
Eisenhart-Duval lift for minisuperspace quantum cosmology

Nahomi Kan*

National Institute of Technology, Gifu College, Motosu-shi, Gifu 501-0495, Japan

Takuma Aoyama,† Taiga Hasegawa,‡ and Kiyoshi Shiraishi §

Graduate School of Sciences and Technology for Innovation, Yamaguchi University,
Yamaguchi-shi, Yamaguchi 753–8512, Japan

(Received 24 June 2021; accepted 3 September 2021; published 1 October 2021)

We study covariant equations in quantum cosmology of an extended minisuperspace obtained by the
Eisenhart–Duval lift. We find that a Dirac-type equation is naturally introduced in the extended
minisuperspace. Explicit forms of the fundamental solutions are yielded for specific models. The possible
further development in this direction is also discussed.
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I. INTRODUCTION

Quantum cosmology [1–5] has some problems to be
solved. One of them is the process of deriving the
probability density from the wave function of the universe.
Since the usual Wheeler-DeWitt (WDW) equation in
minisuperspace is a hyperbolic partial differential equation,
it is very difficult to define a positive-definite probability
density. Note that a component of the Klein-Gordon type
conserved current may vanish if the wave function is
substantially expressed by a real function, which often
occurs as a solution of the WDWequation. Several hopeful
approaches have been proposed to replace the WDW
equation with other equations. For example, many authors
have already proposed ideas to attempt a square root à la
Dirac of the quadratic WDW equation [6–11], using two
component wave functions [12], and applications of super-
symmetric quantum mechanics [13–17],1 and the introduc-
tion of new “time” coordinates [19–23].
Another problem with quantum cosmology is the prob-

lem of factor ordering2 which arises with substitutions of
operators for momenta [25–27]. In some toy models, a
wave function with little difference can be obtained
regardless of the choice in factor ordering of momentum
operators to some extent. However, the choice is advocated
to be important in some cases when considering various

boundary conditions [28]. In particular, applying the Dirac
square-root method mentioned above, it is also a consid-
erable problem that the choice of ordering involves addi-
tional indefiniteness. In any case, when we wish to discuss
some hidden mathematical structures and symmetry of
gravitational theory minutely, we should not neglect the
problem of factor ordering altogether.
Recently, remarkable papers [29,30] have appeared that

apply a type of the Eisenhart-Duval lift [31,32], one of
the classical methods in Hamiltonian dynamical systems
[33–35]3 to cosmologies.4 In this Eisenhart’s method,
adding a dynamical variable, it is possible to describe a
system by geometric treatment in the space of dynamical
variables; that is, in the extended minisuperspace even in the
presence of the potential term. Thus, the Hamiltonian of
the system can be represented by the single Laplacian on the
extended minisuperspace when the momenta are replaced by
operators. It should be noted that the covariance in the
minisuperspace is not the general covariance of spacetime.
The original idea of Eisenhart’s work is to interpret a generic
(nongeometrical) equation of motion as a (geometrical)
geodesic equation in a space with a lifted metric.
We come to an idea that, if covariance in the extended

minisuperspace is required as a guiding principle, the
problem of factor ordering in the WDW equation disap-
pears and it becomes possible to proceed with covariance as
a prescription for Dirac square root.
In the present paper we consider the construction of

covariant equations using the Eisenhart-Duval lift in mini-
superspace quantum cosmology. For the sake of simplicity,
we will focus on the case of a homogeneous and isotropic
Friedmann-Lemaître-Robertson-Walker (FLRW) universe
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1For a review of supersymmetric quantum mechanics, please

see Ref. [18].
2Although the general factor-ordering problem in quantum

gravity is known to be more difficult than the arrangement of
momentum operators (see, for example, Ref. [24]) our present
analysis is limited to the factor ordering on momentum operators.

3See also a recent paper, Ref. [36].
4See also Ref. [37,38].
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containing a single spatially constant scalar field (that is,
the case of two dynamical variables) in this paper.
Section II discusses the extension of the minisuperspace
by the Eisenhart-Duval lift and possible conformal invari-
ance of the WDW equations. We study the treatment of
additional degrees of freedom especially in the known
simple models. In Sec. III, we propose quantum cosmology
with the Dirac equation in the extended minisuperspace of
the simple models, and their fundamental solutions are
presented. The last section will be devoted to discussions
and future prospects.

