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The two-loop correction to the mass of the ϕ4 kink is 0.0126λ=m in terms of the coupling λ and the
meson mass m evaluated at the minimum of the potential. This is calculated using a recently proposed
alternative to collective coordinates. Both the kink energy and the vacuum energy are IR divergent at this
order. To cancel the divergence, the two energy densities are subtracted before integrating over space, or
equivalently a finite counterterm is added to the Hamiltonian density to cancel the vacuum energy density.
All spatial integrals are performed analytically. However in the last step of our calculation, integrals over
virtual momenta are performed numerically.
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I. INTRODUCTION

The ϕ4 double well model in 1þ 1 dimensions has two
vacua. In each, a real scalar field has a mass of m ¼ 2β. A
classical kink solution of mass

Q0 ¼
8β3

3λ
ð1:1Þ

interpolates between the two vacua. The one-loop mass,
defined as the difference between the kink state energy and
the vacuum energy, was calculated in [1] to be

Q1 ¼
�
−
3

π
þ 1

2
ffiffiffi
3

p
�
β: ð1:2Þ

The kink state energy and vacuum energy were calculated
using the kink Hamiltonian and vacuum Hamiltonian
respectively. In principle the theory is defined by the vacuum
Hamiltonian, but the use of the kinkHamiltonian to calculate
the kink state energy is justified by the fact that the two
Hamiltonians have the same spectrum.
The problem is that the two Hamiltonians need to be

regularized, and regularization changes their spectra. After
regularization, the energies depend on the regulators and, as
explained in [2], even for the same value of the regulator,
the kink state energy calculated using the kink Hamiltonian
may no longer be equal to that calculated using the defining
vacuum Hamiltonian. It is of course the eigenvalue of the

defining Hamiltonian which gives the mass, and so if these
two eigenvalues are not equal, then the calculation that uses
the kink Hamiltonian will obtain the wrong answer. In
Ref. [2] it was shown that for some regulators this
mismatch persists even when the regulator is taken to
infinity. Worse yet, while there have been many proposed
principles in the literature [3,4], there is no established
criterion for determining which regulators lead to this
mismatch.1

This ambiguity can be avoided when the kink mass is
fixed by another principle, such as integrability or super-
symmetry, if the regularization preserves this property.
However the ϕ4 theory has neither property. The ambiguity
can also be avoided at one loop, where the problem reduces
to finding the density of states of a free theory [5], and so it
was eventually shown that the one-loop result (1.2) is
nonetheless correct.
What about two loops? The goal of the present paper will

be to calculate the two-loop mass of the ϕ4 kink.
We will use the kink sector perturbation theory intro-

duced in Ref. [6] in the context of this model and
generalized to other models in [7]. This framework pro-
vides a simpler alternative to the more traditional collective
coordinate approaches [8,9], as one considers a linear
decomposition of the fields, treating the kink zero mode
perturbatively. This avoids nonlinear canonical transfor-
mations, as the decomposed fields already obey canonical
commutation relations. On the other hand, it only produces
a reasonably convergent expansion when the kink position

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1Of course one can obtain nonperturbative results on the lattice
or using Hamiltonian truncation or Borel resummation, without
recourse to a kink Hamiltonian, but that will not be our approach
here. We will see in Sec. VI that our method yields superior
precision at weak coupling.

PHYSICAL REVIEW D 104, 085013 (2021)

2470-0010=2021=104(8)=085013(18) 085013-1 Published by the American Physical Society

https://orcid.org/0000-0003-0875-0503
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.085013&domain=pdf&date_stamp=2021-10-12
https://doi.org/10.1103/PhysRevD.104.085013
https://doi.org/10.1103/PhysRevD.104.085013
https://doi.org/10.1103/PhysRevD.104.085013
https://doi.org/10.1103/PhysRevD.104.085013
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


is close to some reference point, and so it has so far only
been applied to study the properties of a lone, station-
ary kink.
This method begins with the observation that the kink

Hamiltonian H0 can be defined via a similarity trans-
formation of the original Hamiltonian H

H0 ¼ Df
−1HDf ð1:3Þ

where Df is a unitary operator. Two similar operators
necessarily have the same spectrum. The key innovation in
this procedure is that one first regularizes H and then
defines the regularized H0 via (1.3). Now there is a single
regulator, and the spectrum of H0 is equal to that of the
defining H at each value of the regulator, so that the energy
calculated using H0 agrees with the correct energy, which
would be obtained using H. Thus the problem is solved. In
Ref. [10] this method was used to find the two-loop energy
of a general kink in its ground state.
Unfortunately, in the case of the ϕ4 theory, and any theory

whose potential has a nonvanishing third derivative at its
minima, this energy suffers from an infrared (IR) divergence.
This divergence is to be expected, because the vacuum at this
order has a constant energy density of [11–13]

ρðvacÞðxÞ ¼
�
1

24
−
ψ ð1Þð1=3Þ
16π2

�
λ ∼ −0.0222644λ ð1:4Þ

and so an infinite energy. Here ψ ð1ÞðzÞ ¼ ∂2
z ln ðΓðzÞÞ is the

polygamma function. The mass, which is the difference
between these two infinite quantities, is expected to be finite.
How can these two infinite quantities be reliably sub-

tracted? Usually one removes IR divergences by calculating
an experimentally accessible quantity. One might be
tempted to ask how much energy one needs to create a
kink. Unfortunately this is impossible in the quantum
theory [14] as the kink changes the boundary conditions,
creating a lone soliton would require an infinite action. One
could also remove IR divergences by putting a system in a
box, but it is known that boundary conditions can lead to
mass shifts which persist even in the limit that the box size
is taken to infinity.
One is always free to set the exact vacuum energy to zero

by including a counterterm in the defining Hamiltonian
density which exactly cancels the vacuum energy density
[15]. As this counterterm is a c-number, Eq. (1.3) implies
that it will also appear in the kink Hamiltonian density. Our
procedure is equivalent to modifying the calculation of [10]
by including this counterterm, defined by the condition that
the vacuum energy vanishes.
While equivalent, we find that it is more convenient to

subtract the vacuum energy density from the kink energy
density rather than to subtract it directly from the kink
Hamiltonian density. This requires an ad hoc convention
for the definition of the kink energy density, but after

integration over space the result is independent of this
convention. The complication is that the kink is not an
eigenstate of the Hamiltonian density operator, nor is the
vacuum. One might try to define the energy density as the
expectation value of the Hamiltonian density operator, but
alas the Hamiltonian eigenstates have constant momenta
and so are not normalizable. This could in principle be
resolved by introducing wave packets, but a finite width
wave packet would increase the energy and in the limit that
the width goes to infinity, the divergence would return. In
principle one could nonetheless subtract the vacuum energy
inside of the support of the wave packet as the wave packet
size goes to infinity, but this procedure would be ambigu-
ous as a finite shift in the definition of the support of the
wave packet would lead to a finite shift in the limit, and so
in the calculated mass.
We instead adopt the following definition. If j0i is the

kink ground state after the similarity transform (1.3), then

H0j0i ¼ Qj0i: ð1:5Þ

IfH0 is the integral of a Hamiltonian densityH0ðxÞ, then we
can expandH0ðxÞj0i in a basis of the Hilbert space, with j0i
an element of the basis. Integrating over x this must reduce
to (1.5) and so the coefficients of all basis elements except
for j0i will integrate to zero while the coefficient of j0i
integrates toQ. Since the coefficient of j0i in the expansion
of H0ðxÞj0i integrates to Q, we define it to be the energy
density ρðxÞ. While this definition of ρðxÞ may depend on
the choice of basis, as ρðxÞmay mix with the coefficients of
some other basis elements under a basis transformation,
this ambiguity should disappear after the integration over x
as all other coefficients integrate to zero.
In the case of the Sine-Gordon model, at this order the

correction to the vacuum energy vanishes and so this issue
does not arise. Also the two-loop kink mass is known using
integrability [16,17]. However, one could have shifted the
defining Hamiltonian density by a constant, leading to a
finite vacuum energy density and an IR divergence in the
kink energy. In that case, our prescription would be
equivalent to simply shifting the Hamiltonian back by this
constant, which of course is the correct way to remove this
spurious divergence.
We begin in Sec. II with a review of the calculation of the

two-loop kink ground state energy for a general kink. In
Sec. III we restrict our attention to the ϕ4 double well and
evaluate the finite terms, reducing the problem to a finite-
dimensional integral of elementary functions. In Sec. IV we
treat the IR divergent terms, subtracting the corresponding
vacuum energy as described above. As a result, the entire
energy is computed in the form of a three-dimensional
integral over elementary functions. In Sec. V this integral is
evaluated numerically. Finally, the result is compared with
the literature in Sec. VI. Some of the most important
notation is summarized in Table I.
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II. REVIEW

Consider a (1þ 1)-dimensional theory of a real scalar
field ϕ and its conjugate momentum π, defined by the
Hamiltonian

