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Motivated by its potential use in constraining the structure of 6D renormalization group flows, we
determine the low energy dilaton-axion effective field theory of conformal and global symmetry breaking
in 6D conformal field theories (CFTs). While our analysis is largely independent of supersymmetry, we
also investigate the case of 6D superconformal field theories (SCFTs), where we use the effective action to
present a streamlined proof of the 6D a-theorem for tensor branch flows, as well as to constrain properties
of Higgs branch and mixed branch flows. An analysis of Higgs branch flows in some examples leads us to
conjecture that in 6D SCFTs, an interacting dilaton effective theory may be possible even when certain
four-dilaton four-derivative interaction terms vanish, because of large momentum modifications to four-
point dilaton scattering amplitudes. This possibility is due to the fact that in all known D > 4 CFTs, the
approach to a conformal fixed point involves effective strings which are becoming tensionless.
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I. INTRODUCTION

One of the important features of quantum field theories is
that they can be organized according to a hierarchy of scales
which can be related by renormalization group (RG) flows.
Conformal field theories (CFTs) are of particular signifi-
cance since they arise from fixed points of the renormaliza-
tion group, and the general structure of these theories
indicates that there is a sense in which information is lost
in passing from the ultraviolet (UV) to the infrared (IR).
This intuition can be sharpened significantly in the

context of conformal field theories (CFTs) in even spacetime
dimensions and the structure of its conformal anomalies,
namely the behavior of the trace of the stress energy tensor in
curved backgrounds. Starting from a conformal fixed point,
a perturbation will drive a flow to another theory in the IR.
Reference [1] established that for 2D CFTs, there exists
a c-function which decreases monotonically along an RG
flow, and so in particular cUV > cIR for the central charges of
aUVand IRCFT connected by such a flow. In Ref. [2] it was
conjectured that a similar c-theorem should hold for 4D
theories for the Euler anomaly a. Many intermediate results

such as [3–5] provided strong evidence that for 4D RG
flows, aUV > aIR. In Ref. [6] a convincing demonstration of
the 4D a-theorem was presented based on the structure of
dilaton scattering in such theories. It is widely expected that
there should be an a-theorem for 6D CFTs, though a
straightforward extension of 4D dilaton scattering methods
to six dimensions runs into numerous obstacles [7,8].
Indeed, on general grounds, 6DCFTs aremore difficult to

characterize because even defining them requires passing far
beyond perturbations of a Gaussian fixed point. The first
examples of interacting fixed points in six dimensions were
only found using methods from string theory [9,10], and
were recognized as such based on the strong arguments of
Ref. [11]. As of this writing, the only known examples are
supersymmetric. This singles out six spacetime dimensions
as especially important because the classification results of
Ref. [12] also show that six is the maximum spacetime
dimension which can support superconformal symmetry.
Recently, significant progress has been made in classifying
6D SCFTs via the geometry of F-theory backgrounds
[13,14] (see also [15,16] as well as the review [17]). In
particular, a number of analyses ofRG flows in deformations
of 6D SCFTs have now been performed, see e.g., [18–27].
Motivated by the prospect of determining possible

constraints on the structure of 6D RG flows, our aim in
this paper will be to construct the dilaton-axion effective
action associated with spontaneous breaking of conformal
symmetry, when it is accompanied by the breaking of a
global continuous symmetry. This sort of situation is
actually rather generic in 6D SCFTs, and arises whenever
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the R-symmetry is broken. We comment that in all known
examples where the R-symmetry is broken, there are
additional axions and scalars generated from the breaking
of flavor symmetries which fill out hypermultiplets on the
Higgs branch moduli space. That being said, we shall
mainly focus on the most explicit case where the global
symmetry contains an SUð2Þ factor, leaving the other
contributions implicit.
Similar to the 4D case [28], we find that the dilaton-

axion effective action Seff ½ϕ; ξa�, up to six-fields and six-
derivative, admits a decomposition

Seff ½ϕ; ξ� ¼
Z

d6x

�
−
1

2
ðð∂ϕÞ2 þ ð∂ξa · ∂ξaÞÞ þLdilaton½ϕ�

þLaxion½ξ� þLmixed½ϕ; ξ�
�
; ð1:1Þ

where, Ldilaton½ϕ� is the part of the effective action which is
independent of the global symmetry breaking. Hence,
Ldilaton½ϕ� captures the interactions of the dilaton effective
action of [7]. Likewise, Laxion½ξ� captures the axion inter-
actions that result from the global symmetry breaking.
Moreover, there can be mixed interactions Lmixed½ϕ; ξ�
containing at least four derivatives, two dilatons, and two
axions. An important consequence of the above decompo-
sition is that the global symmetry breakingwill not affect any
proof of the 6D a-theorem involving only the Ldilaton½ϕ�.
Additional information can be extracted when we

assume the existence of supersymmetry. In perturbations
of 6D superconformal fixed points, no marginal or relevant
deformations that preserve supersymmetry are possible,
and instead all flows are triggered by vacuum expectation
values (VEVs) for operators [22,23]. There are essentially
three ways in which a supersymmetry preserving flow can
be triggered, based on the classification results of Ref. [23]
which are known as tensor branch, Higgs branch, and
mixed branch flows. As the names suggest, in a tensor
branch flow the scalar component of a 6D tensor multiplet
attains a nonzero value, while in a Higgs branch flow, a
combination of scalars break the SUð2Þ R-symmetry of the
system. A mixed branch flow amounts to a combination of
tensor and Higgs branch flows.
One of the goals of this paper is to explore the structure

of the dilaton-axion effective theory for 6D mixed branch
flows. Our result implies some nontrivial consequences for
the structure of dilaton scattering in the corresponding
effective field theory. In particular, we see that in a mixed
branch flow where we have a combination of tensor branch
and Higgs branch deformations depending on the respec-
tive scales ft and fH, the respective contributions to the
term ϕ2

□
2ϕ2 have an interesting dependence on the ratio

ft=fH. In particular, this strongly suggests the existence of
a smooth limit in which we either switch off the Higgs
branch deformation or the tensor branch deformation
completely.

An important element of this analysis is that it permits us
to access some aspects of Higgs branch flows via the more
general case of mixed branch flows. Indeed, many 6D
SCFTs have a deformation to a tensor branch in which the
theory on the tensor branch also has a Higgs branch. In this
case, we can explicitly track in the resulting low-energy
gauge theory how various contributions to the dilaton-axion
effective action are actually generated. In contrast to the
case of 4D CFTs, we present some explicit examples where
all contributions to the ϕ2

□
2ϕ2 interaction terms involve a

suppression scale with at least two nontrivial powers of ft.
Said differently, at the level of explicit Feynman diagrams
we find no way to generate a purely Higgs branch
contribution to this interaction term.
This is a rather surprising result, and it leads us to

conjecture that for Higgs branch flows of 6D SCFTs, the
term ϕ2

□
2ϕ2 actually vanishes. The reason this does not

immediately contradict the well-known constraint of
Ref. [29] is that to actually extract a dispersion relation,
one must make some specific (and usually very well-
motivated) assumptions about the large momentum behav-
ior of dilaton four-point scattering amplitudes. This is
problematic in six dimensions, because all known examples
involve effective strings which have tension which is tuned
to zero at the conformal fixed point. In the case of tensor
branch flows, this is not much of an issue because the
effective field theory presupposes that the energy scale is
less than ft, and similar considerations apply for mixed
branch flows. The situation is far more subtle for Higgs
branch flows, since in this case ft ¼ 0, namely the effective
strings on the tensor branch are becoming tensionless.
Again, this appears to be a feature unique to D > 4 CFTs,
since in the case of D ≤ 4 CFTs, the approach to a
conformal fixed point only involves particles becoming
massless.
The rest of this paper is organized as follows. In Sec. II

we set up the general formalism of a dilaton-axion effective
action for 6D CFTs in which conformal and a global
symmetry are both spontaneously broken. In Sec. III we
specialize this effective action to the case of 6D SCFTs and
show how supersymmetry leads to additional constraints.
Section IV studies some examples of 6D SCFTs with
mixed branch flows and the consequences for Higgs branch
flows. These examples motivate the statements of Sec. V
where we present a conjecture on the vanishing of the term
ϕ2

□
2ϕ2 in Higgs branch flows. Section VI contains our

conclusions. Some additional aspects of the dilaton-axion
effective action are included in Appendix.

II. THE DILATON-AXION EFFECIVE THEORY

In this section we find the general dilaton effective action
associated with the breaking of conformal symmetry in six
dimensions. In the situations of interest, especially Higgs
branch and mixed branch flows, this is often accompanied
by spontaneous breaking of a global SUð2Þ symmetry.
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So, our aim will be to write down an effective action for the
associated dilaton-axion effective theory.
Now, there is a crucial difference between spontaneous

breaking of global symmetries and spacetime symmetries.
The Goldstone modes that are generated as a consequence
of spacetime symmetry breaking are not all independent
[30]. In particular, when conformal symmetry is sponta-
neously broken to the Poincaré symmetry, there is only one
independent Goldstone mode—the dilaton τ. The rest of the
Goldstone modes aμ generated from the broken special
conformal generators are constrained by the inverse Higgs
effect aμ ∼ ∂μeτ [31–37]. This is reminiscent of the con-
straint on the vector field of a 6D (1, 0) linear multiplet (see
for example [38]).
In addition, the spontaneously broken UV SUð2Þ sym-

metry generates three massless pseudoscalars βa, a ¼ 1, 2,
3. Hence, in the IR we end up with CFTIR, the dilaton τ, and
axions βa

CFTUV

⇓

CFTIR þ Seff ½τ; βa�: ð2:1Þ

We also assume that an SUð2Þ global symmetry gets
restored in CFTIR. This requirement stems from the fact
that eventually we will specialize to the supersymmetric
case where the global SUð2Þ symmetry is the R-symmetry
of (1, 0) SCFTs. However, the discussion of this section is
more general and applies to nonsupersymmetric 6D flows
as well. In the general case, we assume that CFTIR is
invariant under the UV SUð2Þ transformations.
The effective action Seff ½τ; βa� can be derived by simply

extending the analysis of [28] to 6D. First, we couple the
theory to a background metric gμνðxÞ and a background
SUð2Þ gauge potential

