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We suggest a new spin-4 self-dual model (parity singlet) and a new spin-4 parity doublet in D ¼ 2þ 1.
They are of higher order in derivatives and are described by a totally symmetric rank-4 tensor without extra
auxiliary fields. Despite the higher derivatives they are ghost free. We find gauge invariant field
combinations which allow us to show that the canonical structure of the spin-4 (spin-3) models follows
the same pattern of its spin-2 (spin-1) counterpart after field redefinitions. For s ¼ 1, 2, 3, 4, the spin-s self-
dual models of order 2s − 1 and the doublet models of order 2s can be written in terms of three gauge
invariants. The cases s ¼ 3 and s ¼ 4 suggest a restricted conformal higher spin symmetry as a principle
for defining linearized topologically massive gravity and linearized “new massive gravity” for arbitrary
integer spins. A key role in our approach is played by the fact that the Cotton tensor in D ¼ 2þ 1 has only
two independent components for any integer spin.

DOI: 10.1103/PhysRevD.104.085023

I. INTRODUCTION

Contrary to the real world in D ¼ 3þ 1 where local
actions for massless particles of spin-s necessarily describe
both helicties �s, in D ¼ 2þ 1 there are local actions for
each helicityþs or −s; they may be called self-dual models
or parity singlets and represent now massive particles. The
Maxwell-Chern-Simons (MCS) theory and the linearized
topologically massive gravity (TMG) [1] are paradigmatic
examples of self-dual models of spin-1 and spin-2 respec-
tively. By means of a soldering procedure [2], see also [3],
it is possible to join together opposite helicities into a parity
invariant (parity doublet) local action with helicities þs
and −s. In the spin-1 case we obtain the Maxwell-Proca
theory [4,5] while the soldering of spin-2 second-order (in
derivatives) self-dual models [6] leads to the massive spin-2
Fierz-Pauli theory [7], see also [8]. Since those massive
actions have the same form in arbitrary dimensions we may
say that the self-dual models in D ¼ 2þ 1 work like
building blocks of those massive particles in arbitrary D
dimensions.
Another connection with higher dimensions comes

from the fact that massive models may be deduced via

Kaluza-Klein dimensional reduction of massless particles,
see [9]. In particular, the self-dual models in D ¼ 2þ 1
may be obtained from massless particles in D ¼ 3þ 1 as
shown in [10] for s ¼ 1, 2, 3. Such a procedure leads to
first-order self-dual models which are required in general
auxiliary fields in order to produce the so-called Fierz-Pauli
conditions. The auxiliary fields may turn into dynamical
fields and become obstacles when interactions are consid-
ered. It is possible, however, to trade auxiliary fields in
higher derivatives and gauge symmetries necessary to
eliminate ghosts. Those symmetries may be used as a
guiding principle for the introduction of interactions. Here
we are especially interested in those higher derivative gauge
invariant higher spin models.
For each spin-s there seem to be a “2s rule” inD ¼ 2þ 1

such that we have ghost-free self-dual models of jth order
in derivatives with j ¼ 1; 2;…; 2s. By means of a Noether
gauge embedding (NGE) procedure [11] we can system-
atically climb up from the jth to the (jþ 1)th order from
bottom (j ¼ 1) to top ðj ¼ 2sÞ, stepwise eliminating
auxiliary fields and adding gauge symmetries. The pro-
cedure works nicely for s ¼ 1; 3=2, 2, see [5,12,13]
respectively, but at s ¼ 3 it is only partially successful.
In [14] we go from j ¼ 1 until j ¼ 4, but we have not been
able to connect the spin-3 fourth-order model of [14],
containing auxiliary fields, with the top sixth-order self-
dual model of [15] which has no auxiliary fields.
Since the top model of order 2s is known for arbitrary

integer [16] and half-integer [17] spin-s we might try as an
alternative approach to climb down the ladder of deriva-
tives. This is what we pursue in the present work. We are
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able to go one step down from the top for spins s ¼ 3 and
s ¼ 4 without introducing auxiliary fields. We believe that
our approach can be generalized for arbitrary integer spins.
In the spin-4 case we obtain a new seventh (2s − 1)-order
self-dual model and a new eighth (2s)-order doublet model.
We show in a gauge invariant way that they are both ghost
free. They correspond respectively to the spin-4 analogs of
the spin-2 linearized TMG1 and of the linearized “new
massive gravity” (NMG) of [18] respectively.
Although not explicitly Lorentz invariant, we employ

here a formalism based on gauge invariants which dis-
penses the use of gauge conditions. The absence of gauge
conditions allows us to show that the canonical structure of
the spin-4 (spin-3) case basically coincides with the
canonical structure of the lower spin-2 (spin-1) case.
Our approach might be useful in investigating other higher
derivative models.

II. GENERAL SETUP

Throughout this work2 wewill be using three Lagrangians

LðsÞ
k of kth order in derivativeswith k ¼ 2s; 2s − 1; 2s − 2 as

basic ingredients for building up spin-s self-dual models3

LSD
2s ;L

SD
2s−1 and the doublet model LD

2s,

S2s ¼ b0

Z
d3xhμ1���μsE

μ1
ρCρμ2���μs ≡

Z
d3xLðsÞ

2s ; ð1Þ

S2s−1 ¼ c0

Z
d3xhμ1���μsC

μ1���μs ≡
Z

d3xLðsÞ
2s−1; ð2Þ

S2s−2 ¼ d0

Z
d3xhμ1���μsD

μ1���μs ≡
Z

d3xLðsÞ
2s−2; ð3Þ

where ðb0; c0; d0Þ are arbitrary overall constants and hμ1���μs
is our fundamental rank-s field, traceful and symmetric
hμ1���μs ¼ hðμ1���μsÞ. We frequently use

Eρδ ≡ ϵρδσ∂σ; □θρσ ≡□ηρσ − ∂ρ∂σ;

EμνEαβ ¼ □ðθμβθνα − θμαθνβÞ: ð4Þ

Amajor role is played by the spin-s Cotton tensorCμ1���μs.
More specifically inD ¼ 2þ 1, it appears in [1] and [19] in
the spin-2 and spin-3 cases respectively, and for arbitrary
integer spin in [20]. It is of order 2s − 1 in derivatives
(C ∼ ∂2s−1h), fully symmetric, transverse, and traceless,

Cμ1���μs ¼ Cðμ1���μsÞ; ∂ρCρμ2���μs ¼ 0; ηρνCρνμ3���μs ¼ 0:

ð5Þ

Later on we give an explicit formula for Cμ1���μs in the flat
space. An extension for the AdS3 space including half-
integer spins is given in [21]. The tensor Dμ1���μs is of order
2s − 2 in derivatives, fully symmetric too. It is connected
with the Cotton tensor via a symmetrized curl,

Cμ1���μs ¼ Eðμ1
ρDρμ2���μsÞ: ð6Þ

In general there is a multiparametric family of D tensors
satisfying (6). We are specially interested in the subset of

Lagrangians LðsÞ
2s−2 without particle content.

We first recall the construction of the highest order self-
dual model LSD

2s , see [15] for spin-3, [16] for arbitrary
integer spin, and [17] for arbitrary half-integer. For arbi-
trary integer spin-s it is given by a linear combination of

LðsÞ
2s and LðsÞ

2s−1. If we choose c0 ¼ −mb0 we have

LSD
2s ¼ b0½hμ1���μsEμ1

ρCρμ2���μs −mhμ1���μsC
μ1���μs �: ð7Þ

The corresponding equations of motion,

Eðμ1
ρCρμ2���μsÞ ¼ msCμ1���μs ; ð8Þ

play the role of the Pauli-Lubanski eigenvalue equation in
D ¼ 2þ 1. If we apply Eγ

μ1 on (8) and use (4), (5), and (8)
recursively, we deduce the Klein-Gordon equations:

ð□ −m2ÞCμ1���μs ¼ 0: ð9Þ

It can be shown from first principles that the Fierz-Pauli
constraints (5) and the dynamic equations (8) and (9) are all
we need to have massive particles with helicity sjmj=m.
However, since we have in general higher-order time
derivatives there might be further particles, including
ghosts, so the particle content of (7) must be thoroughly

investigated. The Lagrangians LðsÞ
2s , LðsÞ

2s−1, and conse-
quently LSD

2s are invariant under a large set of local
transformations:

δhμ1���μs ¼ ∂ðμ1Λμ2���μsÞ þ ηðμ1μ2ψμ3���μsÞ; ð10Þ

where the gauge parameters Λμ1���μs−1 and ψμ1���μs−2 are fully
symmetric but otherwise arbitrary tensors. Because of those
symmetries one can fix convenient gauges and prove that
LSD
2s only contains massive particles of helicity þs or −s

depending on the sign ofm, see [15] and [16] for the spin-3
and spin-4 cases, respectively. The approach we use here
allows us to prove the absence of ghosts in the spin s ¼ 3, 4
cases in an off-shell and gauge invariant way as we will
see later.

1The authors of [17] have also suggested a higher spin
“topologically massive” theory of order 2s − 1 in D ¼ 2þ 1
but it requires further auxiliary fields, different from ours.

2We only work on the flat space and use ημν ¼ ð−;þ;þÞ.
Symmetrizations do not contain numerical factors, e.g., ðαβÞ ¼
αβ þ βα and ðαβγÞ ¼ αβγ þ βγαþ γαβ.