H ¼
Z

dxHðxÞ

HðxÞ ¼ 1

2
∶πðxÞπðxÞ∶a þ

1

2
∶∂xϕðxÞ∂xϕðxÞ∶a

þ 1

λ
∶V½

ffiffiffi
λ

p
ϕðxÞ�∶a ð2:1Þ

where ∶∶a is normal-ordering of the usual operators that
create and annihilate plane waves and we always work in
the Schrodinger picture. We remind the reader that normal
ordering eliminates all UV divergences in canonical scalar
theories in 1þ 1 dimensions with arbitrary nonderivative,
local interactions. Our procedure may be repeated with
other renormalization schemes, leading to similar results.
For example, as shown in Ref. [12], normal ordering with
normal ordering mass2m, as performed below, is equivalent
to dimensional regularization with a modified minimal
subtraction, at mass scale μ ¼ m, using a renormalized
mass squared of

m2
d:r: ¼ m2 ð2:2Þ

and a counterterm

δHðxÞ ¼ −
3λ

8π

�
2

ϵ
− γE þ logð4πÞ

�
ϕ2ðxÞ þOðλ2Þ: ð2:3Þ

The vacuum energy may be set to zero by including
additional constant counterterms, given explicitly in
Ref. [12]. Note that an order Oðλ2Þ contribution to (2.2)
would contribute to the two-loop kink mass, but this
contribution vanishes [12]. On the other hand, the corre-
sponding contribution to the counterterm δHðxÞ only
contributes to the kink mass starting at three loops. A
convenient lattice renormalization scheme also leads to a
shifted m2 and can be found in Eq. (14) of Ref. [18].
The classical equations of motion admit the kink solution

ϕðx; tÞ ¼ fðxÞ: ð2:4Þ

To perturbatively treat oscillations about the kink, one
would like to expand about the kink solution. This may be
done using the passive transformation of the fields ϕ →
ϕ0 ¼ ϕ − f or else the active transformation of the func-
tionals acting on the fields

F½ϕ� → F0½ϕ� ¼ F½ϕ0�: ð2:5Þ

We opt for the second approach, realized as follows.
Defining the displacement operator Df

TABLE I. Summary of Notation.

Operator Description

ϕðxÞ, πðxÞ The real scalar field and its conjugate
momentum

b†k, bk, B
†
k, Bk Creation and annihilation operators in normal

mode basis
ϕ0 Zero mode of ϕðxÞ in normal mode basis
∶∶a; ∶∶b Normal ordering with respect to a or b

operators respectively

Hamiltonian Description

H The original Hamiltonian
H0 H with ϕðxÞ shifted by kink solution fðxÞ
Hn The ϕn term in H0

Symbol Description
β Half of the scalar mass
λ Coupling constant
fðxÞ The classical kink solution
Df Operator that translates ϕðxÞ by the classical kink

solution
gBðxÞ The kink linearized translation mode
gkðxÞ Continuum normal mode or shape mode
gSðxÞ Shape mode
γmn
i Coefficient of ϕm

0 B
†nj0i0 in order i ground

state j0ii
Vijk Derivative of the potential contracted with

various functions
Cijk Coefficient which appears in all continuous Vijk

αijk Coefficient which appears in contribution of Vijk
to energy

σijkðxÞ Quantity which integrates to Vijk

ΦIJ
ijkðxÞ Matrix characterizing x-dependence of σijk

Δij Integral of giðxÞg0jðxÞ
ρðxÞ Energy density arising from three virtual

continuum modes

ρðvacÞðxÞ Vacuum energy density

IðxÞ Contraction factor from Wick’s theorem
ki The analog of momentum for normal modes
ωk The frequency corresponding to k
Qn n-loop correction to kink energy

State Description

jKi; jΩi Kink and vacuum sector ground states
j0i Translation of jKi by Df

−1

j0ii Translation of jKi by Df
−1 at order i

2Our m is the mass at the bottom of the potential, which is
equal to m̃ in Ref. [12], while our λ is 4 times larger.
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Df ¼ exp

�
−i

Z
dxfðxÞπðxÞ

�
ð2:6Þ

we define the kink Hamiltonian and kink momentum as

H0 ¼ Df
†HDf; P0 ¼ Df

†PDf: ð2:7Þ

The theory is rendered UV finite by normal ordering, and
so (2.5) and (2.7) are equivalent. However, our procedure
may be implemented with a general regulator and in that
case (2.7) should be taken as our definition of kink sector
operators, as the similarity transform guarantees that kink
sector operators will have the same spectra as the original
operators.
A quick calculation [6] shows

H0 ¼ Df
†HDf ¼ Q0 þ

X∞
n¼2

Hn;

Hnð>2Þ ¼
1

n!

Z
dxVðnÞ½

ffiffiffi
λ

p
fðxÞ�∶ϕnðxÞ∶a

H2 ¼
1

2

Z
dx½∶π2ðxÞ∶a þ ∶ð∂xϕðxÞÞ2∶a

þ V 00½gfðxÞ�∶ϕ2ðxÞ∶a�: ð2:8Þ

Let jKi be the kink ground state, and Q its energy

HjKi ¼ QjKi; PjKi ¼ 0: ð2:9Þ

Then we may define

j0i ¼ Df
†jKi ð2:10Þ

which is an eigenstate,3 of the kink Hamiltonian and
momentum

H0j0i ¼ Qj0i; P0j0i ¼ 0: ð2:11Þ

Define a semiclassical expansion of this state and its
eigenvalue

j0i ¼
X
i¼0

j0ii; Q ¼
X
j¼0

Qj ð2:12Þ

where j0ii is the ith order ground state and Qj is the j-loop
correction to its mass. At j loops the state is determined up
to i ¼ 2j − 2.

In this note we will be interested in the two-loop
correction to the energy of the kink ground state [10]

Q2¼
X5
j¼1

QðjÞ
2 ; Qð1Þ

2 ¼VII

8
; Qð2Þ

2 ¼−
1

8

Z þdk
2π

jVIkj2
ω2
k

Qð3Þ
2 ¼−

1

48

Z þ d3k
ð2πÞ3

jVk1k2k3 j2
ωk1ωk2ωk3ðωk1 þωk2 þωk3Þ

Qð4Þ
2 ¼ 1

16Q0

Z þ d2k
ð2πÞ2

jðωk1 −ωk2ÞΔk1k2 j2
ωk1ωk2

¼ 1

16

Z þ d2k
ð2πÞ2

jVBk1k2 j2
ωk1ωk2ðk1þk2Þ2

Qð5Þ
2 ¼−

1

8Q2
0

Z
dxjf00ðxÞj2¼−

1

8Q0

Z þdk
2π

jΔkBj2

¼−
1

8

Z þdk
2π

jVBBkj2
ω4
k

: ð2:13Þ

Here we have introduced the matrix

Δij ¼
Z

dxgiðxÞg0jðxÞ ð2:14Þ

and the symbol

VI ���mI ;α1���αn ¼
Z

dxVð2mþnÞ½
ffiffiffi
λ

p
fðxÞ�ImðxÞgα1ðxÞ � � � gαnðxÞ

ð2:15Þ

where VðnÞ is the nth derivative of λn=2−1V with respect to
its argument and gkðxÞ are continuous and discrete normal
modes of frequency ωk, which solve the linearized equa-
tions of motion for H0. In particular gBðxÞ is the zero mode
with ωB ¼ 0. Here m is an arbitrary nonnegative integer.
Feynman diagrams can be defined for our kink sector
perturbation theory [19], shown in Fig. 1. In these dia-
grams, the symbol V is the vertex factor for a vertex withm
loops going from the vertex to itself and n lines with a
single endpoint at the vertex.
The normalization and phases of the normal modes are

chosen so that

Z
dxgk1ðxÞg�k2ðxÞ¼ 2πδðk1−k2Þ;Z

dxjgSðxÞj2 ¼
Z

dxjgBðxÞj2¼ 1

gkð−xÞ¼ g�kðxÞ¼ g−kðxÞ; gSð−xÞ¼ g�SðxÞ
ð2:16Þ

where gSðxÞ is any discrete normal mode and ki are real.
We have also introduced the notation that

Rþ dk=2π is an
integral over all real values of k corresponding to the

3In our perturbative approach to the kink Hamiltonian, j0i is
the perturbative ground state. For example in can be expanded in
a power series in the coupling and the leading order term in the
expansion is annihilated by the normal mode annihilation
operators. However, nonperturbatively there are lower energy
eigenstates, such as Df

† acting on the vacuum of the defining
Hamiltonian or more generally on low lying states in the vacuum
sector.
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continuous normal modes as well as a discrete sum over the
imaginary values of k corresponding to discrete normal
modes, like the shape mode of the ϕ4 kink. The zero mode
is not included in this sum.
The function IðxÞ arises from each loop at a single

vertex, or equivalently by transforming the normal ordering
∶∶a in terms of operators which create plane waves, used in
the definition of the Hamiltonian, to a normal ordering in
terms of operators which create normal modes ∶∶b. It
solves the equation [20]

∂xIðxÞ ¼
Z þ dk

2π

1

2ωk
∂xjgkðxÞj2 ð2:17Þ

and tends asymptotically to 0.
We have used the identities

VBBk ¼−
ω2
kffiffiffiffiffiffi
Q0

p ΔkB; VBk1k2 ¼
ω2
k2
−ω2

k1ffiffiffiffiffiffi
Q0

p Δk1k2 ð2:18Þ

to write (2.13) in several equivalent forms. The expressions
on the right are more complicated, but following [19] their
diagrammatic interpretation, shown in Fig. 1, is more clear.
There it is explained thatQð1Þ

2 corresponds to two loops at a

point, Qð2Þ
2 to two loops connected by an internal line, Qð3Þ

2

corresponds to two points connected by 3 internal lines and
the next two diagrams are obtained from the third by
replacing, respectively, one or two normal mode internal
lines by one or two zero-mode internal lines. These
diagrams are each UV-finite, as loops at a point lead to
factors of the finite function IðxÞ. In the more standard
diagrammatic approach of Refs. [21,22], which use a UV
cutoff, each of these diagrams corresponds to a UV-finite
sum of individually divergent diagrams including diagrams
with counterterms. However, in our case no UV cutoff or
counterterms are needed as normal ordering in (2.1) has
already removed all UV divergences.

