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Within quantum field theory on a global monopole spacetime, we study thermal effects on a naked
singularity and their relation to boundary conditions. We first obtain the two-point functions for the ground
state and for thermal states of a massive, arbitrarily coupled, free scalar field compatible with Robin boundary
conditions at the singularity. We then probe these states using a static Unruh-Dewitt particle detector. The
transition rate is analyzed for the particular cases of massless minimally or conformally coupled fields at finite
temperature. To interpret the detector’s behavior, we compute the thermal contribution to the ground-state
fluctuations and to the energy density. We verify that the behavior of the transition rate, the fluctuations, and
the energy density are closely intertwined. In addition, we find that these renormalized quantities remain finite
at the singularity for, and only for, the Dirichlet boundary condition.
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I. INTRODUCTION

The singularity theorems from the 1960s and 1970s
clarified that singularities are not just a consequence of
highly symmetrical scenarios—they are endemic to general
relativity [1]. Notwithstanding, it is not unreasonable to
expect naked singularities to be absent in nature. On the
one hand, the cosmic censorship conjecture stipulates that
singularities, in our Universe, shall always be hidden by a
horizon. On the other hand, naked singularities naturally
emerge in some (theoretical) scenarios—white holes,
cosmic strings, and global monopoles [2]. Ultimately,
the consensus is probably that the matter can only be fully
resolved within a theory of quantum gravity. Be that as it
may, semiclassical analysis such as quantum field theory on
curved spacetimes can elucidate the path towards a better
understanding of the interface between quantum physics
and general relativity.
Semiclassical analyses have brought to light several

physical phenomena. Amongst these, two are noteworthy:
Hawking radiation, which concerns the particle production
constituting the final process in the life of a black hole [3],
and the quantum dressing of a naked singularity due to

backreaction effects. Regarding the latter, it has been
shown that scalar perturbations of a negative mass
Bañados-Teitelboim-Zanelli black hole brings about a
horizon of Planckian radius covering its previously naked
singularity [4]. Maybe nature indeed hinders naked singu-
larities; however, there might be more than one mechanism
to do so besides the existence of a horizon. With Hawking
radiation in mind, one may wonder if evaporation could be
another one.
Motivated by the above discussion, in this work we study

thermal effects within quantum field theory on a naked
singularity spacetime and their dependence on the admis-
sible boundary conditions. Specifically, we consider a free,
scalar quantum field theory on a global monopole space-
time. Global monopoles arise when a global symmetry is
spontaneously broken [2]. According to grand unified
theories, they can result from phase transitions in the early
Universe. A global monopole spacetimeM is described by
the line element

ds2 ¼ −dt2 þ dr2 þ α2r2dθ2 þ α2r2sin2θdφ2; ð1Þ

where t ∈ R yields a global, timelike, irrotational Killing
vector field ∂t, r ∈ ð0;∞Þ, θ ∈ ½0; πÞ, and φ ∈ ½0; 2πÞ. The
parameter α ∈ ð0; 1Þ gives rise to a solid angular deficit. In
particular, the hypersurface θ ¼ π

2
corresponds to a cone

with a deficit angle of 2πð1 − αÞ. In these coordinates, the
Ricci and the Kretschmann scalars are, respectively,

R ¼ 2ð1 − α2Þ
α2r2

and K ¼ R2 ð2Þ
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and the metric associated to (1) solves Einstein field
equations with a classical energy-momentum tensor whose
only nonvanishing components are

Ttt ¼ −Trr ¼
R
2
: ð3Þ

It follows that the singularity at r → 0 is naked, timelike,
and of curvature type. Accordingly, M is a static, geo-
desically incomplete, nonglobally hyperbolic spacetime on
which the propagation of quantum fields depends on the
choice of boundary condition at the singularity.
For the establishment of a quantum field theoretical

framework, the first step consists of obtaining physically
sensible two-point functions. Since global monopoles are
not globally hyperbolic spacetimes, the Klein-Gordon
equation gives rise to an initial-boundary value problem.
That is, given suitable initial data on a spacelike surface,
corresponding solutions, if they exist, are specified by
boundary conditions, yielding inequivalent dynamics.
Amongst the possible boundary conditions to be imposed,
we restrict our attention to the ones that generate physi-
cally sensible dynamics in the sense of Ishibashi and
Wald [5,6]. Namely, we focus on the ones that bring about
self-adjoint extensions of the radial part of the Klein-
Gordon operator.
In Ref. [7], it was shown that the sensible dynamics for a