3In all sections the lower index in the Lagrangian symbol
stands for its order in derivatives, i.e., the highest number of space
time derivatives of the rank-s fundamental field hμ1���μs .
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Inspired by LSD
2s we define the lower-order self-dual

model LSD
2s−1 combining LðsÞ

2s−1 and L
ðsÞ
2s−2 with d0 ¼ −smc0,

LSD
2s−1 ¼ c0½hμ1���μsEðμ1

ρDρμ2���μsÞ −mshμ1���μsD
μ1���μs �: ð11Þ

The equations of motion are given by

Eðμ1
ρDρμ2���μsÞ ¼ msDμ1���μs : ð12Þ

Since the left-hand side of (12) is the Cotton tensor, by
taking the trace and applying a derivative on (12) we
deduce, with help of the identities (5), the Fierz-Pauli
constraints ∂μ1Dμ1���μs ¼ 0 and ημ1μ2Dμ1μ2���μs ¼ 0 which
are now dynamic equations instead of trivial identities
as (5).
The application of the curl Eγ

μ1 on (12) will similarly
lead to (9) with Cμ1μ2���μs replaced by Dμ1μ2���μs which
confirms that LSD

2s−1 contains massive particles of helicity
sjmj=m. There is, however, no guarantee that no other
propagating particles are present. In the four cases
s ¼ 1; 3=2, 2, 3, see [1], [22], [13], and [23] respectively,
there is a master action connectingLSD

2s−1 with L
SD
2s with aD

tensor satisfying (6) and such that LðsÞ
2s−2 has no particle

content. For instance, in the s ¼ 2 case there are two
choices for the D tensor, one corresponds to the linearized

Einstein-Hilbert theory and the other one to the Weyl and
Transverse diffeomorphisms (WTdiff) model or linearized
unimodular gravity, both Lagrangians have no propagating
modes inD ¼ 2þ 1. The respective self-dual modelsLSD

2s−1
are the linearized topologically massive gravity [1] and
linearized unimodular topologically massive gravity [24].

One can also combine LðsÞ
2s and LðsÞ

2s−2 and build up doublet
models LD

2s containing both helicities þs and −s. They
represent higher spin analog of the linearized NMG [18]
and of the linearized unimodular NMG [24]. In the next
section, as a preparation for Sec. IV where possible choices
for Dμ1μ2���μs will be discussed, we give closed formulas for
the Cotton tensor and its symmetrized curl on the flat space.
They are convenient for our approach based on the use of
gauge invariant field combinations.

III. THE COTTON TENSOR AND THE
LAGRANGIANS LðsÞ

2s− 1 AND LðsÞ
2s

One can think of LðsÞ
2s−1 as the most general spin-s parity

odd and Lorentz invariant expression of order 2s − 1 in
derivatives invariant under (10). We start with an Ansatz
such that invariance under the higher spin analog of
linearized diffeomorphisms (diff) δhμ1���μs ¼ ∂ðμ1Λμ2���μsÞ
is granted, namely,

LðsÞ
2s−1 ¼ hμ1���μs□

s−1Eμ1ν1 ½c0θμ2ν2 � � � θμsνs þ c1θμ2μ3θν2ν3θμ4ν4 � � � θμsνs þ � � � � � � � � ��hν1���νs
¼ hμ1���μs□

s−1Eμ1ν1 ½c0θs−1 þ c1θ̂
2θs−3 þ c2θ̂

4θs−5 þ � � � � � � � � ��μ2���μsν2���νshν1���νs ; ð13Þ

where cj with j ¼ 0; 1;…; ½s−1
2
� are to be determined, and θ̂ stands for the transverse operator θμjμjþ1

or θνjνjþ1
whose indices

are contracted within indices of the same h field. Under generalized Weyl transformations δhν1���νs ¼ ηðν1ν2ψν3���νsÞ we have
the following structure (suppressing indices):

δLðsÞ
2s−1 ¼ h□s−1EðC1θ̂θ

s−3ψ þ C2θ̂
3θs−5ψ þ � � � � � � � � �Þ; ð14Þ

where we have the coefficients

Cj ¼
ðs − 2jÞðs − 2j − 1Þ

2
cj−1 þ 2jðs − jÞcj; j ¼ 1; 2;…;

�
s − 1

2

�
: ð15Þ

Consequently, higher spin reparametrizations and Weyl invariance Cj ¼ 0 completely fixes LðsÞ
2s−1 and the Cotton tensor

up to an overall constant, i.e.,

cj ¼
ð−1Þjðs − j − 1Þ!
4jj!ðs − 2j − 1Þ! c0; j ¼ 0; 1; 2;…;

�
s − 1

2

�
: ð16Þ

Comparing (2) with (13) we have a closed formula for the Cotton tensor,

Cμ1���μs ¼ □
s−1Eðμ1

ρ
X½s−12 �

j¼0

c̃j½θ̂jθs−1−jh�ρμ2���μsÞ; ð17Þ
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where c̃j ¼ cj at c0 ¼ 1=s. For4 the first four integer spins LðsÞ
2s−1 becomes5

Lð1Þ
1 ¼ c0AμEμνAν; Lð2Þ

3 ¼ c0hμ1μ2□Eμ1α1θμ2α2hα1α2 ; ð18Þ

Lð3Þ
5 ¼ c0hμ1μ2μ3□

2Eμ1α1

�
θμ2α2θμ3α3 −

1

4
θμ2μ3θα2α3

�
hα1α2α3 ; ð19Þ

Lð4Þ
7 ¼ c0hμ1μ2μ3μ4□

3Eμ1α1

�
θμ2α2θμ3α3θμ4α4 −

1

2
θμ2μ3θα2α3θμ4α4

�
hα1α2α3α4 : ð20Þ

Notice that all noncontracted indices μ1 � � � μs on the right-
hand side of (17) come from transverse operatorsEμν andθμν,
so the transverse property of theCotton tensor is explicit as in
the case of the formulas given in [25] in terms of spin
projection operators.6 Although we do not have a general
proof we believe that (17) does agree with previous formulas
given in [20], see also [27], for arbitrary integer spin.

In order to deduce LðsÞ
2s , instead of taking the sym-

metrized curl of the Cotton tensor (17) we find more

convenient to repeat the same procedure used for LðsÞ
2s−1. We

start from a parity even ansatz explicitly invariant under
higher spin reparametrizations with arbitrary coefficients
bj, with j ¼ 0; 1;…; ½s

2
�,

LðsÞ
2s ¼ hμ1���μs□

s½b0θs þ b1θ̂
2θs−2 þ b2θ̂

4θs−4 þ � � � � � � � � ��μ1���μsν1���νshν1���νs : ð21Þ

Notice that any even number of E operators can be traded into θ operators according to (4). Requiring generalized Weyl
symmetry we obtain a unique solution up to an overall constant,

bj ¼
ð−1Þjsðs − j − 1Þ!

4jj!ðs − 2jÞ! b0; j ¼ 0; 1;…;

�
s
2

�
: ð22Þ

The first four cases of LðsÞ
2s are given by

Lð1Þ
2 ¼ b0Aμ

□θμνAν ¼ −
b0
2
F2
μν; ð23Þ

Lð2Þ
4 ¼ b0hμ1μ2□

2

�
θμ1α1θμ2α2 −

1

2
θμ1μ2θα1α2

�
hα1α2 ¼ 4b0

�
R2
μν −

3

8
R2

�
hh
; ð24Þ

Lð3Þ
6 ¼ b0hμ1μ2μ3□

3

�
θμ1α1θμ2α2θμ3α3 −

3

4
θμ1μ2θα1α2θμ3α3

�
hα1α2α3 ð25Þ

Lð4Þ
8 ¼ b0hμ1���μ4□

4

�
θμ1α1θμ2α2θμ3α3θμ4α4 − θμ1μ2θα1α2θμ3α3θμ4α4 þ θμ1μ2θμ3μ4θα1α2θα3α4

8

�
hα1���α4 : ð26Þ

In the spin-1 case we have the Maxwell theory while in
the spin-2 case we recognize the linearized K term of the

NMG theory [18]. In the next section we work out the spin-
1 and spin-2 cases in terms of appropriate gauge invariant
field combinations as a preparation for the respective spin-3
and spin-4 cases since they turn out to have the same
respective canonical structure.

IV. SPIN-1 IN TERMS OF GAUGE INVARIANTS

Before we start we stress that in the present section and
throughout this work, the notation i2s and i2s−1 stands for
local invariants under the gauge transformation (10) which

4It is understood that all equalities involving Lagrangians in
the present work hold under space-time integrals.

5Notice that in the spin-1 case we have replaced hμ by the usual
notation Aμ for the electromagnetic potential in order to avoid
confusion with the spin-3 vector trace hμ ¼ ηργhργμ.

6For an earlier connection between the Cotton tensor and
projection operators in the s ¼ 2 case see [26].
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are obtained via derivatives of order 2s and 2s − 1,
respectively, of a rank-s fundamental field. There is in
general a subset of the gauge transformations (10) which

leaves the lowest-order Lagrangian LðsÞ
2s−2 invariant.

Correspondingly we have the barred local invariants
ī2s−1 and ī2s−2 of order 2s − 1 and 2s − 2, respectively.
Notice that the same symbol may represent different
quantities in different spin-s sections, see for instance
(28) and (49). However, they both stand for an invariant
built out of 2s derivatives of a rank-s tensor. Since each
section deals only with one value of s, there will be
hopefully no confusion.
Now let us start with the simplest spin-1 case where

the gauge transformations (10) become the usual Uð1Þ
symmetry,

δAμ ¼ ∂μΛ: ð27Þ

One of the three equations (27) can be used to eliminate
the gauge parameter Λ in terms of variations of the gauge
field,7 Λ ¼ ∂jδAj=∇2, plugging back in (27) we derive two
local gauge invariants δi2s ¼ 0 ¼ δi2s−1 connected with the
electric and magnetic fields:

i2s ¼ ∇2A0 − ∂0ð∂kAkÞ ¼ ∇⃗ · E⃗; i2s−1 ¼ ∂̂jAj ¼ B:

ð28Þ

We follow the notation of [15] where

∂̂j ¼ ϵjk∂k; ∂̂i∂̂j þ ∂i∂j ¼ ∇2δij;

∂̂i∂j − ∂̂j∂i ¼ ∇2ϵij; ∂̂i∂̂i ¼ ∂j∂j ¼ ∇2: ð29Þ

Introducing the so-called helicity decomposition and
redefining the gauge invariants we have

A0 ¼ ρ; Aj ¼ ∂jΓþ ∂̂jγ; ð30Þ

ðI2s; I2s−1Þ ¼ ði2s; i2s−1Þ=∇2 ¼ ðρ − _Γ; γÞ: ð31Þ

In all cases s ¼ 1, 2, 3, 4 we will be able to write down

the Lagrangians LðsÞ
2s and LðsÞ

2s−1 in terms of only two gauge

invariants ðIðsÞ2s ; I
ðsÞ
2s−1Þ and LðsÞ

2s−2 in terms of those two and
an extra one. In the spin-1 case the Maxwell and the Chern-
Simons terms become