III. IR-FINITE CONTRIBUTIONS

A. The ϕ4 double well

Now let us specialize to the ϕ4 double well theory,
corresponding to the potential

V½
ffiffiffi
λ

p
ϕðxÞ� ¼ λϕ2

4
ð

ffiffiffi
λ

p
ϕðxÞ − β

ffiffiffi
8

p
Þ2 ð3:1Þ

and stationary classical kink solution

fðxÞ ¼ β

ffiffiffi
2

λ

r
ð1þ tanhðβxÞÞ: ð3:2Þ

At the vacua ϕ ¼ 0 and ϕ ¼ β
ffiffiffiffiffiffiffi
8=λ

p
, we define m2 to be

the meson mass squared and so

m ¼ 2β: ð3:3Þ

The continuum normal modes, shape mode and zero
mode are

gkðxÞ ¼
e−ikx

ωk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ β2

p ½k2 − 2β2 þ 3β2sech2ðβxÞ − 3iβk tanhðβxÞ�

gSðxÞ ¼ −i
ffiffiffiffiffi
3β

2

r
tanhðβxÞsechðβxÞ; gBðxÞ ¼

ffiffiffiffiffi
3β

p
2

sech2ðβxÞ ð3:4Þ

and have frequencies

ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4β2 þ k2

q
; ωS ¼ β

ffiffiffi
3

p
; ωB ¼ 0: ð3:5Þ

One easily finds the derivatives

Vð3Þ½
ffiffiffi
λ

p
fðxÞ� ¼ 6

ffiffiffiffiffi
2λ

p
β tanhðβxÞ; Vð4Þ½

ffiffiffi
λ

p
fðxÞ� ¼ 6λ ð3:6Þ

and, solving (2.17), the loop function

IðxÞ ¼ 1

4
ffiffiffi
3

p sech2ðβxÞtanh2ðβxÞ − 3

8π
sech4ðβxÞ: ð3:7Þ

FIG. 1. Q2 in pictures, as described in Ref. [19]. Each vertex
represents an interaction in H0, with operator ordering running to
the left and a factor of I for each loop at a single vertex. The three

diagrams correspond to Qð1Þ
2 , Qð2Þ

2 and Qð3Þ
2 respectively while

Qð4Þ
2 andQð5Þ

2 arise from replacing a normal mode with one or two
zero modes in the last diagram.
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B. Some useful integrals

In what follows, all derivatives over x will be performed analytically using

Z
dxe−ikxsech2nðβxÞ ¼

8<
:

2πδðkÞ if n ¼ 0

π
ð2n−1Þ!k

�Q
n−1
j¼0

�
k2

β2
þ ð2jÞ2

��
csch

�
πk
2β

�
if n > 0

Z
dxe−ikxsech2nþ1ðβxÞ ¼ π

ð2nÞ!β
�Yn−1
j¼0

�
k2

β2
þ ð2jþ 1Þ2

��
sech

�
πk
2β

�

Z
dxe−ikxsech2nðβxÞ tanhðβxÞ ¼ −i

π

ð2nÞ!β
�Yn−1
j¼0

�
k2

β2
þ ð2jÞ2

��
csch

�
πk
2β

�

Z
dxe−ikxsech2nþ1ðβxÞ tanhðβxÞ ¼ −i

πk
ð2nþ 1Þ!β2

�Yn−1
j¼0

�
k2

β2
þ ð2jþ 1Þ2

��
sech

�
πk
2β

�
: ð3:8Þ

C. The last term

The energy of the kink ground state is expressed in (2.13)

as
P

5
i¼1 Q

ðiÞ
2 . The simplest term to evaluate is the fifth. One

need only use

f00ðxÞ ¼ −
2ffiffiffi
λ

p β3sech2ðβxÞ tanhðβxÞ ð3:9Þ

to obtain

Z
dxjf00ðxÞj2 ¼ 4

λ
β6

Z
dxðsech4ðβxÞ− sech6ðβxÞÞ¼ 16

15

β5

λ
:

ð3:10Þ

Alternately one may evaluate Qð5Þ
2 using

ΔSB¼ iπ
3β

8
ffiffiffi
2

p ; ΔkB ¼ iπ

ffiffiffi
3

p

8

k2ωk

β3=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2þk2

p csch

�
πk
2β

�
:

ð3:11Þ

The result is the same and will be summarized in Sec V.

D. The penultimate term

The contribution Qð4Þ
2 can be found by inserting

ΔkS ¼ −iπ
ffiffiffi
3

p

4
ffiffiffi
2

p ð3β2 þ k2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ k2

p
β3=2ωk

sech

�
πk
2β

�

Δk1k2 ¼ iπðk1 − k2Þδðk1 þ k2Þ þ iπ
3

4

�
ωk1

ωk2

−
ωk2

ωk1

�

×
4β2 þ k21 þ k22ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ k21

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ k22

p csch

�
πðk1 þ k2Þ

2β

�
ð3:12Þ

into (2.13) and integrating over continuum modes k and
adding the contribution from the shape mode S. The
contribution from the Dirac delta function vanishes, as it
is multiplied by zero in (2.13).

E. Contractions with the potential

The vertex factors are defined in (2.15). Those involving
a zero-mode are

VBBB ¼ VSSB ¼ 0; VSBB ¼ −iπ
9

ffiffiffiffiffi
3λ

p

32
β3=2

VkBB ¼ −iπ
3

ffiffiffi
λ

p

16
ffiffiffi
2

p k2ω3
k

β3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ k2

p csch
�
πk
2β

�

VkSB ¼ iπ
3

ffiffiffi
λ

p

16

ð3β2 þ k2Þðk2 þ β2Þ3=2
β3ωk

sech

�
πk
2β

�

Vk1k2B ¼ −iπ
3

ffiffiffiffiffi
3λ

p

8
ffiffiffi
2

p ðk12 − k22Þ2ð4β2 þ k21 þ k22Þ
β3=2k1k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ k21

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ k22

p

× csch

�
πðk1 þ k2Þ

2β

�
: ð3:13Þ

These are consistent with the identities (2.18).
Those involving the loop factor IðxÞ, given in (3.7), are

VII ¼ λ

70β

�
1 −

4
ffiffiffi
3

p

π
þ 54

π2

�

VIk ¼ i

ffiffiffi
λ

p

32
ffiffiffi
6

p k2ωk

β4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ k2

p

× ½2πð−2β2 þ k2Þ þ 3
ffiffiffi
3

p
ω2
k�csch

�
πk
2β

�

VIS ¼ i
3

ffiffiffi
λ

p

64

ffiffiffi
β

p
ð3

ffiffiffi
3

p
− 2πÞ: ð3:14Þ
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These yield Qð1Þ
2 and Qð2Þ

2 . So the rest of this note will be concerned with Qð3Þ
2 .

The only divergence arises from the term with three continuum normal modes. The remaining finite terms are

VSSS ¼ iπ
9

ffiffiffiffiffi
3λ

p

16
β3=2; VkSS ¼ iπ

3
ffiffiffi
λ

p

8
ffiffiffi
2

p k2ωkð2β2 − k2Þ
β3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ k2

p csch

�
πk
2β

�

Vk1k2S ¼ −iπ
3

ffiffiffiffiffi
3λ

p

8

ð17β4 − ðk12 − k22Þ2Þðβ2 þ k21 þ k22Þ þ 8β2k21k
2
2

β3=2k1k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ k21

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ k22

p sech

�
πðk1 þ k2Þ

2β

�
: ð3:15Þ

F. The divergent term

Although we use (2.13) to evaluate the energy of the
kink ground state, one could also use it to evaluate the
vacuum ground state. One would simply set fðxÞ to be
the corresponding expectation value of ϕðxÞ and the
gkðxÞ would be the corresponding linearized solutions,

which are just plane waves. Only the third term Qð3Þ
2

would be nonzero and it would be divergent. The
problem is that Vk1k2k3 diverges when

P
i ki ¼ 0. In

that case it would be proportional to a delta function
reflecting momentum conservation in the third figure
in Fig. 1.

