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We propose an extension of the Schwinger parametric representation for Feynman amplitudes in D
euclidean dimensions to a scenario where d dimensions are compactified (d < D) through the introduction
of periodic boundary conditions in space. We obtain two valid representations, one useful near the bulk
(large compactification length) and another useful near the dimensional reduction (small compactification
length). Also, to illustrate, we exhibit some Feynman amplitudes up to three loops in a compactified scalar
field theory.
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I. INTRODUCTION

One essential task in perturbative quantum field theory is
to obtain, for a given theory, the amplitude of graph G at
some arbitrary order. This task is decades older and its
solution is already textbook material; the most known
parametric representations are those of Feynman [1,2],
Schwinger [1–3], and Mellin [4,5], although other efforts,
like the Complete Mellin representation [6–10], for exam-
ple, were also studied. The employment of these repre-
sentations in a general setting employs the Symanzik
polynomials, which can be directly extracted from the
topology of the graph by inspecting the 1-trees and 2-trees
[2,3,11]. That way, one can avoid the otherwise cumber-
some computation of these polynomials and we have an
“easy” prescription to compute higher-order diagrams. This
first simple task was essential for the important develop-
ments that follow, for example, proving the renormaliz-
ability of a quantum field theory up to all orders or
extracting the asymptotic behavior of a diagram.
Although this topic, to obtain a parametric representa-

tion, is completely settled for theories in noncompact
space-time—let us refer to the Euclidean space-time with
D dimensions—it has not yet been established for theories
in compactified dimensions. If the only interest of someone
is the proof of renormalizability, one can justify this lack of
understanding concerning theories in compactified dimen-
sions due to the knowledge that the divergent behavior in
the amplitudes of compactified theories come from the
bulk, that is, the contribution related to the noncompactified

space [12,13]. This means that there is no need to prove
renormalizability again as it comes directly from the proof
in the bulk scenario. However, this does not justify the
absence of this exploration in the literature. Right now,
there is no established parametric representation to deal
with higher-order diagrams in a scenario with compactified
spaces neither an asymptotic expansion for this scenario.
The first step, if one is interested in some progress in topics
that depend on higher-order corrections of Feynman
diagrams in compactified spaces, is to establish a useful
parametric representation, and this is the purpose of
this work.
There are plenty of ways to introduce compactified

dimensions, just as there are many possible choices of
boundary conditions. Perhaps the most simple scenarios are
periodically compactified theories with just one compacti-
fied dimension, which is exactly the highly explored
scenario of field theory at finite temperature [14–18],
where the inverse temperature, β ¼ 1=T, is introduced as
the compactification length of a periodically compactified
dimension through the Matsubara formalism of imaginary
time. In recent years, there was also a growing interest in
field theory with a small circle compactification [19–23],
which is somewhat equivalent to finite temperature but
allows us to impose antiperiodic or even twisted boundary
conditions in the spatial compactification. If one deals with
the thermal partition function, the boundary condition in
the imaginary time is restricted by the Kubo-Martin-
Schwinger (KMS) condition [14–18] to follow the
bosonic/fermionic nature of the field. We are free of this
restriction if we deal with spatial compactification or when
we are not interested in thermal partition functions—a well-
known such scenario occurs in supersymmetric models
where both bosons and fermions have periodic boundary
conditions and one can discuss the existence of a Witten
index [24]. When it comes to the extension to more
compactified dimensions and different boundary
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conditions, the range of applicability just grows even more:
the Casimir effect [25–29], superstring theory [30–32],
quantum field theory with an small extradimension
[33–41], finite volume considerations in quantum field
theory (QFT) models and in particle physics [42–55], and
so on. To see more applications we refer to the works
[18,29,56,57] and references therein.
In the last decades, Refs. [18,56] established the

so-called “quantum field theory in toroidal topologies,” a
formalism to deal with periodically compactified dimen-
sions. This is born as an extension of the Matsubara
prescription of imaginary time to more dimensions, pro-
ducing a topology Γd

D ¼ RD−d × SL1
× � � � × SLd

, where
SLi

represents each of the d compactifications that can be
imposed by periodic/antiperiodic boundary conditions,1

with Li as the characteristic compactification length.
Within this formulation, many applications were explored
both in the field of particle physics and in the field of
condensed matter [59–71]. In recent years, a somewhat
similar approach [57] also started to explore the formu-
lation and applications of periodically compactified QFT.
So far, only few attempts were done [72–75] in the

direction to establish a parametric representation for
Feynman amplitudes in compactified spaces. Three deca-
des ago, Benhamou [72,73] proposed a parametric repre-
sentation for field theory at a finite temperature that
recovers the Symanzik polynomials for the compactified
part and that has as the zero-temperature limit the usual
noncompactified parametric representation. One decade
ago there was an attempt [74] to build for scalar field
models some representation for the scenario of periodically
compactified dimensions. Also, a recent work (Ref. [75])
deals with the parametric representation for fields with
different spins in a compactified space.
In Sec. II we start building the Schwinger parametric

representation for a graph in periodically compactified
spaces. We see that there are two possible paths to follow:
1) we can consider the scale where the lengths of the
compactified dimensions are very small (Sec. III), meaning
that we are close to a dimensional reduction; 2) we can
assume that the lengths are very large (Sec. IV), so we are
close to the bulk scenario without compactifications. Both
paths are equivalent and one could transport from one to
another [76,77], but each one of them is more useful in
one regime (near the dimensional reduction or the bulk),
due to quicker convergence. After this, we illustrate
the representation by showing some diagrams in Sec. V
with the useful information to write their parametric
representation. In the conclusions, we indicate some
further developments.

II. PARAMETRIC REPRESENTATION OF
COMPACTIFIED FEYNMAN DIAGRAMS

Let us start by considering a general scalar scenario [1,2],

ĨG ¼ CG

YI
i¼1

�Z
dDKi

ð2πÞD
1

K2
i þm2

i

�

×
YV
v¼1

�
ð2πÞDδD

�
Pv −

X
i

εviKi

��
; ð1Þ

where D is the number of dimensions (we consider
an Euclidian space-time), CG is a factor related to the
vertices and the symmetry of the graph, Ki are the internal
momenta—that run from i ¼ 1;…; I, where I is the number
of internal lines,Pv are the sum of external momenta coming
into the vertex v—that runs from v ¼ 1;…; V, where V is
the number of vertices, and εvi is the incidence matrix
(εvi ¼ þ1 if the line i starts at the vertex v, εvi ¼ −1 if the
line i ends at the vertex v, mi is the mass term associated
with each line, and εvi ¼ 0 if the line i is not related to the
vertex v). To abbreviate notation,

Q
i will always refer toQ

I
i¼1, unless otherwise specified.
We introduce d (d < D) periodically compactified

dimensions by employing an extension of the Matsubara
formalism of imaginary time [18,56]. The prescription is
well established to also consider the introduction of a
chemical potential or to employ quasiperiodic/anyonic
boundary conditions. However, for this work, we stick
with just the periodic boundary conditions. We denote by a
capital letter the full D-dimensional momenta (Ki), and by
lower case the momenta related to the D − d noncompac-
tified dimensions, that is

K2
i → k2i þ

X
α

ðωki
α Þ2; ð2aÞ

Z
dDKi

ð2πÞD →
Z

dD−dki
ð2πÞD−d

1Q
αLα

X
n
ki
α ∈Z
∀ α

; ð2bÞ

ωki
α ¼ 2π

Lα
nkiα ; ð2cÞ

where the index α runs over the d compactified dimensions,
Lα is the characteristic length for each of them and ωki

α is
the α-th Matsubara frequency associated with the momenta
ki. Notice that

Q
α must be understood as

Q
d
α¼1.