LðsÞ
2s ¼b0Aμ

□θμνAν¼b0½I2sð−∇2ÞI2sþI2s−1ð−∇2
□ÞI2s−1�;

ð32Þ

LðsÞ
2s−1 ¼ c0AμEμνAν ¼ −2c0I2s−1∇2I2s: ð33Þ

Since the two invariants can be treated as independent
fields ðI2s; I2s−1Þ ¼ ðρ − _Γ; γÞ≡ ðρ̄; γÞ, it is clear that the
Abelian Chern-Simons term (33) has no particle content8

(topological term). We can combine (32) with (33) in order
to produce the topologically massive Chern-Simons theory
[1]. For future comparison with the spin-3 case we write it
down with the choice c0 ¼ −mb0,

LSD
2s ¼ b0½Aμ□θμνAν −mAμEμνAν� ð34Þ

¼b0fImð−∇2ÞImþI2s−1½−∇2ð□−m2Þ�I2s−1g ð35Þ

where Im ¼ I2s −mI2s−1 ¼ ρ − _Γ −mγ ≡ ρ̃ is the non-
propagating gauge invariant while the transverse mode
I2s−1 ¼ γ is the propagating one.
In the spin-1 case the Cotton tensor becomes a vector, the

dual of the field strength: Cμ ¼ EμνAν. So, according to (6)

we have Dμ ¼ Aμ. Thus, L
ðsÞ
2s−2 becomes the usual Proca

mass term AμAμ which has of course no particle content and
no gauge symmetry. So, there are no barred (residual)
gauge transformations at all. However, in order to use a
unified notation regarding the spin-3 case where nontrivial
barred gauge symmetries do in fact exist, we keep calling
each of the components of the vector field Aμ a barred
gauge invariant and keep using barred notation for some of
the invariants. The reader can check that the following
expressions, which will have a spin-3 counterpart, hold
true:

LðsÞ
2s−2 ¼ d0AμAμ

¼ −d0ðI2s−1∇2I2s−1 þ Ī2s−1∇2Ī2s−1 þ Ī22s−2Þ ð36Þ

¼−d0ðI2s−1∇2I2s−1þI22sþ2I2s
_̄I2s−1þ Ī2s−1□Ī2s−1Þ

ð37Þ

where, recall ðI2s; I2s−1Þ ¼ ðρ − _Γ; γÞ,

Ī2s−1 ≡ ∂jAj=∇2 ¼ Γ; Ī2s−2 ≡ I2s þ _̄I2s−1 ¼ A0 ¼ ρ:

ð38Þ

We can choose ðc0; d0Þ ¼ ðmb0;−m2b0Þ and combine
(33) with (37) in order to produce the first-order self-dual
model LSD

2s−1 of [28]

LSD
2s−1 ¼ mb0ðAμEμνAν −mAμAμÞ ð39Þ

7Throughout this work, i, j, k ¼ 1, 2 and henceforth we use
∂0f and _f equivalently.

8Throughout this work we assume vanishing fields at infinity.
The Laplacian ∇2 has only negative eigenvalues such that the
frequently appearing operators ∇2 and m2 −∇2 have an empty
kernel.
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¼ b0

�
Im∇2Im þ Ĩ2sðm2 −∇2ÞĨ2s

þm2Ī2s−1
ð−∇2Þð□ −m2Þ

m2 −∇2
Ī2s−1

�
ð40Þ

where

Ĩ2s ≡ I2s þ
m2

m2 −∇2
_̄I2s−1 ¼ ρþ ∇2

m2 −∇2
_Γ: ð41Þ

The three gauge invariants can be treated as independent
fields ðIm; Ĩ2s; Ī2s−1Þ≡ ð−mγ̃; ρ̃;ΓÞ. Although (39) is known
[29] to be dual too (34), it contains one extra nonpropagating
gauge invariant and the propagating mode is now the
longitudinal component (Γ) instead of the transverse one (γ).
We finish this section building up the Maxwell-Proca

theory (parity doublet). Since the Chern-Simons terms in
(34) and (39) have opposite signs, we can simply add them
and obtain

LD
2s ¼ −

1

4
F2
μν −

m2

2
Aμ ð42Þ

¼ I2s−1
½−∇2ð□−m2Þ�

2
I2s−1

þm2

2
Ī2s−1

ð−∇2Þð□−m2Þ
m2 −∇2

Ī2s−1 þ Ĩ2s
ðm2 −∇2Þ

2
Ĩ2s:

ð43Þ
Now we have both Γ and γ as propagating modes and the

gauge invariant Ĩ2s, connected with the electrostatic poten-
tial A0, is the nonpropagating one. In all higher spin cases
s ¼ 2, 3, 4 we will be able to write the doublet model in
terms of two propagating and one nonpropagating gauge
invariant.

V. SPIN-2 IN TERMS OF GAUGE INVARIANTS

In the spin-2 case the gauge transformations become the
usual linearized reparametrizations (diff) plus Weyl that we
call Wdiff,

δhμν ¼ ∂μΛν þ ∂νΛμ þ ημνψ ≡ δΛhμν þ δψhμν: ð44Þ
In (44) we have six equations and four independent

gauge parameters; consequently they give rise to 6 − 4 ¼ 2
gauge invariants ðI2s; I2s−1Þ. This is all we need to describe
LðsÞ
2s and LðsÞ

2s−1. It is instructive to do it in two steps. First we
derive the 6 − 3 ¼ 3 diff invariants. Using the decompo-
sition Λ0 ¼ A, Λj ¼ ∂̂jBþ ∂jC in δΛhμν we find

A ¼ ∂jδΛh0j
∇2

−
∂i∂jδΛ _hij

2∇4
; B ¼ ∂i∂̂jδΛhij

∇4
;

C ¼ ∂i∂jδΛhij
2∇4

: ð45Þ

Substituting back in δΛhμν we derive three local diff
invariants δΛī2s ¼ 0 ¼ δΛī2s−1 ¼ δΛī2s−2,

ī2s−2 ¼ ∂̂i∂̂jhij; ī2s−1 ¼ ∇2∂̂jh0j − ∂k∂̂j
_hkj; ð46Þ

ī2s ¼ ∇4h00 − 2∇2∂j
_h0j þ ∂i∂jḧij; ð47Þ

The fact that we have only three independent local diff
invariants is in agreement with the Riemannian geometry,
since in D ¼ 2þ 1 the Riemann tensor Rμναβ is propor-
tional to the Ricci tensor Rμν which has in principle six
components but due to the Bianchi identity ∇μRμν ¼
∇νR=2 only three of them are independent. Indeed, one
can check that all six components of the linearized tensor
RL
μν can be written in terms of space time derivatives

of ðī2s−2; ī2s−1; ī2sÞ.
Second, back to the Wdiff symmetry, since

δψ ðī2s−2; ī2s−1; ī2sÞ ¼ ð∇2ψ ; 0;−∇2
□ψÞ, we have two

Wdiff invariants,

i2s−1 ≡ ī2s−1 ¼ ∇2∂̂jh0j − ∂k∂̂j
_hkj; ð48Þ

i2s ¼ ī2s þ□ī2s−2 ¼ ∇4h00 − 2∇2∂j
_h0j þ ∂i∂jḧij

þ□∂̂i∂̂jhij: ð49Þ

Using the helicity decomposition

h00 ¼ ρ; h0j ¼ ∂jΓþ ∂̂jγ;

hij ¼ ∂i∂jχ þ ð∂i∂̂j þ ∂̂i∂jÞθ þ ∂̂i∂̂jφ ð50Þ

and redefining the gauge invariants we have

ðĪ2s−2; I2s−1; I2sÞ ¼
�

1

∇4

�
ðī2s−2; ī2s−1; ī2sÞ ¼ ðφ; γ − _θ;

ρ − 2 _Γþ χ̈ þ□φÞ: ð51Þ
The fourth-order linearized K term of the NMG theory

[18] and the third-order linearized gravitational Chern-
Simons term, see [1], of the TMG can be written in terms of
the two Wdiff invariants

LðsÞ
2s ¼ b0hμ1μ2□

2

�
θμ1α1θμ2α2 −

θμ1μ2θα1α2

2

�
hα1α2

¼ b0
2
½I2s∇4I2s þ 4I2s−1∇4

□I2s−1�; ð52Þ

LðsÞ
2s−1 ¼ c0hμ1μ2□Eμ1α1θμ2α2hα1α2 ¼ −2c0I2s−1∇4I2s: ð53Þ
From (51) we see that the Wdiff invariants may be

considered as independent fields ðI2s−1; I2sÞ≡ ðγ̃; ρ̃Þ, thus
we have a massless mode in (52) and no particle content in
(53). They can be combined together following (7), in order
to produce the linearized version of the “new topologically
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massive gravity” (NTMG) of [13,30]. Choosing c0 ¼
−mb0 we have

LSD
2s ¼ LðsÞ

2s þ LðsÞ
2s−1

¼ 2b0

�
1

4
I2m∇4I2m þ I2s−1½∇4ð□ −m2Þ�I2s−1

�
ð54Þ

where I2m ¼ I2s þ 2mI2s−1 ¼ ρ − _Γþ χ̈ þ□φþ 2mðγ −
_θÞÞ and I2s−1 ¼ γ − _θ. Note that the change of variables
ðI2m; I2s−1Þ ¼ ðρ̃; γ̃Þ has a trivial Jacobian. So we are able
to check that the fourth-order model (54) is free of ghosts
and contains only one propagating massive mode γ̃ plus the
nonpropagating field ρ̃.