The infrared behavior of the kink sector is identical, as at
long distances the only effect of the kink is a phase-shift
which is not relevant to this divergence. The continuum
normal modes tend asymptotically to plane waves, albeit
shifted, and the potential tends to exactly the sameconstant as
in the vacuum case. Therefore, for small

P
i ki, the symbol

Vk1k2k3 approaches thevacuum value. This is good news, as it
means that the kink energy and the vacuum energy have the
same divergence, so their difference, the kink mass, is finite.
The long distance divergence of Vk1k2k3 arises from the

fact that at small
P

i ki it tends to the integral of a constant.
Thus, to regularize this divergence, we must study the
integrand, which we will call σðxÞ

Vk1k2k3 ¼
Z

dxσk1k2k3ðxÞ ¼
X3
I¼0

X1
J¼0

VIJ
k1k2k3

; VIJ
k1k2k3

¼
Z

dxσIJk1k2k3ðxÞ

σk1k2k3ðxÞ ¼ Vð3Þ½
ffiffiffi
λ

p
fðxÞ�gk1ðxÞgk2ðxÞgk3ðxÞ ¼

X3
I¼0

X1
J¼0

σIJk1k2k3ðxÞ: ð3:16Þ

The indices I and J are respectively the number of powers of sech2ðβxÞ and tanhðβxÞ in each term. We separate out the k-
dependence, the x-dependence and a universal k-dependent coefficient by introducing yet more notation

σIJk1k2k3ðxÞ ¼ Ck1k2k3Φ
IJ
k1k2k3

e−ixðk1þk2þk3Þsech2IðβxÞtanhJðβxÞ

Ck1k2k3 ¼ 6
ffiffiffiffiffi
2λ

p β

ωk1ωk2ωk3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ k21

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ k22

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 þ k23

p : ð3:17Þ

For future reference we will use a hat to define functions restricted to
P

ki ¼ 0

Φ̂IJ
k1k2 ¼ ΦIJ

k1;k2;−k1−k2 ; Ĉk1k2 ¼ Ck1;k2;−k1−k2 : ð3:18Þ

The x integrals may be performed analytically, yielding

V00
k1k2k3

¼ Ck1k2k3Φ
00
k1k2k3

2πδðk1 þ k2 þ k3Þ ¼ Ĉk1k2Φ̂
00
k1k22πδðk1 þ k2 þ k3Þ

V10
k1k2k3

¼ Ck1k2k3Φ
10
k1k2k3

π
P

3
i ki

β2
csch

�
π
P

3
i ki

2β

�

V20
k1k2k3

¼ Ck1k2k3Φ
20
k1k2k3

π
P

3
i ki

6β2

�ðP3
i kiÞ2
β2

þ 4

�
csch

�
π
P

3
i ki

2β

�

V30
k1k2k3

¼ Ck1k2k3Φ
30
k1k2k3

π
P

3
i ki

120β2

�ðP3
i kiÞ2
β2

þ 4

��ðP3
i kiÞ2
β2

þ 16

�
csch

�
π
P

3
i ki

2β

�
ð3:19Þ
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and

V01
k1k2k3

¼ −iCk1k2k3Φ
01
k1k2k3

π

β
csch

�
π
P

3
i ki

2β

�

V11
k1k2k3

¼ −iCk1k2k3Φ
11
k1k2k3

πðP3
i kiÞ2

2β3
csch

�
π
P

3
i ki

2β

�

V21
k1k2k3

¼ −iCk1k2k3Φ
21
k1k2k3

πðP3
i kiÞ2

24β3

�ðP3
i kiÞ2
β2

þ 4

�
csch

�
π
P

3
i ki

2β

�

V31
k1k2k3

¼ −iCk1k2k3Φ
31
k1k2k3

πðP3
i kiÞ2

720β3

�ðP3
i kiÞ2
β2

þ 4

��ðP3
i kiÞ2
β2

þ 16

�
csch

�
π
P

3
i ki

2β

�
: ð3:20Þ

However if we simply substitute these results into (2.13),
the terms containing V0JV0J0 would be divergent, even after
integration over momenta. One delta function or simple
pole could be used to do the k3 integral, but the other delta
function or simple pole would leave an infinite result. This
is of course to be expected, because the kink ground state
really does have a infinite energy. We will need to subtract
the vacuum energy before evaluating some x integrals.

The terms with I > 0 are not divergent. So let us
decompose V into three imaginary components

Vk1k2k3 ¼ V00
k1k2k3

þ V01
k1k2k3

þ VF
k1k2k3

: ð3:21Þ

The first contains a δ function divergence, the second a
simple pole and the third is finite

VF
k1k2k3

¼ Ck1k2k3
π
P

3
i ki

β2
csch

�
π
P

3
i ki

2β

�X3
I¼1

1

ð2I − 1Þ!
�
ΦI0

k1k2k3
−
P

3
i ki

2Iβ
iΦI1

k1k2k3

�YI−1
j¼1

�ðP3
i kiÞ2
β2

þ ð2jÞ2
�

V̂F
k1k2 ¼ VF

k1;k2;−k1−k2 ¼ Ĉk1k2
2

β
Φ̂10

k1k2 : ð3:22Þ

Defining the symmetrized products

Sn1 ¼ kn1 þ kn2 þ kn3; Sn2 ¼ ðk1k2Þn þ ðk1k3Þn þ ðk2k3Þn; Sn3 ¼ ðk1k2k3Þn
Smn
2 ¼ km1 k

n
2 þ km1 k

n
3 þ km2 k

n
3 þ kn1k

m
2 þ kn1k

m
3 þ kn2k

m
3 ð3:23Þ

one may use (3.4), (3.16), and (3.17) to calculate the
coefficients of the triple product of the continuous
normal modes

Φ00
k1k2k3

¼ 3iβ½−4β4S11þβ2ð2S212 þ9S13Þ−S13S
1
2�

Φ10
k1k2k3

¼ 3iβ½16β4S11þβ2ð−5S212 −18S13ÞþS13S
1
2�

Φ20
k1k2k3

¼ 9iβ3½−7β2S1þS212 þ3S13�; Φ30
k1k2k3

¼ 27iβ5S11

Φ01
k1k2k3

¼−8β6þβ4ð18S12þ4S21Þþβ2ð−2S22−9S13S
1
1ÞþS23

Φ11
k1k2k3

¼ 3β2½12β4þβ2ð−15S12−4S21ÞþðS22þ3S13S
1
1Þ�

Φ21
k1k2k3

¼ 9β4½−6β2þð3S12þS21Þ�; Φ31
k1k2k3

¼ 27β6:

ð3:24Þ

Similarly, at
P

i ki ¼ 0 one may define the symmetrized
products

Ŝ2¼
k21þk22þðk1þk2Þ2

2
; Ŝ3¼ k1k2ðk1þk2Þ ð3:25Þ

and write the reduced coefficients

Φ̂00
k1k2 ¼ −3iβŜ3ð3β2 þ Ŝ2Þ; Φ̂10

k1k2 ¼ 3iβŜ3ð3β2 þ Ŝ2Þ;
Φ̂20

k1k2 ¼ Φ̂30
k1k2 ¼ 0

Φ̂01
k1k2 ¼ Ŝ23 − 2β2Ŝ22 − 10β4Ŝ2 − 8β6;

Φ̂11
k1k2 ¼ 3β2ð4β2 þ Ŝ2Þð3β2 þ Ŝ2Þ

Φ̂21
k1k2 ¼ −9β4ð6β2 þ Ŝ2Þ; Φ̂31

k1k2 ¼ 27β6: ð3:26Þ

Now we have completed our decomposition of the kink
ground state energy Q2. In the next section we will subtract
the vacuum energy and then reassemble Q2 to arrive at the
kink mass.
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IV. CANCELING IR DIVERGENCES

A. Defining the energy density

Our strategy for canceling the IR divergence in the two-
loop kink energy Q2 is to subtract the vacuum energy
density from the kink energy density before performing the
spatial integration. Our first task is thus to define the kink
energy density.
Recall that our state j0i is an eigenstate of the kink

Hamiltonian. The corresponding eigenvalue equation is

ðH0 −QÞj0i ¼ 0; Q ¼
X
i

Qi: ð4:1Þ

Expanding this equation in powers of the coupling,

Xi

j¼0

ðHiþ2−j −Qi−j
2
þ1Þj0ij ¼ 0: ð4:2Þ

The first two orders do not involve the two-loop
correction Q2

Q1j0i0 ¼ H2j0i0; 0 ¼ H3j0i0 þH2j0i1: ð4:3Þ

It appears at the third order

Q2j0i0 ¼ H4j0i0 þH3j0i1 þ ðH2 −Q1Þj0i2: ð4:4Þ

We also expand the kink Hamiltonian density order by
order

Hi¼
Z

dxHiðxÞ; Hið>2ÞðxÞ¼
1

i!
VðiÞ½

ffiffiffi
λ

p
fðxÞ�∶ϕiðxÞ∶a:

ð4:5Þ

In the Schrodinger picture, the fields can be expanded in
any basis of functions. We will expand them in terms of
normalized kink normal modes [6]