II. MINISUPERSPACE EXTENDED BY THE
EISENHART-DUVAL LIFT AND GEOMETRY OF

THE WDW EQUATION

In this paper we consider a homogeneous and isotropic
universe containing a single spatially constant scalar field.
We will just add comments for generic cases occasionally.
First of all, we would like to review the “conventional”
WDWequation, and show our approach with the Eisenhart-
Duval lift afterwards.
At first, we start with the following action of the

gravitating scalar field

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ2
R −

1

2
ð∇ϕÞ2 − VðϕÞ

�
; ð2:1Þ

where g is the determinant of the metric tensor gμν, R
denotes the scalar curvature constructed from gμν (μ, ν ¼ 0,
1, 2, 3), ð∇ϕÞ2 means gμν∂μϕ∂νϕ, and VðϕÞ represents a
potential for the real scalar field ϕ. The constant κ2 equals
to 8πG, where G is Newton’s constant.
As the metric, we assume the FLRW metric,

ds2 ¼ −N2dt2 þ a2ðtÞdΩ2
3; ð2:2Þ

where dΩ2
3 denotes the maximally symmetric three-space,

whose Ricci curvature ð3ÞRij is characterized by a constant
K, such as ð3ÞRij ¼ 2Kgij (i, j ¼ 1, 2, 3), while N is the
lapse function. Assuming that the scalar field depends only
on time t, the Lagrangian can be written in the following
form5

L ¼ −
1

2N
a _a2 þ 1

2N
a3 _ϕ2 − NUða;ϕÞ; ð2:3Þ

where the dot denotes the time derivative, and the potential
term Uða;ϕÞ is, for the above action (2.1),

Uða;ϕÞ ¼ a3VðϕÞ − 1

2
Ka: ð2:4Þ

In the derivation of the Lagrangian the physical units are
chosen to be κ2 ¼ 6, for convenience.
The canonical analysis of this action defines the

Hamiltonian of the system. The lapse function N plays
the role of a Lagrange multiplier and we find that the
Hamiltonian constraint condition H ¼ 0, where

H ¼ −
1

2

Π2
a

a
þ 1

2

Π2
ϕ

a3
þ Uða;ϕÞ; ð2:5Þ

with the conjugate momenta to the scale factor and the

scalar field, Πa ¼ − a _a
N and Πϕ ¼ a3 _ϕ

N , respectively.
In quantum gravity the Hamiltonian constraint acting on

states leads to a differential equation, known as the WDW
equation. We interpret that the solution of the WDW
equation is the physical states. Preparing a wave function
Ψ as a state and replacing the momenta with differential
operators as

Πa → −i
∂
∂a ; Πϕ → −i

∂
∂ϕ ; ð2:6Þ

we find the usual WDW equation in minisuperspace
quantum cosmology [1–5]
�

1

asþ1

∂
∂a a

s ∂
∂a −

1

a3
∂2

∂ϕ2
þ 2Uða;ϕÞ

�
Ψða;ϕÞ ¼ 0; ð2:7Þ

where the constant s indicates the arbitrariness in factor
ordering. So far, we have obtained a description for the
derivation of the conventional WDW equation.
Now, let us consider an extension with a new degree of

freedom. This has been proposed in previous studies
[29,30] as a type of the Eisenhart-Duval lift. In the present
case, the lifted Lagrangian (which includes additional
variable χ) is given by6

L̃ ¼ −
1

2
a _a2 þ 1

2
a3 _ϕ2 þ 1

2

_χ2

2Uða;ϕÞ ¼
1

2
G̃MN

_XM _XN;

ð2:8Þ

where XM ¼ ða;ϕ; χÞ, and the metric of the extended
minisuperspace is

G̃MN ¼ diagð−a; a3; ½2Uða;ϕÞ�−1Þ: ð2:9Þ

Using this extended metric the Hamiltonian constraint of
the system is simply written as

1

2
G̃MNP̃MP̃N ¼ 0; ð2:10Þ

5Here we have added the standard Gibbons-Hawking-York
boundary term [39,40].