Now in order to construct LðsÞ
2s−2 we need to find a D

tensor satisfying (6) and such thatLðsÞ
2s−2 ¼ d0hμνDμν has no

particle content. In the spin-2 case the Cotton tensor is a
symmetric rank-2 tensor, see (18). So with c0 ¼ 2 we need
to solve the equation:

Cμν ¼ ½Eðμα□θβνÞhαβ� ¼ EðμρDρνÞ: ð55Þ

The D tensor must be symmetric and of second order in
derivatives. After a rather general ansatz Dμν ∼ ð∂2hÞðμνÞ
we arrive, up to trivial redefinitions hμν → hμν þ λημνh;
ðλ ≠ −1=3Þ, at a general solution in terms of two arbitrary
real parameters ða; bÞ, without loss of generality,

Dμν ¼ □hμν − ∂ðμ∂ρhρνÞ þ a∂μ∂νh

þ ða∂α∂βhαβ − b□hÞημν: ð56Þ

Under the Wdiff gauge transformations (10) we have

δDμν ¼ ημν□½2ða − bÞ∂ · Λþ ða − 3bþ 1Þψ �
þ ∂μ∂ν½2ða − 1Þ∂ · Λþ 3aψ �: ð57Þ

The Wdiff invariance of the Cotton tensor δCμν ¼
EðμρδDρνÞ ¼ 0 for arbitrary values of ða; bÞ follows simply
from the tensor structure of δDμν. Notice that δDμν ¼ 0 for
transverse diffeomorphisms (Tdiff): ð∂ · Λ;ψÞ ¼ ð0; 0Þ.
Thus, LðsÞ

2s−2 ¼ d0hμνDμν becomes the Tdiff theory in
D ¼ 2þ 1, see [31],

LðsÞ
2s−2ða; bÞ ¼ d0½−∂μhαβ∂μhαβ þ 2∂μhαβ∂αhμβ

− 2a∂μh∂νhμν þ b∂μh∂μh�: ð58Þ

Now we point out an interesting connection with mass-
less spin-2 particles inD ¼ 3þ 1. Namely, it is known [32]
that Tdiff is the minimal symmetry required for describing
helicity �2 particles in D ¼ 3þ 1 in terms of a symmetric
rank-2 tensor hμν. The general solution (57) seems to
confirm that this is true also in D ¼ 2þ 1, since we can

combine LðsÞ
2s−2ða; bÞ with the third-order Chern-Simons

term (53) and build up a third-order model that generalizes
the linearized topologically massive gravity and contains
helicity 2jmj=m particles. Such a model can be nonlinearly
extended to a topologically massive Tdiff gravity since the
metric determinant behaves as a scalar field under Tdiff.
Although there are descriptions of helicity �2 in D ¼
2þ 1 even without gauge symmetry, see [33], those models
require auxiliary fields besides the symmetric rank-2 tensor
hμν. The FP conditions are enforced via second class
constraints instead of local symmetries.
It is important to stress that (58) describes in general a

massless scalar field in D ¼ 2þ 1. We can only have an
empty spectrum if we enlarge the Tdiff symmetry either to
unconstrained linearized diffeomorphisms (diff) by fixing9

ða; bÞ ¼ ð1; 1Þ or to WTdiff (Weyl plus Tdiff) by choosing
ða; bÞ ¼ ð2=3; 5=9Þ. The second case has been investigated
in [24] and corresponds to the linearized version of
unimodular gravity; its higher spin analog, of second order
in derivatives, has been investigated in [34]. A possible
generalization of order 2s − 2 in D ¼ 2þ 1 will be studied
elsewhere [35] from the point of view of gauge invariants.
Here we only work with the linearized Einstein-Hilbert

theory LðsÞ
2s−2 ¼ LðsÞ

2s−2ð1; 1Þ. In terms of the diff invariants
(51) we have, see also [1],

LðsÞ
2s−2 ¼ LLEH ¼ 2d0½I2s−1∇4I2s−1

þ I2s∇4Ī2s−2 − Ī2s−2∇4
□Ī2s−2�: ð59Þ

Since we can redefine ðĪ2s−2; I2s−1; I2sÞ ¼ ðφ; γ̃; ρ̃Þ, the
equations of motion for those fields lead to the triviality of
the Einstein-Hilbert (EH) theory in D ¼ 2þ 1: φ ¼ 0 ¼
γ̃ ¼ ρ̃.
Following (11) we can combine the Einstein-Hilbert

theory (59) with the third-order Chern-Simons term (53)
and build up the linearized version of TMG, choosing
ðc0; d0Þ ¼ ð−mb0;−m2b0Þ,

LSD
2s−1 ¼ LðsÞ

2s−1 þ LðsÞ
2s−2 ¼ LTMG

¼ 2m2b0

�
Ī2s−2∇4

□Ī2s−2 − I2s−1∇4I2s−1

− I2s∇4

�
Ī2s−2 þ

I2s−1
m

��
: ð60Þ

Since the Lagrangian is linear on I2s we have the
functional constraint I2s−1 ¼ −mĪ2s−2 which leads to
LSD
2s−1 ¼ 2m2b0½Ī2s−2∇4ð□ −m2ÞĪ2s−2� confirming that

we have one physical massive mode content without
ghosts. Finally we simply add (54) and (60) in order to
produce the NMG parity doublet,

9Up to trivial shifts hμν → hμν þ λημνh with λ ≠ −1=3.
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LD
2s ¼ LLNMG ¼ 2b0

�
I2s−1∇4ð□ −m2ÞI2s−1

þm2Ī2s−2∇4ð□ −m2ÞĪ2s−2 þ Ī2s
∇4

4
Ī2s

�
ð61Þ

where Ī2s ¼ I2s − 2m2Ī2s−2. Since ðĪ2s; I2s−1; Ī2s−2Þ are
independent degrees of freedom we confirm the doublet
ghost free content of the linearized NMG in a gauge
invariant way.

VI. SPIN-3

In the rank-3 case the Wdiff transformations (10)
become the following 10 equations:

δhμνα ¼ ∂ðμΛναÞ þ ηðμνψαÞ; ð62Þ

At first sight we have nine gauge parameters on the right-
hand side of (62); however, there are only eight independent
ones due to the redundancy δðΛνα;ψαÞ ¼ ðηναϕ;−∂αϕÞ. An
equivalent counting, valid for arbitrary spin s ≥ 3 as we will
see in Sec. VIII, is to consider, without loss of generality, that
we can replace arbitrary diff in (62) by traceless diff Λ̄να

(ηναΛ̄να ¼ 0). No redundancy is left in this case.
From (62) we have 10 − 8 ¼ 2 gauge invariants. In

practice we can decompose ψμ and Λ̄μν according to
formulas similar to (30) and (50) and find out explicit
expressions for the eight independent gauge parameters in
terms of δhμνα, recall that Λ̄00 ¼ Λ̄jj. Plugging back in (62),
after some work, we have δi2s ¼ 0 ¼ δi2s−1 where the sixth
and fifth-order local Wdiff invariants are

i2s ¼ ∇6h000 − 3∇4∂j∂0h00j þ 3∇2∂j∂k∂2
0h0jk

− ∂i∂j∂k∂3
0hijk þ 3□ð∇2∂̂j∂̂kh0jk − ∂̂j∂̂k∂l∂0hjklÞ;

ð63Þ

i2s−1 ¼ 3ð∂i∂j∂̂k∂2
0hijk − 2∇2∂0∂j∂̂kh0jk þ∇4∂̂jh00jÞ

þ□∂̂j∂̂k∂̂lhjkl: ð64Þ

Introducing the helicity decomposition

h000 ¼ ρ; h00j ¼ ∂jΓþ ∂̂jγ; ð65Þ

h0jk ¼ ∂̂j∂̂kϕ1 þ ∂j∂kϕ2 þ ∂̂ðj∂kÞϕ3; ð66Þ

hjkl ¼ ∂̂j∂̂k∂̂lψ1 þ ∂̂ðj∂̂k∂lÞψ2 þ ∂ðj∂k∂̂lÞψ3 þ ∂j∂k∂lψ4;

ð67Þ

and redefining the invariants we have

I2s ≡ i2s=∇6 ¼ ρ − 3∂0Γþ 3□ϕ1 þ 3∂2
0ϕ2 − ∂3

0ψ4

− 3□∂0ψ2; ð68Þ

I2s−1 ≡ i2s−1=∇6 ¼ 3γ − 6∂0ϕ3 þ 3∂2
0ψ3 þ□ψ1: ð69Þ

The next step is to write down LðsÞ
2s and LðsÞ

2s−1 given in
(25) and (19), respectively, in terms of the gauge invariants
(68) and (69). This is much more complicated than in the
previous s ¼ 1, 2 cases where the explicit substitution of
the helicity decomposition could be easily carried out. Now
we use a short cut. Namely, we suppose that in both cases
the searched Lagrangian has the form

L ¼ I2sÂI2s þ I2s−1B̂I2s−1 þ I2sĈI2s−1; ð70Þ

where ðÂ; B̂; ĈÞ are space time differential operators to be
found. We restrict the decomposition of (65)–(67) to the
smallest number of fields which allows us to find out
the unknown differential operators.10 We have found that
the most convenient choice is to keep only ψ1 and ψ2. We
are left only with spatial components of the fundamental
field,

hijk ¼ ∂̂i∂̂j∂̂kψ1 þ ∂̂ði∂̂j∂kÞψ2: ð71Þ

Thus, we have

LðsÞ
2s ¼ b0hijk

�
θimθjnθkp −

3

4
θijθmnθkp

�
□

3hmnp ð72Þ

¼ b0∂̂i∂̂j∂̂kψ1

�
δimδjnδkp −

3

4
δijδmnδkp

�
□

3∂̂m∂̂n∂̂pψ1

þ b0∂̂ði∂̂j∂kÞψ2

�
δjnδkpð□δim − 3∂i∂mÞ

−
3

4
δijδmnð□δkp − ∂k∂pÞ

�
□2∂̂ðm∂̂n∂pÞψ2 ð73Þ

¼b0

�
□ψ1

�
−∇6□

4

�
□ψ1þð−3□ _ψ3Þ

�
−∇6

4

�
ð−3□ _ψ3Þ

�

ð74Þ

¼ b0

�
I2s−1

�
−∇6

□

4

�
I2s−1 þ I2s

�
−∇6

4

�
I2s

�
ð75Þ

where □θim ¼ □δim − ∂i∂m and from (68), (69) we have
ðI2s; I2s−1Þ ¼ ð−3□ _ψ2;□ψ1Þ. Due to the fact that there is
always an odd (even) number of dual derivatives ∂̂ acting

