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We suggest a new spin-4 self-dual model (parity singlet) and a new spin-4 parity doubletin D =2 + 1.
They are of higher order in derivatives and are described by a totally symmetric rank-4 tensor without extra
auxiliary fields. Despite the higher derivatives they are ghost free. We find gauge invariant field
combinations which allow us to show that the canonical structure of the spin-4 (spin-3) models follows
the same pattern of its spin-2 (spin-1) counterpart after field redefinitions. For s = 1, 2, 3, 4, the spin-s self-
dual models of order 25 — 1 and the doublet models of order 2s can be written in terms of three gauge
invariants. The cases s = 3 and s = 4 suggest a restricted conformal higher spin symmetry as a principle
for defining linearized topologically massive gravity and linearized “new massive gravity” for arbitrary
integer spins. A key role in our approach is played by the fact that the Cotton tensor in D = 2 + 1 has only

two independent components for any integer spin.

DOI: 10.1103/PhysRevD.104.085023

I. INTRODUCTION

Contrary to the real world in D =3 4 1 where local
actions for massless particles of spin-s necessarily describe
both helicties +s, in D = 2 + 1 there are local actions for
each helicity +s or —s; they may be called self-dual models
or parity singlets and represent now massive particles. The
Maxwell-Chern-Simons (MCS) theory and the linearized
topologically massive gravity (TMG) [1] are paradigmatic
examples of self-dual models of spin-1 and spin-2 respec-
tively. By means of a soldering procedure [2], see also [3],
it is possible to join together opposite helicities into a parity
invariant (parity doublet) local action with helicities +s
and —s. In the spin-1 case we obtain the Maxwell-Proca
theory [4,5] while the soldering of spin-2 second-order (in
derivatives) self-dual models [6] leads to the massive spin-2
Fierz-Pauli theory [7], see also [8]. Since those massive
actions have the same form in arbitrary dimensions we may
say that the self-dual models in D =2+ 1 work like
building blocks of those massive particles in arbitrary D
dimensions.

Another connection with higher dimensions comes
from the fact that massive models may be deduced via
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Kaluza-Klein dimensional reduction of massless particles,
see [9]. In particular, the self-dual models in D =2 + 1
may be obtained from massless particles in D =3 + 1 as
shown in [10] for s = 1, 2, 3. Such a procedure leads to
first-order self-dual models which are required in general
auxiliary fields in order to produce the so-called Fierz-Pauli
conditions. The auxiliary fields may turn into dynamical
fields and become obstacles when interactions are consid-
ered. It is possible, however, to trade auxiliary fields in
higher derivatives and gauge symmetries necessary to
eliminate ghosts. Those symmetries may be used as a
guiding principle for the introduction of interactions. Here
we are especially interested in those higher derivative gauge
invariant higher spin models.

For each spin-s there seem tobe a “2s rule” in D = 2 + 1
such that we have ghost-free self-dual models of jth order
in derivatives with j = 1,2, ..., 2s. By means of a Noether
gauge embedding (NGE) procedure [11] we can system-
atically climb up from the jth to the (j 4 1)th order from
bottom (j=1) to top (j=2s), stepwise eliminating
auxiliary fields and adding gauge symmetries. The pro-
cedure works nicely for s=1,3/2, 2, see [5,12,13]
respectively, but at s = 3 it is only partially successful.
In [14] we go from j = 1 until j = 4, but we have not been
able to connect the spin-3 fourth-order model of [14],
containing auxiliary fields, with the top sixth-order self-
dual model of [15] which has no auxiliary fields.

Since the top model of order 2s is known for arbitrary
integer [16] and half-integer [17] spin-s we might try as an
alternative approach to climb down the ladder of deriva-
tives. This is what we pursue in the present work. We are
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able to go one step down from the top for spins s = 3 and
s = 4 without introducing auxiliary fields. We believe that
our approach can be generalized for arbitrary integer spins.
In the spin-4 case we obtain a new seventh (2s — 1)-order
self-dual model and a new eighth (2s)-order doublet model.
We show in a gauge invariant way that they are both ghost
free. They correspond respectively to the spin-4 analogs of
the spin-2 linearized TMG' and of the linearized “new
massive gravity” (NMG) of [18] respectively.

Although not explicitly Lorentz invariant, we employ
here a formalism based on gauge invariants which dis-
penses the use of gauge conditions. The absence of gauge
conditions allows us to show that the canonical structure of
the spin-4 (spin-3) case basically coincides with the
canonical structure of the lower spin-2 (spin-1) case.
Our approach might be useful in investigating other higher
derivative models.

II. GENERAL SETUP

Throughout this work® we will be using three Lagrangians

Ek of kth order in derivatives with k = 25,25 — 1,25 — 2 as
basic 1ngred1ents for building up spin-s self-dual models’
L£5P, £3P | and the doublet model £2,

Sas —bo/dSXhm~~/¢:EM/)CPM'% E/d%ﬁg)’ (1)
S2S—1 = CO/d3Xhﬂ1'"ﬂsC”]W”S E/dSX‘céss)—l’ (2)

Sas-2 :do/d%hm'--ml)ﬂlm”" E/d3x£g§)—2’ 3)

where (b, . d) are arbitrary overall constants and #,,,...,,
is our fundamental rank-s field, traceful and symmetric

My, = hiy,o,)- We frequently use
Er? = e, 06,, = Onpe — 0,0,
EWEY = (0P — gregHP). (4)

A major role is played by the spin-s Cotton tensor C,, .., .
More specifically in D = 2 4 1, it appears in [1] and [19] in
the spin-2 and spin-3 cases respectively, and for arbitrary
integer spin in [20]. It is of order 2s — 1 in derivatives
(C~ 82“"1}1), fully symmetric, transverse, and traceless,

'"The authors of [17] have also suggested a higher spin
“topologically massive” theory of order 2s —1 in D =2+ 1
but it requires further auxiliary fields, different from ours.

*We only work on the flat space and use Huw = (= +,+).
Symmetrizations do not contain numerical factors, e.g., (aff) =
af + pa and (afy) = afy + fya + yap.

*In all sections the lower index in the Lagrangian symbol
stands for its order in derivatives, i.e., the highest number of space
time derivatives of the rank-s fundamental field Ay, .., .

C

HiwHs

oc

=C oy, = 05 G,

Pups-

=0.
(5)

Later on we give an explicit formula for C,, ..., in the flat
space. An extension for the AdS; space including half-
integer spins is given in [21]. The tensor D,, ..., is of order
2s — 2 in derivatives, fully symmetric too. It is connected
with the Cotton tensor via a symmetrized curl,

prHs)

c

et = B Dppyopy)- (6)

In general there is a multiparametric family of D tensors
satisfying (6). We are specially interested in the subset of
Lagrangians [Zéi)_z without particle content.