scalar field around a global monopole are prescribed by
Robin boundary conditions at the singularity. Given this
infinite class of nonequivalent dynamics, Ref. [8] extended
the analysis of Dirichlet quantum fields in the global
monopole spacetime considered in Ref. [9] to include
these nontrivial Robin boundary conditions. Following
the same reasoning, we study thermal states for quantum
fields with Robin boundary conditions, generalizing the
results of Ref. [10], where only the Dirichlet boundary
condition was considered.
Our interest lies not only in investigating thermal effects

on naked singularities, but also in studying them together
with the impact of having different, inequivalent, physically
sensible dynamics engendered by the naked singularity.
With the corresponding two-point functions in hand, we
can probe these different quantum states within the particle
detector approach. To this goal, we consider an Unruh-
DeWitt detector following a static trajectory and interacting
with a quantum state on a global monopole spacetime via a
monopole-type Hamiltonian operator; see, e.g., Ref. [11]
and the references therein. In the infinite interaction time
limit and up to first-order perturbation theory, the instanta-
neous transition rate _F of the detector coincides with the
Fourier transform of the pullback GðsÞ along the detector
trajectory, parametrized by the proper time interval
s ¼ τ − τ0, of the two-point function of the underlying
field evaluated at the detector’s energy gap Ω:

_F ¼
Z
R
dse−iΩsGðsÞ: ð4Þ

The transition rate characterizes the probabilities of exci-
tations, for Ω > 0, and deexcitations, for Ω < 0, of the
detector. In general, the transition rate can be seen as a
function of the detector’s trajectory, of its energy gap, and,
of course, of the quantum state to which it is coupled. We
obtain expressions that can easily be studied numerically
for an arbitrary parameter set, but we focus on the response
of a detector coupled to thermal states of massless,
minimally or conformally coupled fields. In addition, for
a given state on a fixed global monopole background, we
see _F merely as a function of the distance between the
detector and the naked singularity by fixing an arbitrary
energy gap Ω > 0, and we compare its behavior for
different deficit angles and different boundary conditions.
Last, to paint a better picture of the consequences of

taking thermal effects together with different boundary
conditions into account, we compute the thermal contri-
butions to the expectation value of the field squared and the
energy density of renormalized thermal states. Such quan-
tities have been computed at the ground state with Dirichlet
and Robin boundary conditions [8,9], and at thermal states
with the Dirichlet boundary condition [10]. Yet, as for the
two-point functions, considering both thermality and gen-
eral boundary conditions renders a novelty character to
our work.
We proceed as follows. In Sec. II, we construct the two-

point functions for the ground state and for thermal states.
Then, we obtain an analytic expression for the transition
rate, in Sec. III, and we study it, numerically (by truncating
an infinite sum), for the case of massless, minimally and
conformally coupled fields at finite temperature. In Sec. IV,
we summarize the results concerning the thermal fluctua-
tions and the energy density of the renormalized thermal
state and we discuss its relation with the behavior of the
detector. Final remarks are included in Sec. V.

II. TWO-POINT FUNCTIONS

In this section, we obtain two-point functions for the
ground state and for thermal states of a free, scalar, massive
quantum field theory on a global monopole spacetime M.
We avail of a standard procedure that applies on static
spacetimes, as performed and detailed in Refs. [12–15].
First, in Sec. II A, we obtain the solutions of the Klein-
Gordon equation by mode expansion. Second, we invoke
spectral theory of second-order partial differential operators
to study the radial equation. Its Green’s function is unique
up to the choice of a boundary condition at the naked
singularity, as specified in Sec. II B. The symmetries of the
spacetime, together with the Klein-Gordon equation, the
canonical commutation relations, and the restriction to
sensible dynamics completely determine the integral kernel
of two-point functions for physically sensible, quasifree
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ground and thermal states of a local Hadamard form. This is
detailed in Sec. II C, where we also write down their
explicit expressions.

A. The Klein-Gordon equation

Let us consider a free scalar field Ψ∶M → R with mass
m0 ≥ 0, coupled to the scalar curvature by a coupling
parameter ξ ≥ 0. Its dynamics is described by the Klein-
Gordon equation:

PΨ ¼ ð□ −m2
0 − ξRÞΨ ¼ 0: ð5Þ

We consider solutions that can be written in the form

Ψω;lðt; r; θ;φÞ ¼ e−iωtRðrÞYm
l ðθ;φÞ; ð6Þ

where Ym
l ðθ;φÞ are the spherical harmonics with eigen-

values −lðlþ 1Þ, while the function RðrÞ satisfies the
Bessel equation

R00ðrÞ þ 2

r
R0ðrÞ þ

�
p2 −

λl;ξ;α
r2

�
RðrÞ ¼ 0; ð7Þ

with

p2 ≔ ω2 −m2
0; ð8Þ

λl;ξ;α ≔
lðlþ 1Þ þ 2ξð1 − α2Þ

α2
: ð9Þ

A basis of solutions fR1; R2g of (7) is given in terms of
the spherical Bessel functions of the first and second kinds
([16], Chap. 10), respectively, jν and yν:

R1ðprÞ ¼ jνðprÞ; R2ðprÞ ¼ pyνðprÞ; ð10Þ

with index

ν ≔
−1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4λl;ξ;α
p

2
≥ 0: ð11Þ

The solutions (10) are normalized in order to have a unit
Wronskian, and their dependence on p is made explicit for
notational convenience. Clearly, any linear combination
of (10) solves the radial equation (7). However, not all of
them yield self-adjoint extensions for the radial part of the
Klein-Gordon operator. In the next section, we show how
to restrict the space of radial solutions to a self-adjoint
domain.

B. Robin boundary conditions

Self-adjoint extensions of a partial differential operator
are in correspondence with its square-integrable solutions.
Taking the radial equation as a Sturm-Liouville problem
with eigenvalue p2 singles out the appropriate Hilbert space

of solutions—the space of square-integrable functions with
respect to the measure qðrÞ ¼ r2. By direct inspection, and
taking into account Weyl’s endpoint classification, we find
that r → ∞ is a limit point, and that r → 0 is a limit point
for l > 0, but a limit circle for l ¼ 0. By ([17], Theorem
10.4.5), it follows that there is a one-parameter family of
(generalized) Robin boundary conditions that can be
chosen for l ¼ 0 at r → 0 consistently with self-adjoint
extensions.
Let us parametrize the Robin boundary conditions by γ

and let us define the auxiliary quantity γl by

γl ≔
�
γ ∈ ½0; πÞ; if l ¼ 0;

0; if l > 0.
ð12Þ

The most general solution that is square integrable at the
endpoint r → 0 and yields self-adjoint extensions for the
radial part of the Klein-Gordon operator can be written as

RγlðprÞ ≔ cosðγlÞR1ðprÞ − sinðγlÞR2ðprÞ: ð13Þ

Since R1 is the principal solution, the self-adjoint extension
determined by taking γ ¼ 0 corresponds to the Friedrichs
extension and we refer to this particular case as the
Dirichlet boundary condition. Also, note that for l > 0,
the solution (13) indeed reduces to the principal solution.
By standard methods of singular Sturm-Liouville theory

([17], Chap. 10) we can construct the Green’s function of
the radial equation (7). Following exactly the same pro-
cedure as in [12–15] and invoking precisely the same
symmetry arguments for performing the contour integra-
tion, the spectral resolution of the radial Green’s function
gives rise to the following identity [mind that p ¼ pðω2Þ as
per Eq. (8)]:

Z
∞

m2
0

dω2
p
π

RγlðprÞRγlðpr0Þ
cosðγlÞ2 þ p2 sinðγlÞ2

¼ −
δðr − r0Þ
qðrÞ : ð14Þ

The identity above fixes the integral kernel of the two-point
functions, as we show in the next section.

C. Ground and thermal states

A physically sensible two-point function on a global
monopole spacetime M is a positive bidistribution
Gβ;γ ∈ D0ðM ×MÞ that solves the Klein-Gordon equation
in each entry and is of local Hadamard form. Taking into
account that M is static and spherically symmetric, and
given the addition formula for the spherical harmonics, we
consider the following ansatz for the integral kernel of Gβ;γ:

Gβ;γðx; x0Þ ¼
X∞
l¼0

Z
∞

0

dωT βðt; t0ÞRγðr; r0ÞΞðθ;φ; θ0;φ0Þ;

ð15Þ
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where x ¼ ðt; r; θ;φÞ ∈ M,

Ξðθ;φ; θ0;φ0Þ ≔ 2lþ 1

4π
PlðcosðθÞ cosðθ0Þ

þ sinðθÞ sinðθ0Þ cosðφ − φ0ÞÞ; ð16Þ

and Pl is the Legendre function of first kind.
The time function T βðt; t0Þ specifies the support of Gβ;γ

with respect to the Fourier frequency ω. In turn, its support
specifies the nature of the corresponding state. The two-
point function of a ground state has support over positive ω
frequencies; hence, we take