10Alternatively, we believe that it is possible to determine the
operators ðÂ; B̂; ĈÞ, up to an overall constant, by Lorentz
invariance, mass dimension, and locality as we have done in
some examples.
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on ψ1 (ψ2) there are no cross terms ψ1 × ψ2; they vanish
due to ∂̂ · ∂ ¼ 0. For the same reason we have dropped
several derivatives in (73). Notice that the two terms inside
parentheses in (73) have exactly led to the double time
derivatives required to produce the second term of (74)
which is a nontrivial check of (70). Similarly, for the fifth-
order spin-3 Chern-Simons term, using (71) again, we have

LðsÞ
2s−1 ¼ c0hijkEim

�
θjnθkp −

1

4
θjkθnp

�
□

2hmnp

¼ c0hijk

�
θjnθkp −

1

4
θjkθnp

�
□2 _h�iðnpÞ; ð76Þ

where we have used Eim ¼ ϵim∂0 and defined

h�iðnpÞ ≡ ϵimhmnp ¼ −∂i∂̂n∂̂pψ1 þ ∂̂i∂̂n∂̂pψ2 − ∂i∂ðn∂̂pÞψ2:

ð77Þ

Notice that in hijk we have an odd (even) number of dual

derivatives ∂̂ acting on ψ1 (ψ2) while the opposite applies
for h�iðnpÞ; therefore, only cross terms ψ1 × ψ2 show up in
(76) and we can neglect the last term of (77) due to
∂ · ∂̂ ¼ 0. Consequently,

LðsÞ
2s−1 ¼ c0½∂̂i∂̂j∂̂kψ1 þ ∂̂ði∂̂j∂kÞψ2�

�
δjnδkp −

1

4
δjkδnp

�

×□
2ð−∂i∂̂n∂̂pψ1 þ ∂̂i∂̂n∂̂pψ2Þ

¼ 2c0□ψ1∇6ð−3□ _ψ2Þ ¼ 2c0

�
I2s−1

∇6

4
I2s

�
: ð78Þ

From (68) and (69) we see that we can define, with a
trivial Jacobian, the new fields ðI2s; I2s−1Þ≡ ðρ̃; 3γ̃Þ such
that I2s and I2s−1 are two independent fields as in the
previous spin-1 and spin-2 cases. So we can verify by
comparing (75) with (32) and (52) as well as (78) with (33)

and (53), that the canonical structure of LðsÞ
2s , L

ðsÞ
2s−1 remains

the same up to irrelevant overall numerical factors and
powers of −∇2 which can be absorbed in redefinitions of
the constants ðb0; c0Þ and of the invariants ðI2s; I2s−1Þ,
respectively. There is no obstacle in building up the spin-3
sixth-order self-dual model LSD

2s , as originally suggested in

[15]. By combining LðsÞ
2s and LðsÞ

2s−1 with c0 ¼ −mb0 we
have a self-dual model with the same form of (35),

LSD
2s ¼ b0hμνρ

�
□

�
θμαθνβθργ −

3

4
θμνθαβθμγ

�

−mEμα

�
θνβθργ −

1

4
θμνθβγ

��
□2hαβγ ð79Þ

¼b0
4
fImð−∇2ÞImþI2s−1½−∇2ð□−m2Þ�I2s−1g: ð80Þ

From (68) and (69) we see that we can redefine the fields
such that I2s−1 ≡ ρ̄ and Im ≡ I2s þmI2s−1 ≡ 3γ̄. So the
particle content of (79) corresponds to only one propagat-
ing massive mode.
We move now to the investigation of the fourth-order

spin-3 Lagrangian LðsÞ
2s−2 ¼ b0hμναDμνα, preliminarly stud-

ied in [23]. We need to find the symmetric D tensor which
solves the equation

Cμνα ¼ EðμρDρναÞ; ð81Þ
where the spin-3 Cotton tensor can be obtained from (19) or
(17). The D tensor must be of fourth order in derivatives
(Dμνα ∼ ð∂̂4hÞðμναÞ). In the spin-2 case we have started from
a general second-order ansatz Dμν ∼ ð∂̂2hÞðμνÞ and required
(55). Alternatively, we could have obtained (57) by
requiring instead that its variation under Wdiff had the
tensor structure δDμν ¼ ∂μ∂νF þ ημν□G. This guarantees
the Wdiff invariance of the spin-2 Cotton tensor. The Cotton
tensor is uniquely determined by its local symmetry and
order in derivatives. Since F and G must be linear functions
of ∂ · Λ and ψ the required tensor structure is equivalent to
the Tdiff symmetry. The spin-3 and spin-4 cases are
completely analogous. In the spin-3 case, the symmetry of
the Cotton requires that under (62) we have δDμνα ¼
∂μ∂ν∂αF þ□ηðμν∂αÞG where F and G are linear functions
of □Λ, ∂μ∂νΛμν and ∂μψμ. This is equivalent to demand

δ̄

Z
d3xhμναDμνα ¼ 0: ð82Þ

where the δ̄ gauge transformations correspond toWdiff with
the three scalar restrictions:

ημνΛμν ≡ Λ ¼ 0 ¼ ∂μ∂νΛμν ¼ ∂μψμ: ð83Þ

The general solution to (82) is a two parameter family of
Lagrangians,

LðsÞ
2s−2ðf; gÞ ¼ d0

�
hμνα□2hμνα −

3

4
hμ□2hμ − 3hμνα□∂μ∂βhβνα þ

3

2
hμνα□∂μ∂νhα

þ 9

4
hμνα∂μ∂ν∂β∂ρhβρα þ fhμ□∂μ∂νhν þ ghμνα∂μ∂ν∂α∂βhβ

�
ð84Þ

where the parameters (f, g) are so far arbitrary.
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The question is which values of the parameters (f, g)
render (84) an empty theory? The more symmetry, the less
content we have, so we must try to enlarge the δ̄ symmetry
as much as possible. In the spin-2 case the Tdiff symmetry
associated with the restrictions ð∂μΛμ;ψÞ ¼ ð0; 0Þ could be
enlarged either to diff (ψ ¼ 0) or to WTdiff (∂μΛμ ¼ 0). So
the idea is to lift the restrictions (83) as much as possible.
The reader can check that there is no solution for (f, g) if
we try to keep only one of the three restrictions (83), but in
case we keep two of them we have found some solutions. In
[35] we will make a general analysis including the more
complex spin-4 case. Here we stick to the case where the δ̄
symmetry is enlarged to traceless spin-3 diff plus transverse
Weyl transformations (TWdiff),

Λ ¼ 0 ¼ ∂μψμ → ðf; gÞ ¼
�
21

16
;−

9

4

�
: ð85Þ

Correspondingly we define from (84) the fourth-order
spin-3 Lagrangian

Lð3Þ
4 ≡ LðsÞ

2s−2

�
21

16
;−

9

4

�
at d0 ¼ −m2b0: ð86Þ

The reason we choose (85) is twofold. First, it has
already been analyzed, in a fixed gauge, in [23] where it is
shown to have an empty spectrum.11 Second, there will be
an analogous case for spin-4 as we will see in the next
section.
Following our gauge invariant approach, due to the

restrictions ðΛ; ∂μψμÞ ¼ ð0; 0Þ we have seven independent
gauge parameters on the right-hand side of the 10 equa-
tions (62), thus we have 10 − 7 ¼ 3 gauge invariants just
like the spin-2 Einstein-Hilbert case and the spin-1 Proca
mass term. By eliminating the seven independent gauge
parameters as functions of δhμνα and plugging back in (62)
we obtain two fifth-order invariants and a sixth-order one,
δi2s−1 ¼ 0 ¼ δī2s−1 ¼ δi2s where ði2s; i2s−1Þ are the two
invariants under unrestricted transformations (62) given in
(63) and (64) while

ī2s−1 ¼ 3½∇2∂̂i∂̂j∂khijk þ 2∂̂i∂̂j∂kḧijk − 3∇2∂̂j∂̂k
_h0jk� þ 3½∂j∂k

_h0jk −∇2∂j
_h00j�

þ∇2∂i∂j∂khijk − 2∂i∂j∂kḧijk þ∇4 _h000: ð87Þ

After a convenient redefinition, in terms of helicity variables, we have

Ī2s−1 ¼
ī2s−1

ð−2∇6Þ ¼
�
−3Γþ _ρ

∇2
− 9 _ϕ1 þ 3 _ϕ2 þ∇2ψ4 − 2ψ̈4 þ 3ð∇2ψ2 þ 2ψ̈2Þ

�
=ð−2Þ: ð88Þ

As in (70) we assume that LðsÞ
2s−2ð21=16;−9=4Þ ¼

P
K;L IKÔKLIL where the sum run over the three invariants (68), (69),

and (88) while ÔKL stands for a symmetric 3 × 3 matrix differential operator to be found. We have followed a two step
procedure. In the first step we keep only ðψ1;ψ4Þ ≠ ð0; 0Þ in the helicity decomposition (65)–(67) while in the second one
we assume ðψ1;ψ2Þ ≠ ð0; 0Þ such that we respectively have

hjkl ¼ ∂̂j∂̂k∂̂lψ1 þ ∂j∂k∂lψ4 → ðI2s; I2s−1; Ī2s−1Þ ¼ ð−∂3
0ψ4;□ψ1; ψ̈4 −∇2ψ4=2Þ; ð89Þ

hijk ¼ ∂̂i∂̂j∂̂kψ1 þ ∂̂ði∂̂j∂kÞψ2 → ðI2s; I2s−1; Ī2s−1Þ ¼ ð−3□ _ψ2;□ψ1;−3ð∇2ψ2 þ 2ψ̈2Þ=2Þ: ð90Þ

Direct substitution in Lð3Þ
4 leads respectively to

LI ¼ −ψ1∇6
□

2ψ1 þ ψ4∇6½−□2 þ ð3=4Þ∇2
□�ψ4; ð91Þ

LII ¼ □ψ1ð−∇6Þ□ψ1 þ 9ψ2□ðψ̈3 −∇2ψ2=4Þ ð92Þ

which uniquely determine the fourth-order spin-3
Lagrangian, compared with (36) and (37),