ϕðxÞ ¼ ϕCðxÞ þ ϕSðxÞ þ ϕBðxÞ

ϕCðxÞ ¼
Z

dk
2π

1ffiffiffiffiffiffiffiffi
2ωk

p ðb†k þ b−kÞgkðxÞ

ϕSðxÞ ¼
1ffiffiffiffiffiffiffiffi
2ωS

p ðb†S − bSÞgSðxÞ

ϕBðxÞ ¼ ϕ0gBðxÞ: ð4:6Þ

The Hamiltonian density allows us to define the functions
ρðxÞ, as the expansion of HðxÞj0i in a Fock basis

Xi

j¼0

Hiþ2−jðxÞj0ij

¼
X
mn

Z þ dnk
ð2πÞnρ

mn
i ðk1 � � �kn;xÞϕm

0 B
†
k1
� � �B†

kn
j0i0 ð4:7Þ

where B†
k ¼ b†k=

ffiffiffiffiffiffiffiffi
2ωk

p
. Integrating the i ¼ 2 equation over

x and using (4.4) one obtains

Q2j0i0þQ1j0i2
¼
X
mn

Z þ dnk
ð2πÞn

�Z
dxρmn

2 ðk1 � � �kn;xÞ
�
ϕm
0 B

†
k1
���B†

kn
j0i0:

ð4:8Þ

Choose j0ii>0 to be orthogonal to j0i0, as one is always
free to do in old-fashioned perturbation theory,4 then
project onto j0i0 to obtain

Q2 ¼
Z

dxρ002 ðxÞ: ð4:9Þ

This ρ002 will be our definition of the kink energy density.
As the zero-mode part of the Fock basis is not orthogonal,
this choice of projection was somewhat arbitrary. It
depended on our choice of basis for the space of functions
of ϕ0. If another basis of functions for the ϕ0 were used in
(4.7), such as a set of polynomials, the kink energy density
ρ002 ðxÞ could be shifted by some linear combination of the
ρm0
2 ðxÞ. However, as j0i is an eigenstate of H0, these each
integrate to zero and so the resulting kink mass would be
unchanged.

B. Evaluating the energy density

Let us expand the kink ground state j0i in this same Fock
basis

4At ith order, the state j0i is the sum P
i
j¼0 j0ij. Imagine that

all of these j0ij have been found such that (4.2) is solved. If j0ii is
not orthogonal to j0i0, then the projection of j0ii in the j0i0
direction can be subtracted from j0ii and added to j0i0, which
rescales j0i0. After this, the inner product will vanish. This
procedure does not change the sum and so the sum is still an
eigenvector of H −Q up to order i. Since the rescaling of j0i0 is
order i in the coupling, it can be removed if desired by rescaling
the sum without affecting any other j0ij, since the corresponding
correction would be of order iþ j.
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j0ii¼
X∞
m;n¼0

j0imn
i ;

j0imn
i ¼Q−i=2

0

Z þ dnk
ð2πÞn γ

mn
i ðk1 � � �knÞϕm

0 B
†
k1
� � �B†

kn
j0i0:

ð4:10Þ

Here γ are defined to be the coefficients of this expansion.
The divergence in Q2 arises from Qð3Þ

2 which in turn was
derived in Ref. [10] from the mixing of the free ground state
j0i0 ¼ j0i000 with a kink state with three virtual normal
modes j0i031 , given by

γ031 ¼ −
ffiffiffiffiffiffi
Q0

p
6
P

3
i ωki

Vk1k2k3 : ð4:11Þ

The contribution of this state to Q2 arises from the H3j0i1
term inH0j0i, as seen in (4.4). More precisely, it arises from
the first term on the right-hand side of

H3 ¼
1

6

Z
dxVð3Þ½

ffiffiffi
λ

p
fðxÞ�∶ϕ3ðxÞ∶a

¼ 1

6

Z
dxVð3Þ½

ffiffiffi
λ

p
fðxÞ�∶ϕ3ðxÞ∶b

þ1

2

Z
dxVð3Þ½

ffiffiffi
λ

p
fðxÞ�ϕðxÞIðxÞ ð4:12Þ

where we have changed normal ordering in terms of plane
wave creation operators ∶∶a to normal ordering in terms of
normal mode creation operators ∶∶b using the Wick’s
theorem of Ref. [20].
The corresponding two-loop energy contribution comes

from ϕ3 acting on j0i031 . This contains terms of the form
(4.11) where 0, 1, 2, or 3 of the k are continuum modes and
the other are shape modes. For each continuum mode, the
contribution to the vacuum energy arises from ϕC which
contains bkg−kðxÞ. As g−kðxÞ ¼ g�kðxÞ, this yields a factor
of g�kðxÞ. For each shape mode, the contribution arises from
ϕS which contains −bSgSðxÞ, contributing a factor of
−gSðxÞ. However due to our convention gkð−xÞ ¼ g�kðxÞ,
and the antisymmetry of gSðxÞ, gSðxÞ is imaginary an so
this contribution may be written g�SðxÞ. Thus the contribu-
tions from the three factors of ϕðxÞ are g�k1ðxÞg�k2ðxÞg�k3ðxÞ,
multiplied by the Vð3Þ inH3, yielding V�

k1k2k3
, irrespectively

of which k are continuum and discrete modes. The three
factors of 1=

ffiffiffi
2

p
from the decomposition of ϕc in (4.6)

combine with the three in the B† in the j0i031 term of (4.10)
and the 1=6 in (4.12), yielding a 1=48. In all one finds

H3j0i031 ⊃ Qð3Þ
2 j0i0;

Qð3Þ
2 ¼ −

Z þ d3k
ð2πÞ3 αk1k2k3 jVk1k2k3 j2j0i0 ð4:13Þ

where

αk1k2k3 ¼
1

48ωk1ωk2ωk3ðωk1 þ ωk2 þ ωk3Þ
: ð4:14Þ

The divergence arises from k1 þ k2 þ k3 ∼ 0 which only
occurs in the real, continuous part of the integral

Qð3Þ
2 ⊃ Qð33Þ

2 ¼ −
Z

d3k
ð2πÞ3 αk1k2k3 jVk1k2k3 j2j0i0 ð4:15Þ

where we defined Qð3IÞ
2 to be the contribution to Qð3Þ

2 in
which I of the three normal modes are continuous.
Now we wish to tame this IR divergence by first writing

it as an integral of an energy density, defined as in (4.7).
Using

H3ðxÞ ¼
1

6
Vð3Þ½

ffiffiffi
λ

p
fðxÞ�∶ϕ3ðxÞ∶b

þ 1

2
Vð3Þ½

ffiffiffi
λ

p
fðxÞ�ϕðxÞIðxÞ ð4:16Þ

one finds that the corresponding term in (4.7) is

H3ðxÞj0i031 ⊃ ρðxÞj0i0; ρðxÞ

¼ −
Z

d3k
ð2πÞ3 αk1k2k3Vk1k2k3σ−k1;−k2;−k3ðxÞ: ð4:17Þ

This is our definition of the energy density corresponding to
IR-divergent Qð33Þ

2 . Indeed, as desired, formally it satisfies

Qð33Þ
2 ¼

Z
dxρðxÞ ð4:18Þ

although this is infinite. The expression (4.17) for the two-

loop energy density corresponding to Qð33Þ
2 is a main result

of this work. The derivation can easily be modified to obtain
the energy density corresponding to any term, but since the
other terms are already IR-finite we will not need to do this.
We will now proceed to decompose ρðxÞ into pieces with

various x-dependences

ρðxÞ¼
X3
I;I0¼0

X1
J;J0¼0

ρIJI0J0 ðxÞ;

ρIJI0J0 ðxÞ¼−
Z

d3k
ð2πÞ3αk1k2k3V

IJ
k1k2k3

σI
0J0
−k1;−k2;−k3ðxÞ: ð4:19Þ

The divergences lie in the I ¼ I0 ¼ 0 terms.
We will separate the finite and infinite terms

ρðxÞ¼ ρðdivÞðxÞþρðfinÞðxÞ; ρðdivÞðxÞ¼
X1
J;J0¼0

ρ0J0J0 ðxÞ:

ð4:20Þ
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The finite part may be integrated over x

Qð33finÞ
2 ¼

Z
dxρðfinÞðxÞ ¼ q0F þ q1F þ qFF

q0F ¼ −2
Z

d3k
ð2πÞ3 αk1k2k3V

00
k1k2k3

VF
−k1−k2−k3

¼ −
4

β

Z
d2k
ð2πÞ2 α̂k1k2 Ĉ

2
k1k2Φ̂

00
k1k2Φ̂

10
−k1−k2

q1F ¼ −2
Z

d3k
ð2πÞ3 αk1k2k3V

01
k1k2k3

VF
−k1−k2−k3

qFF ¼ −
Z

d3k
ð2πÞ3 αk1k2k3V

F
k1k2k3

VF
−k1−k2−k3 ð4:21Þ

where we have defined

α̂k1k2 ¼ αk1;k2;−k1−k2 : ð4:22Þ

In all Qð33Þ
2 consists of seven contributions to the kink

ground state energy: q0F, q1F, qFF and the divergent
integrals of the four ρ0J0J0 ðxÞ.
In the Introduction we claimed that this approach is

equivalent to adding an IR counterterm toH4ðxÞ, equal and
opposite to the vacuum energy density ρðvacÞðxÞ. Let us now
justify that claim. In that case, the kink Hamiltonian would
be an x integral over the total kink Hamiltonian density,
which includesH3ðxÞ þH4ðxÞ. Then the eigenvalue equa-
tion (4.4) for Q2 would include

H0j0i ¼
Z

dxH0ðxÞj0i ⊃
Z

dxðH4ðxÞj0i0 þH3ðxÞj0i1Þ

⊃
Z

dxð−ρðvacÞðxÞj0i0 þH3ðxÞj0i031 Þ: ð4:23Þ

One sees that these two terms should indeed be added
before performing the x integration. First we will manipu-
late ρðvacÞðxÞ to cast this subtraction in a form in which we
may analytically integrate over x.