Aμ ¼ Aa
μðxÞσa; ð2:2Þ

where σa, a ¼ 1, 2, 3 are the Pauli matrices.1 In the
presence of these background fields, the 6D conformal
trace anomaly is given by [39–42]

hTμ
μi ¼ aE6 þ

X3
i¼1

cðiÞIi þ IF ð2:3Þ

up to total derivative terms. Total derivative terms are not
important since they can be removed by adding counter-
terms in the UV theory. In the above expression, E6 is the
6D Euler density

E6 ¼
1

8
δμ1μ2μ3μ4μ5μ6ν1ν2ν3ν4ν5ν6 R

ν1ν2
μ1μ2R

ν3ν4
μ3μ4R

ν5ν6
μ5μ6 ; ð2:4Þ

and a is the corresponding Euler anomaly. Similarly, the
central charges fcðiÞg are associated with conformal invar-
iants

I1 ¼ WγαβδWαμνβWγδ
μν;

I2 ¼ Wαβ
γδWγδ

μνWμν
αβ;

I3 ¼ Wαγδμ

�
∇2δαβ þ 4Rα

β −
6

5
Rδαβ

�
Wβγδμ; ð2:5Þ

where, Wμναβ is the Weyl tensor. For supersymmetric
theories, the fcðiÞg are not all independent. In the relation
(2.3), IF represents terms due to the background gauge
field [43]

IF ¼ f1Tr ðDμFμλDνFνλÞ þ f2WμναβTr ðFμνFαβÞ
þ f3Tr ðFμνFμαFα

νÞ þ � � � ; ð2:6Þ

where F is the field strength for the background gauge
field.2 The dots represent terms that are either total
derivatives or terms that are completely fixed by conformal
invariance. Terms that are completely fixed by conformal
invariance cannot change under RG flows and hence will
not play any role in our discussion. The coefficients f1, f2,
and f3 are arbitrary; however, for supersymmetric theories
they are related to c1, c2 and c3 [43]. The current jμ
associated with the SUð2Þ symmetry can also be anoma-
lous hDμjμi ≠ 0 in the presence of background fields. We
do not need to know the exact form of the anomaly, since,ffiffiffi
g

p hDμjμi is both gauge and Weyl invariant. In fact, in the
flat space limit with no gauge field, only the Euler anomaly
term will contribute to the effective action.
We follow [28] to derive Seff ½τ; βa� by studying the

variation of the action under diff × Weyl transformations
and gauge transformations. Under Weyl transformations

gμνðxÞ → e2sðxÞgμνðxÞ; τðxÞ → τðxÞ þ sðxÞ: ð2:7Þ

Gauge transformations act on the gauge field in the usual
way

AμðxÞ → ΩðxÞAμðxÞΩ−1ðxÞ þ iΩðxÞ∇μΩ−1ðxÞ; ð2:8Þ

where ΩðxÞ ¼ eiπaðxÞσa ∈ SUð2Þ, and the axions β trans-
form as

1We are using the notation in which σaσb ¼ δabI þ iεabcσc.

2Note that ∇μ is the spin connection covariant derivative,
whereas Dμ is the combined spin and gauge connection covariant
derivative.
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βðxÞ → βðxÞ þ πðxÞ: ð2:9Þ

We now invoke the anomaly matching arguments of
[3,6] which imply that the changes in anomalies from the
UV to the IR must be compensated by the Goldstone
bosons. This imposes (at the linearized order)

Weyl∶ δsSeff ½gμν;Aμ;τ;β�

¼
Z

d6x
ffiffiffiffiffiffi
−g

p
sðxÞ

�
ΔaE6þ

X3
i¼1

ΔcðiÞIiþΔIF
�

ð2:10Þ
and

Gauge∶ δπSeff ½gμν; Aμ; τ; β�

¼
Z

d6x
ffiffiffiffiffiffi
−g

p
Tr ðπðxÞΔhDμjμiÞ; ð2:11Þ

where Δð� � �Þ represents the change of a quantity under the
RG flow (for example, Δa ¼ aUV − aIR). Of course, all IR
anomalies must be understood as the total anomalies of
CFTIR and all the Goldstone bosons.
The variational Eqs. (2.10) and (2.11) can be solved

systematically to obtain Seff . We follow [8,28] and decom-
pose the effective action in the following way

Seff ½gμν; Aμ; τ; β�

¼
Z

d6x
ffiffiffiffiffiffi
−g

p
Tr ðβðxÞΔhDμjμiÞ

þ
Z

d6x
ffiffiffiffiffiffi
−g

p
τðxÞ

�
ΔaE6 þ

X3
i¼1

ΔcðiÞIi þ ΔIF
�

þ δSWZ þ Sinv: ð2:12Þ
The first term in the above equation is designed to simply
generate the correct gauge variation (2.11). Since the Euler
density E6 is not Weyl invariant, it is more complicated to
generate the Weyl variation (2.10). For example, the second
term in Eq. (2.12) generates the correct Weyl variation
(2.10) plus an extra termΔa

R
d6x

ffiffiffiffiffiffi−gp
τðxÞδsE6. This extra

term is canceled by adding a correction term δSWZ. In
addition, we can always add terms which are invariant
under gauge and Weyl transformations; Sinv represents all
such invariant terms that are allowed by symmetry.
The effective action simplifies greatly when we take the

flat space limit without the background gauge field. This

mainly comes from the fact that δSWZ is uniquely fixed by
Δa up to terms that are invariant under both diff × Weyl
transformations and gauge transformations. Moreover, in
the flat space limit without the background gauge field,
δSWZ simplifies further [7]

δSWZjgμν¼ημν;Aμ¼0 ¼ 3Δa
Z

d6xτ□3τ þ � � � ; ð2:13Þ

where, the dots represent terms that can be absorbed in Sinv.
We now take the flat space limit without the background
gauge field of the effective action (2.12). In this limit only
δSWZ and Sinv contribute

Seff ½τ; β� ¼ 3Δa
Z

d6x τ□3τ þ Sinv½τ; β�: ð2:14Þ

Hence, the effective action is completely fixed by sym-
metries. The invariant part of the action can be efficiently
constructed by defining Weyl invariant and gauge covariant
combinations [28]

ĝμνðxÞ ¼ e−2τðxÞgμνðxÞ;
ÂμðxÞ ¼ AμðxÞ − ieiβðxÞ∂μe−iβðxÞ: ð2:15Þ

Of course, Sinv constructed only from ĝμν and Âμ will miss
Wess-Zumino type terms that shift by total derivatives
under gauge and Weyl transformations. But such terms will
not contribute to the effective action containing up to six
fields. Up to six derivatives, the most general Sinv½ĝμν; Âμ�
can be written as

Sinv½ĝμν; Âμ� ¼ −
f4

2

Z
d6x

ffiffiffiffiffiffi
−ĝ

p �
R̂
5
þ 2γ20ĝ

μνTr ðÂμÂνÞ
�

þ
Z

d6x
ffiffiffiffiffiffi
−ĝ

p
ðLconf ½ĝμν� þLSUð2Þ½ĝμν; Âμ�Þ;

ð2:16Þ
where the “decay constant” f has dimension of mass and γ0
is a real dimensionless coefficient. Note that Lconf ½ĝμν�
contains four and six derivative invariants that are con-
structed only out of the metric but not the gauge field. By
contrast, LSUð2Þ½ĝμν; Âμ� contains four and six derivative

invariants with at least one Âμ field. The advantage of this
decomposition is that LSUð2Þ½ĝμν; Âμ� ¼ 0 for βa ¼ 0 in
the flat space limit with no background gauge field. Putting
everything together, Seff ½τ; β� is given by3

Seff ½τ; β� ¼
Z

d6x

�
−2f4e−4τ

�
ð∂τÞ2 þ 1

2
γ20Tr ð∂μeiβ∂μe−iβÞ

�
þ 3Δaτ□3τ

�

þ
Z

d6x e−6τðLconf ½ĝμν� þ LSUð2Þ½ĝμν; Âμ�Þgμν¼ημν;Aμ¼0
þ � � � ; ð2:17Þ

3Our convention is that the spacetime metric is mostly þ’s.
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where the dots represent higher-order terms. The equations
of motion at the two derivative level are given by

□τ ¼ 2ð∂τÞ2 − γ20Tr ð∂μeiβ∂μe−iβÞ;
□β ¼ 4ð∂τ · ∂βÞ þOðβ3; ∂2Þ: ð2:18Þ

It should be noted that terms that vanish once we impose
the on-shell condition for the dilaton and the axion can be
removed by performing field redefinitions. However, this
will generate interaction terms at higher orders.
We now focus on the invariant terms Lconf ½ĝμν� that are

constructed only from the Weyl-invariant metric (2.15). At
each order in the derivative expansion, there are a finite
number of invariants. In particular, following [7] we can
write

Lconf ½ĝμν� ¼ −
b̂f2

2
R̂μνR̂μν þ

b0

100
f2R̂2 þ b1R̂

3

þ b2R̂R̂
μνR̂μν þ b3R̂ □̂ R̂þOð∂8Þ; ð2:19Þ

where all b coefficients are dimensionless and numerical
factors are chosen for later convenience. Of course, both R̂
and R̂μν are constructed using the Weyl-invariant metric
(2.15). In the flat space limit with no gauge field, this action
can be further simplified by utilizing the equation of
motion of τ appropriately. For example, the Ricci scalar
R̂ ∼□τ − 2ð∂τÞ2 can be rewritten in terms of only axions
by using the τ equation of motion. For our purpose, it is
sufficient to keep only all-dilaton interactions. So, we can
simplify

Z
d6xe−6τLconf ½ĝμν�¼4b̂f2

Z
d6xe−τ□2e−τþ���; ð2:20Þ

where dots represent interactions involving axions that can
be absorbed in LSUð2Þ½ĝμν; Âμ�.