LðsÞ
2s−2 ¼ −d0ðI2s−1∇6I2s−1 þ Ī2s−1∇6Ī2s−1 þ Ī22s−2Þ ð93Þ

¼ −d0ðI2s−1∇6I2s−1 þ I2s∇4I2s þ 2I2s∇4 _̄I2s−1

þ Ī2s−1∇4
□Ī2s−1Þ ð94Þ

where we have defined

Ī2s−2 ¼ ∇2ðI2s þ _̄I2s−1Þ ¼ 2∇2ρ − ρ̈ − 3∇2 _Γ

þ 3∇2ðϕ̈1 þ 2∇2ϕ1Þ þ 3∇2ϕ̈2 − 9∇4 _ψ3 −∇4 _ψ2:

ð95Þ
11The spin-3 fourth-order Lagrangian (86) appeared in the

literature, see [36], even before [23]. We thank Prof. Karapet
Mkrtchyan for bringing that reference to our attention.
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Notice from (63) and (87) that all sixth-order terms in the
combination Ī2s−2 cancel out and we are left with at most
four derivatives of the fundamental field hμνα which
justifies the lower index. Now an important technical point
must be stressed. In order to establish full analogy with the
spin-1 case we should be able to treat ðI2s−1; Ī2s−1; Ī2s−2Þ as
independent fields. Although I2s−1 ≡ 3γ decouples from
Ī2s−1 and Ī2s−2, due to the time derivatives on Γ and ρ in
(88) and (95) it is not obvious that both Ī2s−1 and Ī2s−2 can
be treated as basic independent fields. In order to prove it
we first get rid of time derivatives in (88) redefining Γ via
Ī2s−1 ≡ 3Γ̄=2. After such redefinition (95) still has terms of
the type ρ̈ which can be eliminated via ϕ̄1 ≡ ϕ1 −

ρ
6∇2. The

final step is to redefine ρ according to Ī2s−2 ≡ 3∇2ρ̄.
The reader can check that the triple change of variables
Φ̄J ¼ MJKΦK þ GJ with ΦJ ¼ ðΓ;ϕ1; ρÞ and GJ indepen-
dent of ΦJ is such that all derivatives cancel out in the
Jacobian and we have det M ¼ 1. Therefore, the fourth-
order theory given in (93) or (94), see also (84) with
ðf; gÞ ¼ ð21=16;−9=4Þ, has no particle content, in agree-
ment with the gauge fixed analysis of [23].
Since the spin-3 Lagrangian (94) has exactly the same

form of the Proca mass term (37), similarly for the spin-1
(33) and spin-3 (78) Chern-Simon terms, we can follow
the same steps leading to (40), with the choice
ðc0; d0Þ ¼ ðmb0;−m2b0Þ, and obtain the fifth-order spin-
3 self-dual model suggested in [23] in terms of gauge
invariants,

LSD
2s−1 ¼ mb0hμνρEμα

�
θνβθργ −

1

4
θμνθβγ

�
□

2hαβγ þ Lð3Þ
4

ð96Þ

¼ b0
4

�
Im∇2Im þ Ĩ2sðm2 −∇2ÞĨ2s

þm2Ī2s−1
ð−∇2Þð□ −m2Þ

m2 −∇2
Ī2s−1

�
ð97Þ

where Im ¼ I2s þmI2s−1, Ĩ2s ≡ I2s þm2 _̄I2s−1=ðm2 −∇2Þ
and Lð3Þ

4 is given in (86). Such a model is the spin-3 analog
of the linearized TMG. Notice however that it is not trivial
to show that ðĨ2s; Ī2s−1; ImÞ are three independent degrees
of freedom. First we notice that γ only appears in Im, thus
the redefinition Im ¼ 3mγ̄ does not affect ðĨ2s; Ī2s−1Þ. Next
we redefine Γ such that Ī2s−1 ≡ −3Γ̄, then we make ϕ̄1 ≡
ϕ1 −

ρ
6∇2 in order to get rid of time derivatives of ρ in Ĩ2s,

and finally we redefine ρ such that Ĩ2s ¼ 3∇2ðm2 −∇2Þρ̄.
It turns out that the whole Jacobian is trivial.
The doublet model LD

2s, i.e., the spin-3 analog of NMG
has been suggested in [37] where it was obtained via
soldering of two self-dual models of opposite helicities þ3
and −3 as given in (79) or in (96). The same result can be
obtained adding (79) and (96) with c0 ¼ mb0, i.e.,

LD
2s ¼ b0hμνρ□3

�
θμαθνβθργ −

3

4
θμνθαβθμγ

�
hαβγ þ Lð3Þ

4

ð98Þ

¼b0
4

�
I2s−1½−∇6ð□−m2Þ�I2s−1þm2Ī2s−1

×
ð−∇6Þð□−m2Þ

m2−∇2
Ī2s−1þ Ĩ2s∇4ðm2−∇2ÞĨ2s

�
: ð99Þ

VII. THE SPIN-4 CASE

In the rank-4 case the Wdiff transformations (10)
equations correspond to 15 equations:

δhμναβ ¼ ∂ðμΛναβÞ þ ηðμνψαβÞ: ð100Þ
By either considering Λναβ a traceless tensor ηναΛναβ ≡

Λβ ¼ 0 or taking into account the vector redundancy
δðΛναβ;ψαβÞ ¼ ðηðναϵβÞ;−∂ðαϵβÞÞ we see that (100) leads
to 15 − 13 ¼ 2Wdiff local invariants of eighth and seventh
order in derivatives, δi2s ¼ 0 ¼ δi2s−1,

i2s ¼ ∇8h0000 − 4∇6∂j∂0h00j þ 6∇4∂j∂k∂2
0h00jk − 4∇2∂i∂j∂k∂3

0h0ijk þ ∂i∂j∂k∂l∂4
0hijkl

þ 6□½ð∇4∂̂j∂̂kh00jk − 2∂̂j∂̂k∂l∂0h0jkl þ ∂̂j∂̂k∂l∂m∂2
0hjklm� þ□

2∂̂j∂̂k∂̂l∂̂mhjklm; ð101Þ

i2s−1 ¼ ∇6∂̂jh000j − 3∇4∂j∂̂k∂0h00jk þ 3∇2∂i∂j∂̂k∂2
0h0ijk − ∂i∂j∂k∂̂l∂3

0hijkl

×□½∇2∂̂i∂̂j∂̂kh0ijk − ∂i∂̂j∂̂k∂̂l∂0hijkl�: ð102Þ

After the helicity decomposition

h0000 ¼ ρ; h000j ¼ ∂̂jγ þ ∂jΓ; ð103Þ
h00jk ¼ ∂̂j∂̂kϕ1 þ ∂̂ðj∂kÞϕ2 þ ∂j∂kϕ3; ð104Þ

h0jkl ¼ ∂̂j∂̂k∂̂lψ1 þ ∂̂ðj∂̂k∂lÞψ2 þ ∂ðj∂k∂̂lÞψ3 þ ∂j∂k∂lψ4þ; ð105Þ
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hijkl ¼ ∂̂i∂̂j∂̂k∂̂lβ1 þ ∂̂ði∂̂j∂̂k∂lÞβ2 þ ∂ði∂j∂̂k∂̂lÞβ3 þ ∂̂ði∂j∂k∂lÞβ4 þ ∂i∂j∂k∂lβ5; ð106Þ

and redefining the invariants we obtain

I2s ≡ i2s=∇8 ¼ ρ − 4 _Γþ 6ϕ̈3 þ 6□ϕ1 − 4∂3
0ψ4 − 12□∂0ψ2 þ ∂4

0β5 þ□
2β1; ð107Þ

I2s−1 ≡ i2s−1=∇8 ¼ γ þ 3ψ̈3 þ□ψ1 −□ _β2 − ∂3
0β4: ð108Þ

In order to write down the eighth order Wdiff invariant Lagrangian (26) in terms of gauge invariants we assume that the
only nonvanishing fields are β1 and β2; therefore,

hijkl ¼ ∂̂i∂̂j∂̂k∂̂lβ1 þ ∂̂ði∂̂j∂̂k∂lÞβ2 → ðI2s; I2s−1Þ ¼ ð□2β1;−□_β2Þ; ð109Þ

LðsÞ
2s ¼ b0hijkl

�
θimθjnθkpθlq − θijθmnθkpθlq þ θijθmnθklθpq

8

�
hmnpq ð110Þ

¼ b0

�
β1∇8

�
1 − 1þ 1

8

�
□

4β1 þ ∂̂ði∂̂j∂̂k∂lÞβ2ðθimθjnθkpθlq − θijθmnθkpθlqÞ∂̂ðm∂̂n∂̂p∂qÞβ2

�

¼ b0

�
I2s

∇8

8
I2s þ 2I2s−1∇8

□I2s−1

�
ð111Þ

where we have used ∂i∂m□θim ¼ ∇2∂2
0. Notice that no cross term β1 × β2 appears due to the odd number of dual

derivatives ∂̂ which leads to ∂̂ · ∂ ¼ 0. Regarding the seventh-order Chern-Simons term (20) we have

LðsÞ
2s−1 ¼

c0
2
hijklð2θjnθkpθlq − θnpθjkθlqÞ□3 _h�iðnpqÞ ð112Þ

¼ −c0∂̂j∂̂k∂̂lβ1ð2δjnδkpδlq − δnpδjkδlqÞ∇2∂̂n∂̂p∂̂q
_β2 ¼ −c0I2s−1∇8I2s ð113Þ

where we have used Eim ¼ ϵim∂0 and

_h�iðnpqÞ ≡ −ϵimhmnpq ¼ −∂i∂̂n∂̂p∂̂q
_β1 þ ∂̂i∂̂n∂̂p∂̂q

_β2 − ∂i½∂ðn∂̂p∂̂qÞ _β2�: ð114Þ

As in the spin-3 case, only the cross terms β1 × β2 survive in (113) due to ∂ · ∂̂ ¼ 0.
Comparing (52) and (53) with (111) and (113) we see that the canonical structure of spin-2 and spin-4 cases basically

coincide. So the linearized NTMG (54) has its spin-4 counterpart, first suggested in [16], with c0 ¼ −mb0 and we have

LSD
2s ¼ b0

�
hμναβ□4

�
θμρθνγθαλθβσ − θμνθργθαλθβσ þ 1

8
θμνθργθαβθλσ

�
hργλσ

þmhμναβ□3Eμγ

�
θνρθαλθβσ −

1

2
θναθρλθβσ

�
hγρλσ

�
ð115Þ

¼ 2b0

�
1

4
I2m∇4I2m þ I2s−1½∇4ð□ −m2Þ�I2s−1

�
ð116Þ

where LðsÞ
2s is given in (110) while LðsÞ

2s−1 appears in (112); moreover I2m ¼ I2s=2þ 2mI2s−1. We can always change
variables ðI2m; I2s−1Þ ¼ ðρ̄=2; γ̄Þ and treat the two Wdiff invariants as independent degrees of freedom. So we have just one
massive mode in LSD

2s as shown in [16] in a fixed gauge.

