4 " Qs B q

q a all \ﬁ
q

FIG. 33. The left web is for the massive AS with mass fugacity Qg. The right diagram is its un-Higgsed diagram. In the right diagram,
we have assigned the virtual lines and the values for some tuned parameters. All tuned parameters above the horizontal orange line are

given the value /¢/t, and all tuned parameters below this line are given /#/q.

A A t
Or = Ay’ Ou = rle Oy, = j 5 Op = Ay’u. (4.98)

1. Perturbative contribution

We find
AA t A‘ t A A
zre] <W\ﬁ a)M (ész\ﬁ’t’@M(/ﬁés \ﬂ’t’q)M(Q;’q’ /)
Sp(3)+1AS — ) ;
(A1 , ) (— ) (A As.t, q)M(A2 ,t,q)M(A1A3,t,q)M(A3 ,;,q)
M(Qsz’ f Q>M(Q8\/z7 t, 61)
x , (4.99)
W (e a0
Zpert-II B numerator

Sp(3)+1AS ™ denormator

e G oG o o
el g

o ()
e rlaany
o (o 0) (8 )
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A A A
denormator = M(A,2, g, t)M(A—l,q, t)M((AlAz, q,1))M <—3,q, q>M<A—3, f, q)
2 2

M(AyAs.1.q)M(Qg*. 1. q M(Q

)

Ast t
XM<_3_at3q)M<A2A3_7t’q

Azq q

s [q
DK} ty
M<A3

A

A t t
q>M(A tq) <A1A3—,t,q>
149 q
g |M

t AlAs t
2—,tq> < 123—,t,q>. (4.100)
q 05 q
Then the full perturbative partition function is given by
Zpert 1 Zpert -1
It Sp(3)+1AS ~ “Sp(3)+1AS
ZE;(S)+1AS Zexira ’ (4101)
where the extra factor in the denominator is
1
78 — (4.102)

“mes g

In order to match with localization computation in Eq. (B1) when N = 3, one needs to permute A; — A,, A, — Aj,

and A3 — A].

2. Instanton contribution

We obtain the one-instanton contribution expanded as

Zone instanton __ g+t
Sp(3)+1AS (1

-q)(1-1)
(g+ 02 q+1-1"")
(1=-q)(1=1)\/qt

(1

+

SU(
+1- 4ty
A2 4 A2 a2) 4+
( -0

(ATAT + 4743 + A34)

(AA5 +A1A; +A1Ay)

U@

vE)
g+1)(g> +3qt+1* =2 g+ + gt
— (1- ;{l t)qt) ) )(A1A2A3+A1A%A3 + AlA,A3)
+1)%(q* +3gt + 12 =2 4 VD 4 g, SV
R Vallat e+ aizs ) 424343 + 042 43 42), (4.103)

(1= q)(1 - )¢
which is equal to the localization result (B5).

V. CONCLUSION

In this paper, we computed the Nekrasov partition
function for 5D N =1 Sp(2) gauge theories with an
antisymmetric hypermultiplet and N, < 4 flavors using the
refined topological vertex method based on a 5-brane web
diagram with the nonzero mass of the antisymmetric matter.
The corresponding 5-brane web diagram has jumps on the
(p,q) plane (or its dual diagram is generically nontoric)
and can be regarded as a Higgsed 5-brane web diagram. To
implement the topological vertex method on these 5-brane
webs, we considered its un-Higgsed 5-brane web and
properly tuned the Kéhler parameters associated with the
Higgsed edges. As such Higgsing can be considered locally
as Higgsing on a 5-brane web diagram for 7, theory, we

developed systematic tunings of Kéhler parameters for a 7,
diagram, so that such 7', tuning can be applicable to various
Higgsed 5-brane web diagrams. It is also straightforward to
extend the 7', turning to 7y tuning. As an example of 7’3
tuning, we considered 5D N = 1 Sp(3) gauge theory with
an antisymmetric hypermultiplet. We checked that our
results agree with known results based on the ADHM
method, up to two instanton contributions.

By redefining the parameters of the theory to make
the fiber-base duality manifest [47], the partition func-
tions expressed in terms of new parameters explicitly
show enhanced global symmetry Ey, . X SU(2)upisyms
yielding the Gopakumar-Vafa invariants of 5D Sp(2) gauge
theories with an antisymmetric hypermultiplet and N, < 4
flavors.
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Though we did not present the result with a higher
number of flavors due to prolonged computation time with
higher flavors, it is straightforward to compute the partition
function for Sp(2) theory with N, =5, 6, 7, 8 and for
higher rank Sp(N) gauge theory.

Along with new findings of a 5-brane web for 5D
superconformal theories with various matter fields, it would
be interesting to compute the partition functions using the
topological vertex method on the corresponding 5-brane
webs of various matters and see enhanced global sym-
metries. Another interesting direction to pursue is to check
various dualities of SD rank 2 superconformal theories [28]
based on 5-brane webs [55] by computing the partition
functions based on each 5-brane web.