We first recall the construction of the highest order self-
dual model £3P, see [15] for spin-3, [16] for arbitrary
integer spin, and [17] for arbitrary half-integer. For arbi-
trary integer spin-s it is given by a linear combination of

£ and £5) . If we choose ¢y = —mb, we have

L3P = bolhy, .., B" ,CPPFs —mh, ., CHis] (7)
The corresponding equations of motion,
E(ﬂ]pC/’ﬂz"'ﬂx) = msCHHs (8)

play the role of the Pauli-Lubanski eigenvalue equation in
D =2+ 1.1f we apply E7,,, on (8) and use (4), (5), and (8)
recursively, we deduce the Klein-Gordon equations:

(O-m?)C

HyHs

~0. 9)

It can be shown from first principles that the Fierz-Pauli
constraints (5) and the dynamic equations (8) and (9) are all
we need to have massive particles with helicity s|m|/m.
However, since we have in general higher-order time
derivatives there might be further particles, including
ghosts, so the particle content of (7) must be thoroughly

investigated. The Lagrangians L3, £, and conse-
quently £5P are invariant under a large set of local

transformations:
Py, = Oty Dpoty) T Mgty (10)
where the gauge parameters A, ..,  andy, .., . are fully

symmetric but otherwise arbitrary tensors. Because of those
symmetries one can fix convenient gauges and prove that
L3P only contains massive particles of helicity +s or —s
depending on the sign of m, see [15] and [16] for the spin-3
and spin-4 cases, respectively. The approach we use here
allows us to prove the absence of ghosts in the spin s = 3, 4
cases in an off-shell and gauge invariant way as we will
see later.
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Inspired by £3P we define the lower-order self-dual

model £3P | combining £5 | and £, with dy = —smc,

L350 = colh E(lllpDﬂllz'“ﬂ:) —msh, ., D"*] (11)

Hi s

The equations of motion are given by
E(mpDﬂﬂz---m) — msDH1Hs (12)

Since the left-hand side of (12) is the Cotton tensor, by
taking the trace and applying a derivative on (12) we
deduce, with help of the identities (5), the Fierz-Pauli
constraints &' D, ., =0 and »*D, ., =0 which
are now dynamic equations instead of trivial identities
as (5).

The application of the curl E7, on (12) will similarly

lead to (9) with C, .., rteplaced by D, , .., which

confirms that £5P , contains massive particles of helicity
s|m|/m. There is, however, no guarantee that no other
propagating particles are present. In the four cases
s=1,3/2, 2,3, see [1], [22], [13], and [23] respectively,
there is a master action connecting £32 | with £3P with a D

tensor satisfying (6) and such that Eéss)_ , has no particle
content. For instance, in the s = 2 case there are two
choices for the D tensor, one corresponds to the linearized

|

Einstein-Hilbert theory and the other one to the Weyl and
Transverse diffeomorphisms (WTdiff) model or linearized
unimodular gravity, both Lagrangians have no propagating
modes in D = 2 + 1. The respective self-dual models £37 |
are the linearized topologically massive gravity [1] and
linearized unimodular topologically massive gravity [24].

One can also combine £ and £{")_, and build up doublet
models £2 containing both helicities +s and —s. They
represent higher spin analog of the linearized NMG [18]
and of the linearized unimodular NMG [24]. In the next
section, as a preparation for Sec. IV where possible choices
for D, .., will be discussed, we give closed formulas for
the Cotton tensor and its symmetrized curl on the flat space.
They are convenient for our approach based on the use of
gauge invariant field combinations.

II. THE COTTON TENSOR AND THE
LAGRANGIANS £} | AND L

One can think of £/, as the most general spin-s parity
odd and Lorentz invariant expression of order 2s — 1 in
derivatives invariant under (10). We start with an Ansatz
such that invariance under the higher spin analog of
linearized diffeomorphisms (diff) 6k, .., = 0(,,1/\#2.%)
is granted, namely,

Egss)_] = hﬂl'“mDS—lEﬂll/] [Cogﬂzl/z ce Qs o QPRI QHA L GRS ]hvl'.%
_ h”]m”xDs—lEylb] [cogs—l + clézgs—?a + 02949.\‘—5 G ]ll2~..ﬂ‘\-vz~,.y\-hylmys‘, (13)
where ¢; with j = 0,1, ..., [‘%‘] are to be determined, and 0 stands for the transverse operator 9”]_ sy OF Q,ijﬁ] whose indices

are contracted within indices of the same # field. Under generalized Weyl transformations 64

the following structure (suppressing indices):

= N, Wosy) WE have

Vg

SLY) | = W VE(C,00° 3y + Co0%05 Sy + - ), (14)

where we have the coefficients

_(s=2)(s=2j-1)
C;,= 5

—1
i +2i(s = ey j=1.2 . [s } (15)

2

Consequently, higher spin reparametrizations and Weyl invariance C; = 0 completely fixes 5(2?_1 and the Cotton tensor

up to an overall constant, i.e.,

(D= j=1)!
I Wi (s=2j—1)!

Cos

s—1
i=0,1,2,... . 1
_] 07 L) ’ 7|: 2 i| (6)

Comparing (2) with (13) we have a closed formula for the Cotton tensor,

c

My

=0 Y g0 IR, ). (17)
=
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where ¢; = c; at ¢y = 1/s. For* the first four integer spins Lg?_l becomes

5

[,El) - COA#EM/AD; ’Cg ) = COhﬂl#QDEﬂla] Qﬂzazhalaz’ (18)
1
C?) — COhmuzm [2Ema |:9;42a29/43a3 - 19ﬂ2”38a2a3:| ha]azazy (19)
1
£§4) — COhﬂ]ﬂz#}lM [(PEM®™ |:€ﬂ2112€/‘3"3 OHa%a — 59”2”3 0" 9”4(14:| h(ll(lz(l3(l4' (20)

Notice that all noncontracted indices y; - - - y; on the right-
hand side of (17) come from transverse operators £, and 6,,,,,
so the transverse property of the Cotton tensor is explicit as in
the case of the formulas given in [25] in terms of spin
projection operators.” Although we do not have a general
proof we believe that (17) does agree with previous formulas
given in [20], see also [27], for arbitrary integer spin.

Eg? = hﬂ

In order to deduce Egss) , instead of taking the sym-
metrized curl of the Cotton tensor (17) we find more

convenient to repeat the same procedure used for Cé?_l. We
start from a parity even ansatz explicitly invariant under
higher spin reparametrizations with arbitrary coefficients
b, with j =0,1,..., 5],

_..”YDS[[,OQS + bl@29S—2 + b2é49s—4 A ]ﬂl“'ﬂxvl-“V.yhylmyx‘ (21)

Notice that any even number of E operators can be traded into € operators according to (4). Requiring generalized Weyl
symmetry we obtain a unique solution up to an overall constant,

(=1)/s(s —j—1)! _ s
b; = - by; =0,1,.... |5 22
T s =2 > (22)
The first four cases of LY are given by
1 v _bo
£ = boA' 0, 4" = =2 F. (23)
£ = byh,, O |omegrees L gungones |, — 4 (R2, 2 R2 (24)
4 0" 1 pn ) ajay 0\ Suv ] hh’
3
[’(63) = bohﬂlﬂ2ﬂ3 D3 |:9ﬂ]a,9;42aze;43a3 - 4914]”29(11{129’43(13] hmazas (25)

£é4) = boh”]_‘.m |:|4 [ey1a19u2a29y3a39;44a4 — GHi1H2 Q1 X2 QM3 A3 QR4 +

In the spin-1 case we have the Maxwell theory while in
the spin-2 case we recognize the linearized K term of the

“It is understood that all equalities involving Lagrangians in
the present work hold under space-time integrals.

’Notice that in the spin-1 case we have replaced £, by the usual
notation A, for the electromagnetic potential in order to avoid
confusion with the spin-3 vector trace h, = n"h,,,.

For an earlier connection between the Cotton tensor and
projection operators in the s = 2 case see [26].

GH1H2 GH3H4 Q1 X2 QO304
3 ayay

|
NMG theory [18]. In the next section we work out the spin-
1 and spin-2 cases in terms of appropriate gauge invariant
field combinations as a preparation for the respective spin-3
and spin-4 cases since they turn out to have the same
respective canonical structure.

IV. SPIN-1 IN TERMS OF GAUGE INVARIANTS

Before we start we stress that in the present section and
throughout this work, the notation i, and i,,_; stands for
local invariants under the gauge transformation (10) which

085023-4
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are obtained via derivatives of order 2s and 2s —1,
respectively, of a rank-s fundamental field. There is in
general a subset of the gauge transformations (10) which

leaves the lowest-order Lagrangian Eg)_z invariant.
Correspondingly we have the barred local invariants
ir_y and ip,_, of order 25 — 1 and 2s — 2, respectively.
Notice that the same symbol may represent different
quantities in different spin-s sections, see for instance
(28) and (49). However, they both stand for an invariant
built out of 2s derivatives of a rank-s tensor. Since each
section deals only with one value of s, there will be
hopefully no confusion.