6The lapse function N is omitted here, since the procedure is
straightforward around this step.
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where the momenta P̃M is given by P̃M ¼ G̃MN
_XN and

G̃MN denotes the inverse of the metric G̃MN as usual. This
classical equation (2.10) has an apparent classical con-
formal invariance under G̃MN → Ω2G̃MN with an arbitrary
function ΩðXMÞ. Here we would like to propose the
following choice for extended three-dimensional minisu-
perspace quantum cosmology, at least because it simplifies
the equation. We take the following “gauge choice”, or in
practice, we use the following metric of the extended
minisuperspace7

GMN ¼ 2Uða;ϕÞG̃MN ¼ diagð−2Uða;ϕÞa;2Uða;ϕÞa3;1Þ:
ð2:11Þ

There is factor-ordering ambiguity in promoting the
conjugate variables to differential operators, PM ∼ −i ∂

∂XM

in this case. A possible choice is to use the Laplace-
Beltrami operator as the quadratic operator. In addition, we
can add a term proportional to the scalar curvature R of
the extended minisuperspace, which can appear in quantum
mechanical systems.8 Consequently, the “extended” WDW
equation is written by the Klein-Gordon equation in the
extended minisuperspace as

�
1ffiffiffiffiffiffiffi
−G

p ∂M

ffiffiffiffiffiffiffi
−G

p
GMN∂N − ξR

�
Ψ ¼ 0; ð2:12Þ

which has covariance in the extended minisuperspace.
Here, GMN is the inverse of GMN , G ¼ −ð2UÞ2a4 is the
determinant of GMN , the derivatives are expressed as
∂M ≡ ∂

∂XM, and ξ is a dimensionless constant.
Here, R is the scalar curvature constructed from GMN ,

which is defined by

R ¼ GMNð∂LΓL
MN − ∂MΓL

NL þ ΓL
MNΓP

LP − ΓL
MPΓP

NLÞ;
ð2:13Þ

where the Christoffel symbol ΓL
MN is given by

ΓL
MN ¼ 1

2
GLPð∂MGPN þ ∂NGPM − ∂PGMNÞ: ð2:14Þ

The explicit form of the extended WDW equation is
written by

�
1

a2
∂
∂aa

∂
∂a−

1

a3
∂2

∂ϕ2
− ð2a3V −KaÞ ∂2

∂χ2

þ 2ξ
2a3½ðV 0Þ2 −V 00V� þKa½V 00 − 4V�

ð2a3VðϕÞ−KaÞ2
�
Ψða;ϕ; χÞ ¼ 0;

ð2:15Þ

where V 0 ¼ ∂V
∂ϕ and V 00 ¼ ∂2V

∂ϕ2.
If we require another constraint on a physical state

−
∂2

∂χ2Ψ ¼ p2Ψ; ð2:16Þ

the conventional WDWequation (2.7) is recovered provided
that we set the constants p2 ¼ 1 and ξ ¼ 0. Although it
sounds unhealthy to add constraints without permission, it
should be noted that the WDW wave functions have been
introduced intentionally for the purpose of expressing the
Hamiltonian constraint in the first place.9 The specific value
of p2 is actually not significant because the scaling by a
constant can be absorbed in the primary definition of the time
coordinate in the FLRW metric of our universe. The
interpretation of the value ofpwill be further discussed later.
The classical equation (2.10) has conformal symmetry.

Therefore, it is natural to use conformal Laplacian (Yamabe-
Laplacian) when making the quantum equation. This
adoption has also been suggested in the conventional min-
isuperspace quantum cosmology [26,27]. Since the extended
minisuperspace in the presentmodel is three dimensional, the
conformal coupling is ξ ¼ 1

8
, while ξ ¼ n−2

4ðn−1Þ in the case of
n-dimensional extended minisuperspaces.
For a nonzero value of ξ, the WDW equation may

become a different form the conventional one since the
contribution from the curvature term R is added in
general.10 The “nice” value for ξ has been discussed for
quite a long time in the field of quantum field theory in
curved spacetime [42,43]. The value might depend on the
functional measure in the path integral on manifolds [44]
and we feel that ambiguity is also left despite numerous
discussions with interpretation of the WDWwave function.
Incidentally, the continuum limit of the d’Alembertian
acting on scalar fields in causal set theory predicts the
other value of the scalar curvature coupling [45–49]. It is
also known that in the stochastic quantization of geodesics,
a coupling term of a scalar field and the scalar curvature
emerges regardless of the presence or absence of conformal
symmetry [50,51]. There must still be many issues to be
investigated on the coupling ξ even in quantum cosmology
in detail. The correction term of the WDW equation due to