A. Effective action for propagating modes

Our eventual aim is to study dilaton scattering ampli-
tudes. To accomplish this, we need to have a convenient
way to isolate the physical degrees of freedom which define
on shell asymptotic scattering states. With this in mind, we
first perform field redefinitions so that we have canonically
normalized kinetic terms for our dilaton and axions. We
refer to these as the physical dilaton and physical axion in
what follows.
Along these lines, note that

1

2
Tr ð∂μeiβ∂μe−iβÞ ¼ ð∂βa · ∂βaÞ

þ 1

6
ϵabcϵab0c0∂μðβbβb0 Þ∂μðβcβc0 Þ

þOð∂2; β6Þ: ð2:21Þ

Thus we perform a field redefinition

e−2τe−2iγ0βaσa ¼ 1
�
1 −

ϕ

f2

�
−

i
f2

σaξa; ð2:22Þ

where, ϕ is the physical dilaton and ξ ¼ ξaσa is the
physical axion. This implies

βa ¼
ξa

2γ0f2

�
1þ ϕ

f2
þ 3ϕ2 − ξ2

3f4
� � �

�
;

τ ¼ ϕ

2f2
þ ϕ2 − ξ2

4f4
þ ϕ3 − 3ϕξ2

6f6
þ � � � ; ð2:23Þ

where ξ2 ≡ ξaξa.
Finally, we can write the low-energy dilaton-axion

effective action (2.17) in the following form

Seff ½ϕ; ξ� ¼
Z

d6x

�
−
1

2
ðð∂ϕÞ2 þ ð∂ξa · ∂ξaÞÞ þ Ldilaton½ϕ� þ Laxion½ξ� þ Lmixed½ϕ; ξ�

�
; ð2:24Þ

where, Ldilaton½ϕ� is the dilaton interactions [7] (see also [8])

Ldilaton½ϕ� ¼
b̂
2f4

ϕ2
□

2ϕþ 3Δa
4f6

ϕ2
□

3ϕþ b̂
f6

�
1

4
ϕ3

□
2ϕþ 1

16
ϕ2

□
2ϕ2

�
þ Δa

f8

�
1

2
ϕ3

□
3ϕþ 3

16
ϕ2

□
3ϕ2

�

þ b̂
32f8

ð5ϕ4
□

2ϕþ 2ϕ3
□

2ϕ2Þ þ Δa
8f10

ð3ϕ4
□

3ϕþ 2ϕ3
□

3ϕ2Þ þ b̂
128f10

ð14ϕ5
□

2ϕþ 5ϕ4
□

2ϕ2 þ 2ϕ3
□

2ϕ3Þ

þ Δa
240f12

ð72ϕ5
□

3ϕþ 45ϕ4
□

3ϕ2 þ 20ϕ3
□

3ϕ3Þ þOðϕ7Þ; ð2:25Þ

up to total derivatives that do not contribute to amplitudes. Observe that part of the dilaton effective action is completely
fixed by the change in the Euler anomaly Δa ¼ aUV − aIR. The dimensionless coefficient b̂, in general, depends on the
details of the symmetry breaking. However, it satisfies a positivity condition
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b̂ ≥ 0; ð2:26Þ

which follows from unitarity/causality [7,8]. The crucial
point for us is that the same parameter b̂ shows up in several
dilaton interaction terms. Moreover, for supersymmetric
flows, there are massless fermionic degrees of freedom that
we will ignore in the rest of the paper.
Likewise, the interactions Lmixed½ϕ; ξ� contain at least

four derivatives, two dilatons, and two axions. On the other
hand, the axion interactions of Laxion½ξ� have four or more
fields with two or more derivatives. The two-derivative
interactions in Laxion½ξ� come from the second term of
(2.21). Two-derivative axion interactions, if present, lead to
radiative corrections. The exact form of these interactions
will not be important for our purpose. However, for the sake
of completeness we transcribe them in Appendix.
Supersymmetry introduces additional constraints on the

structure of the effective action. That being said, our result
applies more broadly and will likely be important in
establishing the 6D a-theorem in both the supersymmetric
and nonsupersymmetric settings.
There is an additional advantage of this effective field

theory formalism. In supersymmetric theories, the sponta-
neous breaking of conformal symmetry is often accom-
panied by breaking of not only the R-symmetry but also
other global symmetries. One can easily repeat the argu-
ment of this section to conclude that breaking of additional
global symmetries will not affect Ldilaton½ϕ� at the six-field
six-derivative order (see Appendix). Hence, breaking of
other global symmetries will not interfere with any proof of
the a-theorem obtained from Ldilaton½ϕ�. This is a general
feature of the dilaton-axion effective theory which is true
even in 4D [28].

B. Amplitudes

From the dilaton-axion effective action it is clear that the
dilaton amplitudes, up to order Oðp6Þ, are completely
independent of any global symmetry breaking. In particu-
lar, the four-point dilaton scattering amplitude is still given
by [7]

AðϕϕϕϕÞ ¼ b̂
2f6

ðs2 þ t2 þ u2Þ þ 9

2f8

�
Δa −

2

3
b̂2
�
stu

þO
�

1

f10

�
; ð2:27Þ

where, s, t, and u are the usual Mandelstam variables.
Similarly, five-point and six-point dilaton amplitudes are
also given in Ref. [7].
Amplitudes involving axions depend on the details of

the global symmetry breaking. Specifically forG ¼ SUð2Þ,
the dilaton-axion four-point amplitude can be obtained
from (A5),

AðϕϕξaξbÞ ¼
2δab
f6

ð2B̃2s2 þ B̃1t2 þ B̃1u2Þ

þO
�
1

f8

�
: ð2:28Þ

In the above, we have made reference to the coefficients B̃i
which appear in the dilaton-axion effective action of
Appendix. Axion four-point amplitudes are more compli-
cated because of the two-derivative interaction in (A4). In
particular, for G ¼ SUð2Þ because of this two-derivative
interaction

AðξaξaξbξbÞ ¼
12B0

f4
sþ 8B1

f6
s2 þ 4B2

f6
ðt2 þ u2Þ

þO
�
1

f8

�
ðno sumÞ ð2:29Þ

for a ≠ b. Note that the one-loop radiative contribution
from the B0 term contributes at sub-subleading order 1=f8.
In contrast, we observe that in 4D, the radiative corrections
contribute at subleading order [28].
However, note that any four-point amplitude of identical

axions does not have an s term

AðξaξaξaξaÞ ¼
8B1

f6
ðs2 þ t2 þ u2Þ þO

�
1

f8

�
;

ðno sumÞ ð2:30Þ

which also gets a radiative correction from the B0 term only
at the order 1=f8. The general structure of the axion
amplitudes are the same for any non-Abelian symmetry
group G.4

III. 6D SUPERSYMETRIC FLOWS

Having laid out the general structure of the dilaton-axion
effective action, we now specialize further to RG flows
which preserveN ¼ ð1; 0Þ supersymmetry. In this context,
we identify the global SUð2Þ with the R-symmetry of a 6D
SCFT. We assume that Poincaré supersymmetry is pre-
served. All known (1, 0) SCFTs have moduli spaces of
vacua that break conformal symmetry spontaneously. In
fact, a general result on supersymmetry preserving defor-
mations of SCFTs is that there are no relevant or even
marginal operator deformations [22,23,25]. Rather, all
flows are triggered by VEVs of operators. There are exactly
three types of 6D RG moduli space flows that preserve
N ¼ ð1; 0Þ, given by tensor branch, Higgs branch and
mixed branch flows. We now discuss aspects of each of
these in turn.

4For G ¼ Uð1Þ there is no two-derivative four-axion inter-
action and the amplitude is precisely (2.30).

HECKMAN, KUNDU, and ZHANG PHYS. REV. D 104, 085017 (2021)

085017-6



A. Tensor branch flows and the a-theorem

Let us first revisit the case of tensor branch flows, where
a proof of the a-theorem was given in Ref. [20].5 This is the
branch of the moduli space parametrized by the VEVs of
tensor multiplet scalars. Now, in these moduli space flows,
the SUð2ÞR symmetry is unbroken on the tensor branch,
namely the dilaton is the scalar component of some linear
combination of tensor multiplet scalars. Because no global
zero-form symmetries are broken, we need not discuss the
axions, and the low-energy effective action only contains
the dilaton

Seff ½ϕ� ¼
Z

d6x

�
−
1

2
ð∂ϕÞ2 þ Ldilaton½ϕ�

�
; ð3:1Þ

where,Ldilaton½ϕ� is given by (2.25). This effective action can
be further simplified by removing the three-point inter-
actions in (2.25) by a field redefinition. This leads to a
simplified but equivalent effective action that describes four-
point, five-point, and six-point amplitudes up to orders p6

Seff ½ϕ� ¼
Z

d6x

�
−
1

2
ð∂ϕÞ2 þ Lϕ4 þ Lϕ5 þ Lϕ6 þ � � �

�
;

ð3:2Þ

where Lϕn represents effective n-point interaction of ϕ
fields. The effective interactions which contribute to four-
point amplitudes up to orders p6 are given by

Lϕ4 ¼ b̂
16f6

ϕ2
□

2ϕ2 þ 3

16f8

�
Δa −

2

3
b̂2
�
ϕ2

□
3ϕ2

þ � � � ; ð3:3Þ

One can easily check that the above four-point interactions
produce the same four-point amplitude (2.27) as the
effective action (2.25). For tensor branch flows, the
a-theorem can be proved directly from the above effective
action (3.3). The argument is similar to that of [20], but not
exactly the same, a point we now elaborate on.
Supersymmetry imposes additional constraints on the

dilaton-axion effective action. Utilizing superconformal
representation theory [23,25], it can be shown that there
can only beD-termdeformations.Moreover, supersymmetry
does not allow any six-derivative interaction terms [20].
Therefore, supersymmetry imposes that all local six deriva-
tive interactions ofLϕ4 must vanish implying the a-theorem6

aUV − aIR ¼ 2

3
b̂2 ≥ 0: ð3:4Þ

The same conclusion can also be reached from the five-
point effective interaction

Lϕ5 ¼ b̂
16f8

ϕ3
□

2ϕ2 þ 1

4f10

�
Δa −

2

3
b̂2
�
ϕ3

□
3ϕ2

þ � � � : ð3:5Þ

In contrast, the a-theorem for tensor branch flows was
derived in [20] by studying six-derivative six-point inter-
actions. The same argument applies to the six-point
effective interaction which implies Δa ∝ b̂2 with a univer-
sal proportionality constant. The constant can be found to
be 2

3
(in our notation) by studying any special case. This

argument cannot provide the proportionality constant
directly mainly because it is difficult to disentangle local
and nonlocal parts of six-derivative six-point interactions.
On the other hand, our argument has the advantage that we
can determine the constant of proportionality between Δa
and b̂2 directly from the effective action.