Therefore, the amplitude for the graph G in compactified
dimensions turns to be

1One can easily extend it to quasiperiodic (also called twisted
or anyonic) boundary conditions [58].
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ĨG ¼ CG

Y
i

�Z
dD−dki
ð2πÞD−d

1Q
αLα

X
n
ki
α ∈Z
∀ α

1

k2i þ
P

αðωki
α Þ2 þm2

i

�
×
YV
v¼1

�
ð2πÞDδD−d

�
pv −

X
i

εviki

�Y
α

δ

�
ωpv
α −

X
i

εviω
ki
α

��
:

ð3Þ

To proceed, we start dealing with the noncompactified dimensions. At this point the procedure is closely related to the
standard one, but is exhibited for completeness and clarity. We introduce an integral representation for the propagator and
the conservation deltas, introducing the Schwinger parameters ui related to each internal line,

ĨG ¼ CG

Y
i

�Z
dD−dki
ð2πÞD−d

1Q
αLα

X
n
ki
α ∈Z
∀ α

Z
∞

0

duie
−ui½k2iþ

P
α
ðωki

α Þ2þm2
i �
�

×
YV
v¼1

�Z
dD−dyve

−iyv·ðpv−
P

i
εvikiÞ

Y
α

�Z
dzðαÞv e−iz

ðαÞ
v ðωpv

α −
P

i
εviω

ki
α Þ
��

: ð4Þ

We can interchange the sign of integrals and sums to make evident the integral over the internal momenta ki and also the
sum over the internal frequencies ωki

α , that is

ĨG ¼ CG

�Y
i

Z
∞

0

dui

��YV
v¼1

Z
dD−dyv

��YV
v¼1

Y
α

Z
dzðαÞv

�
e−
P

i
uim2

i e−i
P

V
v¼1

P
α
zðαÞv ωpv

α e−i
P

V
v¼1

yv·pv

×
Y
i

�Z
dD−dki
ð2πÞD−d e

−uik2i ei
P

V
v¼1

yv·εviki

�Y
i

�
1Q
αLα

X
n
ki
α ∈Z
∀ α

e−ui
P

α
ðωki

α Þ2ei
P

V
v¼1

P
α
zðαÞv εviω

ki
α

�
: ð5Þ

Notice that the integral over ki is a Gaussian and we can complete the squares and compute the integral to get

Z
dD−dki
ð2πÞD−d e

−uik2i ei
P

V
v¼1

yv·εviki ¼ e−

�P
V
v¼1

yvεvi

�
2

4ui

ð4πuiÞD−d
2

; ð6Þ

which, substituted back into ĨG, produces

ĨG ¼ CG

�Y
i

Z
∞

0

dui

��YV
v¼1

Z
dD−dyv

��YV
v¼1

Y
α

Z
dzðαÞv

�
e−
P

i
uim2

i e−i
P

V
v¼1

P
α
zðαÞv ωpv

α e−i
P

V
v¼1

yv·pv

×
Y
i

264e−
�P

V
v¼1

yvεvi

�
2

4ui

ð4πuiÞD−d
2

375Y
i

�
1Q
αLα

X
n
ki
α ∈Z
∀ α

e−ui
P

α
ðωki

α Þ2þi
P

V
v¼1

P
α
zðαÞv εviω

ki
α

�
: ð7Þ

Nowwe make evident the global conservation required by the delta function. To do so we employ the change of variables,

yv ¼ ȳv þ yV; ∀ v ≠ V; ð8aÞ

yV ¼ ȳV ; ð8bÞ

zðαÞv ¼ z̄ðαÞv þ zðαÞV ; ∀ v ≠ V; ð8cÞ

zðαÞV ¼ z̄ðαÞV : ð8dÞ

With this, the sum over all vertices produces
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XV
v¼1

yvεvi ¼
XV−1
v¼1

ȳvεvi þ ȳV
XV
v¼1

εvi ¼
XV−1
v¼1

ȳvεvi; ð8eÞ

because
P

V
v¼1 εvi ¼ 0 as a property of the incidence matrix (each internal line starts from one vertex þ1 and ends at one

vertex −1, therefore the sum over all contributions is 0). Applying this change of variables,

ĨG ¼ CG

�Y
i

Z
∞

0

dui

��YV
v¼1

Z
dD−dȳv

��YV
v¼1

Y
α

Z
dz̄ðαÞv

�
e−
P

i
uim2

i e−i
P

V−1
v¼1

P
α
z̄ðαÞv ωpv

α e−i
P

V−1
v¼1

ȳv·pv

× e−i
P

α
z̄ðαÞV

P
V
v¼1

ωpv
α e−iȳV ·

P
V
v¼1

pv
Y
i

2664e−
�P

V−1
v¼1

ȳvεvi

�
2

4ui

ð4πuiÞD−d
2

3775Y
i

264 1Q
αLα

X
n
ki
α ∈Z
∀ α

e−ui
P

α
ðωki

α Þ2þi
P

V−1
v¼1

P
α
z̄ðαÞv εviω

ki
α

375; ð9Þ

one can extract the global conservation (for the v ¼ V component),Z
dD−dȳV

�Y
α

Z
dz̄ðαÞV

�
e−i

P
α
z̄ðαÞV

P
V
v¼1

ωpv
α e−iȳV ·

P
V
v¼1

pv ¼ δD−d
�XV

v¼1

pv

�Y
α

δ

�XV
v¼1

ωpv
α

�
: ð10Þ

Due to this decomposition, it is usual to define a new amplitude without the overall conservation,

ĨG ¼ δD−d
�XV

v¼1

pv

�Y
α

δ

�XV
v¼1

ωpv
α

�
IG; ð11Þ

such that,

IG ¼ CG

�Y
i

Z
∞

0

dui

��YV−1
v¼1

Z
dD−dȳv

��YV−1
v¼1

Y
α

Z
dz̄ðαÞv

�
e−
P

i
uim2

i e−i
P

V−1
v¼1

P
α
z̄ðαÞv ωpv

α e−i
P

V−1
v¼1

ȳv·pv

×
Y
i

2664e−
�P

V−1
v¼1

ȳvεvi

�
2

4ui

ð4πuiÞD−d
2

3775Y
i

264 1Q
αLα

X
n
ki
α ∈Z
∀ α

e−ui
P

α
ðωki

α Þ2þi
P

V−1
v¼1

P
α
z̄ðαÞv εviω

ki
α

375: ð12Þ

At this point we compute the gaussian integral over the parameter ȳv,

�YV−1
v¼1

Z
dD−dȳv

�
e−i

P
V−1
v¼1

ȳv·pve−
P

i

�P
V−1
v¼1

ȳvεvi

�
2

4ui ¼ ð4πÞðD−dÞ
2

ðV−1Þ

½det dGðuÞ�D−d
2

e
−
P

V−1
v1 ;v2¼1

pv1
pv2

½d−1G ðuÞ�v1 ;v2 : ð13Þ

Here, it was defined the symmetric ðV − 1Þ × ðV − 1Þ matrix dGðuÞ as

½dGðuÞ�v1;v2 ¼
X
i

εv1iεv2i
ui

: ð14Þ

This produces, after a bit of organization,

IG ¼ CG

�Y
i

Z
∞

0

dui

�
e−
P

i
uim2

i

ð4πÞðD−dÞ
2

L

e−
VðpÞ
U

U
D−d
2

Y
i

�
1Q
αLα

X
n
ki
α ∈Z
∀ α

�Y
α

��YV−1
v¼1

Z
dz̄ðαÞv

�
e−i

P
V−1
v¼1

z̄ðαÞv ωpv
α e−

P
i
uiðωki

α Þ2þi
P

V−1
v¼1

P
i
z̄ðαÞv εviω

ki
α

	
;

ð15Þ

or, introducing back the delta functions for the compactified dimensions,
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IG ¼ CG

�Y
i

Z
∞

0

dui

�
e−
P

i
uim2

i

ð4πÞðD−dÞ
2

L

e−
VðpÞ
U

U
D−d
2

Y
i

�
1Q
αLα

X
n
ki
α ∈Z
∀ α

e−
P

α
uiðωki

α Þ2
�YV−1

v¼1

Y
α

ð2πÞδ
�
ωpv
α −

X
i

εviω
ki
α

�
; ð16Þ

where L ¼ I − V þ 1 is the number of loops in the diagram
(do not confuse with Lα, the length of each compactified
dimension), and the polynomialsU and V are the Symanzik
polynomials [2,3], defined here as