In order to find the spin-4 analogs of TMG and NMG we first need LðsÞ
2s−2

LðsÞ
2s−2 ¼

Z
d3xhμναβDμναβðhÞ ð117Þ
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where DμναβðhÞ ∼ ∂6h is fully symmetric and satisfies

Cμναβ ¼ EðμρDρναβÞ ð118Þ
where Cμναβ is the spin-4 Cotton tensor in flat space given in (20). As in the spin-3 case we can alternatively start from a

rather general ansatz forLðsÞ
2s−2 with all possible contractions and require δ̄L

ðsÞ
2s−2 ¼ 0where the δ̄ transformations correspond

to (100) with all possible scalar restrictions on the gauge parameters,

∂αημνΛμνα ≡ ∂ · Λ ¼ 0 ¼ ∂μ∂ν∂αΛμνα ¼ ∂μ∂νψμν ¼ ημνψμν: ð119Þ
The general solution to the δ̄ symmetry, or equivalently to (118), is given by a five parameter family of Lagrangians

LðsÞ
2s−2½a; b; c; d; e� ¼ d0½hμναβ□3hμναβ − hμν□3hμν þ 4∂μhμναβ□2∂λhλναβ − 2∂μhμν□2∂λhλν

þ 2hμν□2∂α∂βhμναβ þ 5∂μ∂νhμναβ□∂λ∂σhλσαβ þ 4∂μhμν□∂α∂β∂λhλναβ

þ 2∂α∂β∂λhλναβ∂μ∂ρ∂γhνμργ þ ah□3hþ bh□2∂μ∂νhμν þ c∂μ∂νhμν□∂λ∂σhλσ

þ dh□∂μ∂ν∂λ∂ρhμνλρ þ e∂μ∂νhμν∂α∂β∂λ∂ρhαβλρ�; ð120Þ

where h≡ ημνhμν ≡ ημνηαβhμναβ.
Once again we look for a subset of solutions with an

empty spectrum by requiring the maximal possible sym-
metry. First we have checked that there is no solution
invariant under full Wdiff (100) constrained by only one
of the restrictions (119). However, we have found at least
five sets of two restrictions for which all coefficients
ða; b; c; d; eÞ are fixed; they will be discussed elsewhere
[35]. Here we only analyze the case

∂ · Λ ¼ 0 ¼ ∂μ∂νψμν → ða; b; c; d; eÞ

¼
�
3

25
;−

2

5
;−1;

1

5
; 2

�
: ð121Þ

For convenience we define

Lð4Þ
6 ≡ LðsÞ

2s−2

�
3

25
;−

2

5
;−1;

1

5
; 2

�
at d0 ¼ −m2b0: ð122Þ

At first sight (121) does not seem to be a perfect spin-4
analog of (85). However, it turns out that if we start from a
general Lagrangian of the form (120) but with all 13
coefficients arbitrary and require invariance under (100)
with the restrictions ðΛμ; ∂μ∂νψμνÞ ¼ ð0; 0Þ we would

arrive exactly at (121). Likewise, in the spin-3 case, we
have checked that if we start from a fourth-order
Lagrangian of the form (84) but with all 7 coefficients
arbitrary and require symmetry under (62) with the restric-
tions ðΛ; ∂ · ψÞ ¼ ð0; 0Þ we would end up precisely with
(85). This means that instead of finding the higher spin
analogs of the EH theory by searching for the solutions to
(6) which have an empty spectrum, we can use instead a
gauge symmetry principle just like the EH theory is
completely fixed, up to trivial field redefinitions, by
requiring diff symmetry.
Henceforth we take (121) for granted. Note that the

transformations (100) restricted by ∂μΛμ ¼ 0 ¼ ∂μ∂νψμν

still have a vector redundancy of the type discussed after
(100) but the vector must be transverse ∂μϵμ ¼ 0. This
means that we have in total 10þ 6 − 2 − 2 ¼ 12 indepen-
dent gauge parameters12 in (100) which leads to 15 − 12 ¼
3 gauge invariants just like the previous s ¼ 1, 2, 3 cases.
Solving (100) for the 12 parameters and plugging back in
(100) we obtain three gauge invariants δ̄i2s ¼ 0 ¼ δ̄i2s−1 ¼
δ̄ī2s−2. Besides the known invariants of eighth and seventh
order given in (101) and (102) we have the sixth order
invariant:

ī2s−2 ¼ −□ð∂i∂j∂k∂lhijkl − 2∇2∂j∂kh00jk þ∇4h0000Þ þ□½8∂i∂j∂̂k∂̂lhijkl þ 2∇2∂̂j∂̂kh00jk�
−□∂̂i∂̂j∂̂k∂̂lhijkl − 10∇2½∂i∂j∂̂k∂̂lhijkl − 2∂j∂̂k∂̂lh0jkl þ∇2∂̂j∂̂kh00jk�: ð123Þ

In terms of helicity variables we have

Ī2s−2 ¼
ī2s−2
∇6

¼ 20∇2 _ψ2 −
□

∇2
ρþ 2□ϕ3 − 2ðϕ̈1 þ 4∇2ϕ1Þ −∇2

□ðβ1 þ β5Þ − 2∇4β3 − 8∇2β̈3: ð124Þ

12Alternatively, the four restrictionsΛμ ¼ 0 ¼ ∂μ∂νψμν also give 16 − 4 ¼ 12 gauge parameters, and no redundancy is left in this case.
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In order to write down LðsÞ
2s−2 in terms of gauge invariants

we suppose that LðsÞ
2s−2 ¼

P
K;L IKÔKLIL where the sum

run over the three invariants (107), (108), and (124). If we
first assume that the only nonvanishing fields are (β1, β2)
and then (β1, β5), direct substitution in (122) with the
constants given in (121) lead respectively to

LðsÞ
2s−2½β1; β2� ¼

3

25
β1∇8□3β1 − 2β2∇8□2β̈2; ð125Þ

LðsÞ
2s−2½β1; β5� ¼

1

5
β̃1∇10

□ð∇2 − 2□Þβ5 þ
3

25
β̃1∇8

□
3β̃1;

ð126Þ

where β̃1 ¼ β1 þ β5. Moreover, if we keep only ðγ;ΓÞ, the
only nonvanishing components will be h000j and they
are such that it is impossible to have a cross term γ × Γ,
consequently Ô78 ¼ 0 ¼ Ô87. From (125), (126) and
Ô78 ¼ 0 we obtain

LðsÞ
2s−2 ¼ d0

�
2I2s−1∇8I2s−1 −

1

5
I2s∇6Ī2s−2

−
2

25
Ī2s−2∇4

□Ī2s−2

�
: ð127Þ

Comparing (111), (113), and (127) with the correspond-
ing formulas of the spin-2 case (52), (53), and (59) there is a
perfect match after a harmless redefinition ðI2s; Ī2s−2Þ →
ð2I2s; 5Ī2s−2Þ in (127). However, we still have to worry
whether we can treat ðI2s; I2s−1; Ī2s−2Þ given in (107),
(108), and (124) as independent degrees of freedom such
that the higher time derivatives can be properly hidden via a
change of variables in order to avoid ghosts. This is indeed
the case as we show now.
First we redefine γ such that I2s−1 ¼ γ̄. This is a trivial one

field redefinition that does not affect either I2s or Ī2s−2. Next
we redefine ρ such that I2s ¼ ρ̄which introduces higher time
derivatives of ψ2 in Ī2s−2. They can be cancelled out after
Γ ¼ Γ̄ − 3□ψ2 þ ð3=2Þ _ϕ3 which allows us to get rid also of
time derivatives of ϕ3 via ψ2 ¼ ψ̄2 − _ϕ3=ð10∇2Þ. Finally,
we redefine ϕ3 such that Ī2s−2 ¼ 2∇2ϕ̄3. In summary, we
have a fivefold change of variables Φ̄I ¼ MIJΦJ þ FJ,
where ΦJ ¼ ðρ;Γ;ψ2;ϕ3; γÞ and FJ do not depend upon
ΦI , which leads to ðI2s; I2s−1; Ī2s−2Þ ¼ ðρ̄; γ̄; 2∇2ϕ̄3Þ. One
can check that detM ¼ 1.
Consequently we can define the spin-4 analogs of the

spin-2 linearized TMG and linearized NMG. In the first
case if we choose ðc0; d0Þ ¼ ð−mb0;−m2b0Þ we have

LSD
2s−1 ≡ Lðs¼4Þ

LTMG ¼ −mb0hμναβ□3Eμγ

×

�
θνρθαλθβσ −

1

2
θναθρλθβσ

�
hγρλσ þ Lð4Þ

6 ð128Þ

¼ 2m2b0

�
˜̄I2s−2∇6

□
˜̄I2s−2 − I2s−1∇8I2s−1

− Ĩ2s∇8

�
˜̄I2s−2 þ

I2s−1
m

��
: ð129Þ

where Lð4Þ
6 is the sixth-order spin-4 Lagrangian in

(122). The three gauge invariants ðĨ2s; I2s−1; ˜̄I2s−2Þ ¼
ð2I2s; I2s−1; 5Ī2s−2Þ can be obtained from (107), (108),
and (124). We can repeat the arguments given after (60)
and prove that (128) has only one massive propagating
mode. It is invariant under the Wdiff transformations (100)
constrained by ∂ · Λ ¼ 0 ¼ ∂μ∂νψμν.
In the second case of the spin-4 linearized NMG model

we add the Lagrangians (115) and (128) such that the
higher spin Chern-Simons term cancel out and we have

LD
2s ≡ Lðs¼4Þ

LNMG ¼ b0hμναβ□4

�
θμρθνγθαλθβσ − θμνθργθαλθβσ

þ 1

8
θμνθργθαβθλσ

�
hργλσ þ Lð4Þ

6 ð130Þ

¼2b0½I2s−1∇6ð□−m2ÞI2s−1þm2Ī2s−2∇4ð□−m2ÞĪ2s−2
þ Ī2s∇8Ī2s� ð131Þ

where Ī2s ¼ Ĩ2s − 2m2 ˜̄I2s−2. The spin-4 NMG theory is
also invariant under (100) restricted by the scalar con-
ditions ∂ · Λ ¼ 0 ¼ ∂μ∂νψμν.