B. Higgs branch flows

Consider next the case of Higgs branch flows. This is the
branch of the moduli space parametrized at generic points
by VEVs of hypermultiplets. One important feature of such
flows is that they fully break the SUð2Þ R-symmetry, and
are often accompanied by Goldstone modes associated with
the breaking of other global symmetries. An important
remark is that the low-energy effective action (2.24) is
general enough to capture all possible 6D Higgs branch
flows since it does not even make explicit reference to
supersymmetry, and just the notion of spontaneous break-
ing of an SUð2Þ symmetry. The main point is that the terms
of the dilaton effective action (2.25) which involve just
dilaton interactions are exactly the same as in the case of
tensor branch flows, though in this case there can also be
mixing terms with axions associated with global symmetry
breaking. The interactions Lmixed½ϕ; ξ� and Laxion½ξ� are
given in Appendix. Note that there should be other
constraints on the remaining coupling constants from
supersymmetry, however, we will not explore them here.

C. Mixed branch flows

This is the branch of the moduli space on which both
tensor multiplets and hypermultiplets acquire VEVs.
Hence, these flows also break the global SUð2ÞR symmetry.
The effective field theory approach tells us something
important about dilaton scattering amplitudes in 6D super-
symmetric RG flows. In fact, the following analysis applies
to any 6D RG flow with multiple symmetry-breaking
scales.

5The nonrenormalization theorems in 6D (2, 0) and (1, 0)
theories on tensor branch were also studied using amplitude
techniques in [44,45].

6We follow the notation of Ref. [8] which is different from the
convention used in [20]. In fact, one can use the equation
Δatensor ¼ 2

3
b̂2 to relate our convention with that of [20]. Also

note that our b̂ ¼ b=f2 of [7].
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The main idea is to view a tensor branch flow and a
Higgs branch flow as limiting cases of a mixed branch flow.
Consider a 6D N ¼ ð1; 0Þ SCFT in which conformal
symmetry is broken by giving VEVs to a tensor multiplet
scalar t and a hypermultiplet scalars H and H̃7

hti ¼ f2t ; hHi ¼ f2Hh; hH̃i ¼ f2Hh̃; ð3:6Þ

where, the scales ft and fH have dimension of mass,
whereas h and h̃ are dimensionless matrices (depending on
the global symmetry breaking pattern) with Oð1Þ coeffi-
cients. This triggers an RG flow that preserves Poincaré
supersymmetry

SCFTUV ⇒mixed branch

⇓

SCFTIR þ Seff ½ϕ; ξa�; ð3:7Þ

where, the effective action Seff ½ϕ; ξa� is given by (2.24). We
can now imagine turning off the VEVs of all hyper-
multiplets fH ¼ 0 and hence, the flow (3.7) becomes a
tensor branch flow. From the perspective of the low-energy
effective action Seff ½ϕ; ξa�, this corresponds to taking a limit
ξ ¼ 0. Furthermore, from the discussion of tensor branch
flows we find that in this case

b̂ ¼ b̂tensor; Δa ¼ Δajtensor ¼
2

3
b̂2tensor: ð3:8Þ

Similarly, one can consider the special case ft ¼ 0. Then
the flow (3.7) becomes a Higgs branch flow

b̂ ¼ b̂Higgs; Δa ¼ ΔajHiggs: ð3:9Þ

We remark that sometimes it can happen that a tensor
branch deformation can obstruct a Higgs branch deforma-
tion (the E-string theory being a prominent example of this
sort). This does not affect any of the statements presented
here, since we have presupposed that we are dealing with a
mixed branch flow in the first place.

1. Effective action

Given an SCFTUV and VEVs (3.6), the dilaton and
axions arise from the parametrization,

tðxÞ ¼ f2t e−2τðxÞ; HðxÞ ¼ f2He
−2τðxÞe−2iβaðxÞσah;

H̃ðxÞ ¼ f2He
−2τðxÞe−2iβaðxÞσa h̃; ð3:10Þ

where τðxÞ and βðxÞ are the Goldstone modes of Sec. II that
nonlinearly realize the broken conformal and SUð2ÞR
symmetries. Again, here we have suppressed the contribu-
tions from other light scalars and axions. For example, in a
flow which includes a Higgs branch deformation of a tensor
branch deformed theory, we get a scalar for each tensor
multiplet, and four real degrees of freedom (one quater-
nionic degree of freedom) from each hypermultiplet. The
quantities ft and fH generate mass scales for states, and
these massive modes must be integrated out to arrive at the
corresponding effective action. The states parametrizing
motion on the moduli space can be packaged in terms of
massless tensor multiplets and hypermultiplets.
First, we focus on the tensor branch part of the flow and

only integrate out modes that become massive because of
the tensor multiplet VEV. This must coincide with the
purely tensor branch flow and hence we can write the
resulting effective action as

St ¼
Z

d6x ð−2f4t e−4τð∂τÞ2 þ 4b̂tensorf2t e−τ□2e−τ

þ 3Δajtensorτ□3τÞ þ � � � ; ð3:11Þ

where, dots represent terms with eight or more derivatives.
Note that we are ignoring a possible cosmological constant
term since it can be removed by adding a counterterm.
Next, we perform the same procedure but now for the

hypermultiplets. We integrate out all modes that become
massive because of the hypermultiplet VEV(s). From the
preceding section, we know that this procedure will
generate the following effective action

SH ¼
Z

d6x

�
−2f4He−4τ

�
ð∂τÞ2 þ γ20

2
Tr ð∂μeiβ∂μe−iβÞ

�

þ 4b̂Higgsf2He
−τ
□

2e−τ þ 3ΔajHiggsτ□3τ

�

þ � � � ; ð3:12Þ

where dots represent terms involving axion interactions and
terms with eight or more derivatives. Finally, there can be
additional terms with four or more derivatives that appear
only in the mixed branch due to some intricate interactions
between corresponding tensor and Higgs branches. Any
such terms can be parametrized in the following way,

Smixed ¼
Z

d6x ð8b̂mixedfHfte−τ□2e−τ þ 3Δajmixedτ□
3τÞ

þ � � � ; ð3:13Þ

where we are again ignoring higher-derivative terms and
terms involving axions. Combining everything together and
after a field redefinition

7In the above, H and H̃ denote complex scalars of (possibly
different) hypermultiplets. There is a straightforward generaliza-
tion to the case with multiple tensor multiplets and hyper-
multiplets acquiring VEVs with different scales.
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e−2τ ¼ 1 −
ϕ

f2
þ � � � ; ð3:14Þ

where dots represent terms involving axions, we must
recover the effective action (2.24). In particular, at energy
scales E ≪ ft, fH we obtain the dilaton effective action
(2.25) once we identify

f4 ¼ f4t þ f4H; ð3:15Þ

b̂ ¼ 1

f2
ðf2t b̂tensor þ 2ftfHb̂mixed þ f2Hb̂HiggsÞ; ð3:16Þ

Δa ¼ Δajtensor þ Δajmixed þ ΔajHiggs: ð3:17Þ

Note that b̂tensor, b̂Higgs, Δajtensor, and ΔajHiggs do not
depend on the scales ft and fH. On the other hand, both
b̂mixed and Δajmixed can depend on the ratio ft=fH.
Moreover, we make the mild assumption that b̂mixed is
nonsingular and hence in both limits ft ≫ fH ≫ E and
fH ≫ ft ≫ E

ftfH
f2

b̂mixed → 0: ð3:18Þ

2. Asymptotics

The main point to take away from the above discussion
is that both b̂ andΔa can depend on two scales ft and fH in
a very specific way, as shown in Fig. 1. In particular, b̂
interpolates between

ft ≫ fH∶ b̂ ¼ b̂tensor þ 2

�
fH
ft

�
b̂mixedðfH ¼ 0Þ þ � � � ;

ð3:19Þ

and

fH ≫ ft∶ b̂ ¼ b̂Higgs þ 2

�
ft
fH

�
b̂mixedðft ¼ 0Þ þ � � � :

ð3:20Þ

This implies that if b̂ is known as a function of ft=fH, we
can recover b̂tensor and b̂Higgs from their asymptotic values.

3. Mixed contributions and factorization

Let us end this section by providing a physical explan-
ation of the relations (3.16) and (3.17). Consider the dilaton
four-point amplitude AðϕϕϕϕÞ. First, we give a VEV to
only the tensor multiplet scalar t. The dilaton four-point
amplitude AðϕϕϕϕÞjtensor is obtained by adding all
Feynman diagrams with four external ϕ with massive
states (due to the tensor multiplet VEV) running inside.
This amplitude is given by

AðϕϕϕϕÞjtensor ¼
b̂tensor
2f6t

ðs2 þ t2 þ u2Þ

þ 9

2f8t

�
Δajtensor −

2

3
b̂2tensor

�
stu

þ � � � ; ð3:21Þ

where the stu term vanishes because of the condition (3.4).
Similarly, for the Higgs branch, the dilaton four-point
amplitude AðϕϕϕϕÞjHiggs is obtained by adding all
Feynman diagrams with four external ϕ with massive
states (due to the VEVs which break R-symmetry) running
inside

AðϕϕϕϕÞjHiggs ¼
b̂Higgs
2f6H

ðs2 þ t2 þ u2Þ

þ 9

2f8H

�
ΔajHiggs −

2

3
b̂2Higgs

�
stu

þ � � � : ð3:22Þ

When we combine both VEVs to obtain a mixed branch
flow, the full dilaton four-point amplitude AðϕϕϕϕÞ
receives contributions from both of the above processes.
However, in the mixed branch flow both amplitudes (3.21)
and (3.22) must be rescaled. This is because of the field
redefinition (3.14) which involves the scale f. Hence, the
full amplitude is given by

FIG. 1. A schematic plot of how the parameter b̂ depends on
ft=fH in a 6D mixed branch flow. The full b̂ interpolates between
b̂Higgs and b̂tensor as we increase ft=fH . Three lines in the plot

represent three special cases: b̂mixed < 0 (blue), b̂mixed ¼ 0

(green), and b̂mixed > 0 (red). Note that b̂ has a nontrivial
dependence on ft=fH even when a mixed branch flow factorizes
completely (b̂mixed ¼ 0).
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AðϕϕϕϕÞ ¼
�
ft
f

�
8

AðϕϕϕϕÞ
����
tensor

þ
�
fH
f

�
8

AðϕϕϕϕÞ
����
Higgs

þAðϕϕϕϕÞjmixed; ð3:23Þ

where AðϕϕϕϕÞjmixed represents Feynman diagrams with
four external ϕ with massive states from both tensor and
Higgs branches running inside the loops. These diagrams
also include massive states running inside the loops with
masses that depend on both mass scales ft and fH. The
above amplitude is completely consistent with the relations
(3.16) and (3.17). Moreover, the above amplitude immedi-
ately implies that both b̂mixed and Δajmixed arise only from
Feynman diagrams with massive states from both tensor
and Higgs branches running inside. The same conclusion
can also be reached by studying five-point, and six-point
dilaton amplitudes.
A mixed branch flow factorizes completely when

AðϕϕϕϕÞjmixed ¼ 0. In that case, the mixed branch flow
is a combination of a purely tensor branch flow and a purely
Higgs branch flow. Another important special case is the
partial factorization Δajmixed ¼ 0. In other words, the IR
fixed point does not depend on the scales ft or fH as long
as both of them are nonzero. In this case, we can take
different scaling limits of ft=fH of the RG flow without
affecting Δa.