Vðq; uÞ
UðuÞ ¼

XV−1
v1;v2¼1

qv1qv2 ½d−1G ðuÞ�v1;v2 ; ð17aÞ

UðuÞ ¼
�Y

i

ui

�
det dGðuÞ: ð17bÞ

These polynomials have the remarkable property that they
can be obtained directly from the graphG by inspecting the
1-trees and 2-trees that can be formed by removing some
internal lines. That is,

U ¼
X
T

Y
i∉T

ui ð18aÞ

V ¼
X
K

Q2
K

Y
i∉K

ui; ð18bÞ

meaning that the first polynomial U is the sum over all
1-trees T (connected graphs without loops) and we consider
all lines i that are not in the 1-tree to be the removed lines.
Also, the second polynomial V is the sum over all 2-trees K
(two separated trees) where we take all parameters ui that
do not belong to the 2-tree. QK is the overall momenta that
enters the 2-tree.
This ends the application of the usual procedure to the

noncompactified dimensions. From now on we deal with
the remaining d dimensions. To proceed we employ the
delta functions (in fact Kronecker deltas) to reduce the
number of summations just to the loop summations and
then treat the expression.
From this point forward

Q
v refers to

Q
V−1
v¼1 unless

otherwise specified. As the sum is over the modes, one
can extract a factor from the delta functions,

IG ¼ CG

�Y
i

Z
∞

0

dui

�
e−
P

i
uim2

i

ð4πÞðD−dÞ
2

L

e−
VðpÞ
U

U
D−d
2

×
Y
α

�
1

LI
α

X
n
ki
α ∈Z
∀ i

e−
P

i
uiðωki

α Þ2ðLαÞV−1

×
Y
v

δ

�
npv
α −

X
i

εvin
ki
α

�	
: ð19Þ

Notice that for each α-th Matsubara mode we have I
summations (related to the internal lines) and V − 1
relations between the frequencies (given by the
Kronecker deltas), meaning an overall L ¼ I þ 1 − V free
frequencies to be summed up. This indicates that the
notation could be changed to something like

Tα ¼
1

LL
α

X
n
ki
α ∈Z
∀ i

e−
P

i
uiðωki

α Þ2
Y
v

δ

�
npv
α −

X
i

εvin
ki
α

�

≡ 1

LL
α
e−Z½ω

pv
α � X

n
ðlÞ
α ∈Z

∀ l∈½1;L�

e−Y½ω
kl
α �; ð20Þ

where the index l runs over the L independent loops.
Y½ωkl

α � is a bilinear form on the L frequencies related to the
loops, Y is a L × Lmatrix whose coefficients depend on ui,
the external modes npv

α , and the incidence matrix. Also,
Z½ωpv

α � is another bilinear form that depends on the external
modes. Let us now proceed to obtaining it using the delta
functions. We need to rewrite in Eq. (19) the exponent

Δα ¼ −
X
i

uiðωki
α Þ2 ð21Þ

using the V − 1 constraints given by the delta functions in
Eq. (19),

ωpv
α −

X
i

εviω
ki
α ¼ 0: ð22Þ

We choose a prescription where the last lines will be
eliminated. That is, we split the summation over all lines
in Eq. (22) by a sum over the loops and the vertices
(
P

I
i ¼

P
L
l þ

P
V−1
v , as I ¼ Lþ V − 1). With this, we can

use the constraints to define a linear system,

ωpv
α −

X
l

εvlω
kl
α ¼

XV−1
v0¼1

εv;Lþv0ω
kLþv0
α ; ð23Þ

that determines the frequencies to be eliminated (ω
kLþv0
α ) as

a function of the L frequencies to be kept (ωkl
α ). In matrix

notation, this means trivially that

Q ¼ ϵW ⇒ W ¼ ϵ−1Q; ð24aÞ

with
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ðQÞv ¼ ωpv
α −

X
l

εvlω
kl
α ; ð24bÞ

ðϵ̄Þv;v0 ¼ εv;Lþv0 ; ð24cÞ

ðW̄Þv0 ¼ ω
kLþv0
α : ð24dÞ

Of course, for this to work, we need the ðV−1Þ×ðV−1Þ
matrix ϵ̄ to be invertible. This is not guaranteed for all
choices of labeling of lines and vertices when building the
incidence matrix εv;i. But we can always reorganize the
labels to guarantee a choice where ϵ̄ is invertible. There are
a few remarks here. First, here we always choose to

eliminate the last internal lines, this choice does not affect
the results, and is just a matter of aesthetics (we want to
keep the same labels for the number of loops, so the L
frequencies related to the L loops are exactly the first L
internal lines). Second, different choices of ϵ̄ will not affect
the appearance of the Symanzik polynomials U and V, as
one should expect for consistency. However, the matrix Y
will depend on this choice. Anyway, one can show that
through a suitable rearrangement of the modes (nklα )
one can relate a matrix Y obtained by some ϵ̄ to another
matrix Y obtained by another choice of ϵ̄. Therefore, we do
not lose generality by specifying some prescriptions to
obtain ϵ̄.

If we substitute Eq. (24a) back into Eq. (21),

Δα ¼ −
X
l

ulðωkl
α Þ2 −

XV−1
v0¼1

uLþv0ðω
kLþv0
α Þ2 ¼ −

X
l

ulðωkl
α Þ2 −

XV−1
v0;v1;v2¼1

uLþv0 ½ðϵ̄−1Þv0;v1Qv1 �½ðϵ̄−1Þv0;v2Qv2 �;

meaning that Tα, Eq. (20), becomes

Tα ¼
1

LL
α

X
n
kl
α ∈Z
∀ l

e
−
P

l
ulðωkl

α Þ2−
P

V−1
v0 ;v1 ;v2¼1

uLþv0
½ðϵ̄−1Þv0 ;v1Qv1

�½ðϵ̄−1Þv0 ;v2Qv2
�: ð25Þ

Notice that the Kronecker delta functions eliminated V − 1 of the summations. To proceed we need to reorganize the
expression to make evident the component that depends on ωkl

α and the component that is independent of it. To do so we
apply the expression of Qv, Eq. (24b),

Δα ¼ −
X
l

ulðωkl
α Þ2 −

XV−1
v0;v1;v2¼1

uLþv0

�
ðϵ̄−1Þv0;v1

�
ω
pv1
α −

X
l1

εv1l1ω
kl1
α

���
ðϵ̄−1Þv0;v2

�
ω
pv2
α −

X
l2

εv2l2ω
kl2
α

��
; ð26Þ

and open all its terms explicitly,

Δα ¼ −
X
l1;l2

ω
kl1
α

�
ul1δl1;l2 þ

XV−1
v0;v1;v2¼1

uLþv0ðϵ̄−1Þv0;v1εv1l1
ðϵ̄−1Þv0;v2εv2l2

�
ω
kl2
α

þ
X
l

ωkl
α

XV−1
v0;v1;v2¼1

uLþv0

h
ðϵ̄−1Þv0;v1ω

pv1
α ðϵ̄−1Þv0;v2εv2l2 þ ðϵ̄−1Þv0;v1εv1lðϵ̄−1Þv0;v2ω

pv2
α

i

−
XV−1

v0;v1;v2¼1

uLþv0

h
ðϵ̄−1Þv0;v1ω

pv1
α

ih
ðϵ̄−1Þv0;v2ω

pv2
α

i
: ð27Þ

To simplify the notation we define Wα;M; Bα, and Fα as

ðWαÞl ¼ ωkl
α ; ð28aÞ

ðMÞl1;l2 ¼ ul1δl1;l2 þ
X

v0;v1;v2

uLþv0 ½ðϵ̄−1Þv0;v1εv1;l1 �½ðϵ̄−1Þv0;v2εv2;l2
�; ð28bÞ

ðBαÞl ¼
X

v0;v1;v2

uLþv0 ½ðϵ̄−1Þv0;v1εv1;l�½ðϵ̄−1Þv0;v2ω
pv2
α �; ð28cÞ

Fα ¼
X

v0;v1;v2

uLþv0 ½ðϵ̄−1Þv0;v1ω
pv1
α �½ðϵ̄−1Þv0;v2ω

pv2
α �: ð28dÞ
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Here,M is a L × L matrix. With this notation we can write
Δα as