7In the case of n dimensional extended minisuperspace, we
should take GMN ¼ ½2Uða;ϕÞ� 1

n−2G̃MN .
8Note that the dimension of P2 equals to that of ℏ2R.

9The two constraints (2.15) and (2.16) are compatible
because they form a first-class system of constraints.

10Note that the curvature term R becomes small if K ≈ 0 and
the slow-roll parameters [41] of the potential are small (i.e.,
ðV 0
V Þ2 ≪ 1 and V 00

V ≪ 1) as an inflaton potential.
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R itself needs to be examined more carefully for its
properties, which is an important topic for the future.
There exists an interesting class of extended minisuper-

space models for which the scalar curvatureR vanishes. In
such models, the extended WDW equation (2.12) with the
constraint (2.16) coincides with the conventional one,
regardless of the value of ξ (in the case of the present
gauge choice). In the present Einstein minimally-coupled
scalar system,R ¼ 0 is satisfied in the following two cases:
1) VðϕÞ≡ 0, i.e., free scalar case, and 2) K ¼ 0 and
VðϕÞ ¼ V0 expðλϕÞ, where V0 and λ are constants, i.e., the
case with a Liouville-type potential in a flat universe. It is
interesting to point out that the WDW equation in each
model is known to be analytically solvable [4,52–54].11
The WDW equations for the two models, of which

extended minisuperspace is flat, are explicitly written as
(i) Model 1 (the case of V ¼ 0):

�
a
∂
∂a a

∂
∂a −

∂2

∂ϕ2
þ Ka4

∂2

∂χ2
�
Ψða;ϕ; χÞ ¼ 0; ð2:17Þ

(ii) Model 2 (the case of K ¼ 0 and VðϕÞ ¼ V0 exp λϕ):�
a
∂
∂a a

∂
∂a −

∂2

∂ϕ2
− 2a6V0 exp λϕ

∂2

∂χ2
�
Ψða;ϕ; χÞ ¼ 0:

ð2:18Þ

If we additionally assume

−
∂2

∂χ2Ψ ¼ p2Ψ; ð2:19Þ

we can see that each wave function satisfies the conven-
tional WDW equation in each case, by performing the
following redefinition of variables in each model

Model 1∶
ffiffiffiffiffiffi
jpj

p
a → a; ð2:20Þ

Model 2∶ βa → a and ϕþ γ → ϕ; where β6eλγ ¼ p2:

ð2:21Þ

Therefore, in these cases, the setting p2 ¼ 1 considered first
is not a special one. Moreover, from the result we can obtain
solutions of the extendedWDWequation (even if thevariable
χ is not a fictitious one) as the superposition of the solutions
of the conventionalWDWequation under different boundary
conditions. To interpret the extendedWDWequation (not as
a mathematical manipulation but as a fundamental one) is
very interesting and may be an approach to the initial
condition problem of the Universe. Note, however, that

the models we found so far have no tunneling potential and
we are restricted to take the wave-packet interpretation
[53,54,56–58] in these special cases. The analysis of the
more general case will be left as a future task.
Before closing this section, we put the forms of solutions

inModels 1–2 below, whichwill be comparedwith the result
of the Dirac-like first-order differential equation in the
extended minisuperspace introduced in the next section.
For the cases, general solutions are given by superposition
of the fundamental solutions AðνÞψνpeipχ , where AðνÞ
(−∞ < ν < ∞) is an appropriate amplitude.
(i) Model 1: [4,52,53]12

ψνp ¼ Kiν=2ð
ffiffiffiffi
K

p
jpja2=2Þeiνðϕ−ϕ0Þ ðK > 0Þ; ð2:22Þ

ψνp ¼ J�iν=2ð
ffiffiffiffiffiffiffi
jKj

p
jpja2=2Þeiνðϕ−ϕ0Þ ðK < 0Þ;

ð2:23Þ

where ϕ0 is a constant, and the functions JνðzÞ and
KνðzÞ are the Bessel function and the modified Bessel
function of the second kind, respectively.

