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In a previous paper it was shown how to calculate the ground-state energy density E and the p-point
Green’s functions Gpðx1; x2;…; xpÞ for the PT -symmetric quantum field theory defined by the

Hamiltonian density H ¼ 1
2
ð∇ϕÞ2 þ 1

2
ϕ2ðiϕÞε in D-dimensional Euclidean spacetime, where ϕ is a

pseudoscalar field. In this earlier paper E and Gpðx1; x2;…; xpÞ were expressed as perturbation series in
powers of ε and were calculated to first order in ε. (The parameter ε is a measure of the nonlinearity of the
interaction rather than a coupling constant.) This paper extends these perturbative calculations to the

Euclidean Lagrangian L ¼ 1
2
ð∇ϕÞ2 þ 1

2
μ2ϕ2 þ 1

2
gμ20ϕ

2ðiμ1−D=2
0 ϕÞε − ivϕ, which now includes renorm-

alization counterterms that are linear and quadratic in the field ϕ. The parameter g is a dimensionless
coupling strength and μ0 is a scaling factor having dimensions of mass. Expressions are given for the one-,
two-, and three-point Green’s functions, and the renormalized mass, to higher order in powers of ε in D
dimensions (0 ≤ D ≤ 2). Renormalization is performed perturbatively to second order in ε and the structure
of the Green’s functions is analyzed in the limit D → 2. A sum of the most divergent terms is performed to
all orders in ε. Like the Cheng-Wu summation of leading logarithms in electrodynamics, it is found here
that leading logarithmic divergences combine to become mildly algebraic in form. Future work that must be
done to complete the perturbative renormalization procedure is discussed.

DOI: 10.1103/PhysRevD.104.085011

I. INTRODUCTION

Since the publication of the first paper on PT symmetry
in 1998 [1], in which the PT -symmetric quantum-
mechanical Hamiltonian

H ¼ p2 þ x2ðixÞε ð1Þ

was introduced, this research area has become highly
active. This model has been studied in detail [2], and
much theoretical research has been done on the math-
ematical structure of non-Hermitian quantum systems [3].
Beautiful experiments have been performed in diverse
areas of physics including optics, photonics, lasers,
mechanical and electrical analogs, graphene, topolog-
ical insulators, superconducting wires, atomic diffusion,

nuclear magnetic resonance, fluid dynamics, metamate-
rials, optomechanical systems, and wireless power
transfer [4–17].
This paper considers the generalization of (1) to quantum

field theory inD-dimensional Euclidean space. In an earlier
paper [18] we examined the corresponding field-theoretic
Lagrangian density

L ¼ 1

2
ð∇ϕÞ2 þ 1

2
ϕ2ðiϕÞε; ð2Þ

where ϕ is a (dimensionless) pseudoscalar field. Note that
(2) is manifestly PT -symmetric because ϕ → −ϕ under
space reflection P and i → −i under time reversal T . Just
as (1) is a test bed of PT -symmetric quantum mechanics,
(2) is a natural model for the study of D-dimensional
PT -symmetric bosonic field theories.
The Hamiltonian (1) launched the field of PT -

symmetric quantum theory because it has the surprising
feature that if ε ≥ 0, its eigenvalues are all discrete, real,
and positive even though it is not Dirac-Hermitian [19,20].
(A Dirac-Hermitian Hamiltonian obeys the symmetry
constraint H ¼ H†, where † indicates combined complex
conjugation and matrix transposition.) Moreover, the
quantum theory defined by (1) is unitary (probability
conserving) with respect to the adjoint CPT , where C is
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a linear operator satisfying the three simultaneous operator
equations [21]

C2 ¼ 1; ½C;PT � ¼ 0; ½C; H� ¼ 0: ð3Þ
Thus, while the constraint that a Hamiltonian be Dirac-
Hermitian is sufficient to define a consistent quantum
theory, it is not necessary. In short,PT -symmetric quantum
theory is not in conflict with the axioms of conventional
Hermitian quantum theory; rather, it is a complex gener-
alization of Hermitian quantum theory.
Almost all of the theoretical research on PT symmetry

has focused on PT -symmetric quantum mechanics and
experimental studies of PT -symmetric classical systems,
but very few papers have focused on PT -symmetric
quantum field theory. We briefly review some of the earlier
work on PT -symmetric quantum field theory:
(1) Early studies ofPT -symmetric quantum field theory

considered the case ε ¼ 1 in (2) [22,23]. This iϕ3

quantum field theory had emerged in studies of
Reggeon field theory [24] and the Lee-Yang edge
singularity [25]. Conventional diagrammatic pertur-
bation theory can be used to treat this cubic
interaction: One introduces a coupling constant g
in the interaction term igϕ3 and expands the physical
quantities in powers of g. However, one cannot use
conventional perturbation theory for other values of
ε > 0, integer or noninteger.

(2) PT -symmetric electrodynamics also has a cubic
interaction [26]. The Johnson-Baker-Willey (JBW)
program for constructing a finite massless electro-
dynamics fails because the zero of the beta function
yields at best a negative and perhaps a complex
value of α because conventional Hermitian quan-
tum electrodynamics (QED) is not asymptotically
free. However, the JBW procedure works for the
PT -symmetric version of QED because this theory
is asymptotically free and one obtains a reasonable
positive numerical value for α.

(3) Renormalizing a Hermitian quantum field theory
often causes the Hamiltonian of the theory to
become non-Hermitian. This problem was observed
in the Lee model [27], which is again a theory with a
cubic interaction. Pauli and Källén showed that upon
renormalization, ghost states (states of negative
norm) arise, and appear to violate unitarity in
scattering processes. This problem remained unre-
solved until 2005, when it was shown that if one uses
the appropriate PT -symmetric inner product for the
renormalized Lee-model Hamiltonian, there are no
ghost states and the unitarity of the theory becomes
manifest [28].

(4) Renormalizing the Hamiltonian for the Standard
Model of particle physics induces what appears to
be instability in the vacuum state. This is due to the
contribution of the top-quark loop integral [29].
Once again, the renormalized Hamiltonian appears

to be non-Hermitian. However, by using PT -
symmetric techniques it was shown by using a
simple model-field-theory argument that the vac-
uum state and the next few higher-energy states are
actually stable (have real energy) [30].

(5) Introducing higher-order derivatives in a quantum
field theory in order to make Feynman integrals
converge also makes the Hamiltonian appear to be
non-Hermitian. (Higher-order derivatives induce
Pauli-Villars ghosts.) However, PT -symmetric
techniques resolve this problem. The simplest
field-theory model that exhibits this problem is
the Pais-Uhlenbeck model and PT -symmetric
techniques demonstrate that this theory has no
ghosts [31].

(6) The double-scaling limit in quantum field theory [a
correlated limit in which the number N of species in
an OðNÞ-symmetric field theory approaches infinity
as the coupling constant approaches a critical value]
appears to lead to an unstable field theory. For a
quartic scalar field theory the value of gcrit is negative
and one might think that the resulting −ϕ4 theory is
unstable. However, the techniques of PT -symmetric
quantum theory demonstrate that such a theory is
actually stable and has a real positive spectrum
[32,33]. It was observed by Symanzik that a −ϕ4

theory is asymptotically free even though it does not
have a local gauge symmetry but he called this
theory “precarious” because it appears to be un-
stable.

(7) Timelike Liouville field theories appear to be
unstable and non-Hermitian but the techniques of
PT -symmetric quantum field theory can be used to
argue that the Hamiltonians of such theories have
real spectra and induce unitary time evolution [34].

(8) Studies of thePT -symmetric Dirac equation suggest
that one may have species oscillations and still have
massless neutrinos [35,36]. Interestingly, recent
measurements in Germany have halved the upper
bound on the mass of the electron neutrino [37].

In the studies above some striking results were obtained
but many of these field-theory papers considered only
simple zero-dimensional toy models and one-dimensional
quantum-mechanical analogs that suggest the possible
behaviors of PT -symmetric field theories. Thus, there is
strong motivation for developing general methods for
solving quantum field theories defined by non-Hermitian
PT -symmetric Hamiltonians.
Until recently, PT -symmetric quantum field theory has

remained beyond the reach of comprehensive analytical
study because of three technical problems that had to be
overcome when trying to solve the PT -symmetric quantum
field theory in (2):
(1) Feynman perturbation theory works for the cubic

case ε ¼ 1 in (2) but for other integer values of ε the
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Feynman diagrams must be supplemented by non-
perturbative contributions, which are nontrivial.
Moreover, when ε is noninteger, there are no Feyn-
man rules at all so one cannot perform a conven-
tional coupling-constant expansion.

(2) The functional integral for the partition function Z ¼R
Dϕ expð− R

dDxLÞ does not converge if ε > 1

unless the path of integration in function space lies in
appropriate infinite-dimensional Stokes sectors in
complex field space. Multidimensional Stokes sec-
tors (Lefshetz thimbles [38]) are unwieldy.

(3) In PT -symmetric quantum theory one must use the
C operator, obtained by solving (3), in order to
obtain matrix elements. It is difficult to calculate C,
so the prospect of calculating Green’s functions
appears to be rather dim.