Δα ¼ −Wt
αMWα þWt

αBα þ Bt
αWα − Fα; ð29Þ

and complete the squares to obtain

Δα ¼ −ðWα −M−1BαÞtMðWα −M−1BαÞ
þ ð−Fα þ Bt

αM−1BαÞ: ð30Þ

For convenience, we can also define a tilde notation to
indicate that the factor 2π=Lα is extracted, that is

ð eWαÞl ¼ nklα ; ð31Þ

ðB̃αÞl ¼
X

v0;v1;v2

uLþv0 ½ðϵ̄−1Þv0;v1εv1;l�½ðϵ̄−1Þv0;v2n
pv2
α �: ð32Þ

At this point Tα, Eq. (25), is written as

Tα ¼
1

LL
α
e−FαþBt

αM−1Bα

X
n
ðlÞ
α ∈Z

∀ l∈½1;L�

e
−4π2

L2α
ðeWα−M−1eBαÞtMðeWα−M−1eBαÞ

;

ð33Þ

and we can get back to the original expression, Eq. (19),
and rewrite the amplitude related to some graph G as

IG ¼ CG

�Y
i

Z
∞

0

dui

�
e−
P

i
uim2

i

ð4πÞðD−dÞ
2

L

e−
VðpÞ
U

U
D−d
2

Y
α

�
1

LL
α
e−FαþBt

αM−1Bα

X
n
ðlÞ
α ∈Z

∀ l∈½1;L�

e
−4π2

L2α
ðeWα−M−1eBαÞtMðeWα−M−1eBαÞ

	
: ð34Þ

With the previous procedure (integrate over the momenta
and then integrate over the parameters related to the delta
function) we found the standard definition of the Symanzik
polynomials [see Eq. (17)] in terms of the incidence matrix.
Using the alternative procedure (apply first the delta
function and then reduce the number of integrals) the
Symanzik polynomials can be expressed as2

UðuÞ ¼ detM; ð35aÞ

Vðωp
α ; uÞ

UðuÞ ¼ Fα − Bt
αM−1Bα; ð35bÞ

withM, B, and F defined as in Eq. (28). Therefore, one can
simplify the representation to

IG ¼ CG

�Y
i

Z
∞

0

dui

�
e−
P

i
uim2

i

ð4πÞðD−dÞ
2

L

e−
VðPÞ
U

U
D−d
2

×
Y
α

�
1

LL
α

X
n
ðlÞ
α ∈Z

∀ l∈½1;L�

e
−4π2

L2α
ðeWα−M−1eBαÞtMðeWα−M−1eBαÞ

	
: ð36Þ

Remember that Pv ¼ ðpv;ω
pv
α Þ is the full external

momenta, meaning that VðPÞ ¼ VðpÞ þP
α Vðωp

αÞ.
From this point forward we will consider two different

scenarios: the small-box regime that approaches dimen-
sional reduction (ΛLα ≪ 1, where Λ is some mass scale)

and the large-box regime that approaches the bulk where
no compactification occurs (ΛLα ≫ 1). Both of them are
equivalent analytically, in the sense that it is possible to
transport from one to another, but each of the representa-
tions is more suitable for a different length scale. At first,
we show the behavior when the compactification lengths
are small (near a dimensional reduction); in this scenario
the expression is exactly the one from Eq. (34) but requires
some treatment, which is done in Sec. III. Then, in Sec. IV,
we show the behavior when the compactification lengths
are large (near the bulk); for this we employ a Jacobi theta
identification that modifies the summation in Eq. (34). The
difference between both procedures is that, although both
are indeed valid for all compactified sizes, each one
converges faster on the specified limit. That said, although
it can be done in principle it is not indicated to employ the
representation from Sec. III to study the bulk limit, nor the
representation from Sec. IV to study the dimensional
reduction limit.

III. NEAR DIMENSIONAL REDUCTION
REPRESENTATION

As far as the author knows, although the topic of
dimensional reduction is well known in the subject of
finite temperature field theory (a dimensional reduction
occurs in the very high-temperature limit) the only attempt
to understand the behavior of a Feynman amplitude with
many periodically compactified spaces near a dimensional
reduction comes from [76,77]. The present context, where
we produce a parametric representation for a scalar field
theory in a periodically compactified space, allows a clear
and easier evaluation of the dimensional reduction.

2One can check that both representations are equivalent by
repeating the procedure for the noncompact dimensions. This is
discussed in Ref. [78].

FEYNMAN AMPLITUDES IN PERIODICALLY COMPACTIFIED … PHYS. REV. D 104, 085019 (2021)

085019-7



At first, let us make clear that we consider the dimen-
sional reduction in the sense of Fisher [79]. That is, one
does not say that all length parameters are zero (Lα ¼ 0),
but rather that the length is small enough so that its
contribution can be mostly ignored. So we can take the
limit where Lα → 0 and keep track only of the dominant
contribution. We can be a bit more careful and say, instead,
that we first take a small box, defined in such a way that the
length of each side satisfies ΛLα ≪ 1, where Λ is some
momentum scale, and the dimensional reduction is the
dominant contribution in the small-box regime. Let us take
the amplitude IG as in Eq. (34) and put Lα in evidence,

IG¼CG

�Y
i

Z
∞

0

dui

�
e−
P

i
uim2

i

ð4πÞðD−dÞ
2

L

e−
VðpÞ
U

U
D−d
2

Y
α

8<: X
n
ðlÞ
α ∈Z

∀ l∈½1;L�

e
−4π2

L2α
Gα

LL
α

9=;:

ð37Þ

The function Gα is independent of Lα, it depends on the
Schwinger parameters ui and the external modes npv

α as

Gα ¼ eFα − eBt
αM−1eBα þ ð eWα −M−1eBαÞtMð eWα −M−1eBαÞ:

ð38Þ

Recall the definitions of Fα, Bα, and M in Eq. (28). By
dimensional analysis we can get that the Schwinger
parameters ui have the dimension of inverse squared mass,
½ui� ¼ Λ−2, and by inspection of Gα we obtain that it also
behaves as ½Gα� ¼ Λ−2. That is, the exponent with depend-
ence on Lα could be written as −4π2=ðΛLαÞ2 times some
dimensionless component. The small-box approximation
ΛLα ≪ 1 means here an exponential suppression. The
dominant contribution from the whole series in the internal

modes nðlÞα is, therefore, the set of modes that minimize the
function Gα, that is

IG ∼ CG

�Y
i

Z
∞

0

dui

�
e−
P

i
uim2

i

ð4πÞðD−dÞ
2

L

e−
VðpÞ
U

U
D−d
2

Y
α

�
e
−4π2

L2α
minGα

LL
α

�
:

ð39Þ

The minimization with respect to the internal modes means
that one chooses a set eWα such that Gα has its minimum
value. If M−1eBα ¼ 0 this is trivially eWα ¼ 0. The compo-
nent LL

α can be easily absorbed by the definition of the
coupling constant (that is inside the constant CG), but Gα is
not easily absorbed. This component, when eWα ≠ 0 for at
least one α, introduces a new contribution to the Symanzik
polynomials coming from a dynamic mode (n ≠ 0). That is,
in the limit of dimensional reduction one does not simply
get the same amplitude in reduced dimensions, but there
can be some surviving information from the original

dimensions. This becomes more explicit when dealing
with examples. In Sec. V we consider a scalar ϕ3 model
where the one-loop contribution at D ¼ 4, d ¼ 2 (one
compactification related to the inverse temperature β
and the other to a spatial compactification L1) is given
by Eq. (65),