C. The vacuum energy density

Using the third derivative of the potential

Vð3Þ½ϕ0� ¼ 6
ffiffiffiffiffi
2λ

p
β ð4:24Þ

and old-fashioned perturbation theory, one finds the one-
loop vacuum energy density [12,13]

ρðvacÞðxÞ ¼ −72λβ2
Z

d3p
ð2πÞ3 αp1p2p3

2πδðp1 þ p2 þ p3Þ

¼ −72λβ2
Z

d2k
ð2πÞ2 α̂k1k2 : ð4:25Þ

This is independent of x, but we will manipulate it to
introduce a spurious x-dependence shortly.
The identity

jΦ00
k1k2k3

j2 þ jΦ01
k1k2k3

j2 ¼ 72λβ2

C2k1k2k3
ð4:26Þ

allows us to replace the 72λβ2 in (4.25) with a sum of two
more complicated terms. We use this to define the decom-
position

ρðvacÞðxÞ ¼ ρðvacÞ0 ðxÞ þ ρðvacÞ1 ðxÞ;

ρðvacÞJ ðxÞ ¼ −
Z

d2k
ð2πÞ2 α̂k1k2 Ĉ

2
k1k2 jΦ̂0J

k1k2 j2 ð4:27Þ

where J runs over 0 and 1. Intuitively these are the
decomposition in terms of the contributions from the even
and odd parts of σðxÞ, whose integrals respectively lead to a
delta function and a simple pole.
Multiplying by the identity

1 ¼ −2isignðxÞ
Z

dk3
2π

eix
P

3

i
kiP

3
i ki

ð4:28Þ

one finds

ρðvacÞ1 ðxÞ ¼ 2isignðxÞ
Z

d3k
ð2πÞ3

eix
P

3

i
kiP

3
i ki

α̂k1k2 Ĉ
2
k1k2 jΦ̂01

k1k2 j2:

ð4:29Þ

We will not need the analogous formula for ρðvacÞ0 .
The advantage of these more complicated forms

is that the vacuum energy density now has the same
structure, as a matrix in k, as the kink energy density. Thus
we can subtract the densities at each k separately. We will
see that, once the vacuum energy density has been
subtracted, the energy density becomes integrable over
x for each n-tuple of ki. This means that we may perform
the x integration before the k integration, as both are
anyway finite but we are only able to perform the x
integration analytically.
Nonetheless this trick is somewhat expensive numeri-

cally, as it yields our only three-dimensional integration
over ki which does not decrease exponentially in

P
3
i ki. To

resolve this problem, we make the following observation.
Momentum p is conserved at each interaction. k is not the
momentum, and so the sum of k, which we call a does not
need to vanish. However, at high k, the normal mode
solutions tend to plane waves with momentum p ¼ k. So at
high k, a is roughly equal to the sum of p which is zero.
Stated differently, amplitudes tend to be suppressed when a
is large. Our trick will be to introduce an arbitrary cutoff jaj
in the three-dimensional integral and then to break up the
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integral into contributions above and below the cutoff.
Luckily the contribution above the cutoff can be reduced to
a two-dimensional integral when the cutoff is nonzero. The
IR divergence arises from the contribution beneath the
cutoff.

We use the sine integral function

SiðaÞ ¼
Z

a

0

dt
sinðtÞ
t

: ð4:30Þ

Using

i

�
signðxÞ

2
−
SiðaxÞ

π

�
¼

Z
−k1−k2−a

−∞

dk3
2π

eixð
P

3

i
kiÞP

3
i ki

þ
Z

∞

−k1−k2þa

dk3
2π

eixð
P

3

i
kiÞP

3
i ki

ð4:31Þ

one can replace (4.28) with

1 ¼ −2isignðxÞ
Z

−k1−k2þa

−k1−k2−a

dk3
2π

eix
P

3

i
kiP

3
i ki

þ
�
1 −

2signðxÞSiðaxÞ
π

�
: ð4:32Þ

This allows one to reduce the k3 range of integration

ρðvacÞ1 ðxÞ ¼ 2isignðxÞ
Z

d2k
ð2πÞ2

Z
−k1−k2þa

−k1−k2−a

dk3
2π

eix
P

3

i
kiP

3
i ki

α̂k1k2 Ĉ
2
k1k2 jΦ̂01

k1k2 j2 þ Rðx; aÞ ð4:33Þ

where a is any positive number and the remainder is

Rðx; aÞ ¼ −
�
1 −

2signðxÞSiðaxÞ
π

�Z
d2k
ð2πÞ2 α̂k1k2 Ĉ

2
k1k2 jΦ̂0J

k1k2 j2: ð4:34Þ

The remainder is easily integrated over x

Z
dxRðx; aÞ ¼ −

4

πa

Z
d2k
ð2πÞ2 α̂k1k2 Ĉ

2
k1k2 jΦ̂01

k1k2 j2: ð4:35Þ

Notice that in the limit in which a → 0, this integral is

infinite, as it is equal to
R
dxρðvacÞ1 ðxÞ.

D. Canceling IR divergences

We are now ready to subtract the vacuum energy density
from the kink energy density components defined in (4.20).
We will do this one term at a time.

1. ρ0000ðxÞ
The first contribution to the kink energy density, result-

ing from two even σðxÞ terms, is

ρ0000ðxÞ ¼ −
Z

d3k
ð2πÞ3 αk1k2k3V

00
k1k2k3

σ00−k1;−k2;−k3ðxÞ

¼ −
Z

d3k
ð2πÞ3 αk1k2k3 Ĉk1k2Φ̂

00
k1k22πδðk1 þ k2 þ k3ÞCk1k2k3Φ00

−k1−k2−k3e
ixðk1þk2þk3Þ

¼ −
Z

d2k
ð2πÞ2 α̂k1k2 Ĉ

2
k1k2 jΦ̂00

k1k2 j2 ¼ ρðvacÞ0 ðxÞ: ð4:36Þ

Subtracting the corresponding contribution to the vacuum energy (4.27) one obtains the corresponding contribution to the
two-loop kink ground state mass

ρðdifÞ00 ðxÞ ¼ ρ0000ðxÞ − ρðvacÞ0 ðxÞ ¼ 0: ð4:37Þ
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2. ρ0101ðxÞ
The next contribution arises from the two odd σðxÞ terms

ρ0101ðxÞ ¼ −
Z

d3k
ð2πÞ3 αk1k2k3V

01
k1k2k3

σ01−k1;−k2;−k3ðxÞ

¼ 2i
Z

d3k
ð2πÞ3 αk1k2k3C

2
k1k2k3

jΦ01
k1k2k3

j2 π

2β
csch

�
π
P

3
i ki

2β

�
eixðk1þk2þk3Þ tanhðβxÞ: ð4:38Þ

Subtracting the vacuum energy density (4.29) one finds

ρ0101ðxÞ − ρðvacÞ1 ðxÞ ¼ 2i
Z

d3k
ð2πÞ3 e

ixðk1þk2þk3Þ

×

�
αk1k2k3C

2
k1k2k3

jΦ01
k1k2k3

j2 π

2β
csch

�
π
P

3
i ki

2β

�
tanhðβxÞ − 1P

3
i ki

α̂k1k2 Ĉ
2
k1k2 jΦ̂01

k1k2 j2signðxÞ
�
: ð4:39Þ

In the limit jxj → ∞ the term in square brackets tends to a finite value for all k, as the residues of the simple poles are equal
and opposite. Therefore we may integrate over x to obtain the corresponding contribution to the kink mass

q11 ¼
Z

dxðρ0101ðxÞ − ρðvacÞ1 ðxÞÞ

¼ 4

Z
d3k
ð2πÞ3

�
−αk1k2k3C

2
k1k2k3

jΦ01
k1k2k3

j2
�
π

2β

�
2

csch2
�
π
P

3
i ki

2β

�
þ 1

ðP3
i kiÞ2

α̂k1k2 Ĉ
2
k1k2 jΦ̂01

k1k2 j2
�
: ð4:40Þ

The term in brackets has only a first order pole at k1 þ k2 þ k3 ¼ 0 as the residues of the second order poles cancel. We
define this integral to be the principal value, which is finite and real. Any other prescription would lead to a finite
contribution at arbitrarily small k, which is unphysical as long wavelength modes have measure zero support on the kink.