T ∞ðt; t0Þ ¼ e−iωðt−t0−i0þÞ: ð17Þ

The two-point function of a thermal state at inverse
temperature β with respect to the Killing field ∂t is one
that satisfies the KMS condition; see, e.g., Ref. [18]. This
property is guaranteed to hold when taking

T βðt; t0Þ ¼
e−iωðt−t0−i0þÞ

1 − e−βω
þ eþiωðt−t0þi0þÞ

eβω − 1
: ð18Þ

Note that T ∞ðt; t0Þ is in fact the zero-temperature limit
(β → ∞) of T βðt; t0Þ and that the forms of both the time
and the angular parts of ansatz (15) are restricted by the
symmetries of the spacetime. However, the radial part
Rγðr; r0Þ depends on the particular form of the metric.
Specifically, it is related to the Green’s function of the
radial part of the Klein-Gordon equation and it is uniquely
determined, up to the choice of boundary conditions, by
the canonical commutation relations, as we state in the
following.
Analogously to the cases detailed in [12–15], it happens

that ansatz (15) satisfies the canonical commutation rela-
tions provided the function Rγ is symmetric under the
mapping r ↔ r0 and if

Z
∞

0

dω2Rγðr; r0Þ ¼ −
δðr − r0Þ
ηðrÞ ; ð19Þ

where ηðrÞ is such that ηðrÞ sinðθÞ ¼ ffiffiffiffiffijgjp ¼ α2r2 sin θ.
On the other hand, expression (19) is closely related to the
spectral resolution of the Green’s function of the radial
equation. By comparing expressions (14) with (19), we
directly obtain

Rγðr; r0Þ ¼ Θðω −m0Þ
p
πα2

RγlðprÞRγlðpr0Þ
cosðγlÞ2 þ p2 sinðγlÞ2

: ð20Þ

Two-point functions constructed as above are guaranteed
to yield physically sensible dynamics due to Wald and
Ishibashi’s work concerning static nonglobally hyperbolic
spacetimes [6] and to be of local Hadamard form due to a
general result by Sahlmann and Verch regarding the UV

behavior of ground and thermal states on static spacetimes
[19]. Altogether, we conclude that two-point functions with
integral kernels given by (15), (16), and (20) characterize
well-defined thermal states at inverse-temperature β ∈
ð0;∞Þ with respect to the Killing field ∂t when T βðt; t0Þ
is given by Eq. (18). For T βðt; t0Þ given instead by the
limiting case (17), (15) then characterizes a ground state
and we shall denote it G∞;γ .
We emphasize that even though expression (15)

seems rather abstract, the integral can be analytically
performed in some particular cases; e.g., for α → 1 and
γ ¼ 0 it gives the standard closed-form expressions on
Minkowski spacetime. Still, for a general set of param-
eters, expression (15) is suitable for numerical analyses. In
particular, when considering field fluctuations, numerical
integration can be performed after taking the coincidence
limit x0 → x by invoking the Lebesgue dominated con-
vergence theorem.

III. TRANSITION RATE

Consider an Unruh-DeWitt detector with energy gap Ω
following a static trajectory of fixed spatial coordinates
ðr; θ;φÞ. The Fourier transform of G∞;γ , given by (15) with
(17), along such trajectory gives the transition rate of the
detector when coupled to the ground state for an infinite
proper time, as per (4):

_F∞;γðrÞ ¼
Θð−Ω −m0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 −m2

0

p
2πα2

×
X∞
l¼0

2lþ 1

cosðγlÞ2 þ ðΩ2 −m2
0Þ sinðγlÞ2

×
�
Rγl

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 −m2

0

q
r
�	2

: ð21Þ

Note that _F∞;γðrÞ is independent of the angular position
of the detector and vanishes identically for excitations
(Ω > 0), as expected to occur for a Boulware-like ground
state. When coupled to a thermal state, as per (15)
with (18), the transition rate reads instead

_F β;γðrÞ ¼
signðΩÞ
eβΩ − 1

½ _F∞ðrÞjΩ↦−jΩj�: ð22Þ

Both expressions (21) and (22) hold for massive,
arbitrarily coupled fields and α ∈ ð0; 1�. The l sum can
be analytically performed only in particular limiting cases.
Yet, in any case, numerical analysis are easily performed
due to the fast convergence of the sum in l. In the
following, we discuss the transition rate of a detector
coupled to a thermal state for a massless, minimally or
conformally coupled, scalar field, and we study its behavior
with respect to its distance from the naked singularity.
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A. Minimal coupling

Before discussing the numerical analysis, let us present
some analytical considerations. For now, set ξ ¼ 0.
In the limit α → 1, the spacetime corresponds simply to
Minkowski spacetime with a boundary1 at r → 0. Let us
consider this scenario for the sake of comparison, denoting

_FMink
β;γ ðrÞ ≔ lim

α→1

_F β;γðrÞ: ð23Þ

In addition, for γ ¼ 0 (23) yields the expected result on
Minkowski spacetime with no boundary:

_FMink
β;0 ¼ ΘðjΩj −m0Þ

2π

signðΩÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 −m2

0

p
eβΩ − 1

: ð24Þ

Given that limr→0 jνðprÞ ¼ δν;0 and that ν ¼ 0 only if
l ¼ 0 (and ξ ¼ 0), it follows that at r → 0 only the l ¼ 0

mode contributes to _F β;γðΩÞ. To put it in another way, in
the r → 0 limit the detector is only affected by s waves.
This is expected since we recover spherical symmetry as we
approach the singularity. Consequently, for any γ ≥ 0, close
to the naked singularity we have

lim
r→0

_FMink
β;γ ðrÞ ¼ _FMink

β;0 · cγ ð25Þ

where cγ is a constant given by

cγ ≔ lim
r→0

RγlðprÞ2
cosðγlÞ2 þ ðΩ2 −m2

0Þ sinðγlÞ2





l¼0

: ð26Þ

For arbitrary α instead, the following holds [see Eq. (21)]:

lim
r→0

_F β;γðrÞ ¼
1

α2
lim
r→0

_FMink
β;γ ðrÞ: ð27Þ

The behavior of the transition rate as the detector
approaches the naked singularity on a global monopole,
as given by (27), is analogous to that of a detector
approaching a cosmic string. The Unruh-deWitt detector
around a cosmic string was studied in Ref. [20] considering
the Dirichlet boundary condition. There, the same behavior
for the transition rate was obtained, namely,

lim
r→0

_F β;0ðrÞ ¼
1

α2
lim
r→0

_FMink
β;0 :

Notice that Eq. (27) gives a more general result since it does
not depend on the choice of the boundary condition. We
should emphasize that the admissible boundary conditions
at the global monopole singularity r → 0 are much simpler

than the ones at the cosmic string singularity z ¼ 0
(see [21], for instance). This justifies our choice for the
global monopole as a toy model for spacetimes with naked
singularities.
In addition, for all r, the contribution from the l ¼ 0

mode is such that

_F β;γðrÞjl¼0 ¼
1

α2
_FMink
β;γ ðrÞjl¼0: ð28Þ

Explicitly, for m0 ¼ 0, the transition (22) simplifies to

_F β;γðrÞ ¼
1

2πα2
Ω

eβΩ − 1

X∞
l¼0

ð2lþ 1Þ½RγlðjΩjrÞ�2
cosðγlÞ2 þ Ω2 sinðγlÞ2

: ð29Þ

Expression (29) with ξ ¼ 0 is the one we consider in the
following numerical analysis. For that, we perform the sum
in l from zero up to lmax, as specified in the captions of
each plot.

1. With respect to α

Let us consider the Dirichlet case γ ¼ 0. As illustrated
in Fig. 1, at large r, _F β;γðrÞ approximates, and oscillates
around, the value of the transition rate in Minkowski, i.e.,

lim
r→∞

_F β;γðrÞ ∼ _FMink
β;γ ðrÞ: ð30Þ

The behavior close to the singularity is most clear in Fig. 2,
which is consistent with Eq. (27). Note that as r → 0, all
curves converge to the same value as that for α ¼ 1.

2. With respect to γ

Figure 3 encapsulates the main result we find. Namely,
for any boundary condition γ > 0, the transition rate
diverges at r → 0. Explicitly, using Eqs. (23)–(27), it

FIG. 1. The transition rate for the thermal state with m0 ¼ 0,
ξ ¼ 0, β ¼ 1, Ω ¼ 1, γ ¼ 0, lmax ¼ 10 and, from top to bottom
with respect to the apex, α ∈ f0.6; 0.7; 0.8; 0.9; 0.99999; 1.0g.
Note that the dashed line, for which α is close to 1, shows
essentially the same behavior as for α ¼ 1.