I1jdim :red: ∼
C1

2βL1

ln ðq2 þ ω2 þ 3m2Þ
q2 þ ω2 þ 2m2

: ð40Þ

The contribution from the external modes (given here by
ω2) acts as a shift in the mass. This can be understood as a
generalization of the notion of a thermal shift in the mass of
a particle [80,81]. We see that all compactified dimensions
can contribute to this effective mass and that it naturally
occurs if one goes into the small-box limit of the system.
Sometimes, one can also assume another perspective:

a completely static mode approach. In this perspective
all modes, internal and external, are null, and this makes
Gα ¼ 0 by producing simply

IG





fnklα ;npvα g¼0

¼ CGQ
αL

L
α

�Y
i

Z
∞

0

dui

�
e−
P

i
uim2

i

ð4πÞðD−dÞ
2

L

e−
VðpÞ
U

U
D−d
2

:

ð41Þ

Notice we can absorb the remaining factor related with the
size in the constant CG associated with the vertices. This is
exactly the usual parametric representation of a Feynman
diagrambutonlyconsideringtheD − dnoncompactifiedand
largedimensions. Inthisperspectiveonecaneasilyestablisha
prescription to identify D → D − d and then divide by a
factor

Q
α L

L
α to obtain the dimensionally reduced amplitude.

Notice that this approach means a fine-tuned dimensional
reduction such that no “effective mass” appears due to the
external modes of the compactified dimensions.
Sometimes it might look like both procedures are

equivalent. The difference between them becomes more
evident if we consider a scenario where the graph G is a
subdiagram to be evaluated in the ultraviolet regime; in this
scenario the “external” momenta for the subdiagram are
internal momenta for the full diagram and can be arbitrarily
large, so there is no justification to use a zero-mode
approximation for the “external” frequencies of the subdia-
gram. This simple remark can be responsible to produce
large differences in behavior.
The remaining terms, subdominant contributions, to the

amplitude in the small length regime are obtained in a
straightforward way. Just as the dominant contribution is
the minimum with respect to the internal modes (Gα), the
next leading order is a small deviation around this mini-
mum. To make notation clear we apply a shift in the internal
modes, that is

nðlÞα → nðlÞα þ jlα; ð42Þ
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where jlα ∈ Z. This is chosen such that the minimum now

lies on nðlÞα ¼ 0. Let us write this shift as

eWα → eWα − eYα ¼ eWα þM−1eBα − eZα; ð43Þ
so that Gα can be rewritten as

Gα ¼ eFα − eBt
αM−1eBα þ ð eWα − eZαÞtMð eWα − eZαÞ: ð44Þ

We must choose a vector eYα ∈ ZL such that the compo-
nents of the resultant vector eZα all lie in the interval
ðeZαÞl ∈ ½− 1

2
; 1
2
�. This guarantees that the minimum value of

Gα occurs at eWα ¼ 0. The simple choice is that eYα is the
nearest integer to the real value M−1eBα, which we denote
by bM−1eBαe. Therefore, the vector eZα is just

eZα ¼ M−1eBα − bM−1eBαe: ð45Þ
With this simple change of notation the order of

dominance is easier to write. The dominant contribution,

as already stated, occurs at
P

l jnðlÞα j ¼ 0, meaning that

nðlÞα ¼ 0; ∀ l. The first correction occurs at
P

l jnðlÞα j¼1
and so on. This produces the simple expression,

IG ¼ CG

�Y
i

Z
∞

0

dui

�
e−
P

i
uim2

i

ð4πÞðD−dÞ
2

L

e−
VðPÞ
U

U
D−d
2

Y
α

�
1

LL
α
e−Z

t
αMZα

	

þ CG

�Y
i

Z
∞

0

dui

�
e−
P

i
uim2

i

ð4πÞðD−dÞ
2

L

e−
VðPÞ
U

U
D−d
2

Y
α

8<: 1

LL
α

X0

n
ðlÞ
α ∈Z

∀ l∈½1;L�

e
−4π2

L2α
ðeWα−eZαÞtMðeWα−eZαÞ

9=;; ð46Þ

where
P0

denotes that the zeroth mode is already removed,
and we put Gα explicitly such that the contribution for
the second Symanzik polynomial V depends on the full
D-dimensional momentum P instead of the remaining
continuum (D − d)-dimensional momentum p.
In the next section, we deal with the scenario near the

bulk (large compactification length) and rewrite the para-
metrization using a new distribution of sectors that change
the u parameters to t parameters. Near the bulk, this

reparametrization has the advantage of letting us see the
appearance of the modified Bessel function of the second
kind, characteristic of periodically compactified problems.
However, when discussing the scenario near dimensional
reduction, this new parametrization does not contribute a
lot, so we leave the explanation of it for the next section.
For completeness, however, we show below how the
amplitude looks after this reparametrization:

IG ¼ 1

ðQαLαÞL
CG

�YI−1
i¼1

Z
1

0

dtitI−1−ii

�
ΓðI − ðD−dÞL

2
Þ

ð4πÞðD−dÞ
2

LŪ
ðD−dÞ

2

1h
M2ðti; miÞ þ V̄ðP;tÞ

ŪðtÞ þ Z̄t
αM̄Z̄α

i
I−ðD−dÞL

2

þ 1

ðQαLαÞL
CG

�YI−1
i¼1

Z
1

0

dtitI−1−ii

�
ΓðI − ðD−dÞL

2
Þ

ð4πÞðD−dÞ
2

LŪ
ðD−dÞ

2

×
X0

n
ðlÞ
α ∈Z

∀ l;∀ α

1h
M2ðti; miÞ þ V̄ðP;tÞ

ŪðtÞ þ ðW̄α − Z̄αÞtM̄ðW̄α − Z̄αÞ
i
I−ðD−dÞL

2

:

ð47Þ

The remaining sum is a zetalike summation, in the
scenario of very small compactification lengths, it can be
truncated at low terms (as discussed before, each new
contribution is subdominant).

IV. NEAR BULK REPRESENTATION

In the previous section we considered the system in a
small box, which can deal with the scenario near the
dimensional reduction. In this section we consider the
large-box scenario, that shall reproduce the expression near
the bulk where no compactification exists. We can naively
think of the near bulk scenario as taking the limit Lα → ∞.

In a more careful treatment this shall be understood, in fact,
as ΛLα ≫ 1, where Λ is some mass scale. In the original
expression, Eq. (36), this produces a dependence like
e−1=ðΛLαÞ2 , meaning that all exponential weights are equally
large, and this slows down the convergence of the series.
We can achieve a more suitable expression by employing
the Jacobi theta identity,X

a∈Zn

e−πtY½aþg�e2πih·a:

¼ e−2πih·gt−
n
2jYj−1

2

X
a∈Zn

e−
π
tY

−1½a−h�e2πia·g; ð48Þ
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with t ¼ 4π=L2
α, n ¼ L, the matrix Y ¼ M, ðgÞn ¼ −ðM−1eBαÞl, and ðaÞn ¼ ð eWαÞl ¼ nklα , so that we obtain

IG ¼ CG

�Y
i

Z
∞

0

dui

�
e−
P

i
uim2

i

ð4πÞðD−dÞ
2

L

e−
VðPÞ
U

U
D−d
2

Y
α

8<: 1

ð4πÞL2½detM�12
X
n
ðlÞ
α ∈Z

∀ l∈½1;L�

e−
L2α
4
eWt

αM−1eWαe2πieWt
αM−1eBα

9=;: ð49Þ

Notice that now we have a dependence like e−ðΛLαÞ2 , meaning that each new mode introduces a bigger suppression and the
sum over the modes is expected to converge fast in the chosen regime (large box / near bulk). Recall at this point that P is the
D-dimensional external momentum composed by the continuum (D − d)-dimensional momentum p and the d discrete
frequencies ωp