3. ρ0001ðxÞ+ ρ0100ðxÞ
Now we have subtracted the entire vacuum energy, but we still have two divergent terms left in the kink energy. These are

the cross terms arising from one even and one odd σðxÞ. As a consistency check on our calculation, their sum must be finite.
The two terms are

ρ0100ðxÞ ¼ −
Z

d3k
ð2πÞ3 αk1k2k3V

01
k1k2k3

σ00−k1;−k2;−k3ðxÞ

¼ 2i
Z

d3k
ð2πÞ3 αk1k2k3C

2
k1k2k3

Φ01
k1k2k3

Φ00
−k1−k2−k3

π

2β
csch

�
π
P

3
i ki

2β

�
eix

P
3

i
ki ð4:41Þ

and

ρ0001ðxÞ ¼ −
Z

d3k
ð2πÞ3 αk1k2k3V

00
k1k2k3

σ01−k1;−k2;−k3ðxÞ

¼ −
Z

d3k
ð2πÞ3 αk1k2k3 Ĉk1k2Φ̂

00
k1k22πδðk1 þ k2 þ k3ÞCk1k2k3Φ01

−k1−k2−k3 tanhðβxÞ

¼ −
Z

d2k
ð2πÞ2 α̂k1k2 Ĉ

2
k1k2Φ̂

00
k1k2Φ̂

01
−k1−k2 tanhðβxÞ

¼ −
Z

d3k
ð2πÞ3 α̂k1k2 Ĉ

2
k1k2Φ̂

00
k1k2Φ̂

01
−k1−k2

�
−i

π

β
eix

P
3

i
kicsch

�
π
P

3
i ki

2β

��

¼ −2i
Z

d3k
ð2πÞ3 α̂k1k2 Ĉ

2
k1k2Φ̂

00
−k1−k2Φ̂

01
k1k2

π

2β
csch

�
π
P

3
i ki

2β

�
eix

P
3

i
ki : ð4:42Þ
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Their sum is

ρ0100ðxÞ þ ρ0001ðxÞ ¼ 2i
Z

d3k
ð2πÞ3

π
P

3
i ki

2β
csch

�
π
P

3
i ki

2β

�
eix

P
3

i
kiTk1k2k3

Tk1k2k3 ¼
αk1k2k3C

2
k1k2k3

Φ01
k1k2k3

Φ00
−k1−k2−k3 − α̂k1k2 Ĉ

2
k1k2Φ̂

01
k1k2Φ̂

00
−k1−k2P

3
i ki

: ð4:43Þ

The numerator vanishes linearly as
P

3
i ki tends to zero, and so

T̂k1k2 ¼ Tk1;k2;−k1−k2 ¼
∂
∂k3 ðαk1k2k3C

2
k1k2k3

Φ01
k1k2k3

Φ00
−k1−k2−k3Þ

����
k3¼−k1−k2

ð4:44Þ

is finite, as is the integrand. Now we may integrate over x

q10 ¼
Z

dxðρ0100ðxÞ þ ρ0001ðxÞÞ

¼ 2i
Z

d3k
ð2πÞ3

π
P

3
i ki

2β
csch

�
π
P

3
i ki

2β

�
Tk1k2k32πδ

�X3
i

ki

�

¼ 2i
Z

d2k
ð2πÞ2 T̂k1k2 : ð4:45Þ

In all, we have found five contributions to the IR finite Qð33Þ
2 ¼ R

dxρðxÞ, obtained by subtracting ρðvacÞðxÞ from the
integrand at each x

Z
dxðρðxÞ − ρðvacÞðxÞÞ ¼ q0F þ q1F þ qFF þ q11 þ q10 ð4:46Þ

each of which is finite.

V. NUMERICAL INTEGRATION

Now that all x integration has been done analytically, we will perform the k integration in (2.13) numerically.
Uncertainties will be reported in parentheses for those integrals that dominate the error budget.
Two summands require no integration over the momenta k and so are easily determined analytically using (3.14) and

(3.2) respectively

Qð1Þ
2 ¼ 1

560

�
1 −

4
ffiffiffi
3

p

π
þ 54

π2

�
λ

β
; Qð5Þ

2 ¼ −
1

8

9λ2

64β6
16

15

β5

λ
¼ −

3

80

λ

β
: ð5:1Þ

Numerically, these are

Qð1Þ
2 ∼ 0.00761791

λ

β
; Qð5Þ

2 ¼ −0.0375
λ

β
: ð5:2Þ

Next, again using (3.14), we find the second contribution

Qð2Þ
2 ¼ −

1

8

Z
dk
2π

jVIkj2
ω2
k0

−
jVISj2
8ω2

S

¼ −
1

8

λ

6144β8

Z
dk
2π

k4

β2 þ k2
½2πð−2β2 þ k2Þ þ 3

ffiffiffi
3

p
ω2
k�2csch2

�
πk
2β

�

−
1

8

3

4096
½−2π þ 3

ffiffiffi
3

p
�2 λ
β
∼ ð−0.000961713 − 0.000108182Þ λ

β

∼ −0.0010699
λ

β
: ð5:3Þ
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The fourth term can be found using (3.12)

Qð4Þ
2 ¼ 1

16Q0

Z
d2k
ð2πÞ2

jðωk1 − ωk2ÞΔk1k2 j2
ωk1ωk2

þ 1

8Q0

Z
d1k
ð2πÞ1

jðωk1 − ωSÞΔk1Sj2
ωk1ωS

¼ 27π2λ

2048β3

Z
d2k
ð2πÞ2

ðωk1 − ωk2Þ2ðk21 − k22Þ2
k13k23

ð4β2 þ k21 þ k22Þ2
ðβ2 þ k21Þðβ2 þ k22Þ

csch2
�
πðk1 þ k2Þ

2β

�

þ 3
ffiffiffi
3

p
π2λ

2048β3

Z
dk
2π

ðωk − β
ffiffiffi
3

p Þ2
βωk

ð3β2 þ k2Þ2ðβ2 þ k2Þ
β3ω2

k

sech2
�
πk
2β

�

∼ ð0.001481577þ 0.002358405Þ λ
β
∼ 0.00383998

λ

β
: ð5:4Þ

It remains to evaluate the third term Qð3Þ
2 . Recall that this term results from two vertices with three normal modes each.

The normal modes may be the shape mode S or continuum modes. Let us first decompose the result into summands
involving various numbers of continuum modes

Qð3Þ
2 ¼

X3
k¼0

Qð3kÞ
2 ; Qð30Þ

2 ¼ −
1

48

jVSSSj2
3ω4

S

Qð31Þ
2 ¼ −

1

16

Z
d1k
ð2πÞ1

jVSSk1 j2
ωk1ω

2
Sðωk1 þ 2ωSÞ

Qð32Þ
2 ¼ −

1

16

Z
d2k
ð2πÞ2

jVSk1k2 j2
ωk1k2ωSðωk1 þ k2 þ ωSÞ

Qð33Þ
2 ¼ q0F þ q1F þ qFF þ q11 þ q10: ð5:5Þ

Only the term with three continuum modes is divergent. The others can be found using (3.13)

Qð30Þ
2 ¼ −

3π2

4096

λ

β
∼ −0.00722871

λ

β

Qð31Þ
2 ¼ −

3π2λ

2048β8

Z
dk
2π

k4ωkð2β2 − k2Þ2
ðωk þ 2

ffiffiffi
3

p
βÞðβ2 þ k2Þ csch

2

�
πk
2β

�
∼ −0.0008745152

λ

β

Qð32Þ
2 ¼ −

9
ffiffiffi
3

p
π2λ

1024β4

Z
d2k
ð2πÞ2

½ð17β4 − ðk21 − k22Þ2Þðβ2 þ k21 þ k22Þ þ 8β2k21k
2
2�2sech2ðπðk1þk2Þ

2β Þ
k13k23ðωk1 þ k2 þ

ffiffiffi
3

p
βÞðβ2 þ k21Þðβ2 þ k22Þ

∼ −0.0311512ð1Þ λ
β
: ð5:6Þ

Finally we are ready for the five terms (4.46)
involving three continuum modes. These are the only
terms which have analogs in the vacuum sector, defined
by replacing each gk with the corresponding plane
wave and the kink Hamiltonian with the defining
Hamiltonian, so that all Δ vanish and V is proportional
to a Dirac delta function. Thus these are the only terms
for which we subtract the vacuum contribution. As an
abuse of notation, we continue to call this contribution

Qð33Þ
2 after this infinite subtraction.
A single divergent term in V yields a delta function or

simple pole which can be used to do the k3 integral.