(ii) Model 2: [54]

ψνp ¼ J�iν=3ði
ffiffiffiffi
C

p
jpje3x=3Þeiνðy−y0Þ ðC > 0Þ;

ð2:24Þ

ψνp ¼ Kiν=3ði
ffiffiffiffiffiffi
jCj

p
jpje3x=3Þeiνðy−y0Þ ðC < 0Þ;

ð2:25Þ

where x≡ αþ λ
6
ϕ, y≡ ϕþ λ

6
α with α ¼ ln a, and y0

is a constant. The constant C represents 2V0ð1 − λ2

36
Þ−1.

III. DIRAC EQUATION IN THE EXTENDED
MINISUPERSPACE

The idea of taking the square root of the WDWequation
can be found in Refs. [6–11] and others.13 In previous
studies, arbitrariness inevitably remains in the treatment of
the potential term in the conventional WDW equation. Our
treatment on how to proceed is now clear; to use the Dirac
equation in the extended minisuperspace instead of the
WDW equation of Klein-Gordon-type. In this case, the
possible form of the equation is fixed from the covariance
in the extended minisuperspace. Also note that the Dirac
equation (without the mass term) has conformal covari-
ance.14 We suppose that the gauge choice is the same as in
the previous section, i.e., we adoptGMN as the metric of the

11The author of Ref. [55] solved the WDW equation for the
case of exponential scalar field with the dust matter.

12For the case of K ¼ 0 is rather trivial (and includes no
effective potential), so we do not deal with the case in this paper.

13There is another example of applying supersymmetric
quantum mechanics as another method for deriving first-order
differential equations [13–17].

14See, for instance, Ref. [59].
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extended minisuperspace, though there is no guarantee that
the choice of the metric will commonly make the equation
easy to solve.
The Dirac-like equation in the extended minisuperspace

can be written down as

DΨ≡ γ̂MDMΨ≡ γAeMA DMΨ ¼ 0: ð3:1Þ

Here, the constant gamma matrices in the flat spacetime
γA (A ¼ 1, 2, 3) are γ1 ¼ σ1, γ2 ¼ iσ2, and γ3 ¼ iσ3,
where σ1, σ2, σ3 are the Pauli matrices. Note that
fγA; γBg ¼ −2ηAB, where ηAB ¼ ηAB ¼ diagð−1; 1; 1Þ.
The dreibein eAM ¼ diagðð2UÞ1=2a1=2; ð2UÞ1=2a3=2; 1Þ
is defined through ηABeAMe

B
N ¼ GMN , and eMA ¼

diagðð2UÞ−1=2a−1=2; ð2UÞ−1=2a−3=2; 1Þ is its inverse matrix.
Accordingly, we find that fγ̂M; γ̂Ng ¼ −2GMN .
The covariant derivative DM for the spin connection

ωMAB is defined as DM ≡ ∂M þ 1
4
ωMABΣAB, where

ΣAB ≡ − 1
2
½γA; γB�. The spin connection ωMAB is given by

ωMAB ¼ 1

2
eNA ð∂MeNB − ΓL

MNeLBÞ − ðA ↔ BÞ: ð3:2Þ

In this section we shall specifically demonstrate the
analysis of the simplest cases; Models 1 and 2 introduced in
the previous section.
In Model 1 we find that the Dirac equation (3.1) is