IV. 6D SCFT MIXED BRANCH FLOW EXAMPLES

In the previous section we showed that our dilaton-axion
effective action applies even when there are multiple
sources of conformal symmetry breaking. In this section
we illustrate some of these general features with an explicit
example based on 6D SCFTs by using perturbative
methods. Recall that in 6D SCFTs, there are generically
two sources of conformal symmetry breaking. One comes
from motion on the tensor branch of an SCFT, and the other
comes from motion on the Higgs branch. In general, a
mixed branch flow can be decomposed into an alternating
sequence of Higgs branch and tensor branch deformations.
We would in particular like to extract the contribution to
four-point dilaton scattering from the term

L ⊃
b̂

16f6
ϕ2

□
2ϕ2; ð4:1Þ

due to motion on the tensor branch, as well as the Higgs
branch.
In general, this is a challenging question to answer

because the strongly coupled nature of all 6D SCFTs makes
it difficult to provide a microscopic analysis of how such
terms arise. That being said, we can still make some general
comments. First of all, when we move onto the tensor

branch, we have effective strings in the low-energy theory,
with a tension which scales as

Teff ∼ f2t ; ð4:2Þ

with ft a “decay constant” energy scale associated with the
VEVof the scalar in a tensor multiplet (3.6). The origin of
the moduli space is where these effective strings would
appear to have vanishing tension. Rather than signaling the
appearance of a nonlocal theory, this instead points to the
appearance of a strongly-coupled conformal fixed point
[11]. In fact, all known D > 4 CFTs have the property that
effective strings have vanishing tension at a fixed point.
This is rather different from what happens in the better
studied case of D ≤ 4 CFTs, where the approach to a
conformal fixed point involves vanishing masses for
effective particles.
Indeed, the general method for constructing 6D SCFTs

involves starting on the tensor branch of a candidate 6D
SCFT, and then attempting to pass to the origin of tensor
branch moduli space. In such cases, it is often possible to
perform a further deformation onto a Higgs branch, though
sometimes there can be obstructions. As an example where
there is an obstruction, consider the E-string theory
obtained from an M5-brane probing a heterotic E8 9-brane.
In this case, the Higgs branch of the 6D SCFT corresponds
to dissolving the M5-brane as flux (an instanton) in the
nine-brane, while the tensor branch deformation corre-
sponds to pulling the M5-brane off the wall, completely
destroying the existence of a Higgs branch.
But there are also cases where no obstruction is generated

[26]. For example, consider suðNÞ gauge theory coupled to
2N hypermultiplets in the fundamental representation. In
this case, anomaly cancellation requires coupling the non-
Abelian vector multiplet to a single tensor multiplet of
charge −2. In F-theory terms this 6D SCFT is realized by a
curve of self-intersection −2 with an IN fiber over the −2
curve which collides with 2N fibers with an I1 singularity.
These flavor symmetry fibers can be tuned to makemanifest
an suð2NÞ flavor symmetry algebra (in which case we have
a single I2N fiber which collides with the IN fiber).
For our present purposes the key point is that all of the

Higgs branch deformations of the 6D SCFTare captured by
deformations which are directly visible in terms of explicit
VEVs for weakly coupled hypermultiplets. As an illus-
trative example, the deformation from a theory with suðNÞ
gauge symmetry to suðN − 1Þ gauge symmetry involves
giving a VEV to precisely two flavors from the system,
namely we wind up with 2N − 2 flavors from such a Higgs
branch deformation. This is in accord with the fact that to
satisfy the triplet of D-term constraints in the gauge theory,
a pair of hypermultiplets actually needs to get a VEV
[46,47]. More generally, all these Higgs branch deforma-
tions correspond to brane recombination moves [48].
Another interesting aspect of this example is that upon
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compactification of the tensor branch theory on a T2, we
obtain a 4D N ¼ 2 SCFT with the same gauge group and
matter content. In this model, the reduction of the tensor
multiplet decouples, which fits with the fact that effective
strings play little role in the approach to the 4D conformal
fixed point.
We would now like to better understand the possible

contributions on the Higgs branch to four-dilaton, four-
derivative interaction terms. As a warm-up exercise, let us
first consider the case of the 4D N ¼ 2 SCFT obtained
from dimensional reduction of the tensor branch of the 6D
SCFT. In this setting, we have a marginal gauge coupling
constant which we can use to tune the theory to weak
coupling. Carrying out the analysis there, we are free to
parametrize possible contributions to SUð2Þ ×Uð1Þ
R-symmetry breaking of the 4D theory in terms of a sigma
model field Σ which we schematically write as

Σ∼fexpð−τþ axionsÞ; expð−τÞ¼ 1−
ϕ

f
þ��� ; ð4:3Þ

where in the case at hand, the Σ’s are related to the
hypermultiplets. We wish to track possible contributions to
four-dilaton, four-derivative terms, and so the general
structure in the 4D Lagrangian for the Σ fields will involve
terms of the schematic form8

L4D ⊃
1

ðΛ4DÞ2n
g2m∂4Σ2n ⇒

Δa
2f4

ϕ2
□

2ϕ2; ð4:4Þ

where m and n are non-negative integers and g is the 4D
gauge coupling. Here, we have schematically indicated the
number of powers of derivatives, and have also left open the
different possible ways that the Σ fields may actually
multiply together, suppressing their Hermitian conjugates.
Indeed, the only condition we are actually imposing is that
the number of Σ fields is even. This requirement follows in
the effective field theory from the symmetry Σ ↦ −Σ.9 It
can also be seen directly by observing that in any nonzero
dilaton scattering amplitude, an even number of hyper-
multiplets must appear. The power of g is also an even
number, as can be verified by working with a basis of fields
where all g2 dependence is in the vector boson propagator.
From this starting point we get interaction terms for the

dilaton and the axions by expanding the exponential Σ in
powers of ϕ=f, where ϕ is the physical dilaton which is
related to τ in the usual way [28]. The mass scale Λ4D is not
arbitrary, and is set by the masses of vector bosons obtained
from actually Higgsing the suðNÞ gauge symmetry.
In particular, we have the further relation

ðΛ4DÞ2 ∼ g2f2: ð4:5Þ

Plugging in, the form of our coupling in the 4D
Lagrangian is

L4D ⊃
1

f2n
g2m−2n∂4Σ2n ⇒

Δa
2f4

ϕ2
□

2ϕ2: ð4:6Þ

So, we see that we can generate contributions with
suppression scale set purely by f (the Higgs branch scale)
just by setting m ¼ n. An explicit example of a 4D loop
correction which generates this sort of structure is shown
in Fig. 2.
Let us now turn to the analog of these expressions for our

6D theory. In this case, a Higgs branch deformation of the
tensor branch deformed theory will necessarily need to
make reference to at least two mass scales, namely the
tensor branch deformation scale ft as well as the Higgs
branch deformation scale fH, as discussed in the previous
section [see Eq. (3.6)]. We expect a gauge theory descrip-
tion to provide an adequate approximation provided we
work at energy scales with s < f2t . Self-consistency of the
Higgs mechanism in this regime also requires fH < ft.
Finally, observe that the gauge coupling is no longer
dimensionless, but instead scales as g2 ∼ 1=f2t . As a general
comment, we note that even though we will perform
our analysis in the regime fH < ft, there is no hint in
the F-theory geometry of a phase transition taking place as
we pass to the regime ft < fH. This strongly indicates that

FIG. 2. Example of a one-loop diagram which contributes to
four-dilaton four-derivative interaction terms in the dilaton
effective action obtained from a Higgs branch flow. Here, we
have indicated external scalars as associated with the hyper-
multiplets, with internal massive gauginos running in the loop. In
4D, this diagram scales as M2→2 ∼ g4p4=ðΛ4DÞ4 ¼ p4=f4H,
while in 6D we instead find M2→2 ∼ g4p4=ðΛ6DÞ2 ¼
p4=f2t f4H, with p the characteristic momentum of the external
states.