α .
We can rewrite the amplitude of a graph G with d compactified dimensions recalling that U ¼ detM, writing explicitly

the modes and defining the matrix A ¼ M−1 detM, that is

IG ¼ CG

�Y
i

Z
∞

0

dui

�
e−
P

i
uim2

i

ð4πÞD2L
e−

VðP;uÞ
UðuÞ

UðuÞD2 ×
X
n
ðlÞ
α ∈Z

∀ l;∀ α

e
−
P

α

L2α
4UðuÞ

P
l1 ;l2

n
kl1
α n

kl2
α Al1 ;l2

ðuÞ
e

2πi
UðuÞ

P
α;l1 ;l2

n
kl1
α Al1 ;l2

ðuÞðeBαðuÞÞl2 ; ð50Þ

or, in compact notation,

IG ¼ CG

�Y
i

Z
∞

0

dui

�
e−
P

i
uim2

i

ð4πÞD2L
e−

VðP;uÞ
UðuÞ

UðuÞD2
X
n
ðlÞ
α ∈Z

∀ l;∀ α

e−
P

α

L2α
4UðuÞn

t
αAðuÞnαe

2πi
UðuÞ

P
α
nt
αAðuÞeBαðuÞ: ð51Þ

Here nα is vector with components ðnαÞl ¼ nklα .
Based on all we have done so far, the prescription one

must follow is:
(1) From the graph extract the 1-trees and produceUðuÞ

as usual, see Eq. (18);
(2) From the graph extract the 2-trees and produce VðuÞ

as usual, see Eq. (18);
(3) From the incidence matrix εv;i extract a ðV − 1Þ ×

ðV − 1Þ matrix ϵ̄ that is invertible. By convention,
take the last internal lines;

(4) Using ϵ, εv;i, and ωpv
α compute the M, Eq. (28b),

and eB, Eq. (32). The matrix A is defined as
A ¼ M−1 detM.

Unfortunately, up to this point, we do not have a
prescription that allows us to recover the matrix A or the
vector B̃ directly from the topology of the diagram, like U
and V that are extracted by drawing the 1-trees and 2-trees
related to the graph [see Eq. (18)].
The Symanzyk polynomialsU and V are solely related to

the graph, however, we also need A and B, which are
determined from our prescription of ϵ̄. One might inquire
whether they are different depending on the choice of
prescription and indeed they are. UnlikeU and V, which do
not feel our choice of ϵ̄, the factors A and B depend on it.
However, we can transform the summation modes in such a
way to transform one representation to the other, meaning
that they are all equivalent.
One can easily notice from Eq. (50) that the zeroth mode

now represents the bulk scenario (if we take Lα → ∞ we

get an exponential suppression, so the only survivor is

nðlÞα ¼ 0). This will produce the standard representation,

IGjbulk ∼ CG

�Y
i

Z
∞

0

dui

�
e−
P

i
uim2

i

ð4πÞD2L
e−

VðP;uÞ
UðuÞ

UðuÞD2 ;

as should be expected. This shows the consistency of the
representation, which recovers the expected scenario when
the compactification is removed. As far as we know, this
simple and expected connection between the parametric
representation in the compactified scenario ðD; dÞ and the
noncompactified scenario (D) has never been explicitly
stated.
In the following, we change the parametrization and

proceed to show that the usual sum over the Bessel-K
functions appears naturally. This is expected when dealing
with Feynman amplitudes in periodically compactified
spaces as shown in previous works [18,29,56] restricted
to contributions of Feynman graphs of low orders.

A. Change of parametrization

We employ a new parametrization that sectorizes the
ui-parameters such that there is one parameter (s) that runs
over the positive real axis and all others (ti) just lie in the
interval [0, 1]. This is done by the sectorization

E. CAVALCANTI PHYS. REV. D 104, 085019 (2021)

085019-10



u1 ¼ st1…tI−1;

u2 ¼ st1…tI−2ð1 − tI−1Þ;
u3 ¼ st1…tI−3ð1 − tI−2Þ;
..
. ¼ ..

.

uI−1 ¼ st1ð1 − t2Þ;
uI ¼ sð1 − t1Þ:

This change of variables produces
Q

I
i¼1 dui ¼ sI−1ds×Q

I−1
i¼1 t

I−1−i
i dti. And, as all ui have a factor s, this will factor

out in a way that allows us to define

UðuiÞ ¼ sLUðtiÞ; ð52aÞ

VðP; uiÞ ¼ sLþ1VðP; tiÞ; ð52bÞ

AðuiÞ ¼ sL−1AðtiÞ; ð52cÞ

B̃ðuiÞ ¼ seBðtiÞ: ð52dÞ

Notice that one must determine the new expressions by
direct inspection.

With this notation, the amplitude related to the diagram
becomes

IG ¼ CG

Z
∞

0

dssI−1
�YI−1
i¼1

Z
1

0

dtitI−1−ii

�
e−sM

2ðti;miÞ

ð4πÞD2L
e−s

V̄ðP;tÞ
ŪðtÞ

s
DL
2 Ū

D
2

×
X
n
ðlÞ
α ∈Z

∀ l;∀ α

e−
1
s

P
α

L2α
4ŪðtÞn

t
αĀðtÞnαe

2πi
ŪðtÞ
P

α
nt
αĀðtÞ ¯̃Bα ; ð53Þ

with

M2½ti; m2
i � ¼

X
i

ui
s
m2

i : ð54Þ

When all masses are equal (mi ¼ m) we get sim-
ply M2 ¼ m2.
By inspection, we have two kinds of integrals regarding

the parameter s. When all modes are zero (nðlÞα ¼ 0) we
have a gamma function, when any of them are different
from zero we get the integral that defines the modified
Bessel function of the second kind (Bessel-K), that is

IG ¼ CG

�YI−1
i¼1

Z
1

0

dtitI−1−ii

�
ΓðI − DL

2
Þ

ð4πÞD2LŪD
2

1h
M2ðti; miÞ þ V̄ðP;tÞ

ŪðtÞ
i
I−DL

2

þ 2CG

ð4πÞD2L
�YI−1
i¼1

Z
1

0

dtitI−1−ii

� X0

n
ðlÞ
α ∈Z

∀ l;∀ α

e
2πi
ŪðtÞ
P

α
nt
αĀðtÞ ¯̃Bα

0B@ P
αL

2
αnt

αĀðtÞnα

4ŪðtÞ
h
M2ðti; miÞ þ V̄ðP;tÞ

ŪðtÞ
i
1CA

I−DL=2
2

× KI−DL
2

0B@
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

αL
2
αnt

αĀðtÞnα

ŪðtÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ðti; miÞ þ

V̄ðP; tÞ
ŪðtÞ

s 1CA: ð55Þ

Where
P0

represents that we do not sum at the point where
all modes are zero.
This completes the analysis. Once again we remark that

this expression is suitable for large Lα. This is much more
evident at this point. If we try to extract information from
small Lα we approach the limit limz→0KνðzÞ, where the
Bessel-K function diverges and one must be very careful
with the treatment, as discussed in Refs. [76,77]. Also, as
the length parameter Lα is reduced each term of the sum
gets bigger and the convergence of the summations takes
longer. This is the justification for why we also exhibit the
scenario near the dimensional reduction in Sec. III.
In the following section, we show the needed termsU, V,

A, and B for some Feynman graphs.

V. SOME EXAMPLES IN ϕ3

In this section, we assume that our model is the simple
toy model gϕ3 and exhibit the relevant information to write
the amplitudes of certain diagrams both in the near dimen-
sional reduction representation, Sec. III, and the near bulk
representation, Sec. IV, for systems living in periodically
compactified topologies. The required information, for
each diagram, are the two Symanzik polynomials (U
and V) and some complementary information as the matrix
M [see Eq. (28b)], A (recall that A ¼ M−1 detM ¼ UM−1),
and the vector B (see Eq. (28c) ). In what follows one
can obtain the Symanzik polynomials by any of the three
equivalent expressions: Eq. (17), Eq. (18), or Eq. (35).