In Ref. [18] it is shown how to overcome these three
problems by extending the methods developed in Refs.
[39–41] for Hermitian quantum field theories to non-
Hermitian PT -symmetric quantum field theories. In brief,
instead of using a coupling-constant expansion, a perturba-
tion expansion in powers of the parameter ε, which is a
measure of the nonlinearity of the theory, is performed and
summation methods are then used to evaluate the ε series. For
small ε the functional integral converges on the real axis in
complex-field space, and thus multidimensional Stokes
sectors are not required for convergence. This solves prob-
lems 1 and 2 above. Expanding in powers of ε introduces
complex logarithms in the functional integrand and PT
symmetry is then enforced by defining the complex logarithm
properly:

logðiϕÞ≡ 1

2
iπjϕj=ϕþ 1

2
logðϕ2Þ: ð4Þ

The logarithms are now real, and the techniques for handling
these logarithms to any order in powers of ε are based on
methods that were introduced in Refs. [39–41].
The apparent problem with the C operator is actually not

a problem if we are calculating Green’s functions. This is
because in a theory with an unbroken PT symmetry the
vacuum state is an eigenstate of C with eigenvalue 1:
Cj0i ¼ j0i. Since Green’s functions are vacuum expect-
ation values, we may ignore problem 3 entirely. This
observation was first made in Ref. [42].
Why does L in (2) define an interesting theory? Let us

first look at the cubic case. For a conventional gϕ3 theory
the ground-state energy density E is a sum of 3-vertex
vacuum-bubble Feynman diagrams, and the Feynman
perturbation expansion has the form

E ¼
X

Ang2n:

This series diverges and the coefficients An all have the
same sign. Thus, if we perform Borel summation, we find a

cut in the Borel plane, which implies that E is complex.
Thus, the vacuum state is unstable. However, to obtain the
PT -symmetric cubic theory we replace g by ig. Now, the
perturbation expansion alternates in sign and the Borel sum
of the series is real, the vacuum is stable, and the spectrum
of the theory is bounded below.
The case of the quartic PT -symmetric theory is more

elaborate. The ground-state energy density for a conven-
tional Hermitian quartic gϕ4 quantum field theory has a
Feynman perturbation expansion of the form

E ¼
X

Bnð−gÞn:

Again, this series is divergent, and since the perturbation
coefficients Bn all have the same sign, the series is
alternating and Borel summable. The Borel sum of the
perturbation series yields a real value for the vacuum
energy density. This implies that the conventional quartic
theory has a stable ground state, as one would expect.
It may seem that the PT -symmetric quartic theory

obtained by replacing g with −g is problematic because
the perturbation series no longer alternates in sign: If we
Borel-sum the series, we find a cut in the Borel plane,
which suggests that E is complex and that the vacuum state
is unstable, as one might intuitively expect with an
upsidedown potential. This conclusion is false.
If one examines the functional integral for the partition

function of the theory, one sees that the perturbative
contribution to E (the Feynman diagrams) must be sup-
plemented by imaginary nonperturbative contributions
arising from two saddle points in complex function space.
These additional pure-imaginary contributions exactly
cancel the discontinuity in the Borel plane [43].
Consequently, the vacuum state for a PT -symmetric
−gϕ4 theory is stable. We emphasize that Feynman dia-
grams alone are not sufficient to calculate the Green’s
functions of a PT -symmetric quantum field theory.
The research objectives in this paper are to extend the

work in Ref. [18] and to study in depth the problem of
renormalization. In Ref. [18] the Lagrangian (2) was
examined to first order in ε. Treating ε as a small
perturbation parameter, L was expanded in a series, which
to first order in ε is

L ¼ 1

2
ð∇ϕÞ2 þ 1

2
ϕ2 þ 1

2
εϕ2 logðiϕÞ þ Oðε2Þ: ð5Þ

Identifying the free Lagrangian as

L0 ¼
1

2
ð∇ϕÞ2 þ 1

2
ϕ2; ð6Þ

we developed techniques to evaluate the shift in the ground-
state energy density ΔE and Green’s functions Gp to first
order in ε. We found that
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ΔE ¼ 1

4
εð4πÞ−D=2Γ

�
1 −

1

2
D

�

×

�
log

�
2ð4πÞ−D=2Γ

�
1 −

1

2
D

��
þ ψ

�
3

2

��
; ð7Þ

G1 ¼ −iε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
πð4πÞ−D=2Γ

�
1 −

1

2
D

�s
: ð8Þ

We then found that the two-point connected Green’s
function in momentum space to first order in ε is

Ĝ2ðpÞ ¼ 1=½p2 þ 1þ εK þ Oðε2Þ�;

where K ¼ 3
2
− 1

2
γ þ 1

2
log½1

2
ð4πÞ−D=2Γð1 − 1

2
DÞ�. Thus, the

renormalized mass to order ε is

M2
R ¼ 1þ Kεþ Oðε2Þ: ð9Þ

In addition, the higher-order connected Green’s func-
tions were also calculated to first order in ε:

Gpðy1;…;ypÞ¼−
1

2
εð−iÞpΓ

�
p
2
−1

��
1

2
ð4πÞ−D=2

×Γ
�
1−

1

2
D

��
1−p=2Z

dDx
Yp
k¼1

Δ1ðyk−xÞ;

ð10Þ

where the free propagator ΔλðxÞ associated with
L0 ¼ 1

2
ð∇ϕÞ2 þ 1

2
λ2ϕ2 obeys the general D-dimensional

Euclidean Klein-Gordon equation

ð−∇2 þ λ2ÞΔλðxÞ ¼ δðDÞðxÞ: ð11Þ

The solution to (11),

ΔλðxÞ ¼ λD=2−1jxj1−D=2ð2πÞ−D=2K1−D=2ðλjxjÞ;

has the property that

Z
dDxΔλðxÞ ¼ λ−2: ð12Þ

The corresponding self-loop is then

Δλð0Þ ¼ λD−2ð4πÞ−D=2Γ
�
1 −

1

2
D

�
: ð13Þ

Self-loop factors with λ ¼ 1, which is associated with L0

in (6), enter into (7), (8), and (10) and lead to the factors
of Γð1 − 1

2
DÞ that occur in these expressions. This

calculation is verified in D ¼ 0 and D ¼ 1 in

Ref. [18], where exact calculations are possible, and
provides confidence in these perturbative results.
To proceed with the renormalization program we must

overcome two problems. First, we must calculate the
Green’s functions to higher order in ε. Second, we must
show how to renormalize these Green’s functions pertur-
batively for D ≥ 2. This paper is focused on renormaliza-
tion in two dimensions. Specifically, we begin with the
formulas for the one-point Green’s function G1 in (8) and
for the square of the renormalized mass M2

R in (9). These
quantities are finite for 0 ≤ D < 2. However, as D
approaches 2 from below (D → 2−) they diverge because
ΓðzÞ has a pole at z ¼ 0: ΓðzÞ ∼ 1

z as z → 0. Hence, Δ1ð0Þ
in (13) becomes infinite. To study the behavior of G1 and
M2

R near D ¼ 2 we define δ≡ 2 −D; near D ¼ 2,

Δ1ð0Þ ∼
1

2πδ
ðδ → 0Þ ð14Þ

and the formulas for G1ðεÞ and M2
R simplify to

G1ðεÞ ∼ −iε
1

2
ffiffiffi
δ

p ðδ → 0Þ; ð15Þ

M2
R ∼ −

1

2
ε log δþ A ðδ → 0Þ; ð16Þ

where A ¼ 1þ ε½3
2
− γ

2
− 1

2
logð4πÞ�. From (10) we see that

Green’s functions Gp (p > 2) vanish as δ → 0, so the
theory becomes noninteracting to order ε at D ¼ 2.
The question is whether perturbative renormalization can

be accomplished in the context of an expansion in powers
of the parameter ε. Ordinarily, for interacting bosonic field
theories, renormalization is performed in the context of a
coupling-constant expansion. Here, we perform expansions
in powers of ε, which is a measure of the nonlinearity of the
self-interaction. Series expansions of this type were intro-
duced many years ago [39] (prior to the study of PT
symmetry), but the problem of renormalization has not
been addressed until now.
In our renormalization program, we use the information

gained from (15) and (16). The one-point Green’s function
G1, which is not directly measurable, becomes infinite as
δ → 0. We can remove this divergence by introducing in
the Lagrangian a linear counterterm ivϕ, where v
has dimensions of ðmassÞ1þD=2 and v ¼ v1εþ v2ε2þ
v3ε3 þ � � �. Such a term is consistent with PT symmetry
if v is real; under PT reflection both the pseudoscalar field
ϕ and i change sign. In addition, the divergence in (16)
suggests that we should introduce an (infinite) mass
counterterm μ (the unrenormalized mass) into the
Lagrangian. Perturbative mass renormalization then con-
sists of expressing the renormalized mass MR in terms of
these Lagrangian parameters and absorbing into the param-
eter μ the divergence that arises as δ → 0.
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Thus, we consider the Lagrangian density