8Of course, b̂ is actually Δa in 4D.
9At the origin of the Higgs branch we have aZ2 symmetry, and

at more generic points of the Higgs branch, we still parametrize
fluctuations around a background VEV in terms of hypermultip-
lets, so there is still an unbroken Z2 symmetry.
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results obtained in one regime of validity do not suddenly
break down in other regions of the moduli space.
Before we proceed some comments are in order. In the

low-energy effective action there is no clear way to
distinguish between b̂Higgs and b̂mixed (or ΔajHiggs and
Δajmixed). However, we can define an effective b̂Higgs in
the following way.10 First, consider the purely tensor
branch flow fH ¼ 0. Now we perform a Higgs branch
deformation of the tensor branch deformed theory;
fH ≪ ft. One can then ask the question whether the
resulting RG flow, at the leading order, can be thought
of as a combination of a purely tensor branch flow and a
purely Higgs branch flow (or equivalently a factorized
mixed branch flow, as defined in the previous section). This
necessarily requires that b̂ does not have a linear ft
contribution when fH ≠ 0, as seen from Eq. (3.16).11 If
this condition is satisfied, we can define an effective b̂Higgs,

b̂Higgs ¼
1

2

�∂2b̂f2

∂f2H
�

fH
ft
→0

: ð4:7Þ

So, in this case the mixed branch flow at the leading order
can be effectively described by the low-energy effective
action

Seff ½ϕ; ξ� ¼ St þ SH; ð4:8Þ

where St is the effective action (3.11) for the tensor branch
flow and SH is the action (3.12) associated with a purely
Higgs branch flow with b̂Higgs given by (4.7).
Let us now track the 6D analogs of the contributions to

the dilaton effective action identified in 4D and compute
the effective b̂Higgs. In 6D, the sigma model field Σ of
R-symmetry breaking can be schematically written as

Σ∼f2H expð−2τþaxionsÞ; expð−2τÞ¼1−
ϕ

f2
þ���: ð4:9Þ

Here, we must distinguish fH, the scale associated with
R-symmetry breaking, with the more general scale f which
appears in our discussion of mixed-scale conformal sym-
metry breaking. Consider, then, terms that can generate
four-dilaton four-derivative interactions of the form

L6D ⊃
1

ðΛ6DÞ4n−2m−2 g
2m∂4Σ2n ⇒

b̂
16f6

ϕ2
□

2ϕ2: ð4:10Þ

Again, the nature of R-symmetry breaking restricts us to an
even number of powers of Σ fields, but other than that, we
have written down the general form of the possible higher-
dimension operator. In the above, Λ6D is a scale associated
with the massive vector bosons,

ðΛ6DÞ2 ∼ g2f4H ¼ f4H=f
2
t : ð4:11Þ

Now by expanding (4.10) we see that

b̂ ∼
f4nH
f2

g2m

ðΛ6DÞ4n−2m−2 : ð4:12Þ

We are specifically interested in a purely Higgs branch
contribution to b̂, as defined in (4.7). Equation (3.16)
implies that b̂f2 for such a contribution must be indepen-
dent of ft, up to terms that are suppressed for fH=ft ≪ 1.
So, we are interested in generating higher-dimension
operators that lead to ft independent contributions to
b̂f2, which in turn requires a specific power of m. In
particular, we need

2m − ð4n − 2m − 2Þ ¼ 0; ð4:13Þ

or

2n − 2m ¼ 1; ð4:14Þ

which cannot be arranged if m and n are integers. So, the
first distinction from the seemingly related 4D case is that
the same sorts of diagrams used in 4D will not produce a
purely fH dependent contribution to b̂f2 in 6D. Rather,
they will involve a combination of scales including both fH
and ft.
We next consider a slightly broader class of higher-

dimension operators and show again that b̂f2 can only have
terms that are suppressed by positive powers of 1=ft. In a
mixed branch flow the dilaton will be a linear combination
of contributions coming from the scalars of both the
hypermultiplet as well as the tensor multiplet. One might
ask whether we can generate a contribution of the desired
form using this larger set of fields. To this end, we write

t ∼ f2t exp ð−2τÞ; expð−2τÞ ¼ 1 −
ϕ

f2
þ � � � ; ð4:15Þ

so we could in principle track more general combinations
involving powers of t and Σ. The corresponding terms of
interest in the Lagrangian are

L6D ⊃
1

ðΛ6DÞ4nþ2l−2m−2 g
2m∂4Σ2ntl

⇒
b̂

16f6
ϕ2□2ϕ2; ð4:16Þ

10One can define an effectiveΔajHiggs as well, however, we are
mainly interested in b̂Higgs since it is the leading interaction in the
effective theory.

11There is an additional requirement that the correction to Δa
from the Higgs branch deformation is independent of ft at the
leading order in ðfH=ftÞ.
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with m, n, and l non-negative integers. The appearance of
suppression scales can be argued for as follows. First, we
move onto the tensor branch, and integrate out all massive
states (including those coming from excitations of the
effective strings). This puts us on the tensor branch gauge
theory, with light degrees of freedom given by the vector
multiplet, tensor multiplet, and hypermultiplets. In this
theory, the VEVs for hypermultiplets generate masses as
specified by Λ6D. In particular, we need not concern
ourselves with subleading masses generated by hyper-
multiplet/effective string couplings, since we have already
integrated out the degrees of freedom associated with string
excitations.
We would again like to figure out possible contributions

to b̂f2 which can come from just the scale fH. In this case,
we must be mindful of the fact that in extracting the
interaction terms for the dilaton, we can also expand the
tensor multiplet scalar, as in Eq. (4.15), yielding

b̂ ∼
f4nH
f2

f2lt g2m

ðΛ6DÞ4nþ2l−2m−2 : ð4:17Þ

Let us now see whether adding in insertions of the scalars t
can help us generate a term in b̂f2 which is independent of
ft. The condition we now have to satisfy is

2l ¼ 2m − 2nþ 1: ð4:18Þ

Again, this equation cannot be satisfied for integers l, m,
and n, so we arrive at a contradiction. From this, we
conclude that at least at the level of explicit Feynman
diagrams, it is rather challenging to identify an explicit
contribution to four-dilaton, four-derivative interactions
with Wilson coefficient ∼f2H=f8. We emphasize that even
though the intermediate results, such as Eqs. (4.12) and
(4.17), appear to be qualitative, they are sufficient to
determine b̂Higgs. Hence, our final result in Eq. (4.22) is
exact in perturbation theory.
We can also try to place some constraints on how such

strong coupling effects might enter. Note that we are in the
regime s < f2H < f2t where a gauge theory description
should be valid. Adding more loops simply corresponds
to increasing the power of g2 in a contribution to the dilaton
effective action. In fact, we can see that the number of
powers of g2 is bounded below by the number of external
legs coming from Σ and t. To derive such a bound, it is
convenient to canonically normalize the gauge fields so that
no factors of g2 appear in their propagators. Observe that t
mixes with the gauge fields via the interaction term tTrF2

of the tensor branch Lagrangian. Canonically rescaling the
gauge fields amounts to the operation

tTrF2 ↦
t
f2t

TrF2: ð4:19Þ

Consider next the insertions of the Σ fields, or equivalently,
the presence of the hypermultiplet scalars H (and their
complex partners H̃), expanded around a background VEV.
We have two sorts of interaction terms, those which go as
H†HA2 (quartic vertex of order g2), and those which go as
H†∂HA −H:c: (cubic vertices of order g). Here, A denotes
a vector boson. There are also supersymmetric analogs of
these interaction terms, involving the fermionic super-
partners as well as the D-term potential(s) of the vector
multiplet. Our claim is that each such insertion of an
external H field is accompanied by a power of g. The main
point is that at least for dilaton scattering, the relevant
contribution from a term such as H†∂HA will necessarily
involve a coupling between a dilaton, an eaten (i.e.,
massive) Goldstone boson, and the (massive) gauge boson.
The same considerations apply for the Yukawa interaction
terms required by supersymmetry, where all fermions are
necessarily internal anyway.12 From this, we conclude that
to each such interaction term involving a Σ insertion, we
can associate at least one power of g. Putting these two
considerations together, we conclude that in the operator of
line (4.16) where we have l insertions of t, and 2n insertions
of Σ, we have the inequality,

m ≥ nþ l: ð4:20Þ

In particular, this means that as we move to higher-loop
order, we simply generate further powers of ft in the
denominator.13

Putting all of this together, we observe from Eq. (4.17)
that the general structure of the contributions to b̂ take the
form of a power series in the ratio r ¼ f2H=f

2
t ,
14

f2b̂ðfH; ftÞ ¼ f2t b̂tensor þ f2H
X
m>0

b̂mrm; ð4:21Þ

namely the corrections to f2b̂ from the Higgs branch
always have some suppression by ft. In particular, note
that there is no contribution which is linear in ft. Hence, we
can describe this mixed branch flow, at the leading order, as
a combination of a purely tensor branch flow and a purely
Higgs branch flow. Furthermore, the effective b̂Higgs, as
defined in (4.7), is given by

12One might ask whether the quartic terms associated with the
D-term potential could generate interaction terms with lower
powers of g2. The supersymmetric Higgs mechanism excludes
such a possibility.

13Note that the inequality of line (4.20) provides an alternative
way to exclude higher-dimension operators which makes no
reference to the integrality of various exponents. For example,
returning to Eq. (4.18), we get: 2l ¼ 2m − 2nþ 1 ≥
2ðnþ lÞ − 2nþ 1 ¼ 2lþ 1, a contradiction.

14In fact, even more is true, only the coefficients b̂m with
m ¼ 2kþ 1 for k ∈ Z≥0 are nonzero.
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b̂Higgs ¼ 0: ð4:22Þ

As we increase fH=ft, the second term on the right-hand
side of (4.21) starts contributing. However, since the second
term depends on r ¼ f2H=f

2
t , it should be interpreted as a

contribution to b̂mixed, as defined in (3.16).
Summarizing our discussion up to this point, we have

seen that at least in the regime where fH < ft, the
contributions to b̂ are rather different in 6D compared
with their 4D counterpart. In fact, the above perturbative
analysis would seem to imply that at leading order in
fH=ft, there are actually no contributions to b̂Higgs.
Suppose we now attempt to extrapolate to the other

regime where f2H=f
2
t is large, namely, the limit where we

approach a pure Higgs branch flow. From our expansion,
we can see that individual terms would appear to diverge
(since we are taking small 1=r now). On the other hand,
another analytic expansion in 1=r must be available simply
because we have assumed the existence of an SCFT in the
first place. This means that there is a resummation of these
terms available which should in principle allow us to
analytically continue to the other regime. In fact, the
absence of any hint of a phase transition in the F-theory
geometry when 0 < r < ∞ again strongly suggests that
such a resummation must exist. Moreover, as we explained
earlier, this resummation of Eq. (4.21) must be interpreted
as contributing to b̂mixed. With this in mind, there still does
not appear to be a natural candidate for generating an
effective b̂Higgs contribution to four-point four-derivative
dilaton scattering, even in the limit ft → 0.
Caution is of course warranted for the following reason.