FEYNMAN AMPLITUDES IN PERIODICALLY COMPACTIFIED … PHYS. REV. D 104, 085019 (2021)

085019-11



A. One loop

As a first example we consider the fish diagram, Fig. 1,
with external momenta Q. Due to the existence of only one
loop, the matrix M is reduced to a number. We define for
convenience that u12 ¼ u1 þ u2, and we follow this nota-
tion in all other examples.

U ¼ u12 ¼ s; ð56aÞ

V=Q2 ¼ u1u2 ¼ s2ftð1 − tÞg; ð56bÞ

M ¼ u12 ¼ s; ð56cÞ

A ¼ M−1 detM ¼ 1; ð56dÞ

B ¼ u2ω
q
α ¼ sð1 − tÞωq

α; ð56eÞ

Z̃ ¼ nqαð−tþ bteÞ: ð56fÞ

In this simple scenario, the expression near bulk [Eq. (55)]
is

I1 ¼ C1

Z
1

0

dt
Γð2 − D

2
Þ

ð4πÞD2
1

½M2ðti; miÞ þQ2tð1 − tÞ�2−D
2

þ 2C1

ð4πÞD2
Z

1

0

dt
X0

nα∈Z∀ α

e2πi
P

α
ð1−tÞnαnqα

×

� P
αL

2
αn2α

4½M2ðti; miÞ þQ2tð1 − tÞ�
�2−D=2

2

K2−D
2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
α

L2
αn2α

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ðti; miÞ þQ2tð1 − tÞ

q �
: ð57Þ

The second component is the finite-size contribution and the first component is the well-known bulk contribution, which
is the dominant contribution,

I1jbulk ∼
C1Γð2 − D

2
Þ

ð4πÞD2
Z

1

0

dt
1

½M2ðti; miÞ þQ2tð1 − tÞ�2−D
2

: ð58Þ

We could get a bit further and study, for example, the asymptotic behavior of this amplitude with respect to the external
momenta Q. However, this falls outside the scope of this work and we shall return to this point in the near future.
The expression near dimensional reduction is [Eq. (47)]

I1jdim :red: ¼
C1Γð2 − D−d

2
Þ

ð4πÞD−d
2

Q
αLα

Z
1

0

dt
X
nα∈Z∀ α

1

½M2ðti; miÞ þQ2tð1 − tÞ þP
α
4π2

L2
α
ðnα þ nqαðt − bteÞÞ2�2−D−d

2

; ð59Þ

which produces, as the dominant contribution,

I1jdim :red: ∼
C1Γð2 − D−d

2
Þ

ð4πÞD−d
2

Q
αLα

Z
1

0

dt
1

½M2ðti; miÞ þQ2tð1 − tÞ þ ðt − bteÞ2Pαðωq
αÞ2�2−D−d

2

: ð60Þ

Notice that the discussion from Sec. III becomes much more evident. If we compare Eq. (60) with Eq. (58) we see that the
simple identification D → D − d (dimensionally reduced by hand) does not agree with the actual dimensional reduction.
There is a surviving dependence related to the external modes nqα and the parameter t. However, if the external modes are
null (nqα ¼ 0), the expression becomes what one would intuitively expect, that is, a simple identification D → D − d and
Q2 → q2 (recall, once again, that Q is the D-dimensional external momenta and q is the (D − d)-dimensional continuum
external momenta).

FIG. 1. Fish diagram, I1.
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Let us take a 2-box (β; L1) scenario with D ¼ 4, d ¼ 2 and all internal masses as mi ¼ m,

I1jdim :red: ∼
C1

4πβL1

Z
1

0

dt
1

m2 þQ2tð1 − tÞ þ ðt − bteÞ2ððωq
βÞ2 þ ðωq

LÞ2Þ
: ð61Þ

To simplify notation let us use ω2 ¼ ððωq
βÞ2 þ ðωq

LÞ2Þ and, to make evident the contribution from the compactified and
the noncompactified dimensions, let us write Q2 ¼ q2 þ ω2.

I1jdim :red: ∼
C1

4πβL1

Z
1

0

dt
1

m2 þ ðq2 þ ω2Þtð1 − tÞ þ ðt − bteÞ2ω2
: ð62Þ

We can split the domain at the point t ¼ 1=2. For t < 1=2 we obtain bte ¼ 0, while for t > 1=2 we get bte ¼ 1,

I1jdim :red: ∼ −
C1

2βL1q2

Z
1
2

0

dt
1

− m2

q2 −
ðq2þω2Þ

q2 tþ t2
¼ −

C1

2βL1q2

Z
1
2

0

dt
χþ − χ−

�
1

t − χþ
−

1

t − χ−

�
; ð63Þ

with χ� given by

χ� ¼ 1

2

�
1þ ω2

q2

�
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ ω2

q2

�
2

þ 4
m2

q2

s
∼q≫ω 1

2

�
1þ ω2

q2

�
� 1

2

�
1þ ω2

q2
þ 2

m2

q2

�
:

For large values of the continuum D − d external momenta q we obtain

I1jdim :red: ∼ −
C1

2βL1

1

q2 þ ω2 þ 2m2
ln
t − χþ
t − χ−





12
ε

∼ −
C1

2βL1

1

q2 þ ω2 þ 2m2
ln
q2 þ 2ω2 þ 2m2

q2 þ 2m2

εq2 þm2

q2 þ ω2 þm2
: ð64Þ

In the massive scenario (m ≠ 0 so we can take ε ¼ 0) it reduces to

I1jdim :red: ∼
C1

2βL1

1

q2 þ ω2 þ 2m2
ln
q4 þ q2ðω2 þ 3m2Þ þ 2m2ðω2 þm2Þ

ðq2 þ 2ω2 þ 2m2Þm2
∼

C1

2βL1

ln ðq2 þ ω2 þ 3m2Þ
q2 þ ω2 þ 2m2

: ð65Þ

On the other hand, if one uses a “naive” dimensional reduction the contribution from ω2 does not exist. The difference is
small, it might act as a small dynamic shift in the mass parameter as discussed in Sec. III.
In the massless scenario (m ¼ 0, ε ≠ 0) it becomes more evident that this contribution acts as an effective mass:

I1jdim :red: ∼ −
C1

2βL1

1

q2 þ ω2
ln ε

q2 þ 2ω2

q2 þ ω2
¼ −

C1

2βL1

1

q2 þ ω2

�
ln εþ ln

�
1þ ω2

q2 þ ω2

��
∼ −

C1

2βL1

1

q2 þ ω2

�
ln εþ ω2

q2 þ ω2

�
: ð66Þ

B. Two loops

With regard to mass corrections there are two one-particle irreducible (1P1) diagrams at two loops (see Fig. 2 and Fig. 3).
For the first diagram, Fig. 2, the functions that allow us to reproduce both the near dimensional reduction and near bulk
scenario are exhibited in Eq. (67).