1Precisely, r → 0 is actually the line ðt; 0; θ;φÞ with topology
R × S2, which is not a mathematical boundary but can be seen as
a physical boundary.
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follows that close to the singularity the transition rate
diverges with r−2 if γ ≠ 0 since

_F β;γðrÞ ∼r→0
σβ;γ

�
cosðγÞ þ sinðγÞ

r

	
2

; ð31Þ

where

σβ;γ ≔
1

α2

_FMink
β;0

cosðγÞ2 þΩ2 sinðγÞ2 > 0: ð32Þ

In other words, only for the Dirichlet boundary condition
does the spontaneous emission rate of a detector interacting
with a thermal state remain finite at the naked singularity.
In Sec. IVA, we show that the quantum fluctuations as

well as the energy supplied by the field are also divergent
when the transition rate is divergent.

B. Conformal coupling

For ξ ¼ 1
6
, α ∈ ð0; 1Þ, and γ ≥ 0, the parameter ν is never

zero. This implies that in the limit r → 0 even the l ¼ 0

contribution vanishes for γ ¼ 0; hence, the transition rate,
given by Eq. (29) for a massless field, satisfies

lim
r→0

_F β;0ðrÞ ¼ 0: ð33Þ

It follows that, as a function of r for several α’s, the
behavior of the transition rate illustrated in Fig. 4 is quite
different from the minimally coupled case as in Fig. 1.
However, for large r, _F β;γðrÞ also approximates, oscillating
around, its respective value on Minkowski spacetime. The
plot of _F β;γðrÞ for several boundary conditions is analo-
gous to Fig. 3 in the sense that, for γ > 0, the transition rate
diverges at the singularity, with the only difference being
that in this case it vanishes in the limit r → 0 for γ ¼ 0.
Taking into account the asymptotic behavior of the

Bessel functions ([16], Chap. 10), Eqs. (21) and (22) give

_F β;γðrÞ ∼r→0
σ̃β;γ

sin2ðγÞ
r2ð1þν0Þ ; ð34Þ

where

σ̃β;γ ≔ σβ;γ
22ν0Γðν0 þ 1

2
Þ2

πΩ2ν0
> 0; ð35Þ

with σβ;γ given by Eq. (32) and

ν0 ≔ νjl¼0 ¼
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ð1−α2Þ

3α2

q
2

> 0: ð36Þ

IV. DISCUSSION

Given that excitations cannot occur for a static detector
coupled to a ground state, the thermal contribution solely
accounts for the spontaneous emission displayed by a
detector coupled to a thermal state. To understand the
behavior of the detector in the latter case, as summarized in
the last section, we analyzed the thermal contribution to the

FIG. 3. The transition rate for the thermal state with m0 ¼ 0,
ξ ¼ 0, β ¼ 1, Ω ¼ 1, α ¼ 0.99999, lmax ¼ 10 and several values
of γ. The dashed line corresponds to γ=π ¼ 0.001 and it shows a
drastically different behavior as that of γ ¼ 0.

FIG. 4. The transition rate for the thermal state with m0 ¼ 0,
ξ ¼ 1

6
, β ¼ 1, Ω ¼ 1, γ ¼ 0, lmax ¼ 10 and several α’s.

FIG. 2. The transition rate multiplied by α2 with the same
parameters of Fig. 1.
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ground-state fluctuations and to the energy density. Before
discussing the results, let us properly define these two
quantities.
Let ΔGβ;γðx; x0Þ ≔ Gβ;γðx; x0Þ − G∞;γðx; x0Þ, where the

two-point functions are given by (15), respectively, with
(18) and (17). The thermal contribution to the ground-state
fluctuations is given by

ΔGβ;γðrÞ ≔ lim
x0→x

fΔGβ;γðx; x0Þg: ð37Þ

Note that the coincidence limit above does not depend on
the time and angular coordinates.
The energy-momentum tensor for the thermal state

renormalized with respect to the ground state is defined
as (see [22,23] for details on Hadamard renormalization)

h∶TμνðrÞ∶iβ;γ ¼ lim
x0→x

fDμνðx; x0Þ½ΔGβ;γðx; x0Þ�g; ð38Þ

where the differential operator Dμνðx; x0Þ is given by

Dμνðx;x0Þ≔ ð1−2ξÞgνν0 ðx;x0Þ∇μ∇ν0 −2ξ∇μ∇νþGμν

þgμν

�
2ξ□þ

�
2ξ−

1

2

�
gρρ

0 ðx;x0Þ∇ρ∇ρ0 −
1

2
m2

0

	
:

ð39Þ

Accordingly, the energy density of the renormalized
thermal state is simply the time-time component:

Eβ;γðrÞ ≔ h∶T00ðrÞ∶iβ;γ: ð40Þ

For convenience, we omit the explicit expression for
Eβ;γðrÞ, which is quite extensive and can be found in [24].
In the following sections, we summarize the results for

the minimally and conformally coupled cases. What we
find is that the transition rate, the thermal fluctuations,
and the energy density are intertwined. For the minimally
coupled case, as we approach the naked singularity, these
three quantities diverge for γ > 0, and are finite for γ ¼ 0.
What is more, for l ¼ 0, the three quantities contrast with
their counterparts in Minkowski spacetime in the same
manner [as in Eq. (28)], viz.

fquantity for general αg ¼ 1

α2
fquantity for α ¼ 1g: ð41Þ

Since the detector only sees the l ¼ 0 mode in the limit
r → 0, when ξ ¼ 0, relation (41) holds true when we
consider such “quantity” to be the transition rate itself
(summed up to ∞) or the thermal fluctuations. For the
conformally coupled case, however, the association
between the three quantities of interest is rather intricate
and their relations with their counterparts on Minkowski
spacetime do not respect Eq. (41). Most interesting is the
fact that in the conformally coupled case, the energy

density diverges at the singularity even when we set the
Dirichlet boundary condition.

A. Minimal coupling

For m0 ¼ 0 and ξ ¼ 0, we have

ΔGβ;γðrÞ ¼
X∞
l¼0

Z
∞

0

dω
ð2lþ 1Þ
2π2α2

ω

eβω − 1

×
½RγlðωrÞ�2

cosðγlÞ2 þ ω2 sinðγlÞ2
: ð42Þ

Defining ΔGMink
β;γ as ΔGβ;γðrÞ with α → 1, we find that

lim
r→0

ΔGβ;γðrÞ ¼
1

α2
lim
r→0

ΔGMink
β;γ ðrÞ; ð43Þ

and

ΔGβ;γðrÞjl¼0 ¼
1

α2
ΔGMink

β;γ ðrÞjl¼0: ð44Þ

That is, as we approach the singularity, the behavior of the
thermal fluctuations, given by (43), is analogous to that of

FIG. 5. Thermal fluctuations for m0 ¼ 0, ξ ¼ 0, β ¼ 1, γ ¼ 0,
lmax ¼ 50 and, from top to bottom with respect to the apex,
α ∈ f0.6; 0.7; 0.8; 0.9; 0.99999; 1.0g. Note that the behavior for
α ¼ 0.99999 (dashed line) and for α ¼ 1 are indistinguishable.

FIG. 6. Thermal fluctuations multiplied by α2 with the same
parameters as in Fig. 5.
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the transition rate, given by (27). This behavior is illustrated
by Figs. 2 and 6, respectively. The same holds for the l ¼ 0
mode, given expressions (28) and (44). With respect to the
boundary condition, the thermal fluctuations behave analo-
gously to the transition rate, as in Fig. 6. That is, as r → 0,
ΔGβ;γðrÞ is finite if and only if γ ¼ 0.
Regarding Eβ;γðrÞ with m0 ¼ 0 and ξ ¼ 0, first and

foremost, we find that the energy density converges at
r → 0 only for the Dirichlet boundary condition, as shown
in Fig. 7. The divergence of the energy at the naked
singularity is consistent with the divergence of the sponta-
neous emission rate of the detector illustrated in Fig. 6. In
addition, by performing numerical fits we obtained that the
leading behavior of the energy density as we approach the
singularity is given by

Eβ;γðrÞ ∼r→0

(
ρβ; if γ ¼ 0;
ρ̃β;γ
r4 ; if γ > 0;

ð45Þ

where ρβ and ρ̃β;γ are nonspecified constants with respect to
r. In Fig. 8, we show the behavior of ρ̃β;γ with respect to the
boundary condition for several values of α. Moreover, as it

happens for the transition rate and for the thermal fluctua-
tions, it holds that

Eβ;γðrÞjl¼0 ¼
1

α2
EMink
β;γ ðrÞjl¼0: ð46Þ

B. Conformal coupling

For the same reason that the transition rate vanishes in
the conformally coupled scenario, the thermal fluctuations
(37) also vanish in the limit r → 0. What is most interesting
is that the energy density actually diverges at the naked
singularity—even for the Dirichlet boundary condition—
and yet, the transition rate vanishes there. For convenience,
we illustrate the behavior of the thermal fluctuations, in
Fig. 9, and of the energy density, in Fig. 10, considering
only the l ¼ 0 mode.
For ξ ¼ 1

6
, since numerical convergence is not as direct as

in the minimally -coupled case, we performed a numerical
fit only for the most relevant case of α ¼ 0.99999 (with
grand unified theories in mind); we obtained that the
leading behavior of the energy density as we approach
the singularity is

FIG. 7. Energy density form0 ¼ 0, ξ ¼ 0, β ¼ 1, α ¼ 0.99999,
lmax ¼ 50, and several values of γ. The dashed line corresponds
to γ=π ¼ 0.001.