equivalent to

�
σ1
�
a
∂
∂aþ 1

�
þ iσ2

∂
∂ϕþ iσ3

ffiffiffiffiffiffiffi
−K

p
a2

∂
∂χ
�
Ψ ¼ 0: ð3:3Þ

We set the two components of the wave function as

Ψ ¼
�Ψþ
Ψ−

�
eipχ ð3:4Þ

in order to find solutions of it. Now, the equation reads in
the matrix form

 
−p

ffiffiffiffiffiffiffi
−K

p
a2 a ∂

∂a þ 1þ ∂
∂ϕ

a ∂
∂a þ 1 − ∂

∂ϕ p
ffiffiffiffiffiffiffi
−K

p
a2

!�Ψþ
Ψ−

�
¼
�
0

0

�
: ð3:5Þ

The fundamental solutions of the equation are15

Ψ�;νp ¼ 1ffiffiffi
2

p e�iπ
4Kiν

2
∓1

2
ð
ffiffiffiffi
K

p
jpja2=2Þeiνðϕ−ϕ0Þ ðK > 0Þ; ð3:6Þ

Ψ�;νp ¼ 1ffiffiffi
2

p Jiν
2
∓1

2
ð
ffiffiffiffiffiffiffi
jKj

p
jpja2=2Þeiνðϕ−ϕ0Þ; � 1ffiffiffi

2
p J−iν

2
�1

2
ð
ffiffiffiffiffiffiffi
jKj

p
jpja2=2Þeiνðϕ−ϕ0Þ ðK < 0Þ; ð3:7Þ

where −∞ < ν < ∞.
In Model 2 we find that the Dirac equation (3.1) is equivalent to

�
σ1
�
a
∂
∂aþ 3

2

�
þ iσ2

� ∂
∂ϕþ λ

4

�
þ iσ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V0eλϕ

q
a3

∂
∂χ
�
Ψ ¼ 0: ð3:8Þ

We set Ψ ¼ ðΨþ
Ψ−
Þeipχ and then the equation reads in the matrix form,

 
−pa3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V0eλϕ

p
a ∂

∂a þ 3
2
þ ∂

∂ϕ þ λ
4

a ∂
∂a þ 3

2
− ∂

∂ϕ −
λ
4

pa3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V0eλϕ

p
!�Ψþ

Ψ−

�
¼
�
0

0

�
: ð3:9Þ

The fundamental solutions of the equation are16

Ψ�;νp ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffi
1� λ

6

r
Jiν

3
∓1

2
ð
ffiffiffiffi
C

p
jpje3x=3Þeiνðy−y0Þ; � 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffi
1� λ

6

r
J−iν

3
�1

2
ð
ffiffiffiffi
C

p
jpje3x=3Þeiνðy−y0Þ ðC > 0Þ: ð3:10Þ

15Just as in the case of second-order differential equations, there are generally two independent fundamental solutions, but solutions
with regions where their absolute values are infinite are rejected.

16Please see footnote 15.
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Ψ�;νp ¼ 1ffiffiffi
2

p e�iπ
4

ffiffiffiffiffiffiffiffiffiffiffi
1� λ

6

r
Kiν

3
∓1

2
ð
ffiffiffiffiffiffi
jCj

p
jpje3x=3Þeiνðy−y0Þ ðC < 0Þ; ð3:11Þ

where the definition of x and y is the same as in the previous section.
Probability density is endowed by the square of the norm of the wave function [6–11]

Probability density ∝
ffiffiffiffiffiffiffiffiffi
j2Uj

p
a3=2kΨk2 ¼

ffiffiffiffiffiffiffiffiffi
j2Uj

p
a3=2ðjΨþj2 þ jΨ−j2Þ; ð3:12Þ

since the conservation law ∂Mð
ffiffiffiffiffiffiffi
−G

p
Ψ̄γ̂MΨÞ ¼ 0 yields the probability density, where we set Ψ̄ ¼ Ψ†γ̂1. Although further

discussion may be needed on the choice of the normalization, it is convenient to define Ψ ≡ j2Uj1=4a3=4Ψ so that

Probability density ∝ kΨk2: ð3:13Þ

Now, we compare the solution (3.6) of the Dirac-type equation (3.5) with the solution (2.22) of the Klein–Gordon-type
equation (2.17) in Model 1 withK > 0. Asymptotics of the modified Bessel function of the second kind with complex order
are known to be [60]

Kiν
2
ðy=2Þ ∼

ffiffiffiffiffiffi
4π

p
e−

νπ
4 ðν2 − y2Þ−1

4 sin

�
π

4
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − y2

q
þ ν

2
cosh−1

ν

y

�
; ð3:14Þ

and [61]

Kiν
2
�1

2
ðy=2Þ ∼

ffiffiffiffiffiffi
4π

p
e−

νπ
4
�iπ

4ðν2 − y2Þ−1
4

� ffiffiffiffiffiffiffiffiffiffiffi
νþ y
2y

r
sin

�
π

4
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − y2

q
þ ν

2
cosh−1

ν

y

�

∓ i
ffiffiffiffiffiffiffiffiffiffi
ν − y
2y

r
cos

�
π

4
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − y2

q
þ ν

2
cosh−1

ν

y

��
; ð3:15Þ

as y → ∞. These functions have a similar oscillatory behavior, up to a slowly changing phase shift.