Here, we discussed the T, tuning of the Kihler param-
eters for jumps. It would also be interesting to study other
physical systems such as defects by tuning Kéhler param-
eters to other values and find the corresponding tuning
method.
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APPENDIX A: USEFUL IDENTITIES

The Cauchy identities take the following forms:

an/ﬂ Sy/u(¥) = H 1—xy;)” Zsﬂ/ﬂ )$1/0 (Y
(A1)
ZS 7/ (X8 (Y H Xy ZS 7 (X)857 1 ()

Q=1
(A2)
where the skew Schur functions satisfy

So/u(X) =8y = Spr. |l ="l (A3)
sn(X) = 5,(0), s, (Ax) = 2KMs, (x), (A4)
D (=D sy (X)sr (%) = (=1)¥I5,,. (AS)

v

Using this, one can perform the Young diagram sums along
nonpreferred directions.

The following functions are the functions defined with topological vertex (see also Refs. [56,59]):

H (1 _ DL_ItD —l+1) 1

lj (S2
1Z,(t.9)|I* = Z,1(1.9)Z,(q.1).
0 1— qui—jtﬂ?—i—‘rl
Hv —j =i+l
il;[l 1= Qq It i+

= H (1- Qq”i—jt"zr_H'l) H (1- Qq—u,--s-j—lt—».]wi)’

(i.j)ev

NET(051, q) = Ny, (Q\/é, 1, q) ,

Ngalf. (Q f, C]

foyina)

M(Q.1.q) =

i,j=1

(i.j)en

~Q
ol

-1y — . 0" (D
H(I—th ) = exp< Zn %_q_%)(t,z_,_t_%)) (A6)

n=1
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We note that, for some functions, we used slightly different (—I)Mq‘w t_uuzuz 0 u
convention from the notations in Ref. [56]: N, ¢ =— = ) (A12)
Z,(q.1)Z,(1,q)
N (517 g7 = N W(0.1,9),
M(Qitg) = o (A7) (Mg )
; b =~ ~ 9 t
U= M(0.1.q) N, (;f',q—‘> = . (A13)
q Z,(q, )Zy( .q)

where the functions on the right-hand side are those defined
in Ref. [56]. Other useful identities are as follows: The following relations are useful, when one expands
B _ terms in the partition functions with respect to Q:
1Z,(t.9)|> = 11Z,7(q.1)

NME+ (0 =1 g=1) = N (0. g=1 1), (A9
(@ q7) =Ny (Qig7 1), (A9) M(Q\/g,t,q) =M<Q\/%q,t), (Al4)
NMEF (01 g71) = Ny, <Q\/§ t—l’q—1>, (A10)

NBalf’_(Q;t_l,q_l) :NU(Z] (Q\/g’ t_l,q_l>, (All) M(Q_l,t, CI) :M<Qé,t,Q) :M(Qv q, t)v (AIS)

(A8)

3 TIRHR =2 t
Nﬂy<\/;Q_l;t_l,q_l> _ (—Q) W L7 2] qH P Nyﬂ(\/;Q;t—l’q—l)_ (A16)

APPENDIX B: RESULT FROM LOCALIZATION

In Refs. [49,50], the partition function for Sp(N) + 1AS + N/F was computed via localization based on the ADHM
method, which takes the following form:

Ny
b
Zpergur)itifsw,F Ziegior de;(y)‘HZ%m(yi)- (B1)

i=1

For Sp(2) + 1AS + N/F,

A t t t t
Ze" (i) = M<1 \/ t, Q>M<A1yi\[, 1, q>M<2 -1, q>M(A2yi\[, 1, q),
Yi V4 q yi Vg q
t AA t A t A t
o5 o o)
g Yy ova 2V q YAy V q
t 2
XM()’\/:J,C]> ) (B2)
q

1
M(A Ay 1, @)M(A Ay, q. OM(§E . 1. q)M (3. q.1)
1
M(Alz’ Z, q)M(Al2v q, t)M(A227 L q)M(A22’ q, t) ‘

pert  _
Zvector -

For Sp(3) + 1AS + N/F,
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pert (A, [T i
ZF (yl) = HM - ) tvq M Aayl ) tvq )
oy Yi V4 q

t
Zhs () = M(y\/, 3 q) II M
q 1<a<f<3

A1 A
(e G
Ap Vg yAp

Z]F’ert —

e (i)
i)

1

vector —

1

i<acpesM(AcAp. 1. )M (A Ay, 4. )M (5% 1. q)M (52 . q. 1)

. (B4)
2:1 M(Agv Z, q)M<A§7 q, t)
The one-instanton contribution does not involve an integral and is given by
N . ; . +a; . +a;+e
Zone -instanton 1 (Hl fl 2 Slnhﬂ . Hiv=l 2 Slnhmza — Hf\;l 2 sinh 02 -
Sp(N )+1AS+NfF 9 ginh &£Ee= e+:|:e 2 sinh m:ﬁ:ar H{V | 2 sinh :ta,-+€+
Hl N2 cosh™ 5 TIY, 2 cosh™5% mia’ — T, 2 cosh = +€*> (85)
2 sinh 5% 2 sinh mie* [TV, 2 cosh 2%« ’

where m; are masses for fundamental flavors and m is the mass for an antisymmetric hypermultiplet.
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