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We introduce a newmethod permitting the analytical determination of entanglement entropy (and related
quantities) between configurations of a quantum field, which is either free or in interaction with a classical
source, at two distinct spatial locations. We show how such a setup can be described by a bipartite,
continuous Gaussian system. This allows us to derive explicit and exact formulas for the entanglement
entropy, the mutual information and the quantum discord, solely in terms of the Fourier-space power
spectra of the field. This contrasts with previous studies, which mostly rely on numerical considerations. As
an illustration, we apply our formalism to massless fields in flat space, where exact expressions are derived
that only involve the ratio between the size of the regions over which the field is coarse-grained, and the
distance between these regions. In particular, we recover the well-known fact that mutual information
decays as the fourth power of this ratio at large distances, as previously observed in numerical works. Our
method leads to the first analytical derivation of this result, and to an exact formula that also applies to
arbitrary distances. Finally, we determine the quantum discord and find that it identically vanishes (unless
coarse-graining is performed over smeared spheres, in which case it obeys the same suppression at large
distance as mutual information).
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I. INTRODUCTION

Quantum systems differ from classical systems because
of the way they are correlated. This simple remark has led
to the development of several tools to quantify the amount
and the nature of quantum correlations, both in discrete and
continuous setups. Although such tools are often discussed
in the context of systems containing one or a few degrees of
freedom, their generalization to setups containing infinitely
many degrees of freedom allows one to study more realistic
situations, and to discuss the case of quantum fields, which
is required to tackle high-energy problems.
An important result in this context is that the entangle-

ment entropy of the reduced state of a quantum field inside
a subregion often grows like the boundary area of that
subregion [1–4], and not like its volume, which bears
interesting similarity with the Bekenstein-Hawking intrin-
sic entropy of a black hole [5,6]. This has been shown to
hold in a wide variety of setups, using different techniques.

In this work, we point out that, for quantum fields that
are either free or interacting with a classical exterior source,
the calculation of entanglement entropy and all derived
quantities, such as mutual information or quantum discord,
can be performed in a straightforward way, by making use
of the Gaussian structure of the correlations. The idea is to
describe the configurations of the field at two distinct
spatial locations as a Gaussian bipartite system, for which
tools have been developed that directly provide all relevant
quantities [7]. The correlation matrix of the bipartite system
is simply given by the power spectra of the field, integrated
against a window function that describes how the fields are
locally coarse-grained. This leads us to explicit, analytical
formulas solely in terms of the power spectra of the field.
This new method represents a significant improvement

given that previous approaches were essentially based on
numerical simulations. We then illustrate this formalism on
a simple example. Even though we obtain new physical
results (for instance, the calculation of quantum discord for
Gaussian scalar fields is, to the best of our knowledge,
new), this paper only represents a first step where we
mainly aim at demonstrating that our setup is able to both
confirm numerically-established results by an exact ana-
lytical calculation, and to study regimes (e.g., at small
distances) that are difficult to probe otherwise. Applications
to new physical situations are considered elsewhere, for
instance in Ref. [8].
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The paper is organized as follows. In Sec. II, we
construct the bipartite systems associated to the configu-
rations of quantum fields within two disjoint spheres. In
Sec. III, we discuss how the von Neumann entropy, the
mutual information and the quantum discord of such
systems can be calculated explicitly from the knowledge
of the two-point correlation functions of the field. We apply
this generic framework to the case of a massless scalar field
living in the Minkowski background in Sec. IV, where we
show that the quantum discord identically vanishes. Finally,
we present our conclusions in Sec. V.

II. BIPARTITE SYSTEMS FOR TWO-POINT
CONFIGURATIONS OF A QUANTUM FIELD

For simplicity, let us consider a quantum scalar field
ϕðx⃗Þ living on a D-dimensional spatial manifold, with
conjugated momentum πðx⃗Þ (generalization to other types
of quantum fields can be carried out along similar lines).
They satisfy the canonical commutation relation

½ϕðx⃗1Þ; πðx⃗2Þ� ¼ iδðx⃗1 − x⃗2Þ: ð1Þ

The value of these fields averaged inside a sphere of radius
R is given by

ϕRðx⃗Þ≡ R−D
Z

dDy⃗ϕðy⃗ÞW
�jy⃗ − x⃗j

R

�
; ð2Þ

and a similar expression for πRðx⃗Þ. In this formula, W is a
window function that singles out spatial points y⃗ distant
from x⃗ by less than R. More precisely, we consider

WðxÞ ¼ 1

VDF ðδÞ

8>><
>>:

1 for x ≤ 1;

−
1

δ
ðx − 1Þ þ 1 for 1 < x ≤ 1þ δ;

0 for x > 1þ δ;

ð3Þ

where VD ¼ πD=2=Γð1þD=2Þ is the volume of the
D-sphere of unit radius, Γð:Þ being the Euler function, and

F ðδÞ ¼ ð1þ δÞDþ1 − 1

δðDþ 1Þ ð4Þ

is set such that after coarse graining, a uniform field
remains a uniform field of the same value. The window
function is therefore a top-hat function within a sphere of
radius R, to which a linear tail is added between R and
Rð1þ δÞ that makes W continuous. As we will show
below, continuity is indeed required to properly account for
mild UV divergences in some of the intermediate quantities
we compute, although the limit δ → 0 will be taken in our
final results. Let us also note that other smooth window
functions could be used, but as we shall now see, in order

for a bipartite system to be defined with canonical
commutation relations, the window function needs to
have a compact support and this makes the above choice
natural. Other smooth, yet compact, window functions
could obviously be considered, but this would not affect the
limit δ → 0 where the field is coarse grained inside a
sphere.
Let us now study the commutation relations between the

field coarse-grained at x⃗1 in a sphere of radius R1, and the
field coarse-grained at x⃗2 in a sphere of radius R2 (the
situation is depicted in Fig. 1). Our goal is to see whether
they can be cast in the same form as in Eq. (1). One
obviously has ½ϕRi

ðx⃗iÞ;ϕRj
ðx⃗jÞ� ¼ ½πRi

ðx⃗iÞ; πRj
ðx⃗jÞ� ¼ 0

for i, j ¼ 1, 2. In order to have ½ϕR1
ðx⃗1Þ; πR2

ðx⃗2Þ� ¼
½ϕR2

ðx⃗2Þ; πR1
ðx⃗1Þ� ¼ 0, the support of the window func-

tions centred at x⃗1 and x⃗2 must not intersect, so we restrict
the analysis to pairs of points distant by

d > ð1þ δÞðR1 þ R2Þ: ð5Þ

Making use of Eq. (1), one also finds ½ϕRi
ðx⃗iÞ; πRi

ðx⃗iÞ� ¼
iDVDR−D

i

R
∞
0 uD−1W2ðuÞdu. With Eq. (3), the previous

integral can be performed and this gives

½ϕRi
ðx⃗iÞ; πRj

ðx⃗jÞ� ¼ i
GðδÞ
VDRD

i
δij; ð6Þ

where i, j ¼ 1, 2 and x⃗1 and x⃗2 satisfy Eq. (5). The quantity
GðδÞ, defined by the following expression

FIG. 1. Sketch of the setup studied in this work. A free quantum
field is coarse grained within two nonoverlapping spheres of radii
R1 and R2, distant by d, and the correlations between the field
configurations of these two spheres are studied. In practice, the
coarse-graining window function is a top-hat function inside the
spheres of radius Ri, with a linear tail between Ri and Rið1þ δÞ.
We also introduce the parameters κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

R1=R2

p
and α ¼

d=
ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p
for convenience, where α > ðκ þ 1=κÞð1þ δÞ for

the two regions to be disjoint.
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GðδÞ ¼ 2

F 2ðδÞ
ð1þ δÞDþ2 − ðDþ 2Þδ − 1

ðDþ 1ÞðDþ 2Þδ2 ; ð7Þ

is a prefactor that has been arranged such that, when δ → 0,
GðδÞ → 1. Since the commutator (6) is not of the form
given by Eq. (1), the fields need to be rescaled according to

ϕ̃Ri
ðx⃗iÞ≡ λ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
VDRD

i

GðδÞ

s
ϕRi

ðx⃗iÞ ð8Þ

π̃Ri
ðx⃗iÞ≡ λ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
VDRD

i

GðδÞ

s
πRi

ðx⃗iÞ; ð9Þ

where λ is a prefactor that may be freely set, for instance in
order to make ϕ̃R and π̃R of the same dimension. We will
check that our results do not depend on the choice of λ
anyway, because of local symplectic invariance of the
criteria we compute. Then, one can check that

½ϕ̃Ri
ðx⃗iÞ; π̃Rj

ðx⃗jÞ� ¼ iδij; ð10Þ

hence the rescaled fields are now indeed properly canoni-
cally normalized.
The fundamental remark, which is at the basis of the new

method presented in this article, is then the following. Let
us arrange the rescaled fields, coarse-grained at x⃗1 and x⃗2,
into the four-vector

Z̃R ¼

0
BBBBB@

ϕ̃R1
ðx⃗1Þ

π̃R1
ðx⃗1Þ

ϕ̃R2
ðx⃗2Þ

π̃R2
ðx⃗2Þ

1
CCCCCA: ð11Þ

In the following, the components of Z̃R will be denoted
Z̃R;a with a ¼ 1;…; 4. In a free theory, or in a theory where
fields linearly interact with a classical source, ϕðx⃗Þ and
πðx⃗Þ are placed in Gaussian states, and since the coarse-
grained fields are constructed as linear combinations of
ϕðx⃗Þ and πðx⃗Þ, see Eq. (2), they are in a Gaussian state too.
As a consequence, Z̃R describes a bipartite Gaussian
system. The first sector, i.e., the configuration of the field
at x⃗1, corresponds to the two first entries of Z̃R, while the
second sector, i.e., the field at x⃗2, corresponds to the two
last entries of Z̃R. One can therefore use the techniques
developed for bipartite Gaussian states to characterize the
correlations between x⃗1 and x⃗2.

III. ENTANGLEMENT ENTROPY OF GAUSSIAN
STATES

In this section, we recall how the entanglement entropy,
the mutual information and the quantum discord of

Gaussian systems can be computed. Gaussian states are
fully characterized by their two-point correlation function,
i.e., by the covariance matrix

γab ¼ 2hfZ̃R;a; Z̃R;bgi; ð12Þ

where f; g denotes half the anticommutator, i.e.,
fZ̃R;a; Z̃R;bg ¼ ðZ̃R;aZ̃R;b þ Z̃R;bZ̃R;aÞ=2. If the full quan-
tum system is described by its density matrix ρ1;2, infor-
mation about the field configuration at location x⃗1 is
obtained by tracing over the degrees of freedom corre-
sponding to x⃗2, namely

ρ1 ¼ Tr2ðρ1;2Þ; ð13Þ

and similarly for ρ2. The state represented by ρ1 is still
Gaussian, and its covariance matrix γ1 is simply obtained
from γ by removing the lines and columns corresponding to
x⃗2, i.e., the third and fourth lines and columns, so

γ1 ¼
�
γ11 γ12

γ12 γ22

�
; ð14Þ

and similarly for γ2.
Once endowed with the density matrix of a bipartite

system, the entanglement entropy, defined as the von-
Neumann entropy of either of its subsystems, can be
calculated. Concretely, it can be written as

S1 ¼ −Tr½ρ1 log2ðρ1Þ�; ð15Þ

with similar expressions for S2 and S1;2. This general
expression is especially easy to evaluate in the particular
case of a Gaussian state. It is indeed given by [9]

SðρÞ ¼
Xn
i¼1

fðσiÞ; ð16Þ

where the function fðxÞ is defined for x ≥ 1 by

fðxÞ ¼ xþ 1

2
log2

�
xþ 1

2

�
−
x − 1

2
log2

�
x − 1

2

�
; ð17Þ

and σi are the symplectic eigenvalues of the covariance
matrix, that is to say the quantities σi such that
SpðJðnÞγÞ ¼ fiσ1;−iσ1;…; iσn;−iσng. In this expression,
Jð1Þ ¼ ð 0

−1
1
0
Þ, and JðnÞ is the ð2n × 2nÞ block-diagonal

matrix where each block corresponds to Jð1Þ, and where
2n is the dimension of phase space. From this expression,
the mutual information [10]

Iðx⃗1; x⃗2Þ ¼ Sðρ1Þ þ Sðρ2Þ − Sðρ1;2Þ ð18Þ
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can also be computed, which quantifies the amount of
correlations between the field at locations x⃗1 and x⃗2.
One way to measure the “quantumness” of these

correlations is via quantum discord [11,12], which corre-
sponds to the difference between two measures of mutual
information that coincide for classically-correlated sys-
tems, but that may differ otherwise. The first measure of
mutual information is the quantity denoted I and already
introduced, while the second measure is

J ðx⃗1; x⃗2Þ ¼ Sðρ1Þ − Sðρ1jρ2Þ: ð19Þ

In this expression, Sðρ1jρ2Þ is the entropy contained in the
first subsystem once the second subsystem has been
measured. More precisely, one introduces a complete set
of projectors fΠqg along which the second subsystem is
measured, where q labels the various projectors. The
probability to find the second subsystem in the state on
which Πq projects is given by pq ¼ TrðρΠqÞ, and through
such a measurement the state of the system changes
according to ρ → ΠqρΠq=pq. The state of the first sub-
system after such a measurement is therefore given by
ρ1jΠq

¼ Tr2ðΠqρΠq=pqÞ, which leads to the following
expression for the conditional entropy, Sðρ1jρ2Þ ¼P

q pqSðρ1jΠq
Þ. Quantum discord is finally defined as

Dðx⃗1; x⃗2Þ ¼ min
fΠ̂qg

½Iðx⃗1; x⃗2Þ − J ðx⃗1; x⃗2Þ�; ð20Þ

where minimization is performed over all possible com-
plete sets of projectors, in order to ensure that a non-
vanishing discord signals the presence of genuine quantum
correlations for any projection basis.
A generic calculation of quantum discord for Gaussian

states is presented in Ref. [13]. Here we only state the result
in terms of the covariance matrix γ, but a detailed derivation
of the formulas below can be found in that reference. Let us
first denote by γ1-2 the off-diagonal block of the covariance
matrix, such that the covariance matrix can be written in the
block form as

γ ¼
�

γ1 γ1-2
γT1-2 γ2

�
: ð21Þ

The determinant for each block is denoted by
det γ1 ≡ σ21, det γ2 ≡ σ22 and det γ1-2 ≡ σ21-2. Quantum dis-
cord can be written in terms of these quantities, and after
extremization over the set of projectors appearing in
Eq. (20), one has [13]

J ðx⃗1; x⃗2Þ ¼ fðσ1Þ − fð
ffiffiffiffi
E

p
Þ; ð22Þ

with

E ¼
8<
:

1
ðσ2

2
−1Þ2 f2σ41-2 þ ðσ22 − 1Þðdet γ − σ21Þ þ 2jσ21-2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ41-2 þ ðσ22 − 1Þðdet γ − σ21Þ

p
g

1
2σ2

2

½σ21σ22 − σ41-2 þ det γ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ81-2 þ ðσ21σ22 − det γÞ2 − 2σ41-2ðσ21σ22 þ det γÞ

p
�

ð23Þ

where the first formula applies when ð1þ σ22Þ
σ41-2ðσ21 þ det γÞ − ðσ21σ22 − det γÞ2 ≥ 0 and the second for-
mula otherwise.
Let us finally mention that, even if the quantum field

ϕðx⃗Þ is placed in a pure quantum state, because of its
a priori nontrivial real-space correlations, the vector Z̃R
generically describes a mixed state. Indeed, when restrict-
ing one’s attention to the (coarse-grained) configurations of
the field at locations x⃗1 and x⃗2, one implicitly traces over its
configuration at all other locations (to which the configu-
rations at x⃗1 and x⃗2 are entangled), which leads to a
nonpure bipartite system. In general, this effective “self-
decoherence” can be measured with the purity parameter
[14–17]

p ¼ Trðρ2Þ ¼ 1ffiffiffiffiffiffiffiffiffi
det γ

p ; ð24Þ

which may be used to characterize either the full system
ρ1;2 or the reduced systems ρ1 and ρ2, by considering the

relevant covariance matrix in each case (namely γ, γ1 or γ2).
Pure states have p ¼ 1, while decohered states are such
that 0 ≤ p < 1.
The above considerations provide all necessary

formulas to explicitly compute the entanglement entropy,
the mutual information and the quantum discord
between the field configurations at x⃗1 and x⃗2 from the
knowledge of the covariance matrix, which thus achieves
our goal.
Before closing this section and illustrating our formal-

ism with a concrete example, let us note that the entries of
the covariance matrix, see Eq. (12), can be expressed in
terms of the power spectra of the field, which is of
practical interest in situations where they can be readily
computed. Upon introducing the Fourier transform of the
fields,

ϕðx⃗Þ ¼ ð2πÞ−D=2

Z
dDk⃗e−ik⃗·x⃗ϕðk⃗Þ; ð25Þ
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and a similar expression for πðx⃗Þ, one can show that the
Fourier moments of the coarse-grained fields defined in
Eq. (2) are given by ϕRðk⃗Þ ¼ W̃ðkRÞϕðk⃗Þ, where

W̃ðkRÞ ¼ 2ðD − 1ÞVD−1

ðkRÞD
Z

∞

0

duW

�
u
kR

�
sinðuÞuD−2;

ð26Þ

and the same expression πRðk⃗Þ ¼ W̃ðkRÞπðk⃗Þ for the
conjugate momentum. If the field is placed in a configu-
ration that is statistically homogeneous and isotropic, its
two-point function in Fourier space only depends on the
modulus of the wave vector,

hfϕ†ðk⃗1Þ;ϕðk⃗2Þgi ¼
ð2πk ÞD

2ðD − 1ÞVD−1
Pϕϕðk1Þδðk⃗1 − k⃗2Þ;

ð27Þ

where Pϕϕ denotes the reduced power spectrum, and similar
expressions define the reduced power spectra Pϕπ and Pππ .
The prefactor in this expression guarantees that the two-
point correlation function in real space can be written
as hfϕðx⃗1Þ;ϕðx⃗2Þgi ¼

R
∞
0 d ln ksincðkjx⃗1 − x⃗2jÞPϕϕðkÞ.

Using Eqs. (8) and (12), this gives rise to the following
formula for the entries of the covariance matrix,

γ1 ¼ 2
VDRD

1

GðδÞ
Z

∞

0

d ln kW̃2ðkR1Þ

×

�
λ2PϕϕðkÞ PϕπðkÞ
PϕπðkÞ λ−2PππðkÞ

�
; ð28Þ

with the same expression for γ2 where R1 is simply
replaced by R2, and

γ1-2 ¼ 2
VDðR1R2ÞD=2

GðδÞ
Z

∞

0

d ln kW̃ðkR1ÞW̃ðkR2Þ

× sincðkdÞ
�
λ2PϕϕðkÞ PϕπðkÞ
PϕπðkÞ λ−2PππðkÞ

�
; ð29Þ

where we recall that d ¼ jx⃗1 − x⃗2j denotes the distance
between x⃗1 and x⃗2. The quantities γ1 and γ2 do not depend
on d since they are calculated at the same spatial point,
while γ1-2 mixes values of the fields at points x⃗1 and x⃗2.
From these expressions, one can check that neither σ1, σ2,
σ1-2 nor det γ depend on λ; therefore λ cancels out from our
final results as announced above. These expressions thus
allow one to compute all relevant quantities in terms of the
sole power spectra of the field.

IV. APPLICATION: MASSLESS FIELD IN
FLAT SPACE-TIME

In order to illustrate the above formalism with a concrete
example, let us consider the case of a massless field in a flat
space time. Here, we stress that our main goal is not
necessarily to derive original physical results (although the
calculation of the quantum discord below is, to the best of
our knowledge, new) but to illustrate how our method can
lead to simple analytical and exact formulas for the relevant
quantities while, previously, only numerical techniques
would allow their determination. For simplicity, we restrict
our attention to the case D ¼ 3, but generalization to
higher dimension is straightforward. The mode functions
of the vacuum state are given by ϕk⃗ ¼ e−ikt=

ffiffiffiffiffi
2k

p
and

πk⃗ ¼ _ϕk⃗ ¼ −i
ffiffiffiffiffiffiffiffi
k=2

p
e−ikt, which give rise to the reduced

power spectra Pϕϕ ¼ k2=ð4π2Þ, Pππ ¼ k4=ð4π2Þ and
Pϕπ ¼ 0. The blocks of the covariance matrix can thus
be written as

γ1 ¼
2

3πGðδÞ

 
λ2R1K1 0

0 ðλ2R1Þ−1K3

!
ð30Þ

with a similar expression for γ2 where R1 is simply replaced
by R2, and

γ1-2 ¼
2

3πGðδÞ

 
λ2

ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p
L1ðα; κÞ 0

0
L3ðα;κÞ
λ2
ffiffiffiffiffiffiffiffi
R1R2

p

!
: ð31Þ

In these expressions, we have introduced the two dimen-
sionless parameters

α≡ dffiffiffiffiffiffiffiffiffiffiffi
R1R2

p ; κ ≡
ffiffiffiffiffiffi
R1

R2

s
; ð32Þ

and the result is expressed in terms of the two integrals

Kμ ¼
Z

∞

0

zμW̃2ðzÞdz; ð33Þ

Lμðα; κÞ ¼
Z

∞

0

zμW̃ðκzÞW̃
�
z
κ

�
sincðαzÞdz: ð34Þ

Let us note that with the real-space window function
introduced in Eq. (3), the Fourier-space window function
W̃ defined in Eq. (26) is given by

W̃ðzÞ ¼ 3

z3F ðδÞ
�
sin z
δ

−
�
1þ 1

δ

�
sin ½ð1þ δÞz�

þ 2

δz
cosðzÞ − 2

δz
cos ½ð1þ δÞz�

�
: ð35Þ

As a consequence, the integralsKμ andLμ can be expressed
in terms of the cosine integral function (we do not give the
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corresponding expressions since they are not particularly
insightful, but they can be readily obtained). This allows
one to show that, in the limit where δ → 0, one has

K1 ¼
9

4
; K3 ¼ −

9

2
ln δ; ð36Þ

L1ðα;κÞ ¼
3

160ακ5

�
4κ3½α3κ2 þ 11αð1þ κ4Þ�

þAþþ ln

�
αþ κþ 1

κ

�
−Aþ− ln

�
αþ κ −

1

κ

�

−A−þ ln

�
α− κþ 1

κ

�
þA−− ln

�
α− κ −

1

κ

��
;

ð37Þ

L3ðα;κÞ¼
3

8ακ3

�
4arctanh

�
2ακ3

α2κ2þκ4−1

�

þακð−2α2κ2þ6κ4þ6Þarctanh
�

2κ2

−α2κ2þκ4þ1

�

þ4κ6arctanh
�

2ακ

α2κ2−κ4þ1

�
−4ακ3

�
; ð38Þ

where the four coefficientsAþþ,Aþ−,A−þ andA−− in the
definition of L1ðα; κÞ are simple functions of α and κ which
can be expressed as

Aþþ ¼ ½κðαþ κÞ þ 1�3½κðα− 4κÞðακþ κ2 − 3Þ− 4�; ð39Þ

Aþ− ¼ ½κðαþ κÞ− 1�3½κðα− 4κÞðακþ κ2 þ 3Þ− 4�; ð40Þ

A−þ ¼ ½κðα− κÞ þ 1�3½κðαþ 4κÞðακ − κ2 − 3Þ− 4�; ð41Þ

A−− ¼ ½κðα− κÞ− 1�3½κðαþ 4κÞðακ − κ2 þ 3Þ− 4�: ð42Þ

Notice that the condition (5) imposes that α > κ þ 1=κ,
which guarantees that the above expressions are always
well defined.
From Eqs. (30) and (31), one can see that

γ12 ¼ γ34 ¼ γ14 ¼ γ23 ¼ 0, γ33 ¼ γ11=κ2 and γ44 ¼ κ2γ22.
This allows us to express all symplectic eigenvalues only in
terms of γ11, γ22, γ13 and γ24. More precisely, one finds that
the symplectic eigenvalue of γ1, which is nothing but σ1,
and the symplectic eigenvalue of γ2, which is nothing but
σ2, are the same, namely

σ1 ¼ σ2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
γ11γ22

p ¼ 3

π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2
ln δ

r
: ð43Þ

On the other hand, the symplectic eigenvalue of the off-
diagonal block γ1-2, namely the quantity σ1-2, is given by

σ1-2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
γ13γ24

p ¼ 2

3π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1ðα; κÞL3ðα; κÞ

p
; ð44Þ

while the full covariance matrix, γ, has two symplectic
eigenvalues, given by

σ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðγ11 � κγ13Þ

�
γ22 �

γ24
κ

�s
→
δ→0

σ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4L1ðα; κÞ

9

r

ð45Þ

in terms of which one has det γ ¼ ðσþσ−Þ2 (this follows
from the definition of the symplectic spectrum and the fact
that det½JðnÞ� ¼ 1). One can check that those symplectic
eigenvalues are invariant under the transformation
κ → 1=κ, which is a good sanity check since this simply
corresponds to swapping x⃗1 and x⃗2.
We are now in a position where all relevant quantities can

be computed. Let us first focus on one individual susbsys-
tem, i.e., the field configuration coarse-grained at a given
location. From Eq. (16), its entanglement entropy is given
by Sðρ1Þ ¼ fðσ1Þ. Since fðxÞ ≃ log2ðx=2Þ when x ≫ 1, in
the limit δ → 0 this gives rise to

Sðρ1Þ ¼ log2

�
3

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
1

2
ln δ

r �
: ð46Þ

Therefore, strictly speaking, the entanglement entropy
contained within a hard sphere (δ ¼ 0) is infinite for
massless scalar fields in the Minkowski background. The
purity of the sphere can also be computed, and Eq. (24)
gives rise to p1 ¼ p2 ¼ 1=σ1, so in the limit δ → 0 the
“self-decoherence” effect mentioned above is maximal.
For the mutual information, Eq. (18) gives rise to
I ¼ 2fðσ1Þ − fðσþÞ − fðσ−Þ, hence

Iðx⃗1; x⃗2Þ ¼ −
1

ln 4
ln

�
1 −

�
4

9
L1ðα; κÞ

�
2
�
; ð47Þ

where we recall that L1 is given in Eq. (36). The mutual
information is displayed as a function of α in Fig. 2, for a
few values of κ (only the case κ ≥ 1 is considered, because
of the invariance of the result under κ → 1=κ). One can see
that it decreases with the distance between the two spheres.
When α approaches its lowest allowed value, α → κ þ 1=κ,
the mutual information approaches a finite value that
depends on κ (we do not give its expression for display
convenience, and given that it is easily obtained from the
above formulas). In the opposite regime where α is large,
one has L1ðα; κÞ ≃ 1=α2 and, as a consequence,
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Iðx⃗1; x⃗2Þ ¼
8

81 ln 2
1

α4

�
1þ 4

5α2

�
þO

�
1

α8

�
: ð48Þ

It is interesting to notice that this asymptotic behavior is
independent of κ, and that one recovers the well-know
result [18] that the mutual information decays as
ðR1R2Þ2=d4 at leading order. Let us however stress that
our formula applies to any distance d between the two
spheres and is not restricted to the asymptotic regime. This
illustrates well, on this simple and well-known example,
the power of the new technique presented here and how it
can lead to simple analytical expressions.
Let us now turn our attention to the quantum discord. In

the limit δ → 0, one is in the second case displayed in
Eq. (23), which gives rise to E ¼ σ2þσ2−=σ21f1þ 81σ41-2=
½16σ41L2

1ðα; κÞ� þOðσ−81 Þg, where the expansion is per-
formed at next-to-leading order in δ (i.e., in 1=σ1) because
of a cancellation at leading order for the discord. Indeed,
making use of Eq. (22), one obtains the same expression for
J as the one obtained for I at leading order, see Eq. (47).
This is why the difference between I and J , i.e., the
discord, strictly vanishes in the limit δ → 0. More precisely,
the dominant contribution is of order σ−21 , and reads

Dðx⃗1; x⃗2Þ ¼
L2
1ðα; κÞ

81=16 − L2
1ðα; κÞ

π2

27 ln 2j lnðδÞj →δ→0
0: ð49Þ

If δ is a small, though finite, parameter, the above formula
can still be used to evaluate the quantum discord, which is
displayed in Fig. 3. One can see that the behavior of the
discord is similar to the one obtained for the mutual

information. In particular, in the large-distance limit,
α ≫ 1, one also obtains D ∝ α−4.

V. CONCLUSION

In this work, we have proposed a new technique to
compute the entanglement entropy and all related quan-
tities, such as the mutual information and the quantum
discord. This method is applicable to free quantum fields
and to fields in interaction with a classical exterior source.
Our approach relies on describing the field coarse-grained
within several disjoint regions in real space as a multipartite
Gaussian system, for which all the relevant tools have been
developed over the past few years. This led us to derive
explicit formula that only involve the Fourier-space power
spectra of the field.
In order to illustrate how the technique works concretely,

we have then applied our formalism to the case of a
massless scalar field in flat space-time. We have recovered
that the mutual information decays as ðR1R2Þ2=d4 at large
distance d between the two spheres of radii R1 and R2

within which the field is coarse-grained [18], but our
formula is in fact exact and, as a consequence, applies
even beyond this asymptotic limit, contrary to most
calculations of the same kind. We have finally shown that
the quantum discord, which measures the amount of
“quantumness” of the correlations between the two spheres,
strictly vanishes if the real-space window function is a top-
hat. If the real-space window function is smoother than a
top-hat, it decays as ðR1R2Þ2=d4, like mutual information.
This result that the discord vanishes may be expected

from the fact that no particle is created in the vacuum
state of the Minkowski background, hence no quantum

FIG. 3. Quantum discord for a massless field in flat space time,
coarse-grained within two smeared spheres of radii R1 and R2 ¼
R1=κ2 and smearing parameter δ ¼ 0.01, and distant by d, for a
few values of κ. For the two spheres not to intersect, α ¼
d=

ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p
is restricted to α > ðκ þ 1=κÞð1þ δÞ. When δ ¼ 0, the

discord identically vanishes.

FIG. 2. Mutual information for a massless scalar field in flat
space time, coarse-grained within two spheres of radii R1 and
R2 ¼ R1=κ2 and distant by d, for a few values of κ. For the two
spheres not to intersect, α ¼ d=

ffiffiffiffiffiffiffiffiffiffiffi
R1R2

p
is restricted to

α > κ þ 1=κ, which is why the curves do not start at the
same point.
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entanglement builds up. The situation is however more
subtle than it seems since the present calculation being
performed in real space, one deals with mixed states, for
which the connection between entanglement and discord is
less straightforward [19].
Indeed, let us now consider a more general situation than

just a simple free field living in Minkowski spacetime, for
instance a scalar field interacting with an homogeneous
classical exterior source. In Fourier space, the quantum
state of the field, i.e., the density matrix, can still be written
as a direct product

ρ ¼ ⊗
k⃗∈R3þ

ρk⃗: ð50Þ

The fact that ϕðx⃗Þ and πðx⃗Þ are real fields imposes that
ϕð−k⃗Þ ¼ ϕ†ðk⃗Þ and a similar relation for πðk⃗Þ [this explains
why the full Hilbert space is labeled by k⃗ ∈ R3þ, i.e., by
half of the Fourier space, in Eq. (50)]. At the quantum level,
this implies that particles created with momentum k⃗ are
necessarily entangled with particles with momentum −k⃗,
such as to preserve statistical isotropy. In general, this leads
to entanglement between the two sectors k⃗ and −k⃗ [20],
hence to non-vanishing mutual information and to non-
vanishing discord. In the Minkowski background, no
particle is created, hence both the mutual information
and the quantum discord between k⃗ and −k⃗ vanish. The
crucial difference with the real-space calculation is that,
here, ρk⃗ describes a pure quantum state. This has two main
consequences. First, it implies that its von Neumann
entropy vanishes, so the mutual information is simply
the sum of the von Neumann entropy of the two subsectors,
and it vanishes when these two subsectors are placed in
their vacuum state. Second, it also implies that the projected
state [denoted ρ1jΠq

around Eq. (19)] is a pure state too (see
e.g., Appendix A of Ref. [20]), so its entropy vanishes, and
combining Eqs. (18)–(20) leads to D ¼ Sðρ2Þ ¼ I=2

(since k⃗ and −k⃗ play a symmetric role). As a consequence,
in Fourier space, the vacuum state leads to vanishing
mutual information and vanishing discord, while particle
creation would produce both mutual information and
discord, the former always being twice the later.
In contrast, in real space, as argued around Eq. (24), the

setup consisting of two disjoint compact regions is not
placed in a pure state, hence none of these considerations
apply. In particular, we find that even in the vacuum state,
the mutual information does not vanish (while it does for
each Fourier mode individually). It is therefore not a priori
obvious that a vanishing discord in Fourier space translates
into a vanishing discord in real space, which is why this
result is not a trivial one. Let us also mention that in
Ref. [8], we show that this property extends to de-Sitter
space-times, where we find that the discord vanishes
again if the real-space window function is a top-hap, even
though entangled pairs of quanta are created in Fourier
space in that case. This illustrates again the nontrivial
relationship between entanglement and discord for mixed
states [19].
Let us finally note that the formalism proposed in this

work can be applied to a broader class of situations where
Gaussian fields are at play. In the Minkowski background,
for instance, one may consider the case of massive fields
[21,22] (the only modification of the above calculations
would be to replace k →

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

p
), and/or nonscalar

fields. One can also consider other types of spatially
homogeneous and isotropic backgrounds, such as cosmo-
logical backgrounds. In such setups, as already discussed
above, particle creation occurs in Fourier space (as an
effect of the classical source provided by space-time
expansion), and applying our techniques to cosmology
is the topic of a separate article, see Ref. [8]. Finally, the
case of black-holes [23,24] could be studied with this
approach.
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