According to the analysis of Kiefer [53], an arranged
Gaussian wave packet tracing a common classical path

a2 ¼ ν̄ffiffiffiffi
K

p jpj cosh 2ðϕ − ϕ0Þ
ð3:16Þ

can be constructed with the amplitude AðνÞ whose center
ν ¼ ν̄ takes a relatively large value in both cases of
equations for Model 1, such as

AðνÞ ∝ 1

ð ffiffiffi
π

p
bÞ1=2 e

−ðν−ν̄Þ2=ð2b2Þ; ð3:17Þ

where b represents the width of the wave packet. The
similarity in asymptotics of Kiν

2
and Kiν

2
�1

2
also helps to

construct wave packet solutions for the Dirac-type equa-
tion (3.9) as well as the Klein–Gordon-type equation (2.18)
[54] for Model 2. Note that because the factor

ffiffiffiffiffiffiffi
−G

p ffiffiffiffiffiffiffiffiffiffi
jG11j

p
is proportional to the argument of the modified Bessel
function in both models, the normalized Dirac-type wave
function Ψ is expressed as a superposition of

ffiffiffi
y

p
Kiν

2
�1

2
ðyÞ.

The different behaviors of the functions Kiν
2
ðy=2Þ andffiffiffiffiffiffiffiffi

y=8
p

Kiν
2
�1

2
ðy=2Þ seems to be especially around y ¼ 0.

Therefore, the difference between wave-packet solutions of
equations of Klein–Gordon-type (constructed from of ψνp)
and Dirac-type (constructed from Ψ�;νp ≡ j2Ua3j1=4Ψ�;νp)
is expected to be found in the region of small scale factors.
In this section, we have implicitly accepted the condition

p ¼ const. As stated in Sec. II, we can consider χ as a real
coordinate and can also take the wave function which has
nontrivial dependence on χ. It will be, however, the subject
to future research.

IV. DISCUSSION AND OUTLOOK

In this paper, the WDW equation has been reformulated
as a partial differential equation with the Laplacian defined
in a minisuperspace extended by the Eisenhart-Duval lift.
We have also obtained the wave function as an exact
fundamental solution to the Dirac equation in the extended
minisuperspace of specific models. We should emphasize
that few papers have evaluated the concrete form of the
solutions so far. Further research is needed for general
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cosmological models. It is important to study the geomet-
rical property of the extended minisuperspace and the
possibility of geometrical classification on whether the
model can be solved or not. Wewish to properly understand
the handling of additional degrees of freedom and the
degree of conformal transformation (and its possible
extended symmetry) from various standpoints, as well as
the straightforward generalization to the quantum cosmol-
ogy of modified gravities. In any case, the present frame-
work based on the extended minisuperspace creates many
new research agendas.
Here we consider general dimensional cases with con-

formal coupling in the WDW equation. As a special case,
we can imagine a case that the extended minisuperspace is
conformally flat. Provided that the extended minisuper-
space is conformally flat, the curvatureRwill be zero if the
appropriate conformal transformation, or gauge, is chosen.
Therefore, in this case, the WDWequation is described as a
normal Laplace equation.
The chosen gauge (2.11) at the classical level is a gauge