L¼1

2
ð∇ϕÞ2þ1

2
μ2ϕ2þ1

2
gμ20ϕ

2ðiμ1−D=2
0 ϕÞε− ivϕ; ð17Þ

that now contains a dimensional field ϕ, the dimensional
parameters μ, v, and μ0 (a fixed parameter having dimen-
sions of mass), and the dimensionless unrenormalized
coupling g. Our objective is to calculate Green’s functions
for this quantum field theory as a series in powers of the
parameter ε and then to carry out perturbative renormal-
ization for the two-dimensional case. This is a nontrivial
extension of the earlier work in which the Green’s functions
were calculated to leading order in powers of ε [18] for the
dimensionless Lagrangian density (2).
We thus generalize (2)–(16) to first order in ε. The

formula for G1 in (8) is modified to read

G1ðεÞ ¼ −
iεg
m2

μD=2−1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
πmD−2Δ1ð0Þ

r
þ iεv1
μ20m

2
ð18Þ

and the renormalized mass (9) becomes

M2
R¼ðmμ0Þ2þ

1

2
εgμ20

�
3−γþ log

�
1

2
mD−2Δ1ð0Þ

��
; ð19Þ

where in both expressions we introduce the dimensionless
quantity m2 ¼ gþ μ2=μ20 and we display the new param-
eters explicitly in terms of Δ1ð0Þ, whose behavior as δ → 0
is given by (14).
The formulas for G1ðεÞ and M2

R simplify to

G1ðεÞ ∼
iε

gμ20 þ μ2

�
v1 −

gμ20
2

ffiffiffi
δ

p
�

ðδ → 0Þ; ð20Þ

M2
R ∼ μ2 −

1

2
εgμ20 log δþ A ðδ → 0Þ; ð21Þ

where A ¼ gμ20f1þ ε½3
2
− γ

2
− 1

2
logð4πÞ�g is a finite quan-

tity having dimensions of ðmassÞ2. By setting v1 ¼
gμ20=ð2

ffiffiffi
δ

p Þ, we remove the divergence in G1 as δ → 0.
Next, we see from (21) that the renormalized mass MR is
logarithmically divergent as D → 2−. We absorb this
divergence into the mass counterterm μ by setting

μ2 ¼ Bþ 1

2
εgμ20 log δ; ð22Þ

where B is a constant having dimensions of ðmassÞ2. (Note
that the μ2 counterterm is large and negative.) The
renormalized mass is now finite, M2

R ¼ Aþ B, and the
constant B is in principle determined from the experimental
value of the renormalized mass MR.
In this paper we study the expansions of the Green’s

functions to higher-order in ε and examine perturbative

renormalization in the limit δ → 0. In Sec. II we use
techniques developed in [18] to calculate the connected
Green’s functions to order ε2. We examine the effects of the
infinite linear and quadratic counterterms ivϕ and μ2ϕ2 on
Green’s functions to second order in ε. In Sec. III we perform
a multiple-scale analysis in which we obtain the leading
contribution to each order in ε and sum these terms to all
orders in ε. We compare the results as δ → 0 with those
obtained via perturbative renormalization. Conclusions are
given in Sec. IV.
Before starting our technical exposition, further com-

ments are in order. In independent calculations by
Branchina et al. [44] the authors followed a similar path,
developing Green’s functions for a related, but Hermitian
Hamiltonian, based on the techniques in [18], which extend
those used in [45]. Reference [44] focuses particularly on
D ¼ 4 and introduces a momentum cutoff, thus handling a
different theory. In their work the authors also employ a
resummation procedure, similar to that used by Cheng and
Wu [46] and now applied in this context. Resummation of
leading-order terms in perturbation expansions was already
used in the 19th century in multiple-scale perturbation-
theory calculations of planetary orbits. Summing over
leading contributions typically generates an exponential
structure. Therefore, resummation tends to exponentiate
leading-order logarithmic contributions and renders them
algebraic. When used in quantum electrodynamics, the
Froissart bound for high-energy scattering is no longer
violated [46].
In a later work [47] Branchina et al. applied the methods

described in the paragraph above to the same Lagrangian as
that examined here. However, this paper differs signifi-
cantly from [44,47]. There are superficial similarities
(Green’s functions are calculated in both cases based on
techniques introduced in [18]), but [44] deals with a
different and Hermitian Lagrangian. Our focus, in contrast
to the work presented in both [44,47], lies specifically on
the limit as D approaches 2 from below. Unlike both
[44,47], we do not consider here the behavior of the field
theory for D > 2. This simplifies the presentation in this
paper to a discussion of mass renormalization only; we do
not discuss more complicated renormalization issues, such
as coupling-constant and wave-function renormalization
that are required in higher-dimensional problems. In
addition, we define our theories through dimensional
regularization and we do not use momentum cutoffs. As
a result, the behavior we would obtain at D ¼ 3 would
differ strongly from that obtained using a momentum cutoff
as presented in [47].
As is evidenced by this work and that of [47] which

address different but also some similar aspects of the same
Lagrangian, the development of the field theory and the
resummation procedures were performed independently by
both groups, although the kernel of the approach was
discussed initially by two of the authors [48] in 2019.
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Because the problem of renormalizing a PT -symmetric
quantum field theory is very difficult, we comment finally
that the work done to date represents first steps in under-
standing the behavior of the field theory. The difficulties
associated with renormalization still leave open questions.

II. GREEN’S FUNCTIONS TO ORDER ε2

The p-point Green’s function Gp is defined as

Gpðε;y1;…;ypÞ¼
1

Z

Z
Dϕe−

R
dDxLϕðy1Þ…ϕðypÞ; ð23Þ

where the Lagrangian (17) enters both in the exponential
function in the numerator and in the partition function in
the denominator. Expanding the interaction term in powers
of ε, we get

Gpðε; y1;…; ypÞ ¼
1

Z0

Z
Dϕe−

R
dDxL0ϕðy1Þ…ϕðypÞ

× exp

�
−
gμ20
2

X∞
n¼1

εn

n!

Z
dDxϕ2ðxÞlognðiμ1−D=2

0 ϕÞ
�
; ð24Þ

where

L0 ¼
1

2
ð∇ϕÞ2 þ 1

2
μ20m

2ϕ2: ð25Þ

The Green’s function Gp is not connected and to solve
the renormalization problem we require the connected
p-point Green’s functions, which are constructed from
cumulants. The procedure to order ε is explained in detail in
Ref. [18] but to second order the cumulants become quite
complicated. Of course, the appropriate connected graphs
are easy to identify if the expression for Gp contains
polynomials and not logarithms of the field ϕ, and in this
case standard techniques can then be used to evaluate the
graphs. Our strategy here is to recast (24) into a form
containing only products of the field ϕ at different space-
time points. [The expression (24) does not include higher-
order terms in ε that arise from expanding the denominator
Z in powers of ε, as these lead to disconnected diagrams.]
From here on, in our Green’s function calculations we
always discard disconnected contributions to the Green’s
functions, and we use the notation Gp to represent the
connected Green’s functions.
Let us consider terms in Gpðε; y1;…ypÞ to order ε2:

Gpðε; y1;…; ypÞ ¼
1

Z0

Z
Dϕe−

R
dDxL0ϕðy1Þ…ϕðypÞ

×

�
1þ εgμ20I1 þ

1

2
ε2gμ20ðI2 þ gμ20I

2
1Þ þ Oðε3Þ

�
; ð26Þ

where

In ¼ −
1

2

Z
dDxϕ2ðxÞ logn½iμ1−D=2

0 ϕðxÞ�: ð27Þ

Thus, in the expansion of the connected Green’s functions
in powers of ε,

Gpðε; y1;…; ypÞ ¼
X∞
n¼0

εnGp;nðy1;…; ypÞ;

we identify

Gp;0 ¼
1

Z0

Z
Dϕe−

R
dDxL0ϕðy1Þ…ϕðypÞ;

Gp;1 ¼
gμ20
Z0

Z
Dϕe−

R
dDxL0ϕðy1Þ…ϕðypÞI1;

Gp;2 ¼
gμ20
2Z0

Z
Dϕe−

R
dDxL0ϕðy1Þ…ϕðypÞðI2 þ gμ20I

2
1Þ;

ð28Þ
and so on, where we have suppressed the arguments
y1;…; yp on the left sides.