Now let us start with the simplest spin-1 case where
the gauge transformations (10) become the usual U(1)
symmetry,

oA, = O,A. (27)

One of the three equations (27) can be used to eliminate
the gauge parameter A in terms of variations of the gauge
field, A = 0 ;6A,;/V?, plugging back in (27) we derive two
local gauge invariants di,; = 0 = Ji,,_; connected with the
electric and magnetic fields:

l.2s = V2A0 - 80(6kAk) =V. E, iZS—l = éjAj = B.

(28)
We follow the notation of [15] where
9] :€]kak, 819]4—8[8] :V25U,
818] - 31(9, = v2€l‘j; 8131 = 8jaj = Vz (29)

Introducing the so-called helicity decomposition and
redefining the gauge invariants we have

Ag = p; (30)

(In5: Ins—1) = (iZS’iZS—])/vz = (P—ﬁ 7). (31)

In all cases s = 1, 2, 3, 4 we will be able to write down

the Lagrangians £\ and £/ | in terms of only two gauge
invariants (1,15 ) and £$*) , in terms of those two and
an extra one. In the spin-1 case the Maxwell and the Chern-

Simons terms become

L) = boAPDI0,,AY = by[ Ly (V) Iy + Ly (~V2O) I,y
(32)

7Throu_ghout this work, i, j, k = 1, 2 and henceforth we use
Oof and f equivalently.

'Cgss)—l = oA E"A, = =2¢0lh,_ | VI, (33)

Since the two invariants can be treated as independent
fields (1o, 125_1) = (p —1,7) = (p.7), it is clear that the
Abelian Chern-Simons term (33) has no particle content®
(topological term). We can combine (32) with (33) in order

to produce the topologically massive Chern-Simons theory
[1]. For future comparison with the spin-3 case we write it

down with the choice ¢y = —mb,,

L3P = by[A*0,,AY — mA,EFA,) (34)
=bo{l(=V?) 1+ L [-VH(O-m?), 1} (35)

where 1, = I, —mly,_ | =p — r— my = p is the non-

propagating gauge invariant while the transverse mode
I,,_; =y is the propagating one.

In the spin-1 case the Cotton tensor becomes a vector, the
dual of the field strength: C, = E,, A”. So, according to (6)

we have D, = A,. Thus, £ becomes the usual Proca
mass term A,A* which has of course no particle content and
no gauge symmetry. So, there are no barred (residual)
gauge transformations at all. However, in order to use a
unified notation regarding the spin-3 case where nontrivial
barred gauge symmetries do in fact exist, we keep calling
each of the components of the vector field A, a barred
gauge invariant and keep using barred notation for some of
the invariants. The reader can check that the following
expressions, which will have a spin-3 counterpart, hold
true:

L5, = doA, A

= —do(Ipy|V?ys_y + IV + 15 _,)  (36)

= _dO(IZ.v—l VZIZS—I +I%s + 2123'72.&'—1 +72s—1 |:|72s—1 )
(37)

where, recall (I, I»,_;) = (p —1.7),

Ly a=1+ 1, =A;=p.
(38)

725_] = 8JA]/V2 = F,

We can choose (cg,dy) = (mby, —m*b,) and combine
(33) with (37) in order to produce the first-order self-dual
model £5P | of [28]

LD = mbo(A,E*A, — mA,A")

s—1

(39)

8Throughout this work we assume vanishing fields at infinity.
The Laplacian V? has only negative eigenvalues such that the
frequently appearing operators V> and m? — V? have an empty
kernel.
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= bO Imvzlm + 72A,(m2 - vz)iz‘y

L v@-m)
+m?Iy_, W’zx—l (40)

where

~ m2 - V2 .
Ly=hit gl =r+ 7ol (41)

The three gauge invariants can be treated as independent
fields (1, 125, 12,_1) = (—m7, p,T). Although (39) is known
[29] to be dual too (34), it contains one extra nonpropagating
gauge invariant and the propagating mode is now the
longitudinal component (I') instead of the transverse one (y).

We finish this section building up the Maxwell-Proca
theory (parity doublet). Since the Chern-Simons terms in
(34) and (39) have opposite signs, we can simply add them
and obtain

1 m?
L3 = =7 Fu—5 A (42)
V(O -m?
:125—1¥12s—1
m? - V(O -m?) - . (m*=V?).
+712s—1 %bs—l + 1y %Izs-
(43)

Now we have both I" and y as propagating modes and the
gauge invariant I,,, connected with the electrostatic poten-
tial Ay, is the nonpropagating one. In all higher spin cases
s =2, 3,4 we will be able to write the doublet model in
terms of two propagating and one nonpropagating gauge
invariant.

V. SPIN-2 IN TERMS OF GAUGE INVARIANTS

In the spin-2 case the gauge transformations become the
usual linearized reparametrizations (diff) plus Weyl that we
call Wdiff,

Sh,, = 0,\, + O, N, +nuw =06y, +6,h,,. (44)

In (44) we have six equations and four independent
gauge parameters; consequently they give rise to 6 — 4 = 2
gauge invariants (I, I,_;). This is all we need to describe
£ and £{) . Ttis instructive to do it in two steps. First we
derive the 6 — 3 = 3 diff invariants. Using the decompo-
sition Ag = A, A; = 9;B + 0,C in ,h,, we find

A— 615/\]’10] _ 8,6]5Ahu . _ 8,6]5Ahu .
V2 2V ve o
8,05, h:;
c = Zi%0T 45
2V4 (43)

Substituting back in §,h,, we derive three local diff
invariants 5/\;23 =0= 5A;2S—1 = 5A;2S—29
iy = a‘éjhi ing-1 = v2aihoj‘ - akéjl:lkjv (46)

s
iy, = V*hoo — 2V20;hg; + 0,0,k (47)

The fact that we have only three independent local diff
invariants is in agreement with the Riemannian geometry,
since in D =2 + 1 the Riemann tensor R,z is propor-
tional to the Ricci tensor R, which has in principle six
components but due to the Bianchi identity V¥R, =
V,R/2 only three of them are independent. Indeed, one
can check that all six components of the linearized tensor
R{;,, can be written in terms of space time derivatives
of (i2s—2’ iZS—l ’ i2.\')‘

Second, back to the Wdiff symmetry, since
8y (ing—2. a1, Ing) = (Vp,0,=V20y), we have two
Wdiff invariants,

ipg_1 = lpy_y = v28]'}10,' - akéjilkjv (48)

iy = Iy + Uiz p = Voo — 2v28j]:10j + 31'3,;71.11,'

Using the helicity decomposition

hoo = p; hoj = 0T + 9j;

and redefining the gauge invariants we have

T 1 = = = M
(Ins—2. Iao1, Iny) = <ﬁ> (i25-2+ Ias—1. Ia5) = (@7 — 6,
p =20+ 7+ 0gp). (51)

The fourth-order linearized K term of the NMG theory
[18] and the third-order linearized gravitational Chern-
Simons term, see [1], of the TMG can be written in terms of
the two Wdiff invariants

(s) 1 ooty GHi1H2 Q1 X2
L5, _bohMDZ(m 0/ =) hya,

b
= ?O 12,V s 4 415, VO], (52)

LY = cohy , OB @@y, = ~2coly V4. (53)

From (51) we see that the Wdiff invariants may be
considered as independent fields (75,_;, I,;) = (7,p), thus
we have a massless mode in (52) and no particle content in
(53). They can be combined together following (7), in order
to produce the linearized version of the “new topologically
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massive gravity” (NTMG) of [13,30]. Choosing ¢y =
—mb, we have

P = 3] + 45,

= ZbO{%IZmV“IZm + L [VH(O - mz)}lzm} (54)

where Iy, = I, + 2mly,_; = p =1 + 7 + Co + 2m(y —
0)) and I,,_; = y — 6. Note that the change of variables
(Inys I5—1) = (P, 7) has a trivial Jacobian. So we are able
to check that the fourth-order model (54) is free of ghosts
and contains only one propagating massive mode 7 plus the
nonpropagating field p.

Now in order to construct Egss)_ , we need to find a D
tensor satisfying (6) and such that Eg?_z = dyh,,, D" has no
particle content. In the spin-2 case the Cotton tensor is a
symmetric rank-2 tensor, see (18). So with ¢y = 2 we need
to solve the equation:

c

w = [E 060 ) hyg] = E(,’D,,. (55)

The D tensor must be symmetric and of second order in
derivatives. After a rather general ansatz D, ~ (aZh)W
we arrive, up to trivial redefinitions h,, — h,, + A, h,
(A # —1/3), at a general solution in terms of two arbitrary
real parameters (a, b), without loss of generality,

D,Ul/ = Dh;w - 8(”(9/)}1/,”) + aﬁﬂa,,h
+ (a0 hyp — b0y, (56)

Under the Wdiff gauge transformations (10) we have

8Dy, = 1, 0[2(a = b)d - A+ (a = 3b + 1)y]
+0,0,[2(a = 1)0 - A + 3ay]. (57)

The Wdiff invariance of the Cotton tensor 6C,, =
E(5D,,, = 0 for arbitrary values of (a, b) follows simply
from the tensor structure of 6D, . Notice that 6D, = 0 for
transverse diffeomorphisms (Tdiff): (9- A,w) = (0,0).
Thus, Eg)_z = dyh,, D" becomes the Tdiff theory in
D =2+1, see [31],

£8)5(a,b) = do[-0,h O hoy + 204K D, h,
— 0P h¥hy, + b, ho"h]. (58)

Now we point out an interesting connection with mass-
less spin-2 particles in D = 3 + 1. Namely, it is known [32]
that Tdiff is the minimal symmetry required for describing
helicity £2 particles in D = 3 + 1 in terms of a symmetric
rank-2 tensor /,,. The general solution (57) seems to
confirm that this is true also in D = 2 + 1, since we can

combine Lg‘i)_2(a,b) with the third-order Chern-Simons
term (53) and build up a third-order model that generalizes
the linearized topologically massive gravity and contains
helicity 2|m|/m particles. Such a model can be nonlinearly
extended to a topologically massive Tdiff gravity since the
metric determinant behaves as a scalar field under Tdiff.
Although there are descriptions of helicity +2 in D =
2 4 1 even without gauge symmetry, see [33], those models
require auxiliary fields besides the symmetric rank-2 tensor
h,,. The FP conditions are enforced via second class
constraints instead of local symmetries.

It is important to stress that (58) describes in general a
massless scalar field in D = 2 + 1. We can only have an
empty spectrum if we enlarge the Tdiff symmetry either to
unconstrained linearized diffeomorphisms (diff) by ﬁxing9
(a,b) = (1, 1) or to WTdiff (Weyl plus Tdiff) by choosing
(a,b) = (2/3,5/9). The second case has been investigated
in [24] and corresponds to the linearized version of
unimodular gravity; its higher spin analog, of second order
in derivatives, has been investigated in [34]. A possible
generalization of order 2s — 2 in D = 2 + 1 will be studied
elsewhere [35] from the point of view of gauge invariants.
Here we only work with the linearized Einstein-Hilbert

theory £, = £%,(1,1). In terms of the diff invariants
(51) we have, see also [1],

Egss)—z = Lign = 2dg [l V*
+ I,V y — Iy ) V*OIL ). (59)

Since we can redefine (I,_s, Irs_1, I25) = (9,7, p), the
equations of motion for those fields lead to the triviality of
the Einstein-Hilbert (EH) theory in D =2+41: ¢ =0 =
7=p.

Following (11) we can combine the Einstein-Hilbert
theory (59) with the third-order Chern-Simons term (53)
and build up the linearized version of TMG, choosing

(co-do) = (=mbgy, —m?>by),
5531 = ’C<2‘s)—l + ’ng)—z = Lrvic

= 2m*b |:723—2v4|:|723—2 — I Vo

- I,
—Izsv4<12s—2+ 2A_1>]~ (60)
m

Since the Lagrangian is linear on /,; we have the
functional constraint I,,_, = —ml,,_, which leads to
L5P | = 2m?by[I5,_, V(O — m?)I5,_,] confirming that
we have one physical massive mode content without
ghosts. Finally we simply add (54) and (60) in order to
produce the NMG parity doublet,

’Up to trivial shifts f,, — h,, + An,,h with 4 # —1/3.
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‘Cé)s = Linmc = 2by 12s—lv4(|:| - mZ)IZS—l

_ _ _ V4.
+ m2 Ly VO — m?) Iy + I, les (61)

where I, = I, — 2m?1,,_,. Since (I, s 1, I»,_,) are
independent degrees of freedom we confirm the doublet
ghost free content of the linearized NMG in a gauge
invariant way.

VI. SPIN-3

In the rank-3 case the Wdiff transformations (10)
become the following 10 equations:

5h/wa = a(/lAua) + MW a)» (62)

At first sight we have nine gauge parameters on the right-
hand side of (62); however, there are only eight independent
ones due to the redundancy 6(A,q, Wo) = (1,0, —0q). An
equivalent counting, valid for arbitrary spin s > 3 as we will
see in Sec. VIII, is to consider, without loss of generality, that
we can replace arbitrary diff in (62) by traceless diff A,,
(n**A,,, = 0). No redundancy is left in this case.

From (62) we have 10 —8 =2 gauge invariants. In
practice we can decompose y, and /_\;w according to
formulas similar to (30) and (50) and find out explicit
expressions for the eight independent gauge parameters in
terms of 5h,,,,, recall that Ay =A ;j- Plugging back in (62),
after some work, we have §i,; = 0 = di,,_; where the sixth
and fifth-order local Wdiff invariants are

i2s == V6h000 - 3V48j80h00j + 3V23j3k3%h0jk
— 8,0;0003hi + 30(V2D, 0 hojic — 9;0,0,00h 1),
(63)

izs_l = 3(818131(8%]111]( - 2v2808j(§kh0jk + v4(§jh001)
Introducing the helicity decomposition
hooo = p; hoo; = O;T + 31% (65)

hoj = éjékﬁbl + 0,0y + 8(,'8@4737 (66)

hj = éjgkglllfl + 3(,'31{31)1//2 + a(jakgl)V/S + 0,004,
(67)

and redefining the invariants we have

Iy, = iy, /V® = p = 30,1 + 300, + 3034, — Oyrs
— 30000y, (68)

Iyg_y = ipy_1/V® =3y — 60o¢p3 + 30%ws + Oy (69)

The next step is to write down Lgi) and £<2i~)—1 given in
(25) and (19), respectively, in terms of the gauge invariants
(68) and (69). This is much more complicated than in the
previous s = 1, 2 cases where the explicit substitution of
the helicity decomposition could be easily carried out. Now
we use a short cut. Namely, we suppose that in both cases
the searched Lagrangian has the form

L =LAl + I, Bl | + 1,,Cl,,_, (70)

where (A, B, C) are space time differential operators to be
found. We restrict the decomposition of (65)—(67) to the
smallest number of fields which allows us to find out
the unknown differential operators.'” We have found that
the most convenient choice is to keep only y; and y,. We
are left only with spatial components of the fundamental
field,

hijr = a'éjékll/l + 8(i8jak)l//2- (71)

Thus, we have

s impjn 3 ij gmn
céﬁ—bohlyk[e 06 ~ 2670 ekﬂ]DShmﬂp (72)

A A L 3 .. AA A
= boaiajakllll |:51m5]n5kp - Zél]5m’l5kpj| |:|3amanapl//]

+ bod ;000w {5}'"5@(55!’" —39i0m)

- %5"15*""([15@ - akap)] [POn0, 0w (73)
-veO . —Ve .

=by |:D1//l < 1 )D% +(=300y3) <T> (—3DW3)}

(74)

V0] v
= b, [1 25-1 (T) Loy + I <T) I 24 (75)

where [J@"™ = (16" — 9’0" and from (68), (69) we have
(15, Ips_1) = (=30r,, Oyy). Due to the fact that there is

always an odd (even) number of dual derivatives d acting

1OAlternatAivqu,Awe believe that it is possible to determine the
operators (A,B,C), up to an overall constant, by Lorentz
invariance, mass dimension, and locality as we have done in
some examples.
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on y; (y,) there are no cross terms y/; X y,; they vanish
due to 90 = 0. For the same reason we have dropped
several derivatives in (73). Notice that the two terms inside
parentheses in (73) have exactly led to the double time
derivatives required to produce the second term of (74)
which is a nontrivial check of (70). Similarly, for the fifth-
order spin-3 Chern-Simons term, using (71) again, we have

: o 1
L8| = cohyE™ [ngp - g0t } P
| 1 .
= cohyji {9’ "o — 19’1‘9"” } O - (76)

where we have used E” = €9, and defined

h?(np) = €imhm"1’ = —0,0,0,y1 4 0;0,0,y2 — 0;0(,0,)y>.

Notice that in ;. we have an odd (even) number of dual

derivatives O acting on y; (y,) while the opposite applies
for hj(n )’ therefore, only cross terms y; X y, show up in

(76) and we can neglect the last term of (77) due to
0 - 0 = 0. Consequently,

o 955 1 .
Egs)—l = CO[a a %) W+ 8 8 81{ 1/12] |:§/”5kp 45ﬂ<5np:|

Dz(_aiéngpl/” + 81‘8)13171//2)
6

. \Y%
= 2¢Oy, VO(=3004r,) = 2¢0 (I2s—1 TI%)' (78)

From (68) and (69) we see that we can define, with a
trivial Jacobian, the new fields (I, I,,_1) = (p,37) such
that I, and I,,_; are two independent fields as in the
previous spin-1 and spin-2 cases. So we can verify by
comparing (75) with (32) and (52) as well as (78) with (33)
and (53), that the canonical structure of £3, £ | remains
the same up to irrelevant overall numerical factors and
powers of —V? which can be absorbed in redefinitions of
the constants (by,cy) and of the invariants (I, I5,_;),
respectively. There is no obstacle in building up the spin-3
sixth-order self-dual model L3P, as originally suggested in

[15]. By combining £2 and E _, with ¢y = —mb, we
have a self-dual model with the same form of (35),

Egi)_z (f’ g) = dO #DaDZhﬂva
9
4

where the parameters (f, g) are so far arbitrary.

3
~ P~

3
g = byh wp [D <9/m9v/i9py — 4_1 Mvgaﬂ9ﬂ7>

1
_ mEﬂa (61}/39[)}’ — Zeﬂy0ﬁ7>:| Dzhaﬂ}’ (79)

:%{Im(_vz)lm +12s—1[_VZ(D_mz)]IZS—I}‘ (80)

From (68) and (69) we see that we can redefine the fields
such that I,,_y =p and [, = I,, + ml,,_; = 37. So the
particle content of (79) corresponds to only one propagat-
ing massive mode.

We move now to the investigation of the fourth-order

spin-3 Lagrangian L’g)_z = boh,, D", preliminarly stud-
ied in [23]. We need to find the symmetric D tensor which
solves the equation

C/wa = E( prva)7 (81)
where the spin-3 Cotton tensor can be obtained from (19) or
(17). The D tensor must be of fourth order in derivatives

Dy ~ (&*h h) (uq))- In the spin-2 case we have started from

a general second-order ansatz D, (8 h) . and required
(55). Alternatively, we could have obtalned (57) by
requiring instead that its variation under Wdiff had the
tensor structure 6D, = 9,0, F +1,,JG. This guarantees
the Wdiff invariance of the spin-2 Cotton tensor. The Cotton
tensor is uniquely determined by its local symmetry and
order in derivatives. Since F' and G must be linear functions
of 0 - A and y the required tensor structure is equivalent to
the Tdiff symmetry. The spin-3 and spin-4 cases are
completely analogous. In the spin-3 case, the symmetry of
the Cotton requires that under (62) we have 6D, =
0,0,0,F + [n(,,04G where F and G are linear functions
of LIA, 0'O"A,,

U

(pvax)

and 0"y ,,. This is equivalent to demand

/ Pl D = 0, (82)

where the 6 gauge transformations correspond to Wdiff with
the three scalar restrictions:

WA, =N=0=0'0"A,, =y, (83)

The general solution to (82) is a two parameter family of
Lagrangians,

3
3hyua PO + 2 0¥ h

2 By g Dp0, W0 1 DM h,, + g, (OO0 hy (84)
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The question is which values of the parameters (f, g)
render (84) an empty theory? The more symmetry, the less
content we have, so we must try to enlarge the & symmetry
as much as possible. In the spin-2 case the Tdiff symmetry
associated with the restrictions (9" A,,y) = (0,0) could be
enlarged either to diff (y = 0) or to WTdiff (¥A,, = 0). So
the idea is to lift the restrictions (83) as much as possible.
The reader can check that there is no solution for (f, g) if
we try to keep only one of the three restrictions (83), but in
case we keep two of them we have found some solutions. In
[35] we will make a general analysis including the more
complex spin-4 case. Here we stick to the case where the &
symmetry is enlarged to traceless spin-3 diff plus transverse
Weyl transformations (TWdiff),

2 9
R B R N

Correspondingly we define from (84) the fourth-order
spin-3 Lagrangian

5 (21 9
=), (— ——> at dy = —m2by.  (86)

The reason we choose (85) is twofold. First, it has
already been analyzed, in a fixed gauge, in [23] where it is
shown to have an empty spectrum.11 Second, there will be
an analogous case for spin-4 as we will see in the next
section.

Following our gauge invariant approach, due to the
restrictions (A, d"y,) = (0,0) we have seven independent
gauge parameters on the right-hand side of the 10 equa-
tions (62), thus we have 10 — 7 = 3 gauge invariants just
like the spin-2 Einstein-Hilbert case and the spin-1 Proca
mass term. By eliminating the seven independent gauge
parameters as functions of 64, and plugging back in (62)
we obtain two fifth-order invariants and a sixth-order one,
Sirg_1 = 0 = iys_; = Sip; Where (iny, irs_;) are the two
invariants under unrestricted transformations (62) given in
(63) and (64) while

is-y = 3[V20,0;01hyji +20,0,0,hi5 — 3V20;0hoj] + 3[0;01hoj — V20, hoo,]
+ V20,0;0hijx — 20,0,0:h; 5 + Vhopo.- (87)

After a convenient redefinition, in terms of helicity variables, we have

P
V2

7 ;25—1
I, | = = |-3I

=91 + 3by -+ Vg — 24y + 3(V2yrp + 200) | /(-2). (88)

As in (70) we assume that Egi)_z(21/16, —-9/4) = > Ik Ox 1, where the sum run over the three invariants (68), (69),

and (88) while Oy stands for a symmetric 3 x 3 matrix differential operator to be found. We have followed a two step
procedure. In the first step we keep only (1, w4) # (0,0) in the helicity decomposition (65)—(67) while in the second one

we assume (y1,y,) # (0,0) such that we respectively have

hjkl = 3;@&‘/’1 + 8jak8ﬂ//4 - (12s712s—1’72s—1) = (_83’//4, Uy, gy — V2W4/2)v (89)

hijk = 81‘3/'3/8//1 + 3(1'3,'5@1//2 - (125" 123—17723'—1) = (—351172’ Uy, —3(v21//2 + 2W2)/2)- (90)

Direct substitution in Ef) leads respectively to
Ly ==y VP, +y Vo[-0 + (3/4)V2Jyy,  (91)
Ly = Oy (=VO) Oy + 9,03 — V3o /4) - (92)

which uniquely determine the fourth-order
Lagrangian, compared with (36) and (37),

spin-3

""The spin-3 fourth-order Lagrangian (86) appeared in the
literature, see [36], even before [23]. We thank Prof. Karapet
Mkrtchyan for bringing that reference to our attention.

[
LY, = =do(Iyy Vol + Ty VoD + B, ,)  (93)

= —dy(Ipy | VoI5| + L,V + 212Sv4i2s—l
+ 72s—1 v4|:|72s—1) (94)
where we have defined

Iy, = V2(Ih + i2s—1) =2V2p —jp -3V
+3V2 (¢ +2V2¢)) + 3V2h, — 9V — Vir,.
(95)
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Notice from (63) and (87) that all sixth-order terms in the
combination I,,_, cancel out and we are left with at most
four derivatives of the fundamental field h,, which
justifies the lower index. Now an important technical point
must be stressed. In order to establish full analogy with the
spin-1 case we should be able to treat (I5,_;, Ir;_1, [»_») as
independent fields. Although I,,_; = 3y decouples from
I,,_, and I,,_,, due to the time derivatives on I' and p in
(88) and (95) it is not obvious that both ,,_; and I,,_, can
be treated as basic independent fields. In order to prove it
we first get rid of time derivatives in (88) redefining I" via
I,,_; = 3I'/2. After such redefinition (95) still has terms of
the type / which can be eliminated via ¢, = ¢ — 6%. The

final step is to redefine p according to I,,_, = 3V?p.
The reader can check that the triple change of variables
&, = M;x®x + G, with ®, = (T, ¢, p) and G, indepen-
dent of ®@; is such that all derivatives cancel out in the
Jacobian and we have det M = 1. Therefore, the fourth-
order theory given in (93) or (94), see also (84) with
(f,g) = (21/16,-9/4), has no particle content, in agree-
ment with the gauge fixed analysis of [23].

Since the spin-3 Lagrangian (94) has exactly the same
form of the Proca mass term (37), similarly for the spin-1
(33) and spin-3 (78) Chern-Simon terms, we can follow
the same steps leading to (40), with the choice
(co»dy) = (mby, —m?by), and obtain the fifth-order spin-
3 self-dual model suggested in [23] in terms of gauge
invariants,

1
£5P | = mbyh,,, E" (evﬂaw -1 9W9ﬂ7> P gy + L5

uup
(96)
by 2 7 2 2\F
:Z Imv Im +I2s(m -V )123
- —V3)(O - m?) -
+mly %12#1} (97)

where I, = I, + mly,_,, I,y = I, + m*I,,_, /(m* — V?)
and [,ff) is given in (86). Such a model is the spin-3 analog
of the linearized TMG. Notice however that it is not trivial
to show that (I,,,1,,_,.,1,,) are three independent degrees
of freedom. First we notice that y only appears in /,,, thus
the redefinition 7,, = 3mjy does not affect (I, I,,_;). Next
we redefine I' such that 7,,_; = —3T, then we make ¢, =
¢ — # in order to get rid of time derivatives of p in I,,,
and finally we redefine p such that I,, = 3V?(m? — V?)p.
It turns out that the whole Jacobian is trivial.

The doublet model £?, i.e., the spin-3 analog of NMG
has been suggested in [37] where it was obtained via
soldering of two self-dual models of opposite helicities +3

and —3 as given in (79) or in (96). The same result can be
obtained adding (79) and (96) with ¢, = mb,, i.e.,

gy 3 oo 3)
L2 = byh,,, (9# oPorr — et ﬁw) By + L4

(98)
b 6 2 27
=7 Ly [=V(O=m?)] Ly +mP 14
VO (O-m?)- - -
X(n%fvzrn)]%—l +123v4(m2_v2)12s}' (99)

VII. THE SPIN-4 CASE

In the rank-4 case the Wdiff transformations (10)
equations correspond to 15 equations:

5h/w(1/)’ = a(/,tAua/)’) + N ap)- (100)

By either considering A, a traceless tensor n**A, 3 =
Ap =0 or taking into account the vector redundancy
S(Avaps Wap) = (Nwap)> —O0a€p)) We see that (100) leads
to 15 — 13 = 2 Wdiff local invariants of eighth and seventh
order in derivatives, di,; = 0 = diy,_q,

i2s = V8h0000 - 4V68j60h00j + 6V48j8k8%h00jk - 4V28i8j8k8(3)h0,~jk + aiaj(?ka,aﬁhijkl

+ 6D[(v4éjékhoojk - 281'8](8180]’10]'](] + gj(e)kalama%hjklm] + Dzéjék(e)[émhjklm,

(101)

irs_1 = V00, hoo0; — 3V*0;0Dohoojic + 3V20,0;0,0hois — 0:0,0,0,03hijn

X D[vzéiéjékh()ijk - 8,-9/@1(8180}10'1(1]-

After the helicity decomposition

hoooo = p5

hoojic = 91‘81«451 + 3(j3k)¢2 + 0,03,

hoji = 3jékg'ﬂl/l + 8'(,'3/491)1//2 =+ a(jakgl)l//3 + 0,0, 0yps+,

hoooj = Oy + O,T.

(102)

(103)

(104)

(105)
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hiji = 0:0,0001B1 + 00,00y B> + 010,000y B3 + 010,000 By + 0;0,0,0,Ps. (106)

and redefining the invariants we obtain
Ly = in,/V8 = p— 41" + 6¢h3 + 60¢p, — 4034 — 12000y, + 94Bs + 028, (107)
Dyyoy = ing 1 /V® =y + 35 + Oy — O, — % Pa- (108)

In order to write down the eighth order Wdiff invariant Lagrangian (26) in terms of gauge invariants we assume that the
only nonvanishing fields are ; and f$,; therefore,

hiju = a'éjékél/}l + 3(1‘31‘8/(81)% = (I, Iayt) = (P41, —0py), (109)
E ) ) . gijemneklgpq
Egs) = bohi |:91mgjnekp91¢1 — giigmgkrgla 4 e L (110)
1 A A a o . A A A
= b, [ﬁlvg (1 -1+ §> OB + 00,010, o (0670 P 9'4 — 61i9™ 6~ 0!1)D),,,0,,0 ,0,1) 2
V8
= by [lzs?In +2125—1v85123—1} (111)

where we have used 9,0,,[J0"™ = V?93. Notice that no cross term f; x , appears due to the odd number of dual
derivatives 0 which leads to 0 -0 = 0. Regarding the seventh-order Chern-Simons term (20) we have

L)) = D hija 2070001 = 061G P, (112)
= —00,0,0,, (2675781 — 5" §7+84)V20,0,0,3, = —colay Vo1, (113)

where we have used E™ = ¢™9, and
iupg) = =€ Mnpg = =0:0,0,0,81 + 8;0,0,0,> — 0:[0,0,0 ). (114)

As in the spin-3 case, only the cross terms ; X 5, survive in (113) due to O - d=0.
Comparing (52) and (53) with (111) and (113) we see that the canonical structure of spin-2 and spin-4 cases basically
coincide. So the linearized NTMG (54) has its spin-4 counterpart, first suggested in [16], with ¢, = —mb, and we have

1
[’gsD — bU { h;wa/}D4 |:9,u/) 914/9{1/19[)’0 _ guvepygaﬂe[)’a + g 6;41/9/;}/9(1[)’ 9}»6:| h

pyic

1
P B (evﬂealeﬂv -3 ewaﬂﬁe/%) hw} (115)

= 200 n Vi + 1 [94(0 =  | (116)

where [,gss) is given in (110) while Egss)_l appears in (112); moreover I,,, = I,,/2 + 2ml,,_;. We can always change
variables (15,,, I,_1) = (p/2,7) and treat the two Wdiff invariants as independent degrees of freedom. So we have just one
massive mode in £5P as shown in [16] in a fixed gauge.

In order to find the spin-4 analogs of TMG and NMG we first need Eg?_2

), = / A3 xhy s DM (1) (117)
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where D*% (h) ~ 3%h is fully symmetric and satisfies

c

M

vap = E"D

(118)

praf)

where C,, 45 is the spin-4 Cotton tensor in flat space given in (20). As in the spin-3 case we can alternatively start from a

() _

rather general ansatz for Eé?_z with all possible contractions and require 6£5, , = 0 where the & transformations correspond
to (100) with all possible scalar restrictions on the gauge parameters,

0NNy =0-N=0=0"0"0"Nyq = 00w, =y,

(119)

The general solution to the § symmetry, or equivalently to (118), is given by a five parameter family of Lagrangians

LY ,[a,b,c,d, €] = dolhyuagTP W — Ry, TP+ 48, PP 0y — 20,H PO Ny,
+ 20, 20,050 + 50,0, WPV Ry + 40, W DO PP by
+ 20000 91y, 0p0,,0,0, BT+ ahTPh + bhTP0,0, 1" + c8,0, WO h,

+dh39,0,0,0,h"* + €0,0,1" 3,0,0,0,h,

where h = n*h,, = 11 5.

Once again we look for a subset of solutions with an
empty spectrum by requiring the maximal possible sym-
metry. First we have checked that there is no solution
invariant under full Wdiff (100) constrained by only one
of the restrictions (119). However, we have found at least
five sets of two restrictions for which all coefficients
(a,b,c,d,e) are fixed; they will be discussed elsewhere
[35]. Here we only analyze the case

0-A=0=0'0y, — (a,b,c,d,e)
3 2 1
— (gy_g’_lsgaQ')'

For convenience we define

(121)

£ =l [% —%,—1,%,2] at dy = —m2by. (122)
At first sight (121) does not seem to be a perfect spin-4
analog of (85). However, it turns out that if we start from a
general Lagrangian of the form (120) but with all 13
coefficients arbitrary and require invariance under (100)
with the restrictions (A,,9*0"y,,) = (0,0) we would
|

(120)

|

arrive exactly at (121). Likewise, in the spin-3 case, we
have checked that if we start from a fourth-order
Lagrangian of the form (84) but with all 7 coefficients
arbitrary and require symmetry under (62) with the restric-
tions (A, 0 -y) = (0,0) we would end up precisely with
(85). This means that instead of finding the higher spin
analogs of the EH theory by searching for the solutions to
(6) which have an empty spectrum, we can use instead a
gauge symmetry principle just like the EH theory is
completely fixed, up to trivial field redefinitions, by
requiring diff symmetry.

Henceforth we take (121) for granted. Note that the
transformations (100) restricted by o*A, =0 = 0"y,
still have a vector redundancy of the type discussed after
(100) but the vector must be transverse d*¢, = 0. This
means that we have in total 10 + 6 —2 —2 = 12 indepen-
dent gauge parameters12 in (100) which leads to 15 — 12 =
3 gauge invariants just like the previous s = 1, 2, 3 cases.
Solving (100) for the 12 parameters and plugging back in
(100) we obtain three gauge invariants diy, = 0 = diy,_| =
diy,_». Besides the known invariants of eighth and seventh
order given in (101) and (102) we have the sixth order
invariant:

iy p = ~[1(0,0;0,0,h;j1; — zvzajakhOOjk + V*hoo00) + 5[881‘8,‘31{81/%;1{1 + 2v23jékh00jk]

- Déiéjékélhijkl - 10V2[8i8j3k3,hijk, - 28]-8‘,68‘1/10]»,(, + vzéjékhoojk}.

In terms of helicity variables we have

- o . O . .
Ihyo = l2v62 =20V, — vz’ + 2063 — 2(gy + 4V2y) — VOB + fs) — 2V*p5 — 8V2j,.

(123)

(124)

'ZAlternatively, the four restrictions A, = 0 = 9"9"y,, also give 16 — 4 = 12 gauge parameters, and no redundancy is left in this case.
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In order to write down £<2i)—2 in terms of gauge invariants

we suppose that Egi)—z => k! Ok I, where the sum
run over the three invariants (107), (108), and (124). If we
first assume that the only nonvanishing fields are (3, f,)
and then (f;, fBs), direct substitution in (122) with the
constants given in (121) lead respectively to

s 3 ;
L3Lalprpo) = o PIVECRB) = 2.V, (125)

; 1 3, .
Egs)—Q[ﬁl’ﬁS] = §ﬂ1VIOD(V2 —200)Bs + Eﬂlvgm3ﬁh

(126)

where /3, = ; + ffs. Moreover, if we keep only (y,T'), the
only nonvanishing components will be hgy,; and they
are such that it is impossible to have a cross term y x I,
consequently 0.5 =0 = 0g;. From (125), (126) and
078 = 0 we obtain

s 1 _
ngg—z =dy [ZIz.s—lvglzs—l - 512.;V612s—2

> (127)

_2 72“,_2V4D72S_2} .

Comparing (111), (113), and (127) with the correspond-
ing formulas of the spin-2 case (52), (53), and (59) there is a
perfect match after a harmless redefinition (I, Ir,_») —
(215,5I5_,) in (127). However, we still have to worry
whether we can treat (I, I5,_;,I»_») given in (107),
(108), and (124) as independent degrees of freedom such
that the higher time derivatives can be properly hidden via a
change of variables in order to avoid ghosts. This is indeed
the case as we show now.

First we redefine y such that /,,_; = 7. This is a trivial one
field redefinition that does not affect either I, or I,,_,. Next
we redefine p such that /,;, = p which introduces higher time
derivatives of y, in I,,_,. They can be cancelled out after
[ =T — 30y, + (3/2)¢; which allows us to get rid also of
time derivatives of ¢ via y» = > — ¢b3/(10V2). Finally,
we redefine ¢; such that I,,_, = 2V?¢;. In summary, we
have a fivefold change of variables ®;, = M,;,®; + F,,
where ®; = (p,T',w,,¢3,7) and F; do not depend upon
®,, which leads to (I, Ir,_1,Is_2) = (p.7.2V?¢h3). One
can check that detM = 1.

Consequently we can define the spin-4 analogs of the
spin-2 linearized TMG and linearized NMG. In the first
case if we choose (¢, dy) = (—mbgy, —m*b,) we have

L3 = £(LS1“=A3)C? = —mbohy, ;T EM

1
x <9vﬂeaﬂeﬁﬂ - Eemeﬂﬁeﬁ”> hypio + L8 (128)

= 2m?b, |:;23—2v6|:|;25—2 — Iy Vi

- = 1
-1, V® <12s—2 + 2s—l):| :
m

where E?) is the sixth-order spin-4 Lagrangian in

(129)

(122). The three gauge invariants (72sa L1, 1 5) =
(21,5, 155_1,515,_5) can be obtained from (107), (108),
and (124). We can repeat the arguments given after (60)
and prove that (128) has only one massive propagating
mode. It is invariant under the Wdiff transformations (100)
constrained by 9 - A =0 = 90"y,

In the second case of the spin-4 linearized NMG model
we add the Lagrangians (115) and (128) such that the
higher spin Chern-Simons term cancel out and we have

L0 = LI(E\‘/‘[)G = byl ﬁD4 [gﬂpgwga/lgﬁa — QPO gho

I
+ geﬂveﬂmaﬁmv] Rppio + L3 (130)

=2bo[ly | VO (O—m?) Iy +m?* L, ,VH(O—m?) 15,
+72sv8723] (131)

where T, = I, — 2m2l,,_,. The spin-4 NMG theory is
also invariant under (100) restricted by the scalar con-
ditions 0+ A = 0 = *Py,.