FIG. 2. 1PI diagrams at two loops, I2a. FIG. 3. 1PI diagrams at two loops, I2b.
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U ¼ u5u1234 þ u14u23 ¼ s2ft1½1 − t1 þ t1t2ð1 − t3t4 − t2ð1 − t3t4Þ2Þ�g; ð67aÞ

V=Q2 ¼ u5u12u34 þ u12u3u4 þ u1u2u34

¼ s3ft1t22t3½1 − t1 − t2t3 þ t1t2t3 þ t1t4ð1 − t2Þð1 − t3t4Þ þ t21ð1 − t4Þð1 − t3Þð1 − t2ð1 − t3t4ÞÞ�g; ð67bÞ

M ¼
�
u145 −u5
−u5 u235

�
¼ s

�
1 − t2 þ t1t2t3t4 −1þ t1

−1þ t1 1 − t1 þ t2ð1 − t3t4Þ

�
; ð67cÞ

A ¼ M−1 detM ¼
�
u235 u5
u5 u145

�
¼ s

�
1 − t1 þ t2ð1 − t3t4Þ 1 − t1

1 − t1 1 − t2 þ t1t2t3t4

�
; ð67dÞ

Bα ¼ ωq
α

�
u4
u3

�
¼ st1ω

q
α

�
1 − t2

t2ð1 − t3Þ

�
; ð67eÞ

Z̃α ¼ nqα

0B@
0B@ 1−t1þt2−t22−t2t3þt1t2t3−t2t3t4þt2

2
t3t4

1−t1þt1t2ð1−t3t4−t2ð1−t3t4Þ2Þ
1−t1þt1t2−t22−t2t3þt2

2
t3þt1t22t3t4−t1t

2
2
t2
3
t4

1−t1þt1t2ð1−t3t4−t2ð1−t3t4Þ2Þ

1CA −

66664
0B@ 1−t1þt2−t22−t2t3þt1t2t3−t2t3t4þt2

2
t3t4

1−t1þt1t2ð1−t3t4−t2ð1−t3t4Þ2Þ
1−t1þt1t2−t22−t2t3þt2

2
t3þt1t22t3t4−t1t

2
2
t2
3
t4

1−t1þt1t2ð1−t3t4−t2ð1−t3t4Þ2Þ

1CA
3777
1CA: ð67fÞ

With the expressions in Eq. (67) we can write the expression both for the large-box and small-box scenarios. We exhibit
only the dominant contribution in each case. To obtain the dominant contribution near the bulk we start with Eq. (55), take
only the zeroth internal mode, and substitute the expressions in Eq. (67),

I2ajbulk ∼
C2aΓð5−DÞ

ð4πÞD
Z

1

0

dt1dt2dt3dt4t31t
2
2t3

ft1½1− t1 þ t1t2ð1− t3t4 − t2ð1− t3t4Þ2Þ�gD
2

×

�
M2ðti;miÞ þQ2

t22t3½1− t1 − t2t3 þ t1t2t3 þ t1t4ð1− t2Þð1− t3t4Þ þ t21ð1− t4Þð1− t3Þð1− t2ð1− t3t4ÞÞ�
1− t1 þ t1t2ð1− t3t4 − t2ð1− t3t4Þ2Þ

�
D−5

:

ð68Þ

To obtain the dominant contribution near the dimensional reduction we start from Eq. (47). Just like the previous case at
one loop the expression in the scenario of dimensional reduction is almost the same as in the bulk [taking the identification
D → D − d, adding the multiplicative factor ðQα LαÞL] but with new dependence on the external modes nqα and the
parameters ti, which gives

I2ajdim :red: ∼
C2aΓð5þ d −DÞ
ð4πÞD−dðQαLαÞL

Z
1

0

dt1dt2dt3dt4t31t
2
2t3

ft1½1 − t1 þ t1t2ð1 − t3t4 − t2ð1 − t3t4Þ2Þ�gD−d
2

�
M2ðti; miÞ þ Z̄t

αM̄Z̄α

þQ2
t22t3½1 − t1 − t2t3 þ t1t2t3 þ t1t4ð1 − t2Þð1 − t3t4Þ þ t21ð1 − t4Þð1 − t3Þð1 − t2ð1 − t3t4ÞÞ�

1 − t1 þ t1t2ð1 − t3t4 − t2ð1 − t3t4Þ2Þ
�
D−d−5

: ð69Þ

Of course, the manipulation of this equation becomes much more intricate than the previous one-loop scenario.
For the second 1PI diagram, in Fig. 3, the two scenarios are reproduced if we use the functions in Eq. (70).

U ¼ u5u2 þ u134u25 ¼ s2t1f½1 − t2t3ð1 − t4Þ�½1 − t1 þ t1t2t3ð1 − t4Þ� þ t2t3ð1 − t1Þð1 − t4Þg; ð70aÞ

V=Q2 ¼ u4u2u5 þ u4u13u25;

¼ s3t21t2ft3ð1 − t1Þð1 − t2Þð1 − t4Þ þ ð1 − t2Þð1 − t3 þ t3t4Þð1 − t1 þ t1t2t3ð1 − t4ÞÞg; ð70bÞ

M ¼
�
u1345 −u5
−u5 u25

�
¼ s

�
1 − t1t2t3 þ t1t2t3t4 −1þ t1

−1þ t1 1 − t1 þ t1t2t3ð1 − t4Þ

�
; ð70cÞ
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A ¼ M−1 detM ¼
�
u25 u5
u5 u1345

�
¼ s

�
1 − t1 þ t1t2t3ð1 − t4Þ 1 − t1

1 − t1 1 − t1t2t3 þ t1t2t3t4

�
; ð70dÞ

Bα ¼ ωq
α

�
u4
0

�
¼ st1ω

q
α

�
1 − t2
0

�
; ð70eÞ

Z̃α ¼ ωq
α

0B@
� ð1 − t1Þð1 − t2Þ þ t1t2t3ð1 − t2Þð1 − t4Þ

ð1 − t1Þð1 − t2Þ

�
½1 − t2t3ð1 − t4Þ�½1 − t1 þ t1t2t3ð1 − t4Þ� þ t2t3ð1 − t1Þð1 − t4Þ

−
� � ð1 − t1Þð1 − t2Þ þ t1t2t3ð1 − t2Þð1 − t4Þ

ð1 − t1Þð1 − t2Þ

�
½1 − t2t3ð1 − t4Þ�½1 − t1 þ t1t2t3ð1 − t4Þ� þ t2t3ð1 − t1Þð1 − t4Þ


1CA: ð70fÞ

C. Three loops

At three loops we have a large number of 1PI diagrams
that contribute to the correction of the full propagator. One
such example is shown in Fig. 4 and the expression for the
Symanzik polynomials and the matrices and vector needed
are shown in Eq. (71). One can use directly the matrices A
and the vector B to build the representation near the bulk
[see Eq. (55)] and useM to build the representation near the
dimensional reduction [see Eq. (47)].

U ¼ u34u56u1278 þ u34u18u27 þ u3u4u1278; ð71aÞ

V=Q2 ¼ u12u34u56u78 þ u1u2u34u78

þ u12u3u4u78 þ u12u34u7u8; ð71bÞ

M ¼

0B@ u14568 −u456 u4
−u456 u24567 −u4
u4 −u4 u34

1CA; ð71cÞ

A ¼ M−1 detM ¼

0BBBBBBBB@

u2567u34
þu3u4

u3u4
þu34u56

−u4u27

u3u4
þu34u56

u1568u34
þu3u4

u4u18

−u4u27 u4u18
u456u1278
þu18u27

1CCCCCCCCA
;

ð71dÞ

Bα ¼ ωq
α

0B@u8
u7
0

1CA: ð71eÞ

VI. CONCLUSION

We manage to show two useful parametric representa-
tions for Feynman diagrams in periodically compactified
spaces. One representation is more suitable in a large-box
regime and recovers the expected standard Schwinger
parametric representation for noncompactified theories at
the bulk. The other representation is more suitable in a
small-box regime and shows how the amplitudes behave if
we consider the limit of a dimensional reduction. Both
expressions allow one to obtain the behavior with respect to
the compactification length and shall be helpful for those
interested in higher-order Feynman diagrams in compacti-
fied spaces to study a myriad of phenomena as depicted
by works in quantum field theory with compactifications
[14,18,26–29,56,57].
Of course, we still do not get the full picture and there are

many remaining tasks to be done: 1) There is a need to
extend the present work for fields with nonzero spins; 2) It
might be useful to consider scenarios where space is
compactified by a different prescription other than a
periodic one (Dirichlet, Neumann, Robin, …); 3) It is ofFIG. 4. Example with three loops, I3.
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utmost importance to extract asymptotic information
from the parametric representations so we can easily
understand the behavior of a higher-order graph in com-
pactified space. Each of these topics are the subject of
future works.
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