A. One-point Green’s function to second order

The one-point Green’s function can be calculated by
adopting the techniques developed in Ref. [18]. Terms odd
under ϕ → −ϕ integrate to zero, so G1;0 ¼ 0, and G1;1, the
term proportional to ε, is a constant independent of y1. The
solution, generalized from Ref. [18], is

G1;1 ¼ −igm−2μD=2−1
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πmD−2Δ1ð0Þ=2

q
; ð29Þ

which is given in (18). In Ref. [18] it is explained how to
treat the term I1 in (28). This term contains a complex
logarithm in I1 ¼ − 1

2

R
dDxϕ2ðxÞ log½iμ1−D=2

0 ϕðxÞ� given in
(27). The complex logarithm is converted to a real
logarithm via (4) and the real logarithm is then treated
by applying the replicatrick [49]

logðμ2−D0 ϕ2Þ ¼ lim
N→0

d
dN

ðμ1−D=2
0 ϕÞ2N; ð30Þ

where the mass constant μ0 keeps the equation dimension-
ally consistent.
A second insight in [18] concerns terms containing the

structure ijϕj=ϕ in (4). Here, we use the integral identity
jϕj=ϕ ¼ ð2=πÞ R∞

0 ðdt=tÞ sinðtϕÞ and then expand sinðtϕÞ
as a Taylor series in powers of ϕ:

jϕj
ϕ

¼ 2

π

Z
∞

0

dt
X∞
ω¼0

ð−1Þωt2ω
ð2ωþ 1Þ!ϕ

2ωþ1: ð31Þ

[Note that the integration variable t has dimensions of
ðmassÞ1−D=2 so this equation is dimensionally consistent.]
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Thus, the leading term in the ε expansion of G1ðεÞ is
proportional to ε and was determined to be (18).
The coefficient of ε2 in the expansion of G1ðεÞ in (28) is

a sum of two functional integrals G1;2 ¼ A1 þ A2:

A1 ¼ −
gμ20
4Z0

Z
Dϕe−

R
dDxL0ϕðy1Þ

×
Z

dDxϕ2ðxÞlog2½iμ1−D=2
0 ϕðxÞ�;

A2 ¼
g2μ40
8Z0

Z
Dϕe−

R
dDxL0ϕðy1Þ

×

�Z
dDxϕ2ðxÞ log½iμ1−D=2

0 ϕðxÞ�
�

2

: ð32Þ

To evaluate A1 we insert (4) into (32) to obtain real
logarithms and then insert the factor of ϕ2ðxÞ.
Discarding terms odd in ϕ, we get

A1 ¼ −
iπ
8Z0

gμ20

Z
dDx

Z
Dϕe−

R
dDxL0

× ϕðy1ÞjϕðxÞjϕðxÞ log½μ2−D0 ϕ2ðxÞ�:

Next, we use (30) and (31) to replace jϕðxÞj and the
logarithm by a sum over products of fields:

A1 ¼ −
i

4Z0

gμ20

Z
dDx

Z
Dϕe−

R
dDxL0ϕðy1Þ

Z
∞

0

dt

×
X∞
ω¼0

ð−1Þωt2ω
ð2ωþ 1Þ!ϕ

2ωþ3ðxÞ lim
N→0

d
dN

½μ1−D=2
0 ϕðxÞ�2N:

We use graphical techniques to do the functional integral:
A1 contains products of the fields ϕðy1Þϕ2ωþ2Nþ3ðxÞ and
represents a free propagator connecting y1 to x in ð2ωþ
2N þ 3Þ ways, multiplied by products of self-loops from x
to x; there are ωþ N þ 1 self-loops. The functional integral
yields the value Δðy1 − xÞΔωþNþ1ð0Þð2ωþ 2N þ 3Þ!! [For
brevity we suppress the mass subscript λ ¼ μ0m in the free
propagator Δ defined in (11).]
We can now perform the D-dimensional integral over x

and use (12):
R
dDxΔðy1 − xÞ ¼ μ−20 m−2. [Note that the

translation invariance of G1ðεÞ holds to second order in ε.]
Combining these results, we get

A1 ¼ −
i
4
gm−2

X∞
ω¼0

Z
∞

0

dt
ð−t2Þω

ð2ωþ 1Þ!Δ
ωþ1ð0Þ lim

N→0

d
dN

½μ2−D0 Δð0Þ�Nð2ωþ 2N þ 3Þ!!:

Taking the derivative with respect to N and the limit N → 0, this simplifies to

A1 ¼ −
i
4
gm−2

X∞
ω¼0

Z
∞

0

dt
ð−t2Þω

ð2ωþ 1Þ!Δ
ωþ1ð0Þð2ωþ 3Þ!!

�
log½2μ2−D0 Δð0Þ� þ ψ

�
ωþ 5

2

��
; ð33Þ

where we use the duplication formula for the digamma
function ψð2zÞ ¼ 1

2
ψðzÞ þ 1

2
ψðzþ 1

2
Þ þ log 2. To evaluate

the sum and integral we use [18]

Z
∞

0

dt
X∞
ω¼0

ð−t2Þω
ð2ωþ 1Þ!Δ

ωþ1ð0Þð2ωþ 3Þ!!

¼ Δð0Þ
Z

∞

0

dt½3 − Δð0Þt2�e−Δð0Þt2=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΔð0Þ

p
: ð34Þ

To calculate the second term in (33) we insert the integral
representation [50]

ψðaÞ ¼
Z

∞

0

dz

�
e−z

z
−

e−az

1 − e−z

�
;

perform the sum over ω and the integral over t, and then
note that the z integral gives the factor ψð2Þ. Thus,

Z
∞

0

dt
X∞
ω¼0

ð−t2Þω
ð2ωþ 1Þ!Δ

ωþ1ð0Þð2ωþ 3Þ!!ψ
�
ωþ 5

2

�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πΔð0Þ

p
ψð2Þ: ð35Þ

Combining (34) and (35), we obtain A1 from (33):

A1 ¼ −
i
2
gm−2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
πΔð0Þ

2

r
flog½2μ2−D0 Δð0Þ� þ ψð2Þg: ð36Þ

Next, we evaluate A2 in (32). Expanding I21 produces
fields ϕ at two points, say x1 and x2, which are integrated
over. As before, we replace each occurrence of an imagi-
nary logarithm by using (4) and retain terms that are even in
ϕ. (The functional integral vanishes for terms that are odd
in ϕ.) Only one term survives:
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A2 ¼
iπg2μ40
16Z0

Z
Dϕe−

R
dDxL0ϕðy1Þ

Z
dDx1

Z
dDx2

× ϕðx1Þjϕðx1Þjϕ2ðx2Þ log½μ2−D0 ϕ2ðx2Þ�:

Using (31) to replace ϕðx1Þjϕðx1Þj and the replica trick
(30) to replace the logarithm, we express A2 as

A2 ¼
ig2μ40
8Z0

Z
dDx1

Z
dDx2

Z
∞

0

dt
X∞
ω¼0

ð−t2Þω
ð2ωþ 1Þ!

×
Z

Dϕe−
R

dDxL0ϕðy1Þϕ2ωþ3ðx1Þϕ2ðx2Þ

× lim
N→0

d
dN

½μ1−D=2
0 ϕðx2Þ�2N: ð37Þ

Here we must evaluate the functional integral that connects
the field at the external point y1 to one of the (odd number
of) fields at the internal points x1; the remaining (even
number of) points must be connected to the even number of
points at x2. To this we must add the result of connecting
the external point y1 to the (even number of) points at x2
leaving an odd number of connections from x2 to x1. This
includes all connected diagrams illustrated schematically in
Figs. 1(a) and 1(b).
The path integral corresponding to Fig. 1(a) for the field

combinations ϕðy1Þϕ2ωþ3ðx1Þϕ2Nþ2ðx2Þ allows y1 to con-
nect to one of the 2ωþ 3 replicas of ϕ at x1. For the

remaining points to be connected, 2l lines can connect the
remaining 2ωþ 2 points at x1 to the 2N þ 2 points at x2;
the remainder of points ð2N þ 2 − 2lÞ þ ð2ωþ 2 − 2lÞ are
used to form N þ ωþ 2 − 2l closed loops. Here, l ≥ 1 for
the graph to be connected. We assign to Fig. 1(a) the
combinatoric factor

Ca ¼
ð2N þ 2Þ!ð2ωþ 3Þ!

ð2lÞ!ðN þ 1 − lÞ!ðωþ 1 − lÞ!2Nþωþ2−2l :

For Fig. 1(b) there are 2N þ 2 ways to connect y1 to x2.
To create connected graphs an odd number, say 2lþ 1, of
lines must join the remaining 2N þ 1 points at x1 to the
2ωþ 3 points at x2, where the minimum value of l is zero.
Closed loops can exist on 2N þ 1 − ð2lþ 1Þ ¼ 2N − 2l
points on x2 and 2ωþ 3 − ð2lþ 1Þ points on x1, forming a
total of N þ ω − 2lþ 1 loops. The combinatoric factor
assigned to this graph is

Cb ¼
ð2N þ 2Þ!ð2ωþ 3Þ!

ð2lþ 1Þ!ðN − lÞ!ðωþ 1 − lÞ!2Nþωþ1−2l :

It is best to examine the contributions from Fig. 1(a) and
Fig. 1(b) separately. We use the combinatoric factor Ca
associated with Fig. 1(a) to evaluate its contribution to (37)
and perform one spatial integral:

AFig: 1a
2 ¼ ig2μ20

8m2
lim
N→0

d
dN

ð2N þ 2Þ!
�
1

2
μ2−D0 Δð0Þ

�
N
Z

dDx
Z

∞

0

dt
X∞
ω¼0

ð−t2Þωð2ωþ 3Þð2ωþ 2Þ
�
1

2
Δð0Þ

�
ωþ2

×
XminðNþ1;ωþ1Þ

l¼1

1

ð2lÞ!ðN þ 1 − lÞ!ðωþ 1 − lÞ!
�
2
ΔðxÞ
Δð0Þ

�
2l
: ð38Þ

Exchanging the sums on l and ω with ω ≥ l − 1, we determine the sum over ω:

X∞
ω¼l−1

ð−zÞω ð2ωþ 3Þð2ωþ 2Þ
ðωþ 1 − lÞ! ¼ ð−zÞl−1e−z½4z2 − zð8lþ 6Þ þ 2lð2lþ 1Þ�;

(a) (b)

FIG. 1. Graphical representation of terms contributing to the functional integrals in (37). In (a), the line joining the external point y1 to
the internal point x1 is one of an odd number of lines meeting at x1; an even number of lines are connected to the internal point x2. In
(b) the line from the external point y1 is one of an even number of points at x2 and an odd number of lines connect to x1. We integrate
over the internal points x1 and x2.
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where we have shifted the summation variable to p ¼ ωþ 1 − l, which runs from 0 to ∞, and we have used the sumsP
p z

p=p! ¼ ez,
P

p pz
p=p! ¼ zez, and

P
p p

2zp=p! ¼ ðz2 þ zÞez.
Setting z ¼ 1

2
Δð0Þt2 we evaluate the integral over t:

Z
∞

0

dt
X∞
ω¼l−1

�
−
1

2
Δð0Þt2

�
ω ð2ωþ 3Þð2ωþ 2Þ

ðωþ 1 − lÞ! ¼ 2
ð−1Þl−1ffiffiffiffiffiffiffiffiffiffiffiffi
2Δð0Þp Γ

�
l −

1

2

�
: ð39Þ

Thus, (38) becomes

AFig: 1a
2 ¼ ig2μ20

4
ffiffiffi
2

p
m2

½Δð0Þ�3=2 lim
N→0

d
dN

ð2N þ 2Þ!
�
1

2
μ2−D0 Δð0Þ

�
N
Z

dDx
X∞
l¼1

�
ΔðxÞ
Δð0Þ

�
2l ð−1Þl−1Γðl − 1

2
Þ

22−2lð2lÞ!ðN þ 1 − lÞ! : ð40Þ

To evaluate the sum over l we simplify the factorials and Gamma functions by using the duplication formula Γð2zÞ ¼
ΓðzÞΓðzþ 1

2
Þ22z−1= ffiffiffi

π
p

and Euler’s reflection formula ΓðzÞΓð1 − zÞ ¼ π= sinðπzÞ. Then (40) reduces to

AFig: 1a
2 ¼ ig2μ20

m2

�
1

2
Δð0Þ

�
3=2

lim
N→0

d
dN

½2μ2−D0 Δð0Þ�NΓ
�
N þ 3

2

�Z
dDx

�
2F1

�
−
1

2
;−N − 1;

1

2
;

�
ΔðxÞ
Δð0Þ

�
2
�
− 1

�
; ð41Þ

where 2F1ða; b; c; x2Þ is a Gaussian hypergeometric function [50]. When N ¼ 0 this function becomes simply

2F1ð− 1
2
;−1; 1

2
; x2Þ ¼ 1þ x2 and limN→0

d
dN 2F1ð− 1

2
;−N − 1; 1

2
; x2Þ ¼ ð1þ xÞ2 logð1þ xÞ þ ð1 − xÞ2 logð1 − xÞ − 2x2.

Next, evaluate the contribution from Fig. 1(b). Multiplying the combinatorial factorCb with the associated propagators in
the evaluation of the functional integral of (37) and performing one spatial integration, we get

AFig: 1b
2 ¼ ig2μ20

8m2
lim
N→0

d
dN

ð2N þ 2Þ!
�
1

2
μ2−D0 Δð0Þ

�
N
Z

dDx
Z

∞

0

dt
X∞
ω¼0

ð−1Þωt2ωð2ωþ 3Þð2ωþ 2Þ
�
1

2
Δð0Þ

�
ω

×
XminðN;ωþ1Þ

l¼0

½ΔðxÞ�2lþ1

�
1

2
Δð0Þ

�
1−2l 1

ð2lþ 1Þ!ðN − lÞ!ðωþ 1 − lÞ! :

Exchanging orders of summation over l and ω and using (39) to sum over ω and integrate over t, we obtain

AFig: 1b
2 ¼ ig2μ20

4
ffiffiffi
2

p
m2

½Δð0Þ�3=2 lim
N→0

d
dN

�
1

2
μ2−D0 Δð0Þ

�
N
ð2N þ 2Þ!

Z
dDx

X∞
l¼0

�
ΔðxÞ
Δð0Þ

�
2lþ1 ð−1Þl−1Γðl − 1

2
Þ

21−2lð2lþ 1Þ!ðN − lÞ! :

Again, on applying the duplication and reflection formulas for the Gamma function, we find that this expression also
simplifies to the compact form

AFig: 1b
2 ¼ 2ig2μ20

m2

�
1

2
Δð0Þ

�
3=2

lim
N→0

d
dN

½2μ2−D0 Δð0Þ�NðN þ 1ÞΓ
�
N þ 3

2

�Z
dDx

ΔðxÞ
Δð0Þ 2F1

�
−
1

2
;−N;

3

2
;

�
ΔðxÞ
Δð0Þ

�
2
�
: ð42Þ

When N ¼ 0, the hypergeometric function simplifies, 2F1ð− 1
2
; 0; 3

2
; x2Þ ¼ 1, and its derivative at N ¼ 0 is

limN→0
d
dN 2F1ð−1

2
;−N;3

2
;x2Þ¼ 1

2x ½ð1þxÞ2 logð1þxÞ−ð1−xÞ2 logð1−xÞ−2x�. Thus, A2 ¼ A2½Fig: 1ðaÞ� þ A2½Fig: 1ðbÞ� is
constructed by adding (41) and (42), yielding the formal result
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A2 ¼
ig2μ20
m2

�
1

2
Δð0Þ

�
3=2

lim
N→0

d
dN

½2μ2−D0 Δð0Þ�NΓ
�
N þ 3

2

�

×
Z

dDx

��
2F1

�
−
1

2
;−N − 1;

1

2
;

�
ΔðxÞ
Δð0Þ

�
2
�
− 1

�
þ 2ðN þ 1ÞΔðxÞ

Δð0Þ 2F1

�
−
1

2
;−N;

3

2
;

�
ΔðxÞ
Δð0Þ

�
2
��

¼ ig2μ20
ffiffiffi
π

p
2m2

�
1

2
Δð0Þ

�
3=2

��
log½2μ2−D0 Δð0Þ� þ ψ

�
3

2

��Z
dDx

��
ΔðxÞ
Δð0Þ

�
2

þ 2
ΔðxÞ
Δð0Þ

�

þ 2

Z
dDx

��
1þ ΔðxÞ

Δð0Þ
�

2

log

�
1þ ΔðxÞ

Δð0Þ
�
−
�
ΔðxÞ
Δð0Þ

�
2
��

:

The integrals containing linear and quadratic powers of ΔðxÞ are readily evaluated, the linear one following
from (12), and the quadratic one from the solution to (10), using

R
∞
0 dt tK2

νðtÞ ¼ 1
2
Γð1 − νÞΓð1þ νÞ. This yieldsR

dDx½ΔðxÞ�2 ¼ ðμ0mÞD−42−Dπ−D=2Γð2 −D=2Þ. Thus,

A2¼
i
8
g2m−4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πΔð0Þ=2

p ��
log½2μ2−D0 Δð0Þ�þψ

�
3

2

��
ð6−DÞþ2D−4þ4Δð0Þμ20m2

Z
dDx

�
1þΔðxÞ

Δð0Þ
�

2

log

�
1þΔðxÞ

Δð0Þ
��

:

The connected part of G1 to order ε2 is A1 þ A2, so we add the above result to (36) to get

G1;2 ¼ −
1

2
igm−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
πΔð0Þ

r
flog½2μ2−D0 Δð0Þ� þ ψð2Þg þ 1

8
ig2m−4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
πΔð0Þ

r ��
log½2μ2−D0 Δð0Þ� þ ψ

�
3

2

��
ð6 −DÞ

þ 2D − 4þ 4Δð0Þμ20m2

Z
dDx

�
1þ ΔðxÞ

Δð0Þ
�

2

log

�
1þ ΔðxÞ

Δð0Þ
��

:

The first term is proportional to the dimensionless coupling
strength gm−2 while the second term is proportional to its
square. In the second term the expression in curly brackets
is a dimensionless number.
We now examine the limit D → 2 (that is, δ → 0). From

the solution to (11) and (13) we see that the combination
ΔðxÞ=Δð0Þ ∼ δK0ðμ0mjxjÞ to first order in δ as δ → 0.
Thus, to lowest order in δ the last term containing the
integral simplifies to

4Δð0Þμ20m2

Z
dDx

�
1þ ΔðxÞ

Δð0Þ
�

2

log

�
1þ ΔðxÞ

Δð0Þ
�

∼ 4μ20m
2

Z
∞

0

dx xK0ðμ0mjxjÞ ¼ 4

because
R∞
0 dttα−1KνðtÞ¼2α−2Γðα−ν

2
ÞΓðαþν

2
Þ, Reα > jReνj.

Thus, if D → 2, the coefficient of G1 at second order in ε
goes as

G1;2 ∼−
i
4
gm−2δ−1=2½ψð2Þ− logðπδÞ�

þ i
4
g2m−4δ−1=2

�
1þψ

�
3

2

�
− logπ − logδ

�
þOðδÞ:

Taking the same limit in (29), the coefficient of G1 to
first order in ε yields G1;1 → − 1

2
igm−2δ−1=2. Putting these

two last results together, we find that the divergence
structure of G1 in the ε expansion has the form

G1 → −ic1δ−1=2ε − iδ−1=2ðc2 þ c3 log δÞε2 þ Oðε3Þ;

where c1 ¼ 1
2
gm−2, c2 ¼ 1

4
gm−2½ψð2Þ − log π − gm−2

ð1þ ψð3
2
Þ − log πÞ�, and c3 ¼ − 1

4
gm−2ð1 − gm−2Þ are con-

stants. So, the algebraic divergence δ−1=2 occurs at each
order in the ε expansion. Our key result is that the second-
order term in the ε expansion introduces log δ but does not
alter the algebraic structure of the divergence.
Inclusion of the counterterm −ivϕ. As seen from the

calculations above, G1 is negative imaginary and diverges
in two dimensions as δ → 0. Since G1 is not a physically
measurable quantity, it can be removed by introducing
an appropriate counterterm −ivϕ into the Lagrangian,
where v ¼ v1εþ v2ε2 þ Oðε3Þ.
To examine the effect of including such a term, we denote

the one-point connected Green’s function associated with the
full Lagrangian that includes −ivϕ as G1ðvÞ. Its relation to
Green’s functions evaluated without v is determined as
follows. [We keep the notation of this section, without
explicitly writing v ¼ 0; that is, G1ðv ¼ 0Þ ¼ G1 and
similarly for the higher-order Green’s functions and all
expansion coefficients.] We include the contributions to
the path integral of exp½i R dDxðv1εþ v2ε2ÞϕðxÞ� to second
order in ε. This multiplies the expansion in ε of Gp in (26).
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Identifying terms proportional to ε and ε2 and using the
definitions in (28), we find that for any p

GpðvÞ ¼ Gp;0 þ ε

�
Gp;1 þ iv1

Z
dDxGpþ1;0ðy1;…yp; xÞ

�

þ ε2
�
Gp;2 þ iv2

Z
dDxGpþ1;0ðy1;…; yp; xÞ

−
1

2
v21

Z
dDx1

Z
dDx2Gpþ2;0ðy1;…; yp; x1; x2Þ

þ iv1

Z
dDxGpþ1;1ðy1;…; yp; xÞ

�
þ Oðε3Þ;

ð43Þ

where we have suppressed the arguments y1;…; yp of
Gp;n. Thus, the coefficients of the ε expansion GpðvÞ ¼P

n ε
nGp;nðvÞ are related to the coefficients of the expansion

of Gp through the above expression. In principle, if we
calculate the coefficients in the ε expansion of the Green’s
function without v, we can easily determine the effects of
including it.
Let us evaluate G1ðvÞ. From (43) we get

G1ðvÞ ¼ ε

�
G1;1 þ iv1

Z
dDxG2;0ðy; xÞ

�

þ ε2
�
G1;2 þ iv2

Z
dDxG2;0ðy; xÞ

þ iv1

Z
dDxG2;1ðy; xÞ

�
;

since Gp;0 ¼ 0 unless p ¼ 2. Thus, to evaluate G1ðvÞ to
second order in ε, we must know the expansion coefficients
of the two-point Green’s function, calculated to first order
in ε without v. But these are known; by definition,
G2;0ðy; xÞ ¼ Δðy − xÞ while

G2;1ðy; xÞ ¼ −gμ20K1

Z
dDzΔðy − zÞΔðz − xÞ; ð44Þ

where K1 ¼ 3=2 − γ=2þ 1
2
log½μ2−D0 Δð0Þ=2� is a generali-

zation of the result obtained in [18] that includes the mass
parameter μ0m of the Lagrangian L0 used here [see (25)].
In the limit δ → 0, G1;1 → −igm−2=ð2 ffiffiffi

δ
p Þ from (29), so in

this limit

G1ðvÞ∼ iε

�
v1

μ20m
2
−

g

2m2
ffiffiffi
δ

p
�

þ iε2
�

v2
μ20m

2
−
gK1v1
μ20m

4
− δ−1=2ðc2þ c3 logδÞ

�
: ð45Þ

Setting G1ðvÞ ¼ 0, we obtain the first-order result in (20),
which fixes v1 → gμ20=ð2

ffiffiffi
δ

p Þ. If we insert this into (45),

then v2 in turn is fixed to eliminate the Oðε2Þ term. It too
has the same divergence structure v2 → δ−1=2.
In summary, from our Oðε2Þ calculation of G1, we find

that the divergence structure obtained when D → 2 has the
same algebraic form that was determined from the OðεÞ
term, namely, δ−1=2. It is accompanied by a logarithmic
divergence in δ. This is a structure that persists for higher-
order Green’s functions. We will see that as D → 2, the
algebraic structure of the lowest-order Green’s functions is
accompanied by logarithmic divergences as one goes to
higher orders in the ε expansion.

B. Two-point Green’s function in second order

A general expression for the p-point Green’s functions
and their coefficients in the ε expansion, given in (26)–(28)
can be formulated using the generalized form of the replica
trick (30)

logm½μ2−D0 ϕ2� ¼ lim
N→0

�
d
dN

�
m
ðμ1−D=2

0 ϕÞ2N

and the generalization of (31),

�jϕj
ϕ

�
m
¼ 2

π

Z
∞

0

dt
X∞
ω¼0

ð−t2Þω
ð2ωþ 1Þ!ϕ

ð2ωþ1Þm:

Before applying these results, expressions containing In in
(27) will have the occurrence of logn½iμ1−D=2

0 ϕðxÞ� written
in terms of real logarithms via (4) and expanded in a
binomial series. As illustrated in detail in the previous
section, the aim is to reduce the expressions that arise to
products of functional integrals containing powers of ϕ
multiplied by appropriate factors.
From (28) the lowest-order contribution to G2ðy1; y2Þ is

the free Green’s function G2;0ðy1; y2Þ ¼ Δðy1 − y2Þ.
Performing the operations delineated in the last section,
the coefficient of ε becomes

FIG. 2. Graphical representation of connected terms contrib-
uting to the functional integrals in (46) and (47).
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G2;1ðy1;y2Þ¼−
gμ20
4

Z
dDx lim

N→0

d
dN

μð2−DÞN
0

×
Z

Dϕ

Z0

e−
R
dDxL0ϕðy1Þϕðy2Þϕ2Nþ2ðxÞ; ð46Þ

where the connected graph associated with the functional
integral connects the two external points to one internal one
(see Fig. 2). In this case the functional integral takes the
value ½ð2N þ 2Þ!=ð2NN!Þ�½Δð0Þ�NΔðy1 − xÞΔðx − y2Þ,
leading to the final result given in (44).
In the ε expansion of G2ðy1; y2Þ, the coefficient propor-

tional to ε2 has the form G2;2 ¼ A2;1 þ A2;2, where

A2;1 ¼ −
gμ20
4Z0

Z
Dϕe−

R
dDxL0ϕðy1Þϕðy2Þ

×
Z

dDxϕ2ðxÞlog2½iμ1−D=2
0 ϕðxÞ�; ð47Þ

A2;2 ¼
g2μ40
8Z0

Z
Dϕe−

R
dDxL0ϕðy1Þϕðy2Þ

×

�Z
dDxϕ2ðxÞ log½iμ1−D=2

0 ϕðxÞ�
�

2

: ð48Þ

For A2;1 the even terms in the expansion of the imaginary
logarithm give rise to the connected terms joining y1 and
y2, and thus the functional integrals that arise correspond to
those depicted in Fig. 2, where x is an internal vertex that is
integrated over. A detailed calculation gives

A2;1 ¼ gμ20K2

Z
dDxΔðy1 − xÞΔðx − y2Þ;

where

K2 ¼ −
1

8

�
log2½2μ2−D0 Δð0Þ� þ 2 log½2μ2−D0 Δð0Þ�

�
ψ

�
3

2

�
þ 1

�
þ ψ 0

�
3

2

�
þ ψ2

�
3

2

�
þ 2ψ

�
3

2

�
− π2

�
:

For A2;2, the square of the integral in (48) leads to two internal points x1 and x2 to which y1 and y2 can be connected. The
possible connected diagrams are shown in Figs. 3(a)–3(d). A detailed calculation yields

A2;2 ¼
g2μ20
m2

�
K3

Z
dDxΔðy1 − xÞΔðx − y2Þ þ

Z Z
dDx1dDx2Δðx1ÞΔðx2 þ y1 − y2Þfðx1 − x2Þ

�
;

where

K3 ¼
m2μ20Δð0Þ

4

Z
dDx

�
sin−1

�
ΔðxÞ
Δð0Þ

��
sin−1

�
ΔðxÞ
Δð0Þ

�
− π

�
þ ΔðxÞ
Δð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ΔðxÞ
Δð0Þ

�
2

s �
2sin−1

�
ΔðxÞ
Δð0Þ

�
− π

�

þ
�
ΔðxÞ
Δð0Þ

�
2
�
log½2μ2−D0 Δð0Þ� þ ψ

�
3

2

�
− 2

��

is a dimensionless constant and

fðxÞ ¼ 1

2
m2μ20ΔðxÞ

�
sin−1

�
ΔðxÞ
Δð0Þ

��
sin−1

�
ΔðxÞ
Δð0Þ

�
− π

�
þ 1

2

�
log½2μ2−D0 Δð0Þ� þ ψ

�
3

2

�
þ 1

�
2

− 2

�

þm2μ20Δð0Þsin−1
�
ΔðxÞ
Δð0Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ΔðxÞ
Δð0Þ

�
2

s
þ 1

2
m2μ20Δð0Þπ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
ΔðxÞ
Δð0Þ

�
2

s �

has dimension ðmassÞD. Collecting all terms for G2;0, G2;1,
and G2;2, we obtain G2ðy1; y2Þ ¼ G2ðy1 − y2Þ:

G2ðy1 − y2Þ ¼ Δðy1 − y2Þ
− εgμ20K1Q1ðy1 − y2Þ
þ ε2gμ20ððK2 þ gm−2K3ÞQ1ðy1 − y2Þ
þ gm−2Q2ðy1 − y2ÞÞ þ Oðε3Þ; ð49Þ

where we have abbreviated

Q1ðy1 − y2Þ ¼
Z

dDxΔðy1 − xÞΔðx − y2Þ;

Q2ðy1 − y2Þ ¼
Z Z

dDx1dDx2Δðx1Þ

× Δðx2 þ y1 − y2Þfðx1 − x2Þ:
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Since Q1ðy1 − y2Þ and Q2ðy1 − y2Þ are convolutions, their
Fourier transforms give products of the Fourier trans-
forms of their components. Thus, the Fourier transform
of G2ðy1 − y2Þ takes the form

Ĝ2ðpÞ¼ Δ̂ðpÞ−εgμ20K1Δ̂2ðpÞ
þε2gμ20½K2þgm−2K3þgm−2f̂ðpÞ�Δ̂2ðpÞ:

The renormalized mass M2
R ¼ limp→0 Ĝ

−1
2 ðpÞ is then

M2
R ¼ ðmμ0Þ2 þ εgμ20K1

þ ε2gμ20½gm−2ðK2
1 − K3 − f̂ð0ÞÞ − K2�;

which reduces to (19) to first order in ε. On substituting
m2 ¼ gþ μ2=μ20, we get

M2
R ¼ μ2 þ gμ20½1þ εK1

þ ε2ðgm−2ðK2
1 − K3 − f̂ð0ÞÞ − K2Þ�:

Divergence structure as D → 2. The divergence struc-
ture of G2ðy1 − y2Þ when D → 2 (δ → 0) can be deter-
mined from (49). In this limit, ΔðxÞ → f1ðxÞ þ δf2ðxÞ
while K1 diverges as − 1

2
log δþ 3

2
− γ

2
− 1

2
logð4πÞ and K2

and f̂ð0Þ introduce divergences of order ðlog δÞ2. Putting
this together, we find that

G2ðy1 − y2Þ ∼ c1 þ εðc2 þ log δÞ
þ ε2½c3 þ log δþ log2 δþ OðδÞ�;

where constant prefactors are suppressed and cn are
constants. Evidently, higher-order terms in the ε expansion

for G2ðy1 − y2Þ display the same algebraic divergence as
the lowest-order term, with higher-order corrections being
logarithmic. This was previously observed for G1 and we
believe it to be generally true.
In summary, if we expandG2ðy1 − y2Þ first in terms of ε,

treat δ as finite, perform a Fourier transform, and invert it to
identify a renormalized mass, we see that each coefficient
in the ε expansion for M2

R also diverges. The term in M2
R

proportional to ε diverges as log δ, while the structure of the
terms proportional to ε2 introduces divergences of up to
log2 δ. Thus, in such a perturbative calculation, the mass
counterterm μ must absorb divergences that arise at each
order of ε.

C. Three-point Green’s function in second order

The connected three-point Green’s function can also be
calculated up to second order, using the techniques of the
last sections. As this is tedious, we only give final results.
The first-order coefficient in the ε expansion is

G3;1ðy1; y2; y3Þ ¼ −igμ20
ffiffiffiffiffiffiffiffiffiffiffiffi
π

2Δð0Þ
r

Rðy1; y2; y3Þ; ð50Þ

where

R1ðy1; y2; y3Þ ¼
Z

dDxΔðx − y1ÞΔðx − y2ÞΔðx − y3Þ:

In the limit D → 2, δ → 0, the behavior of G3;1 is
determined by the factor ½Δð0Þ�−1=2 ∼ δ1=2 in (50),
since R1ðy1; y2; y3Þ ∼ constantþOðδÞ.
The ε2 coefficient of G3 in the ε expansion is

G3;2ðy1; y2; y3Þ ¼ −
igμ20
2

ffiffiffiffiffiffiffiffiffiffiffiffi
π

2Δð0Þ
r �

ðlog½2μ2−D0 Δð0Þ� þ ψð2Þ þ 2ÞR1ðy1; y2; y3Þ − gμ20R2ðy1; y2; y3Þ

− gμ20R1ðy1; y2; y3Þ
�
Δð0Þ

Z
dDx

�
1 −

�
ΔðxÞ
Δð0Þ

�
2
�
log

�
1þ ΔðxÞ

Δð0Þ
�

þ ðmμ0Þ−2
�
1þ 1

4
ð2 −DÞ

�
log½2μ2−D0 Δð0Þ� þ ψ

�
3

2

�����
; ð51Þ

(a) (b) (c) (d)

FIG. 3. Graphical representation of terms contributing to the functional integrals in (48). In (a), y1 (y2) connects to the point x1 (x2),
with the remaining number of points connecting x1 to x2. In (b) the connection of y1 (y2) is to the points at x2 (x1), with the remaining
points connecting x1 to x2. In (c) and (d) both y1 and y2 are connected to the same point, either x1 or x2, with these being connected; x1
and x2 are integrated over.
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where

R2ðy1; y2; y3Þ ¼
Z Z

dDx1dDx2½Δðx1 − y1ÞΔðx1 − y2ÞΔðx2 − y3Þ þ Δðx1 − y1ÞΔðx2 − y2ÞΔðx1 − y3Þ

þ Δðx2 − y1ÞΔðx1 − y2ÞΔðx1 − y3Þ�
�
Δðx1 − x2Þ

�
log½2μ2−D0 Δð0Þ� þ ψ

�
3

2

�
− 1

�

þ 2½Δð0Þ þ Δðx1 − x2Þ� log
�
1þ Δðx1 − x2Þ

Δð0Þ
��

:

An analysis of (51) shows that the second-order contribu-
tion to the expansion of G3ðy1; y2; y3Þ in ε goes as

ffiffiffi
δ

p
and

introduces corrections of order
ffiffiffi
δ

p
log δ.

Thus, we see that if the first three connected Green’s
functions G1, G2ðy1 − y2Þ, andG3ðy1; y2; y3Þ are expanded
as series in powers of ε, the coefficients in the series have
the same algebraic behavior as δ → 0, but that the higher-
order coefficients introduce additional powers of log δ. In
general,

Gpðy1;…; ypÞ ∼ δp=2−1 × ½1þ powers of log δ�: ð52Þ

This result is surprising: We are able to shiftG1 by adding a
counterterm ivðεÞϕ and we can perform mass renormali-
zation of G2 to second order but (52) implies that all other
higher-order Green’s functions with p ≥ 3 must vanish. As
shown explicitly in Sec. II A for G1, this behavior is
unaffected by including the counterterm ivðεÞϕ. This
suggests that the theory becomes noninteracting in the
limit D → 2 to any finite order in ε.

III. MULTIPLE-SCALE ANALYSIS AS δ → 0

An alternative method of approaching the limit D → 2
(δ → 0) is to perform the sums to all orders n in ε before
taking the limit δ → 0. This approach is inspired by the
techniques of multiple-scale perturbation theory (MSPT),
which is a powerful perturbative technique that was first
used in early calculations of planetary orbits. In conven-
tional perturbative expansions higher orders depend reso-
nantly on lower orders, and as a result, the higher orders in
a perturbation expansion contain secular terms. Because
secular terms are large they tend to violate rigorous bounds
that can be established from general principles, such as
conservation of energy.
A simple example is provided by the classical anharmonic

oscillator, whose Hamiltonian is p2 þ x2 þ εx4. A conven-
tional perturbative solution to the classical equation of motion
has the form xðtÞ ¼ a0ðtÞ þ a1ðtÞεþ a2ðtÞε2 þ ::. The
coefficient a0ðtÞ is oscillatory and thus is bounded.
However, a1ðtÞ is secular and grows linearly with time t,
and this growth violates the energy conservation. The next
term in the perturbation series grows quadratically with time,

and in general anðtÞ ∼ tn as t → ∞. It is possible to repair
this inconsistency by summing the most secular contributions
to anðtÞ to all orders in powers of ε, and when we do so we
find that the sum exponentiates to give a term of the form
e−Ct, where C is a constant, which no longer violates the
conservation of energy [51] and gives an accurate approxi-
mation to xðtÞ that is valid for long times t ≫ 1.
The techniques of MSPT can also be used for quantum

systems. These techniques yield good numerical results when
applied to the wave function for the quantum anharmonic
oscillator [52,53]. The MSPT approach has also been used in
quantum field theory: It was used in perturbative QED by
Cheng and Wu to sum over and eliminate leading-logarithm
divergences that violate the high-energy Froissart bound [46].
It was also used by Dolan, Jackiw, Braaten, and Pisarski to
sum leading infrared divergences [54].
In this paper we apply MSPT techniques to the

PT -symmetric Lagrangian (17) and we show what happens
if we sum to orders in ε the most divergent perturbative
contributions to the Green’s functions. These contributions
are logarithmic; this is not surprising because we are
expanding in powers of ε, which is a parameter in the
exponent.
We can identify the leading terms in the ε expansion of

Green’s functions by restricting our attention to evaluating
terms for the p-point connected Green’s function that connect
to only one internal point x. Then, the expansion for the
Green’s function includes only those terms arising from

Gp;0 ¼
1

Z0

Z
Dϕe−

R
dDxL0ϕðy1Þ…ϕðypÞ;

Gp;n ≃
gμ20
n!Z0

Z
Dϕe−

R
dDxL0ϕðy1Þ…ϕðypÞIn;

with In ¼ − 1
2

R
dDxϕ2ðxÞ logn½iμ1−D=2

0 ϕðxÞ� as used earlier.
This corresponds to diagrams of the form given in Fig. 4.
Converting the complex logarithm in In to a sum of real and
imaginary terms via (4), employing the binomial expansion,
and replacing the real logarithm by using the replica trick, we
arrive at the expression
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Gp;nðy1;…; ypÞ ≃ −
gμ20

2nþ1n!
lim
N→0

Z
dDx

Xn
m¼0

ðiπÞm
�

n

m

��
d
dN

�
n−m

×
Z

Dϕ

Z0

e−
R

dDxL0ϕðy1Þ…ϕðypÞϕ2ðxÞ
�jϕðxÞj
ϕðxÞ

�
m
½μ1−D=2

0 ϕðxÞ�2N ðn ≥ 1Þ:

As in Sec. II B we can replace ðjϕj=ϕÞm by a representation that only contains powers of ϕ. The resulting functional
integral can be evaluated, yielding

Gp;nðy1;…; ypÞ ≃ −
gμ20
2nn!

Δð0Þffiffiffi
π

p
�

2

Δð0Þ
�
p=2

Z
dDx

Yp
i¼1

Δðyi − xÞ

× lim
N→0

Xn
m¼0

m−p¼even

ðiπÞm
�

n

m

��
d
dN

�
n−m

½2μ2−D0 Δð0Þ�N ΓðN þ 3
2
ÞΓðN þ 2Þ

ΓðN þ 2 − p=2Þ : ð53Þ

Now it is possible to sum all n contributions in the
expansion in ε to form GpðεÞ ¼

P
n Gp;nε

n.

A. Case p = 1

Evaluating (53) for p ¼ 1 we find that the coefficients
can be expressed as

G1;n ¼ −
igm−2

2nn!

�
2Δð0Þ
π

�
1=2

lim
N→0

�
d
dN

�
n

× ½2μ2−D0 Δð0Þ�N sinðπNÞΓðN þ 2Þ: ð54Þ

Thus, G1ðεÞ ¼
P

n G1;nε
n follows immediately as

G1ðεÞ ¼ −
igm−2ffiffiffi

π
p ½2μ2−D0 Δð0Þ�ðεþ1Þ=2μ−1þD=2

0

× Γ
�
2þ ε

2

�
sin

�
πε

2

�

because G1;n in (54) are the coefficients of a Taylor
expansion about N þ ε

2
. [That is, the exponential of a

derivative is a translation operator: expðε
2

d
dNÞfðNÞ ¼

fðN þ ε
2
Þ.]

Now, in the limit δ → 0, we get

G1ðεÞ ∼ −
igm−2

πðεþ2Þ=2 δ
−ðεþ1Þ=2Γ

�
2þ ε

2

�
sin

�
πε

2

�
:

From this equation we see that in this multiple-scale
approximation the summation leads to an algebraic struc-
ture for the divergence as δ → 0 that becomes more
pronounced with increasing ε. As expected, expanding
this result for small values of ε gives the previously
obtained result G1ðεÞ → −igm−2δ−1=2ε=2 plus terms con-
taining the same power of δ−1=2 multiplied by logarithms
of δ.

B. Case p = 2

Similarly, we can evaluate G2ðεÞ in this limit. From (53)
the expansion coefficients become

G2;n ¼ −
gμ20

2n−1n!
ffiffiffi
π

p
Z

dDxΔðx − y1ÞΔðy2 − xÞ lim
N→0

�
d
dN

�
n

× ðN þ 1Þ½2μ2−D0 Δð0Þ�N cosðπNÞΓ
�
N þ 3

2

�

for n ≥ 1. The closed-form solution for the connected two-
point Green’s function in this approximation is then

G2ðεÞ ¼ Δðy1 − y2Þ þ gm−2
�
1 −

D
2

�
Δð0Þ

×

�
1 −

�
2þ εffiffiffi

π
p

�
½2μ2−D0 Δð0Þ�ε=2

× cos

�
1

2
πε

�
Γ
�
ε

2
þ 3

2

��
;FIG. 4. Graphical structure of contributions to the nth order

coefficient Gp;nðy1;…; ypÞ connected to one internal point x.
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where we have suppressed the spatial argument ðy1 − y2Þ of
G2ðεÞ. In the limit of small ε, we recover (49) to linear order
and in particular in the double limit, taking δ → 0. This
reconfirms the previous results, but also demonstrates that
the two-point Green’s function has an algebraic δ depend-
ence, given as

G2ðεÞ ¼
1

2π
K0ðmμ0jy1 − y2jÞ þ

1

4π
gm−2

×

�
1 −

2þ εffiffiffi
π

p ðπδÞ−ε=2 cos
�
1

2
πε

�
Γ
�
ε

2
þ 3

2

��

for arbitrary ε. As ε increases, the divergence in G2ðεÞ also
becomes more pronounced.

C. General case

This procedure applies to higher-order Green’s func-
tions. The summation over n with coefficients Gp;n from
(53) can be performed, leading to

GpðεÞ ≃ −gμ20
Δð0Þffiffiffi

π
p

�
2

Δð0Þ
�

p=2
Z

dDx
Yp
i¼1

Δðx − yiÞ

× ½2μ2−D0 Δð0Þ�ε=2 Γð
1
2
εþ 3

2
ÞΓð1

2
εþ 2Þ

Γð1
2
εþ 2 − p

2
Þ

×

�
i sinðπε=2Þ p odd

cosðπε=2Þ p even

in which the spatial arguments of GpðεÞ have again been
suppressed. From this, it is evident that for p > 2

GpðεÞ ∼ δp=2−1−ε=2 ðδ → 0Þ:

IV. SUMMARY AND OUTLOOK

The Euclidean Lagrangian L ¼ 1
2
ð∇ϕÞ2 þ 1

2
μ2ϕ2þ

1
2
gμ20ϕ

2ðiμ1−D=2
0 ϕÞε, as a field-theoretic generalization

of the quantum-mechanical Lagrangian Lqm ¼ 1
2
ð∇xÞ2þ

1
2
x2ðixÞ2, is a laboratory for the study of PT -symmetric

bosonic field theories. We have calculated the conne-
cted Green’s functions G1ðεÞ, G2ðε; y1 − y2Þ, and
G3ðε; y1; y2; y3Þ to second order in an expansion in powers

of ε, with an emphasis on examining the limit of this
expansion as the spacetime dimension approaches 2 from
below; that is as δ ¼ 2 −D → 0. We have shown that
divergences appear in this limit: specifically, to first order in
ε the expansion coefficients in the sum Gp ¼ P

Gp;nε
n go

as Gp;n ∼ δp=2−1. Thus, we observe algebraic divergences
for p ¼ 1. To second order in ε, we find that the algebraic
structure in δ remains intact and the only changes involve
logarithmic corrections.
We have attempted a perturbative renormalization

scheme in which a counterterm of the form ivðεÞϕ is
introduced. This introduces a shift that makes G1ðεÞ finite
but evidently this does not modify the δ dependence of
higher-order Green’s functions. We have demonstrated this
explicitly with our calculation of G2ðεÞ. On the other hand,
including an explicit mass parameter μ0 allows for a mass
renormalization, which is obtained from the two-point
Green’s function G2.
Taking a different approach, we have calculatedGpðεÞ to

all orders in ε in a leading-log expansion in the context of
multiple-scale perturbation theory. In this approximation
the logarithmic divergences in δ sum to yield an algebraic
result. Our technique is similar to that applied in Ref. [44]
and it works in a similar fashion: logarithmic divergences
become algebraic.
Both results presented here, the perturbative calculation

in ε and the leading-logarithm sum to all powers in ε, can be
reconciled for small values of ε. However, this does not
answer the question as to why in the perturbative calcu-
lation Green’s functions of the order p ≥ 3 appear to vanish
in the limit δ → 0. Of course, the work presented here does
not imply that the full theory becomes noninteracting as
D → 2, but evidently additional work is required to develop
a more robust procedural approach.
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