that enables the simple interpretation when the expanded
minisuperspace is three dimensional and conformally flat.
If the extended minisuperspace is three dimensional, the
necessary and sufficient condition for conformally flatness
is that the Cotton tensor is zero [62]. Under the gauge
choice (2.11), if the minisuperspace is conformally flat it
can be shown that the (Lorentzian) subspace stretched by
variables a and ϕ is a space with constant scalar curvature
[63,64]. Therefore, the scalar curvature r of the three-
dimensional minisuperspace is a constant. Since the gauge
Gχχ ¼ 1 is chosen, the equation becomes the WDW
equation in which the coefficient before the potential term
is p2 þ ξr, instead of p2 as in our previous analysis. In our
two models examined in the present paper, the value of r
happened to be zero. Although we have not yet found an
example of a model with nonzero r, the model with three-
dimensional extended minisuperspace of conformally con-
stant curvature belongs to an interesting class of quantum
cosmological models.
Another example of a flat three-dimensional extended

minisuperspace with the gauge Gχχ ¼ 1 is the system with
a general nonminimally [65] (including conformal
[2,52,57,58,66]) coupled scalar field without any scalar

potential term (including the cosmological term) in the
spacetime with nonvanishing spatial curvature.17 However,
in general cases, the WDW equation may be solved only
when the variable is far from the original variable, which
may rather make the analysis difficult. Generally speaking,
including this example, solvability of models obtained by
the Eisenhart-Duval lift is technically another important
problem, and we would like to classify the cases skillfully
in future work.
It should be pointed out that, since the equations

obtained in the present paper are conventional forms of
the Laplacian operator and the Dirac operator which appear
in field theories, it is natural to bring them to the third
quantization [8,71–77] with and without introducing the
non-linear term of the wave function. We can speculatively
imagine some nonlinear Schrödinger equations or the
Lane-Emden type equations in the (extended) minisuper-
space. In the context of the third quantization, it is also
interesting to speculate that the global structure of the
extended minisuperspace, such as the compactness of the
manifold, will affect the quantum dynamics of the Universe.
On the other hand, we would like to consider the

formulation using the Eisenhart-Duval metric with more
degrees of freedom [31,33–35] in quantum cosmology. In
addition, although we have focused on the discussion in the
minisuperspace so far, we hope that we can proceed with
the Eisenhart-Duval lift in more basic quantum field theory
of gravity18 with reference to previous research [80,81].
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Sc. Toulouse (II) 1, 385 (1899), http://www.numdam.org/
item/AFST_1899_2_1_4_385_0/.

[63] D. Grumiller and R. Jackiw, Kaluza–Klein reduction of
conformally flat spaces, Int. J.Mod. Phys. D 15, 2075 (2006).

[64] R. Jackiw, Dimensional reduction of conformal tensors and
Einstein–Weyl spaces, SIGMA 3, 091 (2007).

[65] C. Kiefer, Non-minimally coupled scalar fields and the
initial value problem in quantum gravity, Phys. Lett. B 225,
227 (1989).

[66] P. Pedram, On the conformally coupled scalar field quantum
cosmology, Phys. Lett. B 671, 1 (2009).

[67] J. Wudka, Quantum effects in a model of cosmological
compactification, Phys. Rev. D 35, 3255 (1987).

[68] J. Wudka, Boundary conditions and the cosmological
constant, Phys. Rev. D 36, 1036 (1987).

[69] J. E. Lidsey, Scale factor duality and hidden supersymmetry
in scalar-tensor cosmology, Phys. Rev. D 52, R5407
(1995).

[70] H.-D. Conradi, Remarks on Kantowski–Sachs quantum
cosmology, Nucl. Phys. B, Proc. Suppl. 57, 295 (1997).

[71] N. Caderni and M. Martellini, Third quantization formalism
for Hamiltonian cosmologies, Int. J. Theor. Phys. 23, 233
(1984).

[72] M. McGuigan, Third quantization and the Wheeler–DeWitt
equation, Phys. Rev. D 38, 3031 (1988).

[73] M. McGuigan, Universe creation from the third-quantized
vacuum, Phys. Rev. D 39, 2229 (1989).

[74] A. Hosoya and M. Morikawa, Quantum field theory of the
Universe, Phys. Rev. D 39, 1123 (1989).

[75] Y. Ohkuwa, Y. Ezawa, and M. Faizal, Constraints on
operator ordering from third quantization, Ann. Phys.
(N.Y.) 365, 54 (2016).

[76] Y. Ohkuwa, Y. Ezawa, and M. Faizal, Operator ordering
ambiguity and third quantization, Ann. Phys. (N.Y.) 414,
168072 (2020).
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