VIII. GAUGE INVARIANTS AND
THE COTTON AND D TENSOR

In all cases s ¼ 1, 2, 3, 4 worked out here we have been
able to find two invariants under (10), ði2s; i2s−1Þ, which
play an instrumental role. The transformations (10) can be
rewritten without loss of generality as

δhμ1���μs ¼ ∂ðμ1Λ̄μ2���μsÞ þ ηðμ1μ2ψμ3���μsÞ; ð132Þ

where ημ2μ3Λ̄μ2���μs ¼ 0. Since all three tensors in (132) are
fully symmetric, their number of components in 3D is
given by

Nδh ¼
3.4: � � � ð3þ s − 1Þ

s!
¼ ðsþ 1Þðsþ 2Þ

2
;

NΛ̄ ¼ 3.4: � � � ð3þ s − 2Þ
ðs − 1Þ! −

3.4: � � � ð3þ s − 4Þ
ðs − 3Þ! ¼ 2s − 1;

Nψ ¼ 3.4: � � � ð3þ s − 3Þ
ðs − 2Þ! ¼ sðs − 1Þ

2
:

Therefore we always have only two invariants under
(132) for arbitrary integer spin-s,
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NI ¼
ðsþ 1Þðsþ 2Þ

2
−
�
2s − 1þ sðs − 1Þ

2

�
¼ 2: ð133Þ

On the other hand, the Cotton tensor Cμ1���μs is also fully
symmetric, transverse, and traceless, see (5). Therefore, the
same counting applies to Cμ1���μs which must have only two
independent components invariant under (132). This raises
the question about the connection between the invariants
and the Cotton tensor. For all cases presented here we

have found LðsÞ
2s−1 ∼ 2c0i2s−1∇−2si2s ¼ c0hμ1���μsC

μ1���μs .
Since h00���0 and ∂̂jh00���j appear linearly in i2s and
in i2s−1, respectively, from the functional derivatives
∂̂jδS2s−1=δh00���j and δS2s−1=δh00���0, we learn that

ði2s; i2s−1Þ ∼ ð∂̂jC00���j; C0���0Þ. We have confirmed in all
cases s ¼ 1, 2, 3, 4 that this is indeed the case. Thus, we do
not need to solve for the gauge parameters in (132) in terms
of δhμ1���μs in order to obtain ði2s; i2s−1Þ.
Whenever we consider the Lagrangian LðsÞ

2s−2 the number
of symmetries is decreased by one unit and consequently
we need one more gauge invariant which corresponds to
Ī2s−1 (odd spin) or to Ī2s−2 (even spin). In the even spin

cases s ¼ 2, 4 we see that I2s appears linearly in LðsÞ
2s−2, see

(59) and (127). Since _Γ is only present in I2s, see (51) and

(128), it turns out that ∂jD00���j ∼ _̄I2s−2, so we have a
shortcut to obtain also Ī2s−2. In the odd spin case we have
not been able to find any shortcut for Ī2s−1 which might
avoid long calculations involving the elimination of the
gauge parameters in the gauge transformations (10).

IX. CONCLUSION

Here we have suggested spin-4 analogs of the linearized
TMG and linearized NMG, see (128) and (130), respec-
tively. Although those models are of seventh and eighth
order in derivatives, respectively, we have shown that they
are ghost-free and moreover they have exactly the same
canonical structure of their spin-2 counterpart when written
in terms of appropriate gauge invariants, see (129), (131)
and compare with (60) and (61). The canonical structure of
the linearized spin-4 NTMG (115), suggested in [16], also
coincides with its spin-2 counterpart, compare (54) with
(116). We have also shown that the spin-3 linearized TMG,
NTMG, and NMG have the same canonical structure of the
spin-1 first-order self-dual model of [28], Maxwell-Chern-
Simons and Maxwell-Proca models, respectively.
An important ingredient for higher spin linearized TMG

and NMG is theD tensor in the action LðsÞ
2s−2. It is the tensor

whose symmetrized curl is the Cotton tensor (6). This
condition guarantees that the self-dual model of order

2s − 1 built by combining LðsÞ
2s−1 and LðsÞ

2s−2, see (11),
contains particles with helicity sjmj=m. However, there
might be further particles including ghosts. In general, the
condition (6) leads to a multiparametric family of

Lagrangians LðsÞ
2s−2. In the rank-2 case LðsÞ

2s−2 becomes the
two parameter family of Tdiff models [31] which in D ¼
2þ 1 contains only a scalar field in the spectrum which
might have a wrong overall sign depending on the
parameters of the model. Consequently the third-order
self-dual model defined in (11) might contain a scalar
ghost besides the helicity 2jmj=m particle. In order to avoid
such extra modes we have learned from previous works

[1,13,23,24,29] thatLðsÞ
2s−2 must have an empty spectrum. In

the spin-2 case this leads to only two possibilities. Namely,
either Tdiff is extended to diff (Einstein-Hilbert) or to
WTdiff (linearized unimodular gravity). The corresponding
self-dual models become the TMG of [1] and the unim-
odular TMG of [24] respectively.
For higher spins s ≥ 3 we are still investigating [35]

possible candidates for LðsÞ
2s−2 satisfying (6) and without

particle content. There is, however, at least one natural
higher spin version of the linearized Einstein-Hilbert (LEH)
theory in D ¼ 2þ 1 in the s ¼ 3 and s ¼ 4 cases. In the
s ¼ 3 case it is the fourth-order Lagrangian given in (86);
see [23]. It is invariant under (62) restricted by
Λ ¼ 0 ¼ ∂μ · ψμ. The s ¼ 4 case corresponds to the
sixth-order Lagrangian in (122) which is invariant under
(100) with the restrictions ∂μΛμ ¼ 0 ¼ ∂μ∂νψμν. Just like
the LEH theory in D ¼ 2þ 1, we have shown here, in a
gauge invariant way, that both (86) and (122) have no
particle content.

The Lagrangians LLEH, Lð3Þ
4 , and Lð4Þ

6 share another
interesting feature. The LEH theory is uniquely determined
by its order in derivatives and invariance under linearized
diffeomorphisms. Likewise (86) and (122) are uniquely
determined by their order in derivatives and invariance
under restricted Λ and Weyl transformations. Namely, if we
start with a Lagrangian of the form (84) but with all seven
terms with arbitrary coefficients and require invariance
under (62) restricted by Λ ¼ 0 ¼ ∂μψμ we end up with

Lð3Þ
4 . Similarly, beginning with a Lagrangian of the form

(120) with 13 arbitrary constants and demanding invariance
under (100) restricted by Λμ ¼ 0 ¼ ∂μ∂νψμν we arrive

precisely at Lð4Þ
6 . Notice that there is no need of requiring

(6). From this point of view LðsÞ
2s−2 is on the same footing of

LðsÞ
2s andLðsÞ

2s−1—they are all completely determined by their
order in derivatives and a local symmetry, namely a
restricted conformal higher spin symmetry. Moreover,

ðLLEH;L
ð3Þ
4 ;Lð4Þ

6 Þ all have one less symmetry than Wdiff
(10). It is tempting to generalize the above symmetry
restrictions for arbitrary integer spins in order to infer an
arbitrary spin-s canonical structure for all singlets of order
2s and 2s − 1 and doublets of order 2s.
We point out that the method we have used here for

investigating the particle content of higher derivative
theories dispenses the use of gauge conditionswhich clarifies
the underlying canonical structure. Furthermore, it holds
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off-shell which is especially useful for the doublet models
LD
2s with both helicities�swhere the relative sign of the two

massive modes is crucial for absence of ghosts. We mention
that the extension of the gauge invariant formulation to
curved backgrounds is very promising, see [38]. Regarding
the generalization of our self-dual models of order 2s − 1 to
curved backgrounds see the recent work [39].
Instead of stepping down the ladder of higher spin self-

dual models mentioned in the Introduction as we have done
here going from the eighth-order spin-4 self-dual model to
the seventh-order one, one might try to go up the ladder
starting from the first-order spin-4 self-dual model of [40].
However, a recent attempt, see [41], along such direction gets
stuck apparently at the fourth-order model which is the same
order at which the spin-3 case stops [14]. One might try13

to go up the ladder by either using the master action

or the Noether gauge embedding procedure starting from
the first-order action of [42] for arbitrary spin self-dual
models.
Finally, we noted that the most general D-tensor

solution to (6) in the spin-2 case leads to Tdiff (transverse
diffeomorphisms) theories. It is known that Tdiff is the
minimal symmetry for massless spin-2 particles in D ¼
3þ 1 which can be related to massive particles of helicity
�2 in D ¼ 2þ 1 via dimensional reduction. Since for s ¼
3 and s ¼ 4 theD-tensor definition (6) can be traded into a
symmetry principle under general transformations (10)
restricted by scalar constraints, see (83) and (119), it may
be worth investigating the role of those symmetries
in D ¼ 3þ 1.
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