VIII. GAUGE INVARIANTS AND
THE COTTON AND D TENSOR

In all cases s = 1, 2, 3, 4 worked out here we have been
able to find two invariants under (10), (i, irs_;), Which
play an instrumental role. The transformations (10) can be
rewritten without loss of generality as

Ohy, .y, = 8(#1/_\/42"'/4.;) W psoy) o (132)

where 2 A,,, ., = 0. Since all three tensors in (132) are
fully symmetric, their number of components in 3D is
given by

34.---B34+s-1) (s+1)(s+2)

N&h: ! = D) P
34.---34+s-2) 34.---3+s5—4)
N—: - :2 _17
A (s—1)! (s —3)! g
N 34.---3+s5-3) s(s—1)
v (s —2)! 2

Therefore we always have only two invariants under
(132) for arbitrary integer spin-s,
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(s+1)(s+2) s(s—=1)

N =
! 2

—[2s—1+ ]_2. (133)

On the other hand, the Cotton tensor C,, ..., is also fully
symmetric, transverse, and traceless, see (5). Therefore, the
same counting applies to C,, ..,  which must have only two
independent components invariant under (132). This raises
the question about the connection between the invariants
and the Cotton tensor. For all cases presented here we

have found Egss)_l ~2¢Coing_ 1V iy, = Cohy, .y CH1Hs
Since hy.., and @jhoo...j appear linearly in i,; and
in iy, respectively, from the functional derivatives
068551 /0hg.; and  8Sy,_1/Shoy.0, We learn that
(ing, Ing_1) ~ (8jC00...j,Co...o). We have confirmed in all
cases s = 1, 2, 3, 4 that this is indeed the case. Thus, we do

not need to solve for the gauge parameters in (132) in terms
of h,,, .., in order to obtain (i, ir_).

Whenever we consider the Lagrangian Egss)_2 the number
of symmetries is decreased by one unit and consequently
we need one more gauge invariant which corresponds to
I,,_, (odd spin) or to I,,_, (even spin). In the even spin
cases s = 2, 4 we see that I,, appears linearly in Egi)_z, see
(59) and (127). Since [is only present in /,, see (51) and

(128), it turns out that a,DOO,,,jJZS_Z, so we have a
shortcut to obtain also I,,_,. In the odd spin case we have
not been able to find any shortcut for 7,,_; which might
avoid long calculations involving the elimination of the
gauge parameters in the gauge transformations (10).

IX. CONCLUSION

Here we have suggested spin-4 analogs of the linearized
TMG and linearized NMG, see (128) and (130), respec-
tively. Although those models are of seventh and eighth
order in derivatives, respectively, we have shown that they
are ghost-free and moreover they have exactly the same
canonical structure of their spin-2 counterpart when written
in terms of appropriate gauge invariants, see (129), (131)
and compare with (60) and (61). The canonical structure of
the linearized spin-4 NTMG (115), suggested in [16], also
coincides with its spin-2 counterpart, compare (54) with
(116). We have also shown that the spin-3 linearized TMG,
NTMG, and NMG have the same canonical structure of the
spin-1 first-order self-dual model of [28], Maxwell-Chern-
Simons and Maxwell-Proca models, respectively.

An important ingredient for higher spin linearized TMG
and NMG is the D tensor in the action E(zss)—z' It is the tensor
whose symmetrized curl is the Cotton tensor (6). This
condition guarantees that the self-dual model of order
2s — 1 built by combining ££i>_l and Eg‘?_z, see (11),
contains particles with helicity s|m|/m. However, there
might be further particles including ghosts. In general, the
condition (6) leads to a multiparametric family of

Lagrangians £ ,. In the rank-2 case £}, becomes the
two parameter family of Tdiff models [31] which in D =
2 41 contains only a scalar field in the spectrum which
might have a wrong overall sign depending on the
parameters of the model. Consequently the third-order
self-dual model defined in (11) might contain a scalar
ghost besides the helicity 2|m|/m particle. In order to avoid
such extra modes we have learned from previous works

[1,13,23,24,29] that Egss)_z must have an empty spectrum. In
the spin-2 case this leads to only two possibilities. Namely,
either Tdiff is extended to diff (Einstein-Hilbert) or to
WTdiff (linearized unimodular gravity). The corresponding
self-dual models become the TMG of [1] and the unim-
odular TMG of [24] respectively.

For higher spins s >3 we are still investigating [35]

possible candidates for Egi)_z satisfying (6) and without
particle content. There is, however, at least one natural
higher spin version of the linearized Einstein-Hilbert (LEH)
theory in D =2+ 1 in the s = 3 and s = 4 cases. In the
s = 3 case it is the fourth-order Lagrangian given in (86);
see [23]. It is invariant under (62) restricted by
A=0=0"-y, The s=4 case corresponds to the
sixth-order Lagrangian in (122) which is invariant under
(100) with the restrictions 9,A* = 0 = 9"0"y,,,. Just like
the LEH theory in D =2 + 1, we have shown here, in a
gauge invariant way, that both (86) and (122) have no
particle content.

The Lagrangians L gy, Ef), and E?) share another
interesting feature. The LEH theory is uniquely determined
by its order in derivatives and invariance under linearized
diffeomorphisms. Likewise (86) and (122) are uniquely
determined by their order in derivatives and invariance
under restricted A and Weyl transformations. Namely, if we
start with a Lagrangian of the form (84) but with all seven
terms with arbitrary coefficients and require invariance
under (62) restricted by A =0 = 9y, we end up with

££3>. Similarly, beginning with a Lagrangian of the form
(120) with 13 arbitrary constants and demanding invariance
under (100) restricted by A, =0 = 0'0"y,, we arrive

precisely at Eg”. Notice that there is no need of requiring
(6). From this point of view Eg?_z is on the same footing of

£ and £5) | —they are all completely determined by their
order in derivatives and a local symmetry, namely a
restricted conformal higher spin symmetry. Moreover,

(Lyign, £§3>, £é4>) all have one less symmetry than Wdiff
(10). It is tempting to generalize the above symmetry
restrictions for arbitrary integer spins in order to infer an
arbitrary spin-s canonical structure for all singlets of order
2s and 2s — 1 and doublets of order 2s.

We point out that the method we have used here for
investigating the particle content of higher derivative
theories dispenses the use of gauge conditions which clarifies
the underlying canonical structure. Furthermore, it holds
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oft-shell which is especially useful for the doublet models
L2 with both helicities &s where the relative sign of the two
massive modes is crucial for absence of ghosts. We mention
that the extension of the gauge invariant formulation to
curved backgrounds is very promising, see [38]. Regarding
the generalization of our self-dual models of order 25 — 1 to
curved backgrounds see the recent work [39].

Instead of stepping down the ladder of higher spin self-
dual models mentioned in the Introduction as we have done
here going from the eighth-order spin-4 self-dual model to
the seventh-order one, one might try to go up the ladder
starting from the first-order spin-4 self-dual model of [40].
However, arecent attempt, see [41], along such direction gets
stuck apparently at the fourth-order model which is the same
order at which the spin-3 case stops [14]. One might try13
to go up the ladder by either using the master action

PWe thank an anonymous referee for an inspring question
about that point.

or the Noether gauge embedding procedure starting from
the first-order action of [42] for arbitrary spin self-dual
models.

Finally, we noted that the most general D-tensor
solution to (6) in the spin-2 case leads to Tdiff (transverse
diffeomorphisms) theories. It is known that Tdiff is the
minimal symmetry for massless spin-2 particles in D =
3 + 1 which can be related to massive particles of helicity
+2in D = 2 4+ 1 via dimensional reduction. Since for s =
3 and s = 4 the D-tensor definition (6) can be traded into a
symmetry principle under general transformations (10)
restricted by scalar constraints, see (83) and (119), it may
be worth investigating the role of those symmetries
inD=3+1.
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