FIG. 9. Thermal fluctuations for m0 ¼ 0, ξ ¼ 1
6
, β ¼ 1, γ ¼ 0,

lmax ¼ 0 and several α’s.

FIG. 10. Energy density for m0 ¼ 0, ξ ¼ 1
6
, β ¼ 1,

α ¼ 0.99999, lmax ¼ 0 and several γ’s.

FIG. 8. The parameter ρβ;γ as a function of γ for the thermal state
with m0 ¼ 0, ξ ¼ 0, β ¼ 1, lmax ¼ 10 and, from top to bottom
with respect to the apex, α ∈ f0.6; 0.7; 0.8; 0.9; 0.99999; 1.0g.
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Eβ;γðrÞ ∼r→0

( ρβ
r2 ; if γ ¼ 0;
ρ̃β;γ

r4ðν0þ1Þ ; if γ > 0;
ð47Þ

where ρβ;γ and ρ̃β;γ are positive constants with respect to r
[not necessarily equal to those of Eq. (45)], while ν0 is
defined in Eq. (36). However, we do expect that for other
values of α, Eβ;γðrÞ behaves similarly to Eq. (47) with a
subexponential divergence rate.

V. CONCLUSION

The propagation of quantum fields on nonglobally
hyperbolic spacetimes is not, in general, uniquely deter-
mined by the initial data on a spacelike surface. Wald and
Ishibashi tackled this problem in Refs. [5,6], where they
prescribed a way of extracting sensible dynamics for such
fields by finding positive self-adjoint extensions of the
spatial component of the differential wave operator. These
self-adjoint extensions, in turn, are prescribed by appro-
priate boundary conditions at the boundaries of the space-
time. Any quantity extracted from the quantum fields
depends crucially on the choice of the boundary condition.
In this paper we investigated how the boundary condition

at the classical singularity r → 0 of the global monopole
spacetime affects the transition rate as measured by a
particle detector. These (Robin) boundary conditions turn
out to be extremely simple to handle, which makes the
global monopole spacetime a very attractive toy model in
the study of quantum effects due to naked singularities.
We considered a static Unruh-deWitt detector at a

distance r from the singularity. For a massless, minimally
coupled scalar fields on its ground state, the rate of
excitation is zero in the infinite time interaction limit.
This is expected for inertial observers on a general static
spacetime. However, when the global monopole is
immersed on a thermal bath with temperature T ∼ 1=β,
the induced extra thermal fluctuations creates a nontrivial
scenario for the excitation of the detector. These thermal
fluctuations are finite at the singularity r → 0 only for the
Dirichlet boundary condition (γ ¼ 0) and diverge for any
other Robin boundary condition (γ > 0). The transition rate

behaves similarly in this limit. Nevertheless, the expected
Minkowski thermal fluctuations are recovered in the
r → ∞ limit regardless of the choice of the boundary
condition. This, in turn, induces the usual Minkowski
transition rate for the quantum field on a thermal state.
Moreover, for any boundary condition parametrized by
γ ∈ ½0; πÞ, we have

_F β;γð0þÞ
_FMink
β;γ ð0þÞ ¼

ΔGβ;γð0þÞ
ΔGMink

β;γ ð0þÞ ¼
Eβ;γð0þÞ
EMink
β;γ ð0þÞ ¼

1

α2
; ð48Þ

which shows that the transition rate, the thermal fluctua-
tions and the energy density of the renormalized thermal
state are amplified by the presence of the singularity in
exactly the same way.
The situation is rather different for conformally coupled

fields. Relation (41) does not hold, in general. Most
importantly, the energy density diverges at r → 0 for all
γ ≥ 0, and yet both the thermal fluctuations and the
transition rate vanish. That is, even if there is an infinite
amount of energy available, the detector will not undergo
an excitation if the quantum field is not fluctuating.
Finally, in this work we showed that naked singularities

manifest thermal effects with a nontrivial behavior with
respect to the admissible boundary conditions in a static
scenario. The divergence of the quantities mentioned
indicates that strong backreaction effects may arise, hence
an appealing research avenue to follow would be to study
them, particularly, to see if such effects would clothe the
singularity or not. In addition, in a future work it would be
most interesting to study a dynamical scenario, either
considering an accelerated detector or a model of collapse,
in order to approach the question of whether naked
singularities can evaporate a bit more accurately.
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