However Qð33Þ
2 is quadratic in V and so it is the second

divergence in V which causes an infinity in Qð33Þ
2 . This

means that the three terms (4.21) which involve zero or
one divergent terms V00 or V01 in the two V factors, and
finite terms VF from the others, are manifestly finite and
require no vacuum subtraction. Let us begin with these
three terms.
The first contribution arises from the cross term between

one interaction V00 proportional to Dirac delta function in
momentum space, corresponding to the position-indepen-
dent part of the triple product of three normal modes, with
the finite terms VF in the triple product. As the delta
function can be used to do the k3 integral, this contribution
is given by a two-dimensional integral
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q0F ¼ 54β3λ

Z
d2k
ð2πÞ2

k21k
2
2ðk1 þ k2Þ2ð3β2 þ k21 þ k1k2 þ k22Þ2

ωk13ωk23ω3
k1þk2

ðωk1 þ ωk2 þ ωk1þk2Þðβ2 þ k21Þðβ2 þ k22Þðβ2 þ ðk1 þ k2Þ2Þ
∼ 0.0375390ð1Þ λ

β
:

ð5:7Þ

For the three-dimension terms that follow, we will often encounter the combination

αk1k2k3C
2
k1k2k3

¼ 3λβ2

2ωk13ωk23ωk33ðωk1 þ ωk2 þ ωk3Þðβ2 þ k21Þðβ2 þ k22Þðβ2 þ k23Þ
: ð5:8Þ

The next finite term is the cross term between the antisymmetric V01 and the finite VF

q1F ¼ 3π2λ

β

Z
d3k
ð2πÞ3

Φ01
k1k2k3

ðP3
i kiÞcsch2ð

π
P

3

i
ki

2β Þ
ωk13ωk23ωk33ðωk1 þ ωk2 þ ωk3Þðβ2 þ k21Þðβ2 þ k22Þðβ2 þ k23Þ

ð5:9Þ

×
X3
I¼1

1

ð2I − 1Þ!
�
−iΦI0

k1k2k3
−
P

3
i ki

2Iβ
ΦI1

k1k2k3

�YI−1
j¼1

�ðP3
i kiÞ2
β2

þ ð2jÞ2
�
∼ 0.006070ð1Þ λ

β
: ð5:10Þ

Here the integral is evaluated according to the principal value prescription, as it must be real and no finite contribution from
spatial infinity, corresponding to

P
3
i ki ¼ 0, is expected.

The last finite term corresponds to the product of the two finite terms VF

qFF ¼ −
3π2λ

2β2

Z
d3k
ð2πÞ3

ðP3
i kiÞ2csch2ð

π
P

3

i
ki

2β Þ
ωk13ωk23ωk33ðωk1 þ ωk2 þ ωk3Þðβ2 þ k21Þðβ2 þ k22Þðβ2 þ k23Þ

×

�X3
I¼1

1

ð2I − 1Þ!
�
iΦI0

k1k2k3
þ
P

3
i ki

2Iβ
ΦI1

k1k2k3

�YI−1
j¼1

�ðP3
i kiÞ2
β2

þ ð2jÞ2
��2

∼ −0.0163976ð4Þ λ
β
: ð5:11Þ

Recall that, only in the case of q11, the integral decreases
as 1=k in all three directions and so the integral is truly
three-dimensional. In all other three-dimensional integrals,
and in the kink sector contribution to q11, the k3 integrand
converges exponentially as the result of a csch function.
However, as explained above, the k3 integration of the
vacuum sector contribution can be performed analytically

above any given cutoff a, leaving the two-dimensional
integral given in Eq. (4.35). We therefore choose this cutoff
to be at least

P
3
i ki ¼ 12, so that the kink energy term, as it

is exponentially suppressed in
P

3
i ki, is easily calculated to

within our error budget. Above this threshold the choice of
cutoff has negligible effect on our result

q11¼6λβ2
Z

d3k
ð2πÞ3

1

ωk13ωk23ðβ2þk21Þðβ2þk22Þ
�
−
jΦ01

k1k2k3
j2ð π

2βÞ2csch2ð
π
P

3

i
ki

2β Þ
ωk33ð

P
3
j¼1ωkjÞðβ2þk23Þ

þ 1

ðP3
i kiÞ2

jΦ̂01
k1k2 j2

ω3
k1þk2

ðωk1þk2þωk1þk2Þðβ2þðk1þk2Þ2Þ
�

∼6λβ2
Z

d2k
ð2πÞ2

Z
−k1−k2þa

−k1−k2−a

dk3
2π

1

ωk13ωk23ðβ2þk21Þðβ2þk22Þ
×

�
−
jΦ01

k1k2k3
j2ð π

2βÞ2csch2ð
π
P

3

i
ki

2β Þ
ωk33ð

P
3
j¼1ωkjÞðβ2þk23Þ

þ 1

ðP3
i kiÞ2

jΦ̂01
k1k2 j2

ω3
k1þk2

ðωk1þωk2þωk1þk2Þðβ2þðk1þk2Þ2Þ
�
þ 4

πa

Z
d2k
ð2πÞ2 α̂k1k2 Ĉ

2
k1k2 jΦ̂01

k1k2 j2∼0.033043ð2Þλ
β
: ð5:12Þ

Finally the cross term between the two divergent V yields

q10¼−3λβ2
Z

d2k
ð2πÞ2

∂
∂k3

�
iΦ00

k1k2k3
Φ01

k1k2k3

ωk13ωk23ωk33ðωk1þωk2þωk3Þðβ2þk21Þðβ2þk22Þðβ2þk23Þ
�����

k3¼−k1−k2
∼0.0124290ð1Þλ

β
:

ð5:13Þ
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VI. CONCLUDING REMARKS

Adding all 12 contributions one finds that the two-loop
correction to the ϕ4 kink mass is

Q2 ∼ 0.006316ð2Þ λ
β
¼ 0.012633ð5Þ λ

m
: ð6:1Þ

This is positive, in agreement with small λ lattice results
[23], instantaneous frame Fock space truncation results
[11,24] and Borel resummation [12]. It also agrees with the
preferred value of the mass correction in light front [25] and
conformal space [26] truncations. On the other hand, the
lattice study in Ref. [27] found a kink mass beneath the
one-loop result. Fig. 8 of Ref. [11] appears to show a mass
correction of 0.018� 0.008 at λ ¼ 0.4 and m ¼ 1, if the
dot size is to be interpreted as the error bar, which may be
compared with our result ofQ2 ∼ 0.005. Our result also lies
just beyond the lower error bar of Fig. 11 of Ref. [12]. In
both cases, this light tension is smaller than some of the

individual mass contributions, such as Qð5Þ
2 which, at λ ¼

0.4 and m ¼ 1, contributes −0.03 to Q2.
In principle, the methods cited above include nonper-

turbative and in the case of Ref. [12] also higher order
perturbative information, and so their results are more
reliable as the coupling grows. In practice, the uncertainties
in all of these studies are of the same order as the difference
between the calculated kink mass and the one loop result
(1.2). In contrast, the uncertainty on our Q2 is several
thousand times smaller than its central value. In that sense,
our method offers far more precise results, although as the
coupling increases the accuracy will be compromised by
higher order and also nonperturbative corrections, with the
latter arising from virtual kink-antikink pair creation.
While Q2 is positive, the coefficient is not large enough

to invalidate the observation of Ref. [11] that a naive
extrapolation of the mass formula, together with the
semiclassical calculation of the bound state masses in
Ref. [26], suggests that at large enough coupling, all bound
states of kinks and so potentially all topologically trivial
particles are no longer in the spectrum. Similarly, the
coupling at which the meson mass is twice the kink mass,
and so the meson may decay [24,28], is hardly affected. Of
course there is no reason to trust our perturbative analysis
beyond weak coupling.
Chang duality [29] implies that the vacuum Hamiltonian,

at each value of λ=β2 beneath about 8, is equal to the

vacuum Hamiltonian at a large value of λ=β2, as the shift in
the classical Hamiltonian is exactly compensated by the
change in normal ordering as the mass changes. In other
words, each quantum Hamiltonian arises from two distinct
classical Hamiltonians with β2 > 0. We do not expect our
semiclassical expansion to be reliable at such large cou-
plings, although the positive Q2 found here is consistent
with the possibility that the kink belongs to a Chang-
symmetric family of Hamiltonian eigenstates which exists
at all couplings and is continuous in the coupling. This
possibility is also weakly supported by the fact that the kink
mass appears to become flat at the right of Fig. 11 of
Ref. [12]. Stronger evidence arises from the β2 < 0 Chang
dual, whose Hamiltonian we recall is the same operator.
Reference [12] found that its mass gap is well defined
throughout this region and coincides with the kink mass
when the β2 > 0 theory is at coupling below the critical
coupling. In an intermediate regime of couplings including
the self-dual point, one expects that the Z2 symmetry,
whose breaking is responsible for the classical kink
solution, is restored. Thus any continuation of the kink
state in that region would be quite interesting.
Moreover, this duality implies that our perturbative kink

states, found at weak coupling, are also eigenstates of a
strongly coupled Hamiltonian to the same precision. In
particular, they become exact eigenstates in the infinite λ=β2

limit. In this limit they do not become the semiclassical
solitons of the strongly coupled theory, which one expects to
be deformed beyond recognition by quantum corrections.
For example, the Df in the construction uses the classical
kink solution fðxÞ of the original classical Hamiltonian,
which is not a solution of the classical equations ofmotion of
the dual Hamiltonian. These may therefore provide an
example of a quantum soliton unrelated to any classical
solution of the same system. As this a property that any
monopoles appearing in Yang-Mills would also possess,
they could prove to be a useful testing ground.
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