In the regime fH > ft, any number of things could happen,
since the scale of R-symmetry breaking is now bigger than
that of the mass scale set by ft. A priori, it could happen
that all of the above analysis is invalidated, though this
would require the onset of a phase transition as a function
of fH=ft at some finite nonzero value, a feature which is
wholly absent from any known 6D SCFT construction. In
particular, in all F-theory constructions, the complex
structure and Kähler deformations can (when not
obstructed) be scaled independently of one another.
Provided we remain in the regime s ≪ f2t ≪ f2H, it seems
implausible that some unknown “strong coupling effect”
completely destroys the scaling estimates just presented.
We expect similar considerations to apply, even in

situations where no pure gauge theory description of a
Higgs branch deformation is available, as well as cases in
which part of the Higgs branch of the 6D SCFT is obstructed
by moving onto the tensor branch. As an example, consider
again the E-string theory. This theory can be viewed as part
of a sequence of theories indexed by n ∈ Z≥0, with an spðnÞ
gauge algebra coupled to a tensor multiplet with charge −1.
In this case, the F-theory construction makes manifest
an soð2nþ 8Þ × soð2nþ 8Þ flavor symmetry (which

enhances further at the origin of the tensor branch). The
resulting “analytic continuation” in the value of n to n ¼ 0
has been observed to be compatible with the structure of
anomalies in these theories [26,27]. In all these cases, we
again expect that the mass scale for the corresponding
“vector bosons” is of the form ðΛ6DÞ2 ∼ g2f4H ¼ f4H=f

2
t .

These considerations are corroborated in the F-theory
geometry as follows. A Higgs branch deformation is asso-
ciated with a complex structure deformation of the ellipti-
cally fibered Calabi-Yau threefold, and as such, is correlated
with a compact three-cycle. Each such three-cycle can be
understood as a two-cycle in theF-theorymodel fibered over
a one-chain. Geometrically, the volumes are related as
Volð3 − cycleÞ ∼ Volð1 − chainÞ × Volð2 − cycleÞ, which
is just the relation f2H∼g−1Λ6D, namely, f2H∼Volð3−cycleÞ,
g−1 ∼ Volð1 − chainÞ and Volð2 − cycleÞ ∼ Λ6D.
Given our difficulties with generating a contribution to

b̂Higgs in 6D SCFTs, one might now ask whether similar
considerations apply in the behavior of Δa. For 4D Higgs
branch flows, there is no issue, because b̂ and Δa are
proportional to one another, both being dictated by the
ϕ2

□
2ϕ2 interaction term of the dilaton effective action. For

6D Higgs branch flows, however, the leading order con-
tribution to Δa comes from six-derivative terms such as
ϕ2

□
3ϕ2. Running through the same line of reasoning just

presented, we now seek out terms of the form

L6D ⊃
1

ðΛ6DÞ4n−2m
g2m∂6Σ2n ⇒

3Δa
16f8

ϕ2
□

3ϕ2: ð4:23Þ

In this case, the condition to eliminate all ft dependence
from the suppression scale amounts to the condition

4n − 4m ¼ 0; ð4:24Þ

which can be satisfied for integer values of m and n. Note
that this makes the result (4.22) rather important. This
implies that this class of 6D mixed branch flows, at the
leading order, can be described as a combination of a purely
tensor branch flow and a purely Higgs branch flow, where
the Higgs branch part is actually nontrivial since ΔajHiggs
may not be suppressed by fH=ft.

V. CONJECTURE ON b̂Higgs = 0

The above considerations when combined with our
discussion from the previous section, would seem to
indicate that b̂Higgs ¼ 0, suggesting a substantial error in
our seemingly naive analysis, since it stands in contrast to a
huge body of literature. That being said, our analysis of the
dilaton effective action suggests that generating a ϕ2

□
2ϕ2

interaction term is actually rather nontrivial. In this section
we present a conjecture that b̂Higgs is, in fact zero, explain-
ing some of the evidence in favor of such a surprising
sounding statement.
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Indeed, there are a few important caveats to keep in mind
in asserting that b̂Higgs ¼ 0 cannot occur in an interacting
theory. In the analysis of [29], the condition b̂ > 0 for an
interacting theory relies on the assumption that at large s,
there are no singularities present in four-point dilaton
scattering in the large s regime. This is a natural condition
to impose, and in D ≤ 4 theories it is very well supported.
Conformal bootstrap methods also establish b̂ ≥ 0 [8]. To
date, there has been far less attention paid to the case of
D > 4 CFTs, where in all known examples, effective
strings are crucial for the existence of a fixed point in
the first place.
To begin, observe that the tree-level 2 → 2 amplitude of

the dilaton for any 6D RG flow has the form,

A4ðs; tÞ ¼
b̂
2f6

ðs2 þ t2 þ u2Þ

þ 3

f8

�
3Δa
2

− b̂2
�
stuþ � � � ; ð5:1Þ

where s, t, and u are the usual Mandelstam variables. This
four-point amplitude suggests that there should be a
dispersive sum rule for the parameter b̂ which is identical
to the sum rule for the 4D a-theorem of [6] (see [7]). This
sum rule would at first seem to imply that b̂ is strictly
positive, which is in tension with the analysis of Sec. IV.
Here we propose a possible resolution based on the large s
behavior of these scattering amplitudes.
We begin by carefully analyzing the derivation of such a

sum rule. The sum rule follows from a contour integral

1

2πi

I
ds

A4ðs; tÞ
s3

¼ 0; ð5:2Þ

where the integral is performed over the same contour as
[7]. This can be expanded to write

1

2
∂2
sA4ðs; tÞ

���
s¼0

¼ 1

π

Z
∞

s�
ds

�
1

s3
þ 1

ðsþ tÞ3
�
ImA4ðs; tÞ

þ 1

2πi

Z
∞
ds

A4ðs; tÞ
s3

; ð5:3Þ

where s� is some IR cutoff and the last integral is over the
contour at infinity. This last term is generally dropped in
4D, however, we keep it in 6D since as we explain next, it
can potentially be important. For a possible sum rule, we
proceed by taking the forward limit t ¼ 0

b̂
2f6

¼ 2

π

Z
∞

s�
ds

ImA4ðs; 0Þ
s3

þ 1

2πi

Z
∞
ds

A4ðs; 0Þ
s3

: ð5:4Þ

Now from the optical theorem, we know that ImA4ðs; 0Þ ¼
sσðsÞwhere σðsÞ is the total cross section for ϕϕ scattering.
Unitarity implies that σðsÞ > 0 for any interacting theory

and hence the first term of the right-hand side is strictly
positive. Therefore, b̂ ¼ 0 necessarily requires

Z
∞
ds

A4ðs; 0Þ
s3

¼ −4i
Z

∞

s�
ds

σðsÞ
s2

: ð5:5Þ

The above relation can only be satisfied if

A4ðs → ∞; 0Þ≳ s2: ð5:6Þ

At first sight, the condition (5.6) seems to be violating
the Froissart bound which in 6D imposes [49]

jA4ðs → ∞; 0Þj ≤ ðconstÞ sðlog sÞ4: ð5:7Þ

However, the Froissart bound does not apply to the four-
point scattering of Goldstone modes, since there is no
mass gap.
Even though the Froissart bound is not applicable, we

can still say a few things about asymptotic limits of dilaton
amplitudes. In particular, the limit s → ∞ of A4ðs; 0Þ is
dictated by the coupling of the dilaton to operators of the
UV CFT [50,51]. In general, the dilaton can couple to any
relevant operator (that acquires a VEV) of the UV CFT. So,
consider a generic relevant operatorOUV of dimensionΔUV
of CFTUV which has a coupling with the dilaton

λ

f2n

Z
d6xϕnOUV; ð5:8Þ

where only n ¼ 1, 2, 3 can contribute to a four-point
scattering amplitude of the dilaton. Note that λ must have
dimension 6 − ΔUV. Moreover, the factor of f follows from
the fact that the actual coupling should be between CFTUV
and the τ, βa fields. The τ, βa fields have expansion in
terms of ϕ

f2. Now the contribution of all possible such

couplings to the amplitude A4ðs; 0Þ is fixed from dimen-
sional analysis

A4ðs → ∞; 0Þ ∼ λN

f8
s
N
2
ΔUV−3ðN−1Þ; ð5:9Þ

where N is an integer, with N ∈ f2; 3; 4g. For example,
N ¼ 4 comes from a coupling

R
ϕOUV. Thus, we can

derive an upper bound on the asymptotic amplitude

A4ðs → ∞; 0Þ < ðconstÞs3; ð5:10Þ

which is consistent with (5.6). Furthermore, (5.6) neces-
sarily requires at least one

ΔUV ≥ 5: ð5:11Þ

Note that this bound is a direct consequence of b̂ ¼ 0.
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Let us also note that a similar analysis of the coupling of
the dilaton to operators of the UV CFT in 4D leads to
A4ðs → ∞; 0Þ < ðconstÞs2 [50,51]. Hence in 4D, one can
safely ignore the contribution from infinity to the
dispersion relation (5.3). This explains why Δa is strictly
positive in 4D.
Of course, the above discussion immediately begs the

question: If there are important modifications to dilaton
scattering at large s, where do they come from? In fact,
there is a natural culprit for what can potentially modify the
structure of dilaton scattering at large s in D > 4 SCFTs;
the appearance of the effective strings themselves. Recall
that in a mixed branch flow where we have the scales ft and
fH, the case of a Higgs branch flow can be understood as
coming from the regime where f2t < s < f2H. As such, we
are directly sensitive to the stringy excitations on the world
sheet of these effective strings. We emphasize that this is
qualitatively different from what happens in the case of 6D
N ¼ ð1; 0Þ tensor branch flows, and their counterparts in
6DN ¼ ð2; 0Þ SCFTs, since in those cases we would have
required s < f2t . What we need to know is whether there
are any effective string excitations which could potentially
modify the large s behavior of four-dilaton scattering
amplitudes.
First of all, these effective strings are closed strings. From

the structure of 6D supersymmetry, we can alreadymake out
the appearance of an excitation associatedwith the antichiral
two-form of the tensor multiplet. There is, however, no
massless graviton excitation (since 6Dgravity is decoupled).
Rather, we expect there to be (in 4D terms) a “massive spin-
two excitation”, i.e., its Regge intercept is close to two. This
is precisely the large s scaling required to modify the profile
of four-dilaton scattering, since at Regge intercept precisely
two we would have an amplitude which grows as
M2→2 ∼ s2. In the case of an intercept near two, we expect
a more general scaling of the form s2þε, where a priori, ε
could be either positive or negative.On physical grounds,we
expect that ϵ → 0 as we take the strict ft → 0 limit.
Let us sketch some basic elements of these effective

string theories. While it is certainly challenging to extract
much precise information, some properties such as the
anomalies and elliptic genera of the world sheet CFT are
available (see e.g., [52–56]). Observe that there are four
transverse directions to the world volume of the string, and
with it, four massless scalars. The creation operators for
these scalars on the world sheet allow us to build (in the
obvious notation) the standard states of the form αμα̃νjki. In
particular, in the indices μ and ν we can take the trace (for
the dilaton), antisymmetrize and project onto chiral and
anti-chiral two-forms, or symmetrize (for the massive spin-
two excitation). This is in accord with the fact that the
massless tensor multiplet contains a scalar and an anti-
chiral two-form, while the 6D massless graviton multiplet
contains a graviton and a chiral two-form. That being said,
extracting the precise Regge trajectories for massive string

excitations in this case appears quite challenging, and is a
topic we leave for future investigation.15

What all of this points to is that at least in 6D (as well as
in all known D > 4 SCFTs), the large s behavior of dilaton
scattering can receive potentially important corrections.
These corrections can be neglected in the case of tensor
branch deformations, but in the case of both Higgs branch
and mixed branch flows for 6D SCFTs, the situation is far
less clear. In fact, all indications thus far point to the
“seemingly naive” answer that b̂Higgs ¼ 0, though it may
indeed still be the case that b̂Higgs > 0 (even though there is
as yet no direct evidence for such an assertion).
An additional final comment is that these considerations

mainly impact four-point dilaton scattering amplitudes, but
do not appear to affect scattering for n-point amplitudes for
n ≥ 6 since in the latter case the dimensionality of the phase
space is large enough to bypass such subtleties.

VI. CONCLUSIONS

Six-dimensional conformal field theories exhibit a num-
ber of features distinct from D ≤ 4 CFTs. That being said,
some aspects of these systems can still be constrained using
techniques from effective field theory. In this paper we have
investigated the structure of conformal symmetry breaking
in such theories, when it is accompanied by the breaking of
a continuous global symmetry. The resulting dilaton-axion
effective action exhibits some important constraints, and
relates different higher-dimension operators. In particular,
we have used this formalism to study the structure of some
higher-derivative interaction terms in 6D SCFTs, including
the cases of tensor branch flows, Higgs branch flows, and
mixed branch flows. In the case of tensor branch flows, this
analysis provides a way to determine the precise numerical
relation between the Euler conformal anomaly to the
coefficient of ϕ2

□
2ϕ2, with ϕ the dilaton for spontaneous

conformal symmetry breaking. In the case of mixed branch
flows we also determined the precise contributions to the
coefficient of ϕ2

□
2ϕ2, as a function of the scales ft and fH

associated with tensor branch and Higgs branch deforma-
tions. We also presented some examples of 6D SCFTs
illustrating that actually generating contributions to
ϕ2

□
2ϕ2 on the Higgs branch appears to be surprisingly

challenging. This led us to conjecture that in stark contrast
to allD ≤ 4 CFTs, it may be possible to have an interacting
dilaton effective field theory, even when the term ϕ2

□
2ϕ2

vanishes. In the remainder of this section we turn to some
further avenues of investigation.
As we have already mentioned, one of the surprising

aspects of our analysis is the difficulties which appear in
generating an explicit contribution to ϕ2□2ϕ2 in 6D Higgs
branch flows. The standard lore, which is very well
supported in D ≤ 4 CFTs, is that the coefficient of this

15We thank S. Hellerman for helpful correspondence.

HECKMAN, KUNDU, and ZHANG PHYS. REV. D 104, 085017 (2021)

085017-16



term must be strictly positive in order to have an interacting
effective field theory. There is an important caveat to such
dispersion relation arguments, since it presupposes a
particular falloff for dilaton scattering at large s. Indeed,
compared with the case of D ≤ 4 CFTs, in 6D SCFTs,
effective strings play a crucial role in even realizing a fixed
point in the first place. Incorporating the effects of these
effective strings is of course rather challenging, but it points
to a general issue which should be properly addressed
rather than just “taken for granted”. One way to settle the
impact on dilaton scattering would be to study the Regge
intercept of the corresponding effective strings. From
general considerations, we know that this intercept is close
to two, and so it has a chance to make an important
contribution to the large s behavior of dilaton scattering.
Another way to address this issue would be to explicitly
exclude the presence of supersymmetry preserving defor-
mations which could generate such a ϕ2

□
2ϕ2 interaction

term in a Higgs branch flow, perhaps generalizing the
analysis presented in Ref. [20].
At a general level, it would also be interesting to study the

full structure of the 40þ 40 dilaton-Weyl multiplet for 6D
N ¼ ð1; 0Þ theories, and the associated dilaton effective
action in this case [38]. This would likely provide additional
information on the structure of general flows in 6D SCFTs.
In this paper we have focused on the structure of dilaton

scattering amplitudes. Based on general supersymmetric
considerations, it is natural to expect that at least for 6D
SCFTs, these higher-derivative interaction terms are closely
related to “topological” terms. It would be interesting to
study such structures, and their relation to anomalies of the
associated field theories.
Finally, in Refs. [57,58] it was noted that there are also

specific nearly protected operator subsectors in 6D SCFTs
which resemble a one-dimensional quantum integrable spin
chain. To further probe the structure of this sector, it would
be quite interesting to consider the structure of dilaton
scattering off of backgrounds with a finite chemical
potential for such states. Similar considerations apply to
the analysis of dilaton scattering off of supersymmetric
defects of the sort considered for example in [59,60].
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APPENDIX: THE DILATON-AXION
EFFECTIVE ACTION

1. SUð2Þ global symmetry

In this Appendix we summarize for the sake of com-
pleteness some additional details of the dilaton-axion
effective action. As discussed in [28], the following
four-derivative invariants can be constructed for SUð2Þ,

W1 ¼ Trðð∇̂μÂμÞð∇̂νÂνÞÞ;
W2 ¼ ĝμνTrðÂμ□̂ÂνÞ;
W3 ¼ R̂μνTrðÂμÂνÞ;
W4 ¼ R̂ĝμνTrðÂμÂνÞ;
W5 ¼ ĝμνTrðÂμAρ∇̂ρÂνÞ;
W6 ¼ ĝμνĝρσTrðÂμÂνÂρÂσÞ;
W7 ¼ ĝμνĝρσTrðÂμÂνÞTrðÂρÂσÞ;
W8 ¼ ĝμνĝρσTrðÂμÂρÞTrðÂνÂσÞ; ðA1Þ

where, R̂, R̂μν, and ∇̂μ are computed using the Weyl-
invariant metric (2.15). Hence, at the four-derivative order
we can write

Z
d6x

ffiffiffî
g

p
LSUð2Þ½ĝμν; Âμ� ¼

Z
d6x

ffiffiffî
g

p X8
I¼1

WI: ðA2Þ

The invariants WI in the flat space limit with no back-
ground gauge field can be further simplified by using the
equations of motion. In fact, not all theWI are independent.
In particular, inside the integral, at the four-field level we
obtain

W1 ¼ 0;

W2 ¼ W3 ¼ −
1

16f8
ð3ξ2□2ξ2 þ 2ϕξa□

2ϕξa þ ξ2□2ϕ2Þ;

W4 ¼ −
5

f8
ξ2□2ξ2;

W5 ¼
1

8f8
ðδabδcd − δacδbdÞðξaξbÞ□2ðξcξdÞ;

W6 ¼
1

32f8
ξ2□2ξ2; W7 ¼

1

16f8
ξ2□2ξ2;

W8 ¼
1

16f8
ðξaξbÞ□2ðξaξbÞ; ðA3Þ

where ξ2 ¼ ξaξa.
The rest of the analysis is almost identical to that of [28].

Putting everything together, we find that the low-energy
effective action has the form of Eq. (2.24), where
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Laxion½ξ� ¼
B0

f4
ϵabcϵab0c0ξbξb0□ðξcξc0 Þ þ

B1

f6
ξ2□2ξ2

þ B2

f6
ðξaξbÞ□2ðξaξbÞ þOðξ6; ∂6Þ; ðA4Þ

and B0, B1, B2 are dimensionless coefficients. Note that the
two-derivative interactions in Laxion½ξ� come from the
second term of (2.21). Similarly, the mixed interactions
are given by

Lmixed½ϕ; ξ� ¼
B̃1

f6
ϕξa□

2ðϕξaÞ þ
B̃2

f6
ξ2□2ϕ2

þOðξ2ϕ3; ∂6Þ; ðA5Þ

where B̃1; B̃2 are dimensionless coefficients. Finally, the
most important part of the effective action Ldilaton½ϕ� is
given by Eq. (2.25). Of course, for supersymmetric flows
there will be massless fermionic degrees of freedom which
can contribute to amplitudes of bosonic degrees of freedom
via loop diagrams.

2. Other global symmetries

It is a straightforward exercise to generalize to RG flows
between two conformal fixed points in 6D in which CFTUV
has some global symmetry G, where G is an arbitrary
compact Lie group. The conformal symmetry of CFTUV is
broken either spontaneously or explicitly which triggers the
RG flow that breaks the global symmetry G to some
subgroup H. All such RG flows can be described by an
effective field theory of Goldstone bosons of spontaneously
broken conformal and global symmetries. The effective

field theory consists of a dilaton ϕ from the broken
conformal symmetry and N ¼ dim G=H axions ξa arising
from the broken global symmetry. We assume that G is a
direct product of a finite number of simple Lie groups and
Uð1Þ factors

G ¼
Y
I

GI ðA6Þ

and extend the general framework of [28] to 6D. The low-
energy effective action has the form of Eq. (2.24), where
the dilaton effective action Ldilaton½ϕ� is still given by
Eq. (2.25). The axion effective action is now

Laxion½ξ� ¼
B0

f4
fabcfab0c0ξbξb0□ðξcξc0 Þ

þ Babcd

f6
ðξaξbÞ□2ðξcξdÞ þOðξ6; ∂6Þ; ðA7Þ

where axions ξa with a ∈ 1; 2;…; N belong in some large
reducible representation with structure constants fabc.
Similarly, the mixed interactions are given by

Lmixed½ϕ; ξ� ¼
B̃ð1Þ
ab

f6
ϕξa□

2ðϕξbÞ þ
B̃ð2Þ
ab

f6
ξaξb□

2ϕ2

þOðξ2ϕ3; ∂6Þ: ðA8Þ

Therefore, breaking of any global symmetry will not affect
dilaton amplitudes as obtained from Ldilaton½ϕ� at the six-
field six-derivative order.
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