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We investigate gauge anomalies in the context of orbifold conformal field theories. Such anomalies
manifest as failures of modular invariance in the constituents of the orbifold partition function. We review
how this irregularity is classified by cohomology and how extending the orbifold group can remove it.
Working with such extensions requires an understanding of the consistent ways in which extending groups
can act on the twisted states of the original symmetry, which leads us to a discrete torsionlike choice that
exists in orbifolds with trivially acting subgroups. We review a general method for constructing such
extensions and investigate its application to orbifolds. Through numerous explicit examples we test the
conjecture that consistent extensions should be equivalent to (in general multiple copies of) orbifolds by
nonanomalous subgroups.
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I. INTRODUCTION

When calculating the torus partition function of an
orbifold conformal field theory (CFT), one forms partial
traces that are group-twisted versions of the parent theory
partition function. For g1 and g2 commuting elements of
our symmetry group G, these objects can be expressed as1

Zg1;g2ðτ; τ̄Þ ¼
Z

Dφg1;g2e
−SE½φ�; ð1:1Þ

where the fields appearing in the path integral are subject to
g1- and g2-periodic boundary conditions on the torus’
homotopy cycles and SE is the theory’s Euclideanized
action. The partition function of the orbifold theory is
formed from these objects as

1

jGj
X
g1 ;g2∈G

g1g2¼g2g1

Zg1;g2ðτ; τ̄Þ: ð1:2Þ

By considering the action of genus one modular trans-
formations on the boundary conditions in the path integral,
one finds that partial traces (1.1) should transform into each
other as [1]
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�
∈ SLð2;ZÞ: ð1:4Þ

For readability we will omit one or more arguments from Z
going forward.
Now, in a given theory there can exist symmetries for

which (1.3) will not hold—such symmetries are said to
have a gauge (’t Hooft) anomaly. For an example we can
look to the compact free boson, which has cyclic ZN
symmetries given by coordinate shifts, by either the circle
coordinate or its dual. For a concrete example, consider a
shift of order two. This generates a Z2 symmetry. If this
shift is by either the coordinate or its dual, we can construct
a well-behaved orbifold. However, if we use the Z2

generated by simultaneous shifts of the coordinate and
dual coordinate, the symmetry is anomalous. We would
detect this oddity by modular transformations; e.g., for this
symmetry we would find

Z1;0ðτ þ 2Þ ¼ −Z1;0ðτÞ; ð1:5Þ

in violation of (1.3). Ultimately this issue would lead to
a failure of modular invariance in the orbifold theory.
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1In practice, a path-integral definition of the partial traces is
feasible only for nonanomalous theories of free fields. In Sec. III
we will sketch a definition of the partial traces using topological
defect lines (TDLs) that can be used more generally.
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Note, however, that this is a fairly mild violation, and,
in fact, by repeated application of (1.5) we have
Z1;0ðτ þ 4Þ ¼ Z1;0ðτÞ. So while the action in question is
not consistent as an order two symmetry, it may have a
consistent interpretation as something of order four.
In pursuit of this idea, we can append a second Z2

element to our indices, enlargingG to a new group Γ whose
elements we will write as ði; jÞ. This allows us to relabel
Z1;0ðτ þ 2Þ as its own object: Zð0;1Þ;ð1;0ÞðτÞ. By comparison
with (1.3) we can determine the group relations in Γ. For
example, we would find that ð0; 1Þ2 ¼ ð1; 0Þ, so, in fact, we
see that Γ ≅ Z4. Following this line further, we generate 16
partial traces for the putative Γ orbifold, each of which can
be identified with one of the original G partial traces
[sometimes with an anomalous phase, chosen to be con-
sistent with (1.5)]:

Zð0;0Þ;ð0;0Þ ¼ Z0;0; ð1:6Þ

Zð0;0Þ;ð0;1Þ ¼ Z0;1; ð1:7Þ

Zð0;1Þ;ð0;0Þ ¼ Z1;0; ð1:8Þ

Zð0;1Þ;ð0;1Þ ¼ Z1;1; ð1:9Þ

Zð0;0Þ;ð1;0Þ ¼ Z0;0; ð1:10Þ

Zð0;0Þ;ð1;1Þ ¼ Z0;1; ð1:11Þ

Zð0;1Þ;ð1;0Þ ¼ −Z1;0; ð1:12Þ

Zð0;1Þ;ð1;1Þ ¼ −Z1;1; ð1:13Þ

Zð1;0Þ;ð0;0Þ ¼ Z0;0; ð1:14Þ

Zð1;0Þ;ð0;1Þ ¼ −Z0;1; ð1:15Þ

Zð1;1Þ;ð0;0Þ ¼ Z1;0; ð1:16Þ

Zð1;1Þ;ð0;1Þ ¼ −Z1;1; ð1:17Þ

Zð1;0Þ;ð1;0Þ ¼ Z0;0; ð1:18Þ

Zð1;0Þ;ð1;1Þ ¼ −Z0;1; ð1:19Þ

Zð1;1Þ;ð1;0Þ ¼ −Z1;0; ð1:20Þ

Zð1;1Þ;ð1;1Þ ¼ Z1;1: ð1:21Þ

Now we can form the orbifold by Γ:

1

4

X1
i;j;k;l¼0

Zði;jÞ;ðk;lÞðτÞ ¼ Z0;0ðτÞ: ð1:22Þ

We see that the anomalous phases have caused everything
besides the parent theory partition function to cancel out. In
retrospect, this is exactly what we should have expected.
The claim was that we were going to take an order two
symmetry whose orbifold was inconsistent and extend it to
an order four symmetry with a consistent orbifold. But
clearly we are not inventing any new symmetries for the
theory here, only using what is already available (after all,
the Γ partial traces were simply G partial traces decorated
with some phases). So the only consistent symmetry
available to us is the trivial one, and the only consistent
orbifold we could have found was the trivial one (i.e., the
parent theory).
This example demonstrates the notion of using group

extensions to “cure” orbifolds by anomalous actions.
Of course, we would like to apply this idea more
generally—given an anomalous group G, can we always
construct an extension Γ of G, the orbifold by which it is
consistent? If so, what form does the Γ orbifold take, and
what choices are required to define it? The purpose of
this paper is to motivate conjectural answers to these
questions through explicit constructions and examples.
We begin in Sec. II with a systematic investigation
of how the action of the extending group K can be
modified in the G-twisted sectors. When K acts trivially
on the parent theory this leads us to a discrete torsionlike
choice special to orbifolds with noneffective subgroups.
Section III returns to the subject of anomalies, employing
the technology of topological defect lines (TDLs) to
derive some basic relations satisfied by anomalous partial
traces. In particular, we will recover the well-known fact
that for a theory with a symmetry given by a group G,
the possible anomalies in that symmetry are classified by
the cohomology group H3ðG;Uð1ÞÞ—for a physical
picture of this, see, e.g., Sec. 2 of [2]. In Sec. IV we
present a group extension due to Tachikawa [3] which
by construction trivializes any anomaly. We examine
this construction in the context of orbifold theories
and present a method for refining it. With all of this
technology established, in Sec. V we tackle a number of
examples of anomalous theories and demonstrate exten-
sions that resolve them. For each we give an explicit
computation of the resulting partition function and show
that it is well-behaved. Section VI provides discussion
and interpretation of our results, along with a presentation
of questions that remain open about resolving anomalous
orbifolds in CFT.
Because the extending group acts trivially on the parent

theory (though in general nontrivially on the G-twisted
states), this story naturally requires an understanding of
decomposition, which is the study of noneffective group
actions in field theories [4–7]. Because of this similarity, we
are preparing companion papers [8,9] to this one which
explore similar material from the more mathematical
viewpoint of decomposition.
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II. GROUP ACTIONS AND EXTENSIONS

Assume we have a CFT (to which we will refer as the
parent theory) with a symmetry given by a finite group G,
and we extend G by a finite Abelian group K to some Γ
as in

1 → K → Γ → G → 1: ð2:1Þ

For simplicity at the moment we will assume that K is
central in Γ. Additionally, we assume that the symmetries
discussed in this section are nonanomalous—we will return
to the topic of anomalies in the following section.
In order to construct the orbifold by Γ we must know

how the symmetryK acts on the parent theory, and there are
two cases we would like to distinguish here: K may be a
genuine symmetry or it may have trivial action on the
parent theory. Either way we have some action of K in
mind. In the context of forming an orbifold by Γ, however,
the action of K on the parent theory does not tell us
everything—there are in general multiple consistent ways
in which K could act on the G-twisted states (even if its
action on the parent theory is trivial).
Specifically, since as a set Γ can be written as K ×G, we

will write a generic element of Γ as ðk; gÞ (or sometimes γ
for brevity). The partial traces of the Γ orbifold are then
Zðk1;g1Þ;ðk2;g2Þ (assuming the two elements of Γ commute).
We have in the back of our mind a picture where such a
partial trace can be expressed as a sum over states in the
ðk1; g1Þ-twisted Hilbert space Hðk1;g1Þ with a representation
ρðk1;g1Þðk2; g2Þ of the element ðk2; g2Þ inserted acting on
those states.
Heuristically, what should the building blocks of such a

representation ρ be? We have elements of the form
ρð0;g1Þð0; g2Þ,2 which should describe how insertions of G
act on the G-twisted states. This is fine—we began by
examining the G orbifold before extending to Γ, so we
should know how G acts on its own twisted states.3

Similarly for ρðk1;1Þðk2; 1Þ, since we know how K acts
on the parent theory we could consider theK orbifold on its
own and learn how K acts on its own twisted states.
When we consider ρð0;g1Þðk2; 1Þ, however, there is room

for ambiguity. Imagine we pick some action of K on the
G-twisted states, giving us a ρð0;g1Þðk2; 1Þ which corre-
sponds to the partial trace

Zð0;g1Þ;ðk2;1Þ: ð2:2Þ

Note, however, that nothing is preventing us from modi-
fying the action of K on these states. We expect that any
correction factor B ∈ C should be a homomorphism in the
chosen element k2 (e.g., if k2 received a certain correction,
k22 should receive the square of that correction) and depend
on the G projection g1 of the twisted sector in which it acts
(as we have the requirement that the modification is trivial
for g1 ¼ 1). So (2.2) can plausibly be modified to

Bðk2; g1ÞZð0;g1Þ;ðk2;1Þ: ð2:3Þ
So far we have stipulated that Bðk; 1Þ ¼ Bð0; gÞ ¼ 1:
the former because the action of K on the parent theory
receives no modifications, the latter from the fact that B is a
homomorphism in its K argument (and quite reasonably—
we do not wish to modify the K action when no elements
of K are acting). Of course, Eq. (2.2) is not the most
general partial trace. We can observe that the partial
trace Zð−k2;1Þ;ð0;g1Þ is connected by S transformations to
Zð0;g1Þ;ðk2;1Þ, and in order to preserve modular invariance
they should receive the same coefficient. A particularly
easy way to satisfy this condition would be to assign to
Zðk;1Þ;ð0;gÞ the factor B−1ðk; gÞ—as B is a homomorphism in
K, this is equal to Bð−k; gÞ. This leads us to the ansatz that
a completely general partial trace should receive the factor

Bðk2; g1Þ
Bðk1; g2Þ

Zðk1;g1Þ;ðk2;g2Þ: ð2:4Þ

We further note that this proposed correction factor is trivial
when k1 ¼ k2 and g1 ¼ g2, which again is required by
modular invariance, as the partial trace Zðk;gÞ;ðk;gÞ is related
by T transformations to Zð0;1Þ;ðk;gÞ, which our normalization
conditions tell us receives no correction.
Will any B of this form lead to consistent results? A

concern that we were already working to avoid above is that
B could violate modular invariance on the torus. Recall that
the partial traces of an orbifold form orbits under SLð2;ZÞ,
which are the sums of all partial traces that can be related by
modular transformations. Most often it will be sufficient
and more convenient to work at the level of orbits (versus
individual partial traces) when manipulating partition
functions, so we will introduce notation to facilitate this.
We denote the sum over elements in the orbit of the partial
trace Zg;h by hZg;hi. The simplest example of this is a Z2

orbifold, in which the partition function is the sum of four
partial traces that form two orbits:

ZZ2 orbifold ¼
1

2
½Z0;0 þ Z0;1 þ Z1;0 þ Z1;1�

¼ 1

2
½hZ0;0i þ hZ0;1i�: ð2:5Þ

The orbit with three members could be written as
hZ0;1i, hZ1;0i, or hZ1;1i—any member suffices to represent
the orbit.

2As K is assumed Abelian, we will adopt additive notation
for it (and in particular write its identity as 0). G, on the other
hand, may be non-Abelian, so for it we use multiplicative
notation.

3This is more imprecise than it might seem at first glance, as
the (g ∈ G)-twisted states are not in general the same as the
ðð0; gÞ ∈ ΓÞ-twisted states. But again, this argument is purely
motivational and should be accepted as a rough sketch.
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By construction each orbit is a modular invariant
quantity [the action (1.3) of the modular group is simply
to permute the orbit’s members], and the partition function,
by virtue of being a linear combination of orbits, is itself
modular invariant. Therefore the only way to guarantee
modular invariance in general is to demand that B assign
the same phase to an entire modular orbit. This potentially
changes which linear combination of orbits forms our
partition function, but does not change the fact that it is
a linear combination of modular invariants. Note that with
this requirement, the phase of any orbit that includes
untwisted sector partial traces (i.e., partial traces of the
form Z1;g) must be trivial by the normalization conditions
we have laid out for B. This means that only modular orbits
that are disconnected from the untwisted sector could
receive such modification.
Still, we are well aware that we cannot simply take

arbitrary linear combinations of modular invariant quan-
tities and expect that the result has a consistent interpre-
tation as the partition function of a CFT. Luckily, the
conditions we have laid out so far will constrain the
coefficients that can possibly appear and will, in fact, fix
these phases to values that give consistent CFTs. Below we
apply this setup to a specific example.

A. Example: Effective 1 → Z2 → Z2 × Z2 → Z2 → 1

We begin with a Z2 symmetry and extend it by another
Z2 to form a Z2 × Z2 symmetry. The question is—can we
modify the action of the extending Z2 in the manner
described above? We could guess at B that satisfy the
conditions laid out so far (and, in fact, from the requirement
that B is a homomorphism in K we would immediately
arrive at the only nontrivial possibility), but instead we will
use our criteria to derive the answer systematically.
Writing Z2 × Z2 as f1; a; b; cg, its orbifold partition

function contains five orbits:

hZ1;1i ¼ Z1;1; ð2:6Þ

hZ1;ai ¼ Z1;a þ Za;1 þ Za;a; ð2:7Þ

hZ1;bi ¼ Z1;b þ Zb;1 þ Zb;b; ð2:8Þ

hZ1;ci ¼ Z1;c þ Zc;1 þ Zc;c; ð2:9Þ

hZa;bi ¼ Za;b þ Za;c þ Zb;a þ Zb;c þ Zc;a þ Zc;b: ð2:10Þ

As previously mentioned, our normalization conditions on
B along with the requirement (from modular invariance)
that we assign consistent phases within orbits implies
that orbits that include an untwisted sector partial trace
receive no modification. In fact, this is a general feature in
orbifold theories, which we can see from expanding partial
traces in a q series which is interpreted as a sum over states
where the exponents are the weights of the states and the

coefficients are their multiplicities. In the orbifold theory
the vacuum state should be the unique weight zero state
and should therefore appear with multiplicity one. The
only q expansions with zeroth order terms will be those
in the untwisted sector, and in a G orbifold there are jGj
such partial traces. Since the orbifold partition function
(1.2) has a normalization factor of jGj−1, all of the
untwisted sector partial traces must enter the partition
function with a unit phase to preserve the vacuum’s unit
coefficient. Modular invariance then fixes the phases of
the rest of the partial traces in their orbits. The upshot of
this line of reasoning is that only orbits that are
disconnected from the untwisted sector have the potential
to receive modifications.
In the case of Z2 × Z2 above, only Za;b is disconnected

from the untwisted sector, so in principle it can experience
a modified action from the extending Z2 and enter the
partition function with an arbitrary coefficient. The full
partition function is therefore

1

4
½hZ1;1i þ hZ1;ai þ hZ1;bi þ hZ1;ci þ αhZa;bi�; ð2:11Þ

where we have yet to fix α. Using additive notation for the
elements of K and G, the only potentially nontrivial value
of B is Bð1; 1Þ. Using (2.4), if the orbit hZa;bi were to
receive a modification, it would become (here we will
assume that c generates K)

Bð1; 1ÞZa;b þ Bð1; 1ÞZa;c þ B−1ð1; 1ÞZb;a

þ Bð1; 1ÞZb;c þ B−1ð1; 1ÞZc;a þ B−1ð1; 1ÞZc;b; ð2:12Þ

from which we see that modular invariance requires
Bð1; 1Þ ¼ B−1ð1; 1Þ, so α ¼ �1.
We can double-check this result by putting the theory on

a higher genus surface. In particular, a surface of genus two
has four homotopy cycles, so the analog of a partial trace
(1.1) can have four separate periodicity conditions and is
therefore indexed by four group elements. At genus two, a
Z2 × Z2 orbifold has six Spð4;ZÞ orbits, which enter the
partition function as

1

16
½hZ1;1;1;1i þ hZ1;1;1;ai þ hZ1;1;1;bi þ hZ1;1;1;ci
þ hZ1;1;a;bi þ βhZ1;a;1;bi�: ð2:13Þ

Again, the last of these orbits is disconnected from
the untwisted sector (i.e., contains no partial traces of
the form Z1;1;g;h) and can in principle enter with an arbitrary
coefficient, but the coefficients of the rest are fixed by
modular transformations. Our genus two surface has
the ability to degenerate to two connected tori. Under
such a degeneration, the period matrix (and therefore
partition function) can be expanded as a series. The leading
term in this expansion of the genus two partition function
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should be the genus one partition function on each torus.
Specifically, a genus two Γ partial trace has a leading term
given by

Zðk1;g1Þ;ðk01;g01Þ;ðk2;g2Þ;ðk02;g02Þ → Zðk1;g1Þ;ðk2;g2ÞZðk0
1
;g0

1
Þ;ðk0

2
;g0

2
Þ:

ð2:14Þ

Applying this degeneration to theZ2 × Z2 genus two orbits
gives (we will use a convention where the ordering of the
genus one partial traces determines which torus they are on)

hZ1;1;1;1i → hZ1;1ihZ1;1i; ð2:15Þ

hZ1;1;1;ai →hZ1;1ihZ1;ai þ hZ1;aihZ1;1i þ hZ1;aihZ1;ai;
ð2:16Þ

hZ1;1;1;bi →hZ1;1ihZ1;bi þ hZ1;bihZ1;1i þ hZ1;bihZ1;bi;
ð2:17Þ

hZ1;1;1;ai →hZ1;1ihZ1;ci þ hZ1;cihZ1;1i þ hZ1;cihZ1;ci;
ð2:18Þ

hZ1;1;a;bi → hZ1;aihZ1;bi þ hZ1;bihZ1;ai þ hZ1;bihZ1;ci
þ hZ1;cihZ1;bi þ hZ1;cihZ1;ai þ hZ1;aihZ1;ci
þ hZa;bihZa;bi; ð2:19Þ

hZ1;a;1;bi → hZ1;1ihZa;bi þ hZa;bihZ1;1i þ hZ1;aihZa;bi
þ hZa;bihZ1;ai þ hZ1;bihZa;bi þ hZa;bihZ1;bi
þ hZ1;cihZa;bi þ hZa;bihZ1;ci: ð2:20Þ

Applying these relations to (2.13), we ought to find the
square of the genus one partition function. From the
degeneration we find hZa;bihZa;bi with coefficient 1,
whereas in the square it would appear with coefficient
α2. From this we learn that α2 ¼ 1, and then we can further
fix β ¼ α.
Thus, both genus one modular invariance and demand-

ing a consistent decomposition from genus two fix theZ2 ×
Z2 torus partition function as

1

4
½hZ1;1i þ hZ1;ai þ hZ1;bi þ hZ1;ci � hZa;bi�: ð2:21Þ

The choice of plus or minus for the disconnected orbit is the
discrete torsion in the Z2 × Z2 orbifold, classified by
H2ðZ2 × Z2; Uð1ÞÞ ≅ Z2 [10]. Here we have come by it
as a choice for how the extending Z2 acts on the twisted
states of the original Z2 (note that not all discrete torsion is
of this form).
Let us briefly consider what would happen if we took

the extension class to be nontrivial, such that the full

group were Z4 instead of Z2 × Z2. We could run through
the same procedure, but we would be finished almost
immediately—a Z4 orbifold has no disconnected orbits, so
from the outset there is no possibility of nontrivial phases—
the relative phases of all of the partial traces are fixed by
modular transformations. This is corroborated by the fact
that H2ðZ4; Uð1ÞÞ is trivial, meaning this orbifold carries
no choice of discrete torsion. In the following sections we
investigate a twist on this case which will prove more
interesting.

B. Noneffective actions

Now we consider the special case where the extending
groupK has trivial action on the parent theory. Here we will
find that some of our assumptions about modular invari-
ance can be loosened, and this will lead to phase choices
that were not possible for generic K. Specifically, because
K acts trivially on the parent theory, all of the Γ partial
traces must simply be their corresponding G partial traces,
up to the action of K from (2.4):

Zðk1;g1Þ;ðk2;g2Þ ¼
Bðk2; g1Þ
Bðk1; g2Þ

Zg1;g2 : ð2:22Þ

This process of reducing Γ partial traces to G partial traces
[and their associated orbifold(s) as a whole] is known as
decomposition [4].
Again we must demand modular invariance, but some

additional structure has appeared. To see this, consider the
Γ modular orbit hZðk1;g1Þ;ðk2;g2Þi. We can use (2.22) to write
any partial trace in this orbit as a G partial trace, possibly
with a phase. Making modular transformations on both
sides of the equation, one can see that each Γ orbit
hZðk1;g1Þ;ðk2;g2Þi must consist of an integral number of copies
of the associated G orbit hZg1;g2i.
When K acted effectively, the only way to guarantee

that modular invariance of the Γ orbits held was to
demand that we assign a single phase to an entire Γ orbit.
Now, because each Γ orbit decomposes to a linear
combination of G orbits (in the form of an integer
multiple of one orbit), we are free to allow for differing
phases between the various copies of the G orbit. To see
that this new choice actually arises in practice, we move
to an example.

C. Example: Noneffective 1 → Z2 → Z4 → Z2 → 1

Again we tackle the extension of Z2 to Z4, which was
briefly mentioned above. When the extending Z2 acted
effectively, there were no choices to make and the entire
orbifold partition function followed from genus one modu-
lar transformations.
To begin, we write out the three Z4 modular orbits:

hZ0;0i ¼ Z0;0; ð2:23Þ
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hZ0;1i ¼ Z0;1 þ Z0;3 þ Z1;0 þ Z1;1 þ Z1;2 þ Z1;3 þ Z2;1

þ Z2;3 þ Z3;0 þ Z3;1 þ Z3;2 þ Z3;3; ð2:24Þ

hZ0;2i ¼ Z0;2 þ Z2;0 þ Z2;2: ð2:25Þ

To identify the Z4 partial traces with the original Z2 partial
traces, we would identify the element 2 ∈ Z4 as trivially
acting, which in this case means taking the partial trace
indices mod 2. We do this, keeping in mind to use (2.22)
to add in phases. The hZ0;2i orbit is indexed entirely by
elements of K, so it can have no nontrivial phases—it
decomposes to three copies of the parent theory partition
function.4 The orbit hZ0;1i, on the other hand, has the
potential to receive nontrivial phases. Its members decom-
pose to Z2 partial traces as

Z0;1 → Z0;1; ð2:26Þ

Z0;3 → Z0;1; ð2:27Þ

Z1;0 → Z1;0; ð2:28Þ

Z1;1 → Z1;1; ð2:29Þ

Z1;2 → B−1ð1; 1ÞZ1;0; ð2:30Þ

Z1;3 → B−1ð1; 1ÞZ1;1; ð2:31Þ

Z2;1 → Bð1; 1ÞZ0;1; ð2:32Þ

Z2;3 → Bð1; 1ÞZ0;1; ð2:33Þ

Z3;0 → Z1;0; ð2:34Þ

Z3;1 → Bð1; 1ÞZ1;1; ð2:35Þ

Z3;2 → B−1ð1; 1ÞZ1;0; ð2:36Þ

Z3;3 → Bð1; 1ÞB−1ð1; 1ÞZ1;1 ¼ Z1;1: ð2:37Þ

We see that in order to maintain modular invariance we
must have B−1ð1; 1Þ ¼ Bð1; 1Þ. TheZ4 modular orbits then
decompose as

hZ0;0i → hZ0;0i; ð2:38Þ

hZ0;1i → αhZ0;1i; ð2:39Þ

hZ0;2i → 3hZ0;0i; ð2:40Þ

where we will call α ¼ 2ð1þ Bð1; 1ÞÞ a coefficient of
decomposition. Since we have learned that Bð1; 1Þ ¼ �1,
we know that α can be 0 or 4.
Since this result is a little unusual (we do not often see

choices that are not discrete torsion in orbifolds), we once
again look to genus two for confirmation. Now we have
two tools with which we can operate on the genus two
partition function—we could degenerate its partial traces to
genus one partial traces, as we did before, or we could use
decomposition to turn the genus two Z4 partial traces into
genus twoZ2 partial traces. If we apply both operations, we
will end up with a product of linear combinations of Z2

partial traces, one on each postdegeneration torus. It would
be odd if applying these operations in different orders led to
different results—whichever route we take, we should find
a unique genus one partition function. For consistency, we
will demand that the operations of degeneration and
decomposition commute.5

In the present example, the genus two Z4 partition
function takes the form [in terms of its Spð4;ZÞ orbits]

1

16
½hZ0;0;0;0i þ hZ0;0;0;1i þ hZ0;0;0;2i�: ð2:41Þ

Under degeneration these orbits behave as

hZ0;0;0;0i → hZ0;0ihZ0;0i; ð2:42Þ

hZ0;0;0;1i →hZ0;0ihZ0;1i þ hZ0;1ihZ0;0i þ hZ0;1ihZ0;1i
ð2:43Þ

þhZ0;1ihZ0;2i þ hZ0;2ihZ0;1i; ð2:44Þ

hZ0;0;0;2i →hZ0;0ihZ0;2i þ hZ0;2ihZ0;0i þ hZ0;2ihZ0;2i;
ð2:45Þ

and under decomposition6

hZ0;0;0;0i → hZ0;0;0;0i; ð2:46Þ

hZ0;0;0;1i → 4αhZ0;0;0;1i; ð2:47Þ

hZ0;0;0;2i → 15hZ0;0;0;0i: ð2:48Þ

If we first decompose and then degenerate, Eq. (2.41)
becomes

4More generally, anything that decomposes to the parent
theory partition function has g1 ¼ g2 ¼ 1 and by the normaliza-
tion conditions on B can receive no phases.

5When K acts trivially and the extended group Γ is non-
Abelian, subtleties appear in the degeneration process due to
the presence of multiple weight-zero operators. We give an
example of such an extension and discuss this phenomenon
further in Appendix A.

6Equations (2.14) and (2.22) imply that the genus two phases
from B are simply the product of the corresponding genus one
phases, which is how we have calculated the coefficients of
decomposition at genus two.
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1

16
½16hZ0;0ihZ0;0i þ 4αðhZ0;1ihZ0;0i þ hZ0;0ihZ0;1i
þ hZ0;1ihZ0;1iÞ�: ð2:49Þ

If instead we perform degeneration then decomposition, we
find

1

16
½16hZ0;0ihZ0;0i þ 4αðhZ0;0ihZ0;1i þ hZ0;1ihZ0;0iÞ
þ α2hZ0;1ihZ0;1i�: ð2:50Þ

In order for these to be equal, we see that we must have
α2 ¼ 4α, so α can be 0 or 4, matching the calculation from
the torus.
To summarize, we began with a Z2 symmetry. We

extended it to Z4 by another Z2 symmetry which acts
trivially on the parent theory. We have found that there
exist two choices for the Z4 orbifold, depending on how
the extending Z2 acts in the twisted sector of the original.
The resulting Z4 partition function takes the form

1

4
½4hZ0;0i þ αhZ0;1i�; ð2:51Þ

where α can be 4 or 0, for a respective trivial or nontrivial
action on the twisted states. This choice, which in some
ways resembles a choice of discrete torsion, only exists
when the extending group acts trivially. When α ¼ 0 and
Bð1; 1Þ ¼ −1, this exactly matches our result from Sec. I—
we find that the Z4 orbifold simply returns the parent
theory. In our heuristic attempt to “cure” the Z2 orbifold of
its anomaly, we were led to a nontrivial modification of K’s
action on G’s twisted sectors.

D. Classification of quantum symmetries

Since we will be discussing it regularly, we ought to give
this choice of K’s action on the G-twisted states a name—
we call it the quantum symmetry7 of the orbifold. We would
like to have some way to classify the distinct choices of
quantum symmetry, as H2ðG;Uð1ÞÞ does for discrete
torsion. In order to obtain such a description, we start
with the case where K is central in Γ—partial results on the
general case where K is not assumed to be central or
Abelian are discussed in Appendix B.
The setup for this section is that we have an extension

1 → K → Γ → G → 1 with K finite Abelian and central in
Γ. The extension class is cðg1; g2Þ ∈ H2ðG;KÞ, which we
take to be normalized [cð1; gÞ ¼ cðg; 1Þ ¼ 0 ∈ K]. We
write elements of Γ as elements ðk; gÞ of K ×G, and the
group operation is given by

ðk1; g1Þðk2; g2Þ ¼ ðk1 þ k2 þ cðg1; g2Þ; g1g2Þ: ð2:52Þ

As argued earlier in the section, in order to guarantee
general modular invariance, B should assign the same
phase to each partial trace in a given Γ orbit. Consider the
partial trace Zðk1;g1Þ;ðk2;g2Þ. The possible modifications to the
action of K are given by (2.4)

Bðk2; g1Þ
Bðk1; g2Þ

Zðk1;g1Þ;ðk2;g2Þ; ð2:53Þ

where, as before, B is a homomorphism in its K argument
and is normalized such that Bð0; gÞ ¼ Bðk; 1Þ ¼ 1. Con-
sider the modular transformation

Zðk1;g1Þ;ðk2;g2Þðτ − 1Þ ¼ Zðk1;g1Þ;ðk1;g1Þðk2;g2ÞðτÞ
¼ Zðk1;g1Þ;ðk1þk2þcðg1;g2Þ;g1g2ÞðτÞ: ð2:54Þ

Performing this transformation on (2.53) yields

Bðk2; g1Þ
Bðk1; g2Þ

Zðk1;g1Þ;ðk1þk2þcðg1;g2Þ;g1g2Þ: ð2:55Þ

If, however, we first made the modular transformation, and
then used (2.53) to assign phases, we would find

Bðk1 þ k2 þ cðg1; g2Þ; g1Þ
Bðk1; g1g2Þ

Zðk1;g1Þ;ðk1þk2þcðg1;g2Þ;g1g2Þ:

ð2:56Þ

The phases we assign should be unambiguous, so these two
operations should commute. Therefore we require that

Bðk2; g1Þ
Bðk1; g2Þ

¼ Bðk1 þ k2 þ cðg1; g2Þ; g1Þ
Bðk1; g1g2Þ

: ð2:57Þ

Now we need to keep in mind that the partial trace we
began with, Zðk1;g1Þ;ðk2;g2Þ, is only defined when the two
elements of Γ that index it commute. Specifically, this
means that the group elements appearing in (2.57) must
satisfy

cðg1; g2Þ ¼ cðg2; g1Þ and g1g2 ¼ g2g1: ð2:58Þ

Rearranging (2.57) (using the fact that B is a homomor-
phism in K), we get

Bðk1; g1g2Þ ¼ Bðk1; g1ÞBðk1; g2ÞBðcðg1; g2Þ; g1Þ: ð2:59Þ

Focusing for the moment on split extensions (i.e., ones in
which the extension class is trivial), we see that modular
invariance requires B to be a homomorphism in G:

Bðk; g1g2Þ ¼ Bðk; g1ÞBðk; g2Þ: ð2:60Þ7This has no relation to the concept of a quantum group.
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This means that distinct choices of B live in HomðG; K̂Þ,
where K̂ ¼ HomðK;Uð1ÞÞ is the Pontryagin dual of K.
When the extension is not split, however, a quantum

symmetry given by an element of HomðG; K̂Þ now has
a potential obstruction to modular invariance given by
Bðcðg1; g2Þ; g1Þ. We have seen above, in the examples
where Γ was Z2 × Z2 and Z4, that some quantum sym-
metries are equivalent to turning on discrete torsion in Γ
while some are not. We can check when this will happen by
asking when the insertion from our quantum symmetry
defines a two-cocycle on Γ. We define

ωðγ1; γ2Þ ¼ ωððk1; g1Þ; ðk2; g2ÞÞ ¼ Bðk2; g1Þ: ð2:61Þ

Then,

dωðγ1; γ2; γ3Þ ¼
ωðγ2; γ3Þωðγ1; γ2γ3Þ
ωðγ1; γ2Þωðγ1γ2; γ3Þ

¼ Bðcðg2; g3Þ; g1Þ:

ð2:62Þ

So the obstruction to the quantum symmetry matching a
choice of discrete torsion is Bðcðg2; g3Þ; g1Þ; we see from
(2.59) that an insertion of B ∈ HomðG; K̂Þ where this
obstruction vanishes is compatible with modular invariance
in Γ.
The case of most interest to us is the one in which K acts

trivially on the parent theory. Because we now have the
option of only requiring modular invariance of the G orbits
postdecomposition (as opposed to the full Γ orbits),
the corresponding modular invariance equations involve
constrained sums over elements of k and solving for a
general form of B becomes more difficult. At this point
we will switch to conjecture and guess, based on the
conditions derived above, that distinct quantum sym-
metries are classified by H1ðG; K̂Þ [more generally
H1ðG;H1ðK;Uð1ÞÞÞ for K non-Abelian]. In support of
this claim, in Sec. V we will check that the choices of
quantum symmetry in the examples we examine are
consistent with H1ðG; K̂Þ. The most straightforward way
to extend the analysis of this section would be to allow K
not to be central in Γ, which means we would have a
nontrivial action of G on K. Appendix B contains the
beginnings of such a treatment and, while the results there
are not sufficient to cover the most general cases, they are
satisfactory for all of the noncentral examples we present
in Sec. V.

III. ANOMALY BASICS

To see the effect of anomalies on the transformations of
partial traces, we represent them in terms of TDLs. With
each line we associate a group element and an orientation
specified by an arrow. Two lines representing the elements
g1 and g2 can be joined at a junction to form a line
representing g1g2, as in Fig. 1.

Anomalies appear in this picture when we consider the
intersection of four lines associated with g1g2g3g4 ¼ 1.
There are two ways we could resolve this interaction
through trivalent junctions, pictured in Fig. 2.8 They turn
out to be related by a 3-cocycle ωðg1; g2; g3Þ [11].
Using this relation, we evaluate the modular T trans-

formation of a partial trace Zg;h, the process of which is
shown in Fig. 3. To begin, in Fig. 3(a) we represent the
partial trace Zg;hðτ þ 1Þ in terms of TDLs by drawing the
group-valued periodicity conditions on the torus’ funda-
mental domain. This representation is just a choice of
convention, and it will not necessarily have all of the nice
properties of partial traces in the absence of an anomaly. In
particular, its modular transformation is nontrivial and so
the modular orbits used to build the orbifold partition
functions will need to have extra ω-dependent phases.
For example, to understand the modular T transformation
we reorient the picture to our new fundamental domain
indicated by the dashed lines, landing in Fig. 3(b). Finally,
we use the swap move, picking up a phase ωðg−1; gh−1; gÞ,
and arriving at the picture corresponding to Zg;g−1hðτÞ in
Fig. 3(c). Iterating this process, we find

Zg;hðτ þ nÞ ¼ Zg;g−nhðτÞ
Yn
i¼1

ωðg−1; gih−1; gÞ: ð3:1Þ

In some cases we will assume that the relative phases
acquired between different partial traces in these trans-
formations can be absorbed into the definition of the partial
trace relative to the TDL picture. However, we cannot make
such accommodations when n ¼ ordðgÞ. In that case (3.1)
becomes

Zg;hðτ þ ordðgÞÞ ¼ Zg;hðτÞ
YordðgÞ
i¼1

ωðg−1; gi−1h−1; gÞ; ð3:2Þ

FIG. 1. A three-way junction.

8We also should specify an ordering for each trivalent junction
that appears. The convention that we follow is that outgoing lines
are ordered clockwise, and in each case the final line in the order
is marked with a red x.
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and we have a statement purely regarding the modular
transformation properties of Zg;hðτÞ. The phase acquired in
this way is meaningful in that it cannot be removed via local
redefinitions of the traces; i.e., it is global. In fact,we can check
that it is something that depends only on the cohomology class
of ω and not on any specific choice of representative. If we
were to shift ω by an exact quantity dλ, we would have

ωðg−1; gi−1h−1; gÞ → ωðg−1; gi−1h−1; gÞ

×
λðgi−1h−1; gÞλðg−1; gih−1Þ
λðgi−2h−1; gÞλðg−1; gi−1h−1Þ : ð3:3Þ

Under this transformation, the phase in (3.2) becomes

YordðgÞ
i¼1

ωðg−1; gi−1h−1; gÞ
YordðgÞ
j¼1

λðgj−1h−1; gÞλðg−1; gjh−1Þ
λðgj−2h−1; gÞλðg−1; gj−1h−1Þ :

ð3:4Þ

Because the product runs over all powers of g, the ratio of
the various λ will be trivial, and as promised our phase
depends only on the cohomology class of ω ∈ H3ðG;Uð1ÞÞ.
This demonstrates that, at least as far as the modular

FIG. 2. Four-way junctions can be resolved in two distinct but related ways.

(a)

(b) (c)

FIG. 3. We evaluate the modular T transformation of an anomalous partial trace.
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transformations of partial traces are concerned, distinct
anomalies are classified by cohomology.
To simplify matters further, one can show that the

anomalous phase arising in (3.2) is independent of h. To
do this, we examine two specific values of dω:

dωðg−1; gi−1; h−1; gÞ

¼ ωðg−1; gi−1; h−1Þωðg−1; gi−1h−1; gÞωðgi−1; h−1; gÞ
ωðgi−2; h−1; gÞωðg−1; gi−1; h−1gÞ

ð3:5Þ

and

dωðg−1; gi−1; g; hÞ

¼ ωðg−1; gi−1; gÞωðg−1; gi; hÞωðgi−1; g; hÞ
ωðgi−2; g; hÞωðg−1; gi−1; ghÞ : ð3:6Þ

Noting that many terms will cancel telescopically, we can
simplify the product of their ratio to

YordðgÞ
i¼2

dωðg−1; gi−1;h−1; gÞ
dωðg−1; gi−1; g;h−1Þ ¼

YordðgÞ
i¼1

ωðg−1; gi−1h−1; gÞ
ωðg−1; gi−1; gÞ : ð3:7Þ

Because ω is a cocycle, the left-hand side is equal to one
and we see that

YordðgÞ
i¼1

ωðg−1; gi−1h−1; gÞ ¼
YordðgÞ
i¼1

ωðg−1; gi−1; gÞ: ð3:8Þ

This version of the result appears in [12].
Having examined modular T transformations, we should

not neglect the S transformations. We can access the phases
acquired under S transformations by similar TDL calcu-
lations. As with T transformations, these phases can be
absorbed into the definition of the partial traces relative to
the TDL picture until we find a relation of a partial trace to
itself, which happens after four successive S transforma-
tions. There is the potential for a global anomaly here,
but one can check that the phase acquired under S4 is
identically trivial. So in working with anomalous partial
traces, we can focus solely on the anomalies that arise in the
T transformations of the untwisted sector partial traces.
We now also understand how to determine the anomaly

in the extended symmetry Γ. Specifically, if we begin with
a symmetry G and an ω ∈ H3ðG;Uð1ÞÞ describing its
anomaly, the anomaly in Γ will be given by the pullback
φ�ω [specifically its cohomology class in H3ðΓ; Uð1ÞÞ]
where φ is the homomorphism Γ → G appearing in the
extension.
For an explicit example, we look at cyclic ZN sym-

metries. In [13] it was argued that a ZN symmetry with an
order k anomaly can be extended to a nonanomalous ZkN

symmetry. We demonstrate that fact here from the
perspective of cohomology. The relevant anomalies are
classified by H3ðZN;Uð1ÞÞ ≅ ZN—we can write the gen-
erators of each class as

ωmða; b; cÞ ¼ exp ½2πimaðhbi þ hci − hbþ ciÞ=N2�;
ð3:9Þ

where m ∈ f0;…; N − 1g determines the class in
H3ðZN;Uð1ÞÞ and a, b, c are integers that label the
elements of ZN ; hzi≡ z mod N maps integers into
the range f0;…; N − 1g. Let k ¼ N= gcdðN;mÞ (so k is
the order of the element m ∈ ZN). There is a natural
projection φ from ZkN to ZN which is reduction modulo N,
and φ�ωmða; b; cÞ will be given by the expression (3.9),
now taking a; b; c ∈ f0;…; kN − 1g.
We can construct an explicit trivialization of φ�ωm in

H3ðZkN; Uð1ÞÞ. Define a two-form which takes elements of
ZkN ¼ f0;…; kN − 1g as arguments:

λða; bÞ ¼ exp ½−2πimahbi=N2�: ð3:10Þ

We can calculate dλ from dλða; b; cÞ ¼ λðb; cÞ×
λ−1ðaþ b; cÞλða; bþ cÞλ−1ða; bÞ, which yields

dλða; b; cÞ ¼ exp ½2πimaðhbi þ hci − hbþ ciÞ�=N2�
¼ φ�ωmða; b; cÞ: ð3:11Þ

So ωm indeed pulls back to something trivial in cohomol-
ogy. As a result, the extended ZkN symmetry has vanishing
anomaly.
Finally, we mention that there can exist subgroups of G

which display no anomaly, even if G is anomalous. We call
such subgroups nonanomalous. Let H be a subgroup of G
with ϕ∶H → G inclusion and ω ∈ H3ðG;Uð1ÞÞ giving the
anomaly in G. If the pullback ϕ�ω is in the trivial class of
H3ðH;Uð1ÞÞ, the subgroup H is nonanomalous. With this
definition, it is clear from (3.2) that none of the partial
traces indexed purely by elements of H experience anoma-
lous modular transformations. Note that there always exists
at least one nonanomalous subgroup: the trivial one.
Nonanomalous subgroups will be important going forward,
as they describe the consistent symmetries of our theory.
In fact, we can now properly state what we mean

by resolving or trivializing an anomaly in an orbifold.
We begin with a symmetry G having anomaly ω ∈
H3ðG;Uð1ÞÞ. We extend G to a larger group Γ by 1 →
K → Γ → G → 1 where K acts trivially on the parent
theory. We form the orbifold by Γ (making any relevant
choices, such as discrete torsion and quantum symmetry)
and apply decomposition to send all the Γ orbits toG orbits.
The general form of the result will be a direct sum of
orbifolds by subgroups of G. If all subgroups appearing
in this decomposition are nonanomalous, the result is
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consistent and we say that the extension to Γ has resolved
the anomaly in the G orbifold.

IV. TACHIKAWA’S EXTENSION

In this section we will examine a group extension
which for any symmetry G and anomaly ω will guarantee
that ω pulls back to the trivial class in H3ðΓ; Uð1ÞÞ. (A
proof that such an extension always exists originates
from the condensed matter literature in [14].) After
presenting the construction we note that it naturally
produces an element of H1ðG; K̂Þ which leads to a
natural choice of quantum symmetry. When we examine
specific examples of orbifolds by this extended group, we
will see that they are in general larger than necessary;
i.e., we end up with multiple redundant copies of the
cured theory. We present a method for reducing the result
to something minimal, which will be used in subsequent
examples.

A. Original construction

Let G be a finite group, with ω ∈ H3ðG;Uð1ÞÞ its
(potential) anomaly. In [3], Tachikawa gives an explicit
construction, which we now review, of a finite group
extension

1 ⟶ A⟶
i

Γ⟶
φ

G ⟶ 1; ð4:1Þ

such that φ�ω is exact; i.e., there exists λ ∈ C2ðΓ; Uð1ÞÞ
such that dλ ¼ φ�ω.
Define A as a free Z-module generated by elements

xg1;g2 for g1, g2 ∈ G, with the additional restriction
that x1;g ¼ xg;1 ¼ 0 for all g ∈ G (where 1 is the identity
element in G). We would like xg;h, taken as an element
of C2ðG;AÞ, to serve as our extension class—this requires
it to be closed. The closure condition it must satisfy is

0 ¼ g1 · xg2;g3 þ xg1;g2g3 − xg1;g2 − xg1g2;g3 : ð4:2Þ

We can guarantee this equation holds if we use it to define
an action of G on A as

g1 · xg2;g3 ¼ xg1g2;g3 − xg1;g2g3 þ xg1;g2 ; ð4:3Þ

making A a left G module.
Explicitly, we define Γ as the set A ×G ¼ fðm; gÞjm ∈

A; g ∈ Gg, and we specify the group multiplication in Γ as

ðm; gÞðn; hÞ ≔ ðmþ g · nþ xg;h; ghÞ: ð4:4Þ

This is associative because of the way we defined the group
action,

ððm; gÞðn; hÞÞðp; kÞ ¼ ðmþ g · nþ xg;h; ghÞðp; kÞ
¼ ðmþ g · nþ xg;h þ gh · p

þ xgh;k; ghkÞ; ð4:5Þ

ðm; gÞððn; hÞðp; kÞÞ ¼ ðm; gÞðnþ h · pþ xh;k; hkÞ
¼ ðmþ g · nþ gh · pþ g · xh;k

þ xg;hk; ghkÞ; ð4:6Þ

and these are equal using the definition (4.3) of g · xh;k. The
map φ∶Γ → G is projection, φððm; gÞÞ ¼ g, and the map
i∶A → Γ is inclusion, iðmÞ ¼ ðm; 1Þ.
In order to show that the pullback of Γ is trivial, we

define

ðbðgÞÞðxh;kÞ ≔ ωðg; h; kÞ: ð4:7Þ

Note that this quantity will depend on the representative
chosen forω, not just its cohomology class—we discuss the
impact of this dependence on the construction in Sec. IV C.
We can extend this by linearity so that for each g ∈ G,

bðgÞ is a homomorphism from A to Uð1Þ. These maps
additionally satisfy a sort of crossed homomorphism
condition9

ðbðghÞÞðmÞ ¼ ðbðhÞÞðmÞðbðgÞÞðh ·mÞ: ð4:9Þ

To see that this is true, note that

ðbðgÞÞðh · xk;lÞðbðhÞÞðxk;lÞ
ðbðghÞÞðxk;lÞ

¼ ðbðgÞÞðxhk;l − xh;kl þ xh;kÞðbðhÞÞðxk;lÞ
ðbðghÞÞðxk;lÞ

¼ ωðg; hk;lÞωðg; h; klÞ−1ωðg; h; kÞωðh; k;lÞ
ωðgh; k;lÞ

¼ dωðg; h; k;lÞ ¼ 1; ð4:10Þ

since ω is closed.
Finally, in order to check that the G anomaly has been

trivialized, we define λ ∈ C2ðΓ; Uð1ÞÞ by

9A bit more precisely, if we define ðb̂ðgÞÞðmÞ ¼ ðbðgÞÞ×
ðg−1 ·mÞ, then b̂ðgÞ is a crossed homomorphism in the usual
sense,

ðb̂ðghÞÞðmÞ ¼ ðb̂ðhÞÞðg−1 ·mÞðb̂ðgÞÞðmÞ
¼ ðg · b̂ðhÞÞðmÞðb̂ðgÞÞðmÞ: ð4:8Þ

This means that b̂ is coclosed as an element of
C1ðG;HomðA;Uð1ÞÞÞ. However, we will continue to use the
closely related function b in this section, partly to match the
convention in [3].
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λððm; gÞ; ðn; hÞÞ ≔ ðbðgÞÞðnÞ: ð4:11Þ

By explicit computation we have

dλððm; gÞ; ðn; hÞ; ðp; kÞÞ

¼ λððn; hÞ; ðp; kÞÞλððm; gÞ; ðnþ h · pþ xh;k; hkÞÞ
λððmþ g · nþ xg;h; ghÞ; ðp; kÞÞλððm; gÞ; ðn; hÞÞ

¼ ðbðhÞÞðpÞðbðgÞÞðnþ h · pþ xh;kÞ
ðbðghÞÞðpÞðbðgÞÞðnÞ

¼
�ðbðhÞÞðpÞðbðgÞÞðh · pÞ

ðbðghÞÞðpÞ
�
ðbðgÞÞðxh;kÞ

¼ ωðg; h; kÞ ¼ φ�ωððm; gÞ; ðn; hÞ; ðp; kÞÞ: ð4:12Þ

So we find that the pullback of ω is exact and therefore
trivial in cohomology. As promised, the extended group Γ
has vanishing anomaly. This leads us to ask what form the
orbifold by this Γ takes.

B. Application to orbifolds

As discussed in Sec. II, in forming the orbifold by Γ there
may be multiple consistent choices of quantum symmetry,
the action of A on theG-twisted states. We argued that such
actions should be classified by H1ðG; ÂÞ. In running
through this construction we have, in fact, come across
such a cocycle—the quantity b defined in (4.7). From
(2.22), then, we should relate the Γ partial traces to G
partial traces by

Zða1;g1Þ;ða2;g2Þ ¼
ðbðg1ÞÞða2Þ
ðbðg2ÞÞða1Þ

Zg1;g2 : ð4:13Þ

Using the definition of b, we can rewrite the above in terms
of ω. Writing

a1 ¼
X

g;h∈Gnf1g
nð1Þg;hxg;h; a2 ¼

X
g;h∈Gnf1g

nð2Þg;hxg;h; ð4:14Þ

as general elements of the Z-module A, we have

Zða1;g1Þ;ða2;g2Þ ¼
Y
h1 ;h2
k1 ;k2
∈Gnf1g

ωðg1; h1; k1Þn
ð1Þ
h1 ;k1

× ω−1ðg2; h2; k2Þn
ð2Þ
h2 ;k2Zg1;g2 : ð4:15Þ

The full Γ orbifold partition function is then

1

jGjjZjðjGj−1Þ2
X
g1 ;g2∈G
nð1Þ ;nð2Þ

Y
h1 ;h2
k1 ;k2
∈Gnf1g

ωðg1; h1; k1Þn
ð1Þ
h1 ;k1

× ωðg2; h2; k2Þn
ð2Þ
h2 ;k2Zg1;g2 ; ð4:16Þ

where here nð1Þ and nð2Þ in the sum are each the collection
of ðjGj − 1Þ2 exponents to the ω in the product, and each
individually runs over all integers. Because the orbifold
group is infinite, such expressions should be taken as
formal. After a brief examination of this construction we
will return to working exclusively with finite orbifolds.
We can rearrange the above expression to cast the group

extension as a modification of the original G orbifold:

1

jGj
X

g1;g2∈G
Zg1;g2

2
64 1

jZjðjGj−1Þ2
X

nð1Þ;nð2Þ

Y
h1 ;h2
k1 ;k2
∈Gnf1g

ωðg1; h1; k1Þn
ð1Þ
h1 ;k1

× ωðg2; h2; k2Þn
ð2Þ
h2 ;k2

3
75: ð4:17Þ

Let us see what this becomes for specific examples.
First, we have the case that the theory is not actually

anomalous, in which all of the ω are trivial. The products
are then all trivial and performing both n sums gives us the
partition function (for simplicity in this toy example we
assume Γ is Abelian):

jZjðjGj−1Þ2
jGj

X
g1;g2∈G

Zg1;g2 ; ð4:18Þ

an infinite direct product of G orbifolds.
Now we look at the simplest anomalous symmetry, a Z2

with nonzero anomaly. The products in (4.17) have only a
single term, so we can express the full partition function as

1

2

X
g1;g2∈Z2

Zg1;g2

�
1

jZj
X∞

n1;n2¼−∞
ωðg1; 1; 1Þn1ωðg2; 1; 1Þn2

�
:

ð4:19Þ

As a reminder we have ωð0; 1; 1Þ ¼ 1 and ωð1; 1; 1Þ ¼ −1.
The four terms in the g1, g2 summand are then

Z0;0
1

jZj
X∞

n1;n2¼−∞
¼ jZjZ0;0; ð4:20Þ

Z0;1
1

jZj
X∞

n1;n2¼−∞
ð−1Þn1 ¼ 0; ð4:21Þ

Z1;0
1

jZj
X∞

n1;n2¼−∞
ð−1Þn2 ¼ 0; ð4:22Þ

Z1;1
1

jZj
X∞

n1;n2¼−∞
ð−1Þn1þn2 ¼ 0; ð4:23Þ
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so the total orbifold partition function, cured of its
anomaly, is

jZj
2

Z0;0: ð4:24Þ

As (4.18) and (4.24) show, an orbifold by Γ defined in
this way is massively overcounted and contains far more
copies of the theory than are necessary to cure the anomaly.
Fortunately, Tachikawa gives a prescription for reducing A
to a finite group [3]; we will sketch its application in the
context of orbifolds. To begin with, define the quantity δ as
the smallest positive integer for which ωðg1; g2; g3Þδ ¼ 1
for all g1; g2; g3 ∈ G. Looking at the quantity in brackets in
(4.17), it should be clear that the various n will be δ
periodic. So we can safely take each n to range from 0 to
δ − 1. For compactness of notation, let us define a new
quantity

Λg1;g2ðωÞ ¼
1

δðjGj−1Þ2
X

nð1Þ;nð2Þ mod δ

Y
h1 ;h2
k1 ;k2
∈Gnf1g

ωðg1; h1; k1Þn
ð1Þ
h1 ;k1

× ωðg2; h2; k2Þn
ð2Þ
h2 ;k2 : ð4:25Þ

For finite δ, Λ will be finite. Now we can express the G
orbifold partition function, corrected for anomalies, as

1

jGj
X
g1;g2

Zg1;g2Λg1;g2ðωÞ: ð4:26Þ

With this refinement, we should now have A ≅ ZðjGj−1Þ2
δ .

Let us reexamine the examples from earlier with this new,
finite version of A.
When our theory is nonanomalous, we can take ω to be

trivial.10 Then δ ¼ 1 (in this case we take A to be the trivial
group) and Λg1;g2ðωÞ ¼ 1 across the board, so (4.26) simply
becomes the usual orbifold partition function.
For the anomalous Z2 theory, we will have δ ¼ 2

which gives A ≅ Z2. We find Λ0;0 ¼ 2 while Λ0;1 ¼
Λ1;0 ¼ Λ1;1 ¼ 0. The full partition function (4.26) then
becomes a single copy of the parent theory partition
function Z0;0, which agrees with the calculation in Sec. I.

C. Minimal extensions

In both of the examples we have examined, the result of
Tachikawa’s construction with finite A is that we have a
single copy of the anomaly-resolved partition function. We
refer to any extension Γ the orbifold by which produces a
single copy of a CFT (versus a direct sum) as minimal, as

this is in some sense the smallest extension we could hope
for that resolves the anomaly in that way.11

Will reducing A to a finite group always yield a minimal
extension? For a counterexample, let us examine a Z3

symmetry. We will write the 3-cocycles as

ωð1; 1; 1Þ ¼ α; ωð1; 1; 2Þ ¼ αβ−1ζ;

ωð1; 2; 1Þ ¼ α−1ζ; ωð1; 2; 2Þ ¼ α−1βζ;

ωð2; 1; 1Þ ¼ β; ωð2; 1; 2Þ ¼ αζ2;

ωð2; 2; 1Þ ¼ β−1ζ2; ωð2; 2; 2Þ ¼ α−1ζ2; ð4:27Þ

where ζ3 ¼ 1 determines the cohomology class and jαj ¼
jβj ¼ 1 parametrize the freedom to shift by coboundaries.
We will start by picking α ¼ β ¼ 1, while ζ ¼ exp ð2πi=3Þ
or exp ð4πi=3Þ (both nontrivial choices of anomaly will
yield the same results). Then we find Λ0;0 ¼ 34 and all
other Λ vanish. As expected we recover the parent theory
partition function (Z3 can have no nonanomalous sub-
groups besides the identity), but with a coefficient of 33.
Recall that this method gave an extending group

A ≅ ZðjGj−1Þ2
δ , which in this case is Z4

3. However, from
the ZN example presented in Sec. III, one can construct a
trivializing extension with A ¼ Z3, Γ ¼ Z9 (which is, in
fact, minimal). So our extending group was too large by a
factor of Z3

3, explaining the 33 overcounting. Therefore the
procedure that we have outlined to generate a finite
extension will not always produce a minimal one.
What if we do not make the “obvious” choice of

α ¼ β ¼ 1? A simple example of this will be to leave β ¼
1 but pick α ¼ −1. Now we will be forced to take δ ¼ 6
since ω includes an order two component. Indeed, if we
were to try to leave δ as 3, we would find that the
anomalous partial traces no longer drop out of the partition
function. Properly setting δ to 6 and calculating the various
Λ, we once again find that only Λ0;0 is nonvanishing, this
time having a value of 64. So the resulting partition function
will be 2433Z0;0. By picking a cocycle representative that
increased our value of δ, we were forced into adding more
copies of the theory, and we found ourselves even farther
from a minimal extension.
The most extreme example of this would be if we were to

take α and/or β to have infinite multiplicative order; i.e., the
corresponding angles were irrational multiples of 2π. Then
we can no longer find any finite value for δ and we are
forced to use the full expression (4.17) to build the orbifold.

10Of course, trivial anomaly does not imply that ω is trivial,
only that it is in the trivial class in H3ðG;Uð1ÞÞ. The case of a
nontrivial ω giving a trivial anomaly falls under the following
section’s discussion of representative dependence.

11To give a clarifying example, consider an anomalous Z4

symmetry whose Z2 subgroup is nonanomalous. We could
produce extensions 1 → Z4 → Z16 → Z4 → 1 and 1 → Z2 →
Z8 → Z4 → 1 whose orbifolds yield one copy of the parent
theory and one copy of the orbifold by the nonanomalous Z2

subgroup, respectively. While one of these extensions produces a
smaller extended group, by our definition they are both minimal
since they both lead to a single copy of a CFT.
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This makes sense when we think in terms of a group action.
While choosing a different representative for ω’s cohomol-
ogy class does not change the anomaly in question, it does
change the phases (4.13) coming from the quantum
symmetry. Having A act by irrational phases means that
in order to build a sum where all of the anomalous elements
cancel out, we are forced into taking an infinite number of
copies of our theory. This representative dependence is
endemic to the construction and will be important to keep
in mind going forward.

D. Refined construction

Here we present a method for reducing A further. In
many cases, when ω is a suitably chosen representative (the
caveats of the previous section still apply here), this
construction will yield a minimal extension.
Define a submodule Ā ⊂ A (we can begin from either the

finite or the original infinite version of A here) by

Ā ¼ fm ∈ AjðbðgÞÞðmÞ ¼ 1; ∀ g ∈ Gg; ð4:28Þ

where b was defined in (4.7). This is a submodule by the
linearity of b and by the fact that for v ∈ Ā and any
g; h ∈ G, we have, using (4.9),

ðbðgÞÞðh · vÞ ¼ ðbðghÞÞðvÞðbðhÞÞðvÞ−1 ¼ 1; ð4:29Þ

so h · v ∈ Ā.
Now define the quotient spaceC ¼ A=Ā, the equivalence

classes [m] of A under the relation m ∼ n iff m − n ∈ Ā.
Then we define Γ̂ as the set C ×G with group multipli-
cation

ð½m�; gÞð½n�; hÞ ¼ ð½mþ g · nþ xg;h�; ghÞ; ð4:30Þ

which is well-defined since it does not depend on the
representatives m and n, only on their equivalence classes
[m] and [n]. Associativity follows from associativity in Γ.
Again the map φ∶Γ̂ → G is just projection.
Then we can define λ ∈ C2ðΓ̂; Uð1ÞÞ by

λðð½m�; gÞ; ð½n�; hÞÞ ¼ ðbðgÞÞðnÞ: ð4:31Þ

This is well-defined because of the definition of Ā, which
ensures that if we replace n by a different representative
nþ v, v ∈ Ā, the right-hand side remains invariant. The
calculation showing that dλ ¼ φ�ω proceeds exactly as
before, ensuring that we can continue not to worry about
anomalies in Γ̂.

V. EXAMPLES

We now construct, for various choices of symmetry G
and anomaly ω ∈ H3ðG;Uð1ÞÞ, trivializing extensions of
G. For most examples our method of choice will be the

refinement of Tachikawa’s procedure laid out above in
Sec. IV D. In each case we show how the anomaly would
affect the G-orbifold’s torus partition function, explicitly
construct the orbifold partition function of the extended
group Γ, and show how that theory can be expressed in
terms of an orbifold (or direct sum of orbifolds) by non-
anomalous subgroup(s) of G.

A. G=Z2

To begin, we return to the example with which we began
the paper, the simple case of an anomalous Z2 symmetry.
In Sec. I we treated this example in a rather ad hoc fashion;
here we will be able to check that the methods we have
laid out so far reproduce those results. It is easy to see that,
assuming as always that we are using normalized cocycles,
the only element of H3ðZ2; Uð1ÞÞ that can be nontrivial
is ωð1; 1; 1Þ (in additive notation). The choice, then, of
ωð1; 1; 1Þ ¼ �1will characterize nonanomalous vs anoma-
lous Z2 symmetries. In the following subsections we not
only rederive Z4 as a minimal trivializing extension, but
showcase additional, qualitatively different trivializing
extensions.

1. 1 → Z2 → Z4 → Z2 → 1

Let us apply the methods of Secs. IVA and IV D to find a
trivializing extension. In this case A ¼ fnx1;1jn ∈ Zg.
Taking the nontrivial choice of ω, the cocycle b is given
by (4.7) as

ðbð0ÞÞðnx1;1Þ ¼ 1; ðbð1ÞÞðnx1;1Þ ¼ ð−1Þn: ð5:1Þ

It is then easy to see that Ā ¼ f2nx1;1jn ∈ Zg and
C ¼ f½0�; ½x1;1�g ≅ Z2. Under this identification, b has a
single nontrivial value:

ðbð1ÞÞð½x1;1�Þ ¼ −1: ð5:2Þ

This will correspond to choosing the nontrivial element
in H1ðZ2; Ẑ2Þ ≅ Z2.
The larger group Γ̂ has four elements, and one readily

sees that Γ̂ ≅ Z4, since

ð½0�; 1Þ2 ¼ ð½x1;1�; 0Þ; ð½0�; 1Þ3 ¼ ð½x1;1�; 1Þ;
ð½0�; 1Þ4 ¼ ð½0�; 0Þ: ð5:3Þ

Thus the anomaly is trivialized by the extension 1 → Z2 →
Z4 → Z2 → 1, matching our previous result.
To reproduce (1.6)–(1.21), we use (4.13) to relate the Z4

partial traces to those of the original Z2 orbifold. As in
Sec. II we will use hZg;hi to denote the sum of all partial
traces in the modular orbit of Zg;h. For a Z2 orbifold we
have two orbits:
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hZ0;0i ¼ Z0;0 and hZ0;1i ¼ Z0;1 þ Z1;0 þ Z1;1: ð5:4Þ

A Z4 orbifold consists of three orbits:

hZ0;0i ¼ Z0;0; ð5:5Þ

hZ0;1i ¼ Z0;1 þ Z0;3 þ Z1;0 þ Z1;1 þ Z1;2 þ Z1;3 þ Z2;1

þ Z2;3 þ Z3;0 þ Z3;1 þ Z3;2 þ Z3;3; ð5:6Þ

hZ0;2i ¼ Z0;2 þ Z2;0 þ Z2;2: ð5:7Þ

To express elements of Γ̂ in additive notation, we would
identify

0 ¼ ð½0�; 0Þ; 1 ¼ ð½0�; 1Þ; 2 ¼ ð½x1;1�; 0Þ;
3 ¼ ð½x1;1�; 1Þ: ð5:8Þ

We can now use (4.13) to assign phases from the quantum
symmetry. We will look at the partial trace Z3;2 for an
example of this:

Z3;2 ¼ Zð½x1;1�;1Þ;ð½x1;1�;0Þ ¼
ðbð1ÞÞð½x1;1�Þ
ðbð0ÞÞð½x1;1�Þ

Z1;0 ¼ −Z1;0:

ð5:9Þ

Following this procedure for each partial trace, we find that
the Z4 orbits relate to the Z2 orbits by

hZ0;0i → hZ0;0i; ð5:10Þ

hZ0;1i → 0; ð5:11Þ

hZ0;2i → 3hZ0;0i: ð5:12Þ

So in total the Z4 orbifold reduces to 1
4
½hZ0;0i þ

3hZ0;0i� ¼ Z0;0, the parent theory partition function, as
expected. Reobtaining this by now familiar result is a good
sanity check that the procedures outlined in Sec. IV are
consistent.

2. 1 → Z2 → Z2 × Z2 → Z2 → 1

Our next example demonstrates that we can cure the
anomalous Z2 with an anomalous extension: 1 → Z2 →
Z2 × Z2 → Z2 → 1. The representative ω of the nontrivial
class in H3ðZ2; Uð1ÞÞ will pull back to a nontrivial class in
H3ðZ2 × Z2; Uð1ÞÞ, which in the notation of Sec. V B we
can take to be ðϵa; ϵb; ϵcÞ ¼ ð1;−1;−1Þ. Since the pullback
of ω does not trivialize, the Z2 × Z2 is anomalous.
Regardless, we will follow through computing its orbifold.
Writing the extended group as f1; a; b; cg ≅ Z2 × Z2 and
the original group as f1; gg ≅ Z2, the Z2 × Z2 orbifold is

1

4
½hZ1;1i þ hZ1;ai þ hZ1;bi þ hZ1;ci � hZa;bi�: ð5:13Þ

Letting a generate K, in terms of Γ=K equivalence classes
the elements of G are 1 ¼ f1; ag, g ¼ fb; cg. Under
decomposition, the Z2 × Z2 partition function becomes

1

2
½2hZ1;1i þ ð1� 1ÞhZ1;gi�: ð5:14Þ

For the trivial choice of discrete torsion, we find two copies
of the anomalous Z2 orbifold. However, when we take the
discrete torsion to be nontrivial, the anomalous orbit drops
out of the partition function and we have a single copy of
the parent theory, exactly as in the 1 → Z2 → Z4 → Z2 →
1 trivializing extension. We can verify that the anomaly
in Z2 × Z2 does not disrupt this conclusion. Writing the
Z2 × Z2 orbifold partition function with nontrivial discrete
torsion (which can be regarded as a formal construction as
this Z2 × Z2 is anomalous) in terms of its partial traces,
we have

1

4
½Z1;1 þ Z1;a þ Za;1 þ Za;a þ Z1;b þ Zb;1 þ Zb;b

þ Z1;c þ Zc;1 þ Zc;c − Za;b − Zb;a − Zb;c

− Zc;b − Za;c − Zc;a�: ð5:15Þ

Under the modular transformation τ → τ þ 2, this partition
function becomes

1

4
½Z1;1 þ Z1;a þ Za;1 þ Za;a þ Z1;b − Zb;1

− Zb;b þ Z1;c − Zc;1 − Zc;c − Za;b þ Zb;a

þ Zb;c þ Zc;b − Za;c þ Zc;a�; ð5:16Þ

which, despite its lack of modular invariance, still reduces
to Z1;1 when expressed in terms of Z2 partial traces.
So it would seem that the extension to Z2 × Z2 with

nontrivial discrete torsion is a minimal trivializing exten-
sion,12 despite its apparent lack of modular invariance.
This example serves to illustrate two points. First, it shows
that minimal extensions are not unique (we did not have
any particular reason to think that they should be, but this is
the first counterexample). Second, it demonstrates that the
pullback of ω trivializing is not a necessary condition for
ending up with a nonanomalous orbifold.

12Recall in Sec. II we derived the discrete torsion in the Z2 ×
Z2 orbifold as a choice of the extending group’s action. So
turning on the Z2 discrete torsion in this orbifold is, in fact,
equivalent to choosing the nontrivial quantum symmetry in
H1ðZ2; Ẑ2Þ ≅ Z2.
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3. 1 → Z4 → Q8 → Z2 → 1

Next we present an example of a noncentral, nonsplit
trivializing extension. We extend our anomalous Z2 sym-
metry by Z4 to the group of quaternions, Q8. Writing the
elements of Q8 as the set Z4 × Z2, we have the group
multiplication

ðs; pÞðq; rÞ ¼ ðsþ p · qþ 2pr; pþ rÞ; ð5:17Þ
where the nontrivial element of Z2 acts on Z4 as 0 → 0,
1 → 3, 2 → 2, and 3 → 1.
H2ðQ8; Uð1ÞÞ is trivial, so Q8 orbifolds do not feature

a choice of discrete torsion. However, with the above
action of Z2 on Z4, we find that H1ðZ2; Ẑ4Þ ≅ Z2, so we
will be able to make a nontrivial choice of quantum
symmetry. Writing the quaternion group in the more
traditional fashion hi; j; kji2 ¼ j2 ¼ k2 ¼ ijk ¼ −1i, its
modular orbits are

hZ1;1i ¼ Z1;1; ð5:18Þ

hZ1;ii ¼ Z1;i þ Z1;−i þ Zi;1 þ Z−i;1 þ Zi;i þ Zi;−1

þ Zi;−i þ Z−i;i þ Z−i;−1 þ Z−i;−i þ Z−1;i þ Z−1;−i;

ð5:19Þ

hZ1;ji ¼ Z1;j þ Z1;−j þ Zj;1 þ Z−j;1 þ Zj;j þ Zj;−1 þ Zj;−j

þ Z−j;j þ Z−j;−1 þ Z−j;−j þ Z−1;j þ Z−1;−j;

ð5:20Þ

hZ1;ki ¼ Z1;k þZ1;−k þZk;1 þZ−k;1 þZk;k þZk;−1 þZk;−k

þZ−k;k þZ−k;−1 þZ−k;−k þZ−1;k þZ−1;−k;

ð5:21Þ

hZ1;−1i ¼ Z1;−1 þ Z−1;1 þ Z−1;−1; ð5:22Þ

and its full partition function is

1

8
½hZ1;1i þ hZ1;ii þ hZ1;ji þ hZ1;ki þ hZ1;−1i�: ð5:23Þ

These two notations for Q8 relate as ð1; 0Þ ¼ i, ð0; 1Þ ¼ j,
and ð1; 1Þ ¼ k. We can reduce back to the original group by
declaring that i acts trivially. Then the remaining Z2 is
generated by the equivalence class g ¼ fj;−j; k;−kg. With
no modification to the action of Z4 in the Z2-twisted
sectors, the Q8 partition function becomes

1

8
½16hZ1;1i þ 8hZ1;gi� ¼ hZ1;1i þ 2 ·

1

2
½hZ1;1i þ hZ1;gi�;

ð5:24Þ
yielding a single copy of the parent theory plus two copies
of the Z2 orbifold. If the original Z2 is anomalous, this

result will be equally ill-defined. If we take the quantum
symmetry to be nontrivial, however, the hZ1;ji and hZ1;ki
will cancel within themselves. This leaves us with

2hZ1;1i; ð5:25Þ

two copies of the parent theory. While this noncentral
extension is not minimal, it is capable of curing the
anomaly in the initial Z2 symmetry. This will be our only
noncentral example, as in general we tend to find minimal
extensions to be central.

B. G=Z2 × Z2

In this section we tackle a more complicated example
where the original symmetry is Z2 × Z2. To start, we need
to specify an anomaly in our symmetry, which entails a
choice of ω ∈ H3ðZ2 × Z2; Uð1ÞÞ ≅ Z3

2. We will write the
group as Z2 × Z2 ¼ f1; a; b; cg and for readability drop
the arguments of ω into subscripts, e.g., ωða; b; bÞ ¼ ωabb.
Then a choice of representatives for each class in H3ðZ2 ×
Z2; Uð1ÞÞ is

ωaaa ¼ ϵa; ωaab ¼ 1; ωaac ¼ ϵa; ωaba ¼ 1;

ωabb ¼ 1; ωabc ¼ 1; ωaca ¼ ϵa; ωacb ¼ 1; ωacc ¼ ϵa;

ωbaa ¼ 1; ωbab ¼ 1; ωbac ¼ 1;

ωbba ¼ ϵaϵbϵc; ωbbb ¼ ϵb;

ωbbc ¼ ϵaϵc; ωbca ¼ ϵaϵbϵc; ωbcb ¼ ϵb;

ωbcc ¼ ϵaϵc; ωcaa ¼ ϵa; ωcab ¼ 1;

ωcac ¼ ϵa; ωcba ¼ ϵaϵbϵc; ωcbb ¼ ϵb;

ωcbc ¼ ϵaϵc; ωcca ¼ ϵbϵc; ωccb ¼ ϵb; ωccc ¼ ϵc;

ð5:26Þ

where ϵ2a ¼ ϵ2b ¼ ϵ2c ¼ 1 label the cohomology class. Then
for m ¼ naaxaa þ � � � þ nccxcc, we have

ðbðaÞÞðmÞ ¼ ϵnaaþnacþncaþncc
a ; ð5:27Þ

ðbðbÞÞðmÞ ¼ ðϵaϵcÞnbaþnbcþncaþnccϵnbaþnbbþncaþncb
b ; ð5:28Þ

ðbðcÞÞðmÞ ¼ ϵnaaþnacþnbaþnbc
a ϵnbaþnbbþncaþncb

b ϵnbaþnbcþncaþncc
c :

ð5:29Þ

The orbit structure of a Z2 × Z2 orbifold is

hZ1;1i ¼ Z1;1; ð5:30Þ

hZ1;ai ¼ Z1;a þ Za;1 þ Za;a; ð5:31Þ

hZ1;bi ¼ Z1;b þ Zb;1 þ Zb;b; ð5:32Þ
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hZ1;ci ¼ Z1;c þ Zc;1 þ Zc;c; ð5:33Þ

hZa;bi ¼ Za;b þ Za;c þ Zb;a þ Zb;c þ Zc;a þ Zc;b: ð5:34Þ

Its full partition function, as given in (5.13), is

1

4
½hZ1;1i þ hZ1;ai þ hZ1;bi þ hZ1;ci � hZa;bi�: ð5:35Þ

Employing (3.2) and (5.26), we find the following anoma-
lous transformations (there are others, but these are
sufficient to describe the anomalies in each orbit):

Za;1ðτ þ 2Þ ¼ ϵaZa;1ðτÞ; ð5:36Þ

Zb;1ðτ þ 2Þ ¼ ϵbZb;1ðτÞ; ð5:37Þ

Zc;1ðτ þ 2Þ ¼ ϵcZc;1ðτÞ; ð5:38Þ

Za;bðτ þ 2Þ ¼ ϵaZa;bðτÞ; ð5:39Þ

Zb;cðτ þ 2Þ ¼ ϵbZb;cðτÞ; ð5:40Þ

Zc;aðτ þ 2Þ ¼ ϵcZc;aðτÞ: ð5:41Þ

Thus the orbits hZ1;ai, hZ1;bi, and hZ1;ci are anomalous
when their respective ϵ are nonzero, and the disconnected
orbit hZa;bi is anomalous for any nontrivial anomaly.

1. 1 → Z2 → D4 → Z2 × Z2 → 1

The first anomaly we will examine corresponds to
ðϵa; ϵb; ϵcÞ ¼ ð1; 1;−1Þ. In this case,

Ā ¼ fmjnba þ nbc þ nca þ ncceveng: ð5:42Þ

Then C ¼ f½0�; ½xcc�g ≅ Z2. A short computation shows
that the G action on C is trivial:

a · ½xcc� ¼ ½xbc þ xac� ¼ ½xcc�;
b · ½xcc� ¼ ½xac þ xbc� ¼ ½xcc�; c · ½xcc� ¼ ½xcc�: ð5:43Þ

So we can compute the group multiplication in Γ̂,

ð½jxcc�; gÞð½kxcc�; hÞ ¼ ð½ðjþ kÞxcc þ xgh�; ghÞ: ð5:44Þ

In particular, we have ð½0�; cÞ4 ¼ ð½0�; aÞ2 ¼ 1 and
ð½0�; aÞð½0�; cÞð½0�; aÞ ¼ ð½xcc�; cÞ ¼ ð½0�; cÞ−1, which lets
us identify the group as Γ̂ ≅ D4, the dihedral group
with eight elements. The values of b that could possibly
be nontrivial are

ðbðaÞÞð½xcc�Þ ¼ 1; ðbðbÞÞð½xcc�Þ ¼ −1;

ðbðcÞÞð½xcc�Þ ¼ −1: ð5:45Þ

We present the extended group D4 as hr; sjr4 ¼ s2 ¼
ðsrÞ2 ¼ 1i. This corresponds to the notation used above
as r ¼ ð½0�; cÞ and s ¼ ð½0�; aÞ. The orbits of a D4 orbifold
are then

hZ1;1i ¼ Z1;1; ð5:46Þ

hZ1;ri ¼ Z1;r þ Z1;r3 þ Zr;1 þ Zr;r þ Zr;r2 þ Zr;r3 þ Zr2;r

þ Zr2;r3 þ Zr3;1 þ Zr3;r þ Zr3;r2 þ Zr3;r3 ; ð5:47Þ

hZ1;r2i ¼ Z1;r2 þ Zr2;1 þ Zr2;r2 ; ð5:48Þ

hZ1;si ¼ Z1;s þ Zs;1 þ Zs;s; ð5:49Þ

hZ1;rsi ¼ Z1;rs þ Zrs;1 þ Zrs;rs; ð5:50Þ

hZ1;r2si ¼ Z1;r2s þ Zr2s;1 þ Zr2s;r2s; ð5:51Þ

hZ1;r3si ¼ Z1;r3s þ Zr3s;1 þ Zr3s;r3s; ð5:52Þ

hZr2;si ¼ Zr2;s þ Zr2;r2s þ Zs;r2 þ Zs;r2s þ Zr2s;r2 þ Zr2s;s;

ð5:53Þ

hZr2;rsi ¼ Zr2;rsþZr2;r3sþZrs;r2 þZrs;r3sþZr3s;r2 þZr3s;rs;

ð5:54Þ

and the full orbifold partition function is

1

8
½hZ1;1i þ hZ1;ri þ hZ1;r2i þ hZ1;si þ hZ1;rsi
þ hZ1;r2si þ hZ1;r3si � hZr2;si � hZr2;rsi�: ð5:55Þ

Using (4.13) and (5.45) to assign phases, we find that the
D4 orbits relate to those of Z2 × Z2 as

hZ1;1i → hZ1;1i; ð5:56Þ

hZ1;ri → 0; ð5:57Þ

hZ1;r2i → 3hZ1;1i; ð5:58Þ

hZ1;si → hZ1;ai; ð5:59Þ

hZ1;rsi → hZ1;bi; ð5:60Þ

hZ1;r2si → hZ1;ai; ð5:61Þ

hZ1;r3si → hZ1;bi; ð5:62Þ

hZr2;si → 2hZ1;ai; ð5:63Þ
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hZr2;rsi → −2hZ1;bi: ð5:64Þ

This means that the full D4 orbifold becomes

1

4
½2hZ1;1i þ ð1� 1ÞhZ1;ai þ ð1 ∓ 1ÞhZ1;bi�: ð5:65Þ

Interestingly, we see that discrete torsion in the D4

extension swaps us between two Z2 orbifolds—one by
a, the other by b. Either way we have, as promised, a single
copy of a nonanomalous orbifold, confirming that this was
a minimal trivializing extension.
Why is it that, in this case, discrete torsion swaps

between two trivializing extensions? This example has
H1ðZ2 × Z2; Ẑ2Þ ≅ Z2 × Z2, which we will write as
f1; x; y; zg. Turning on discrete torsion in D4 is equivalent
to choosing a quantum symmetry belonging to one of the
nontrivial classes in this Z2 × Z2—we will say it is the
class given by x. Meanwhile, the quantum symmetry
coming from b as given by (5.45) corresponds to a different
nontrivial class—call it the one given by y. So turning on
discrete torsion swaps us between group actions in the
classes corresponding to y and z.

This analysis further implies that there is a third
trivializing extension which we have not considered:
the same extension 1 → Z2 → D4 → Z2 × Z2 → 1, except
this time the only quantum symmetry we turn on is the D4

discrete torsion. With the notation as above, a D4 orbifold
with discrete torsion decomposes to

1

2
½hZ1;1i þ hZ1;ci�; ð5:66Þ

a single copy of the Z2 orbifold by c. This extension would
trivialize any anomaly in Z2 × Z2 with ϵc ¼ 1, and is our
second example of curing an anomaly by turning on a
quantum symmetry equivalent to discrete torsion (the first
having appeared in Sec. VA 2).

2. 1 → Z2 × Z2 → Z4 ⋊ Z4 → Z2 × Z2 → 1

A qualitatively different anomaly comes from the choice
ðϵa; ϵb; ϵcÞ ¼ ð−1;−1;−1Þ. We see from (5.36)–(5.41)
that, with this choice, every orbit besides hZ1;1i is anoma-
lous. In this case we have

Ā ¼ fmjnaa þ nac þ nca þ ncc and nba þ nbb þ nca þ ncb eveng; ð5:67Þ

C ¼ f½0�; ½xaa�; ½xbb�; ½xaa þ xbb�g ≅ Z2
2; ð5:68Þ

with trivial group action. Under this identification, b becomes

ðbðaÞÞð½xaa�Þ ¼ −1; ðbðbÞÞð½xaa�Þ ¼ 1; ðbðcÞÞð½xaa�Þ ¼ −1;

ðbðaÞÞð½xbb�Þ ¼ 1; ðbðbÞÞð½xbb�Þ ¼ −1; ðbðcÞÞð½xbb�Þ ¼ −1;

ðbðaÞÞð½xcc�Þ ¼ −1; ðbðbÞÞð½xcc�Þ ¼ −1; ðbðcÞÞð½xcc�Þ ¼ 1: ð5:69Þ

A computation reveals that Γ̂ is the nontrivial semidirect product Z4 ⋉ Z4. This group has the presentation
hx; yjx4 ¼ y4 ¼ 1; ½x; y� ¼ x2i. We will choose to write the 16 group elements as xiyj, ði; jÞ ∈ f0; 1; 2; 3g2. We can
relate this to the above notation as

x ¼ a; y ¼ b; xy ¼ c; x2 ¼ ½xaa�; y2 ¼ ½xbb�; x2y2 ¼ ½xaa þ xbb�: ð5:70Þ

The modular orbits of Z4 ⋊ Z4 are

hZ1;1i ¼ Z1;1; ð5:71Þ

hZ1;xi ¼ Z1;x þ Z1;x3 þ Zx;1 þ Zx;x þ Zx;x2 þ Zx;x3 þ Zx2;x þ Zx2;x3

þ Zx3;1 þ Zx3;x þ Zx3;x2 þ Zx3;x3 ; ð5:72Þ

hZ1;x2i ¼ Z1;x2 þ Zx2;1 þ Zx2;x2 ; ð5:73Þ

hZ1;yi ¼ Z1;y þ Z1;y3 þ Zy;1 þ Zy;y þ Zy;y2 þ Zy;y3 þ Zy2;y þ Zy2;y3

þ Zy3;1 þ Zy3;y þ Zy3;y2 þ Zy3;y3 ; ð5:74Þ
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hZ1;y2i ¼ Z1;y2 þ Zy2;1 þ Zy2;y2 ; ð5:75Þ

hZ1;xyi ¼ Z1;xy þ Z1;xy3 þ Zy2;xy þ Zy2;xy3 þ Zxy;1 þ Zxy;y2 þ Zxy;xy

þ Zxy;xy3 þ Zxy3;1 þ Zxy3;y2 þ Zxy3;xy þ Zxy3;xy3 ; ð5:76Þ

hZ1;x2yi ¼ Z1;x2y þ Z1;x2y3 þ Zy2;x2y þ Zy2;x2y3 þ Zx2y;1 þ Zx2y;y2 þ Zx2y;x2y

þ Zx2y;x2y3 þ Zx2y3;1 þ Zx2y3;y2 þ Zx2y3;x2y þ Zx2y3;x2y3 ; ð5:77Þ

hZ1;x3yi ¼ Z1;x3y þ Z1;x3y3 þ Zy2;x3y þ Zy2;x3y3 þ Zx3y;1 þ Zx3y;y2 þ Zx3y;x3y

þ Zx3y;x3y3 þ Zx3y3;1 þ Zx3y3;y2 þ Zx3y3;x3y þ Zx3y3;x3y3 ; ð5:78Þ

hZ1;xy2i ¼ Z1;xy2 þ Z1;x3y2 þ Zx2;xy2 þ Zx2;x3y2 þ Zxy2;1 þ Zxy2;x2 þ Zxy2;xy2

þ Zxy2;x3y2 þ Zx3y2;1 þ Zx3y2;x2 þ Zx3y2;xy2 þ Zx3y2;x3y2 ; ð5:79Þ

hZ1;x2y2i ¼ Z1;x2y2 þ Zx2y2;1 þ Zx2y2;x2y2 ; ð5:80Þ

hZx;y2i ¼ Zx;y2 þ Zx;xy2 þ Zx;x2y2 þ Zx;x3y2 þ Zy2;x3 þ Zy2;x3y2 þ Zy2;xy2

þ Zy2;x þ Zxy2;x3 þ Zxy2;x2y2 þ Zxy2;x þ Zxy2;y2 þ Zx2y2;x þ Zx2y2;x3

þ Zx2y2;xy2 þ Zx2y2;x3y2 þ Zx3y2;x3 þ Zx3y2;y2 þ Zx3y2;x þ Zx3y2;x2y2

þ Zx3;xy2 þ Zx3;x2y2 þ Zx3;x3y2 þ Zx3;y2 ; ð5:81Þ

hZy;x2i ¼ Zy;x2 þ Zy;x2y þ Zy;x2y2 þ Zy;x2y3 þ Zx2;y3 þ Zx2;x2y3 þ Zx2;x2y

þ Zx2;y þ Zx2y3;y3 þ Zx2y3;x2 þ Zx2y3;y þ Zx2y3;x2y2 þ Zx2y2;y þ Zx2y2;y3

þ Zx2y2;x2y þ Zx2y2;x2y3 þ Zx2y3;y3 þ Zx2y3;x2 þ Zx2y3;y þ Zx2y3;x2y2

þ Zy3;x2 þ Zy3;x2y þ Zy3;x2y2 þ Zy3;x2y3 ; ð5:82Þ

hZxy;x2y2i ¼ Zxy;x2y2 þ Zxy;x3y þ Zxy;x2 þ Zxy;x3y3 þ Zx2y2;xy þ Zx2y2;x3y3

þ Zx2y2;xy3 þ Zx2y2;x3y þ Zx2;xy þ Zx2;x3y þ Zx2;xy3 þ Zx2;x3y3

þ Zxy3;x2y2 þ Zxy3;x3y3 þ Zxy3;x2 þ Zxy3;x3y þ Zx3y;xy3 þ Zx3y;x2y2

þ Zx3y;xy þ Zx3y;x2 þ Zx3y3;x2 þ Zx3y3;xy þ Zx3y3;x2y2 þ Zx3y3;xy3 ; ð5:83Þ

hZx2;y2i ¼ Zx2;y2 þ Zx2;x2y2 þ Zy2;x2 þ Zy2;x2y2 þ Zx2y2;x2 þ Zx2y2;y3 : ð5:84Þ

The full orbifold partition function is then

1

16
½Z1;1 þ hZ1;xi þ hZ1;x2i þ hZ1;yi þ hZ1;y2i þ hZ1;xyi þ hZ1;x2yi þ hZ1;x3yi þ hZ1;xy2i
þ hZ1;x2y2i þ hZx;y2i � hZy;x2i � hZxy;x2y2i þ hZx2;y2i�: ð5:85Þ

Calculating coefficients of decomposition from b, we find
that every orbit that does not reduce to the parent theory
partition function vanishes. Sixteen of the Z4 ⋊ Z4 partial
traces reduce to Z1;1, so we end up with a single copy of the
parent theory, as we should have expected from a minimal
trivializing extension when all of the other orbits were
anomalous.

C. G=Z2 × Z4

In this section we examine anomalies in the group
Z2 × Z4, which will be generated by a2 ¼ b4 ¼ 1. The
orbits of a Z2 × Z4 orbifold are then

hZ1;1i ¼ Z1;1; ð5:86Þ
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hZ1;ai ¼ Z1;a þ Za;1 þ Za;a; ð5:87Þ

hZ1;bi ¼ Z1;b þ Z1;b3 þ Zb;1 þ Zb;b3 þ Zb;b2 þ Zb;b þ Zb3;b3 þ Zb3;1 þ Zb3;b

þ Zb3;b2 þ Zb2;b3 þ Zb2;b; ð5:88Þ

hZ1;b2i ¼ Z1;b2 þ Zb2;1 þ Zb2;b2 ; ð5:89Þ

hZ1;abi ¼ Z1;ab þ Z1;ab3 þ Zab;1 þ Zab;ab þ Zab;b2 þ Zab;ab3 þ Zb2;ab3 þ Zb2;ab

þ Zab3;ab3 þ Zab3;1 þ Zab3;ab þ Zab3;b2 ; ð5:90Þ

hZ1;ab2i ¼ Z1;ab2 þ Zab2;1 þ Zab2;ab2 ; ð5:91Þ

hZa;bi ¼ Za;b þ Za;b3 þ Za;ab þ Za;ab3 þ Zb;a þ Zb;ab þ Zb;ab2 þ Zb;ab3 þ Zb3;ab3

þ Zb3;a þ Zb3;ab þ Zb3;ab2 þ Zab;b3 þ Zab;ab2 þ Zab;b þ Zab;a þ Zab2;b

þ Zab2;b3 þ Zab2;ab þ Zab2;ab3 þ Zab3;b3 þ Zab3;a þ Zab3;b þ Zab3;ab2 ; ð5:92Þ

hZa;b2i ¼ Za;b2 þ Za;ab2 þ Zb2;a þ Zb2;ab2 þ Zab2;a þ Zab2;b2 ; ð5:93Þ

while the full orbifold partition function is given by

1

8
½Z1;1 þ hZ1;ai þ hZ1;bi þ hZ1;b2i þ hZ1;abi þ hZ1;ab2i � hZa;bi þ hZa;b2i�: ð5:94Þ

Making a particular choice of representatives of
H3ðZ2 × Z4; Uð1ÞÞ, the anomalous phases that appear in
the untwisted orbits are given by

Za;1ðτ þ 2Þ ¼ γZa;1ðτÞ; ð5:95Þ

Zb;1ðτ þ 4Þ ¼ α3Zb;1ðτÞ; ð5:96Þ

Zb2;1ðτ þ 2Þ ¼ α2Zb2;1ðτÞ; ð5:97Þ

Zab;1ðτ þ 4Þ ¼ α3βZab;1ðτÞ; ð5:98Þ

Zab2;1ðτ þ 2Þ ¼ α2βγZab2;1ðτÞ; ð5:99Þ

where α4 ¼ β2 ¼ γ2 ¼ 1 determine the cohomology class
in H3ðZ2 × Z4; Uð1ÞÞ ≅ Z4 × Z2 × Z2.

1. 1 → Z2 → Z2 × Z8 → Z2 × Z4 → 1

To begin with, we examine the case α ¼ −1, β ¼ γ ¼ 1.
Intuitively this is the case where b is anomalous, and we
have a nonanomalous Z2 × Z2 subgroup generated by a
and b2. This is essentially equivalent to a Z4 with an order
two anomaly, which we would cure by extending to Z8. In
the present situation the Z2 generated by a is a bystander
and we can extend to Z2 × Z8 to cure the anomaly.
Choosing to write the extending Z2 as b4, we have the
Z2 × Z8 orbifold partition function

1

16
½hZ1;1i þ hZ1;bi þ hZ1;b2i þ hZ1;b4i þ hZ1;ai þ hZ1;abi
þ hZ1;ab2i þ hZ1;ab4i � hZa;bi þ hZa;b2i þ hZa;b4i�:

ð5:100Þ

In projecting back to Z2 × Z4 the coefficients of decom-
position are

hZ1;1i → hZ1;1i; ð5:101Þ

hZ1;bi → 0; ð5:102Þ

hZ1;b2i → 4hZ1;b2i; ð5:103Þ

hZ1;b4i → 3hZ1;1i; ð5:104Þ

hZ1;ai → hZ1;ai; ð5:105Þ

hZ1;abi → 0; ð5:106Þ

hZ1;ab2i → 4hZ1;ab2i; ð5:107Þ

hZ1;ab4i → hZ1;ai; ð5:108Þ

hZa;bi → 0; ð5:109Þ

hZa;b2i → 4hZa;b2i; ð5:110Þ

ROBBINS, SHARPE, and VANDERMEULEN PHYS. REV. D 104, 085009 (2021)

085009-20



hZa;b4i → 2hZ1;ai: ð5:111Þ

With these relations, the Z2 × Z8 partition function (5.100)
becomes

1

4
½hZ1;1i þ hZ1;ai þ hZ1;b2i þ hZ1;ab2i þ hZa;b2i�; ð5:112Þ

which is the orbifold partition function for the nonanom-
alous Z2 × Z2 subgroup generated by a and b2, with the
trivial choice of discrete torsion.

2. 1 → Z4 → Z4 × Z8 → Z2 × Z4 → 1

If we were to choose β ¼ −1, α ¼ γ ¼ 1, the non-
anomalous subgroups would be the Z2 generated by a
and the Z4 generated by b (but not any mix of the two).
This is the first situation in which we have distinct non-
anomalous subgroups of differing sizes. In order to build a
trivializing extension, we choose our H3ðZ2 × Z4; Uð1ÞÞ
representative to be

ωðasbx; apby; aqbzÞ ¼ ixðpqþ2yzÞ: ð5:113Þ
One can check from (3.2) that this cocycle indeed produces
β ¼ −1, α ¼ γ ¼ 1. When we reduce Tachikawa’s con-
struction in this example, we find

C ¼ f½0�; ½xa;a�; ½xb;b�; ½xab;ab�g ≅ Z4: ð5:114Þ

The resulting Γ̂ turns out to be Z4 × Z8, which we can take
to be generated by ð½0�; aÞ8 ¼ ð½0�; bÞ4 ¼ 1. Omitting
details of the calculation (as there are now over 1000
partial traces involved), the Z4 × Z8 orbifold reduces to

1

2
½hZ1;1i þ hZ1;ai�; ð5:115Þ

which is the orbifold by the nonanomalous Z2 subgroup
generated by a. We expect that there should exist a different
choice of representative for ω which produces a Z2

extension reducing to the Z4 orbifold generated by b,
though we have not identified it.

VI. DISCUSSION AND CONCLUSIONS

Through numerous examples we have seen that an
anomalous symmetry G can be extended to a larger group
Γ such that the orbifold by Γ is equivalent to a direct sum of
orbifolds by nonanomalous subgroups ofG and is therefore
consistent. In each example we examined, the ability to find
such a resolution depended on the existence of nontrivial
quantum symmetries given by elements ofH1ðG; K̂Þ which
encode the action of the extending group K on the G-
twisted states. Sometimes this modification is equivalent to
turning on discrete torsion, while other times it is a choice
that is unique to orbifolds with trivially acting subgroups.

While we have shown by construction that there exists at
least one such extension for each symmetryG and anomaly
ω ∈ H3ðG;Uð1ÞÞ, we could aspire to even more specific
control over the form of the extension. Specifically, we
could ask the following: given a groupG and a subgroupH
of G, does there exist an extension Γ of G such that the
orbifold by Γ is equivalent to a single copy of the orbifold
by H? This would imply that we can find a minimal
trivializing extension that produces an orbifold equivalent
to the orbifold by any nonanomalous subgroup of G.
In addition, we could hope for a more precise charac-

terization of the decomposition at play. In particular, this
should include a general form for the Γ orbifold’s decom-
position in the spirit of [7], the precise relation between
discrete torsion and quantum symmetries, and a description
of the open string sector related to such extensions. We are
currently investigating such questions and hope to begin to
tackle them in [8,9].
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APPENDIX A: NONEFFECTIVE EXTENSIONS
TO NON-ABELIAN GROUPS

In this appendix we work through the example of exten-
ding a Z2 × Z2 symmetry by a noneffectively acting Z2 to
the group of unit quaternions,Q8, which is non-Abelian. We
will see how and why the degeneration process of non-
Abelian orbifoldswith trivially acting subgroups ismodified,
and thenwe examine the inclusion of quantum symmetries in
such orbifolds. We restate a number of formulas from the
main text (mainly the orbit structures of Z2 × Z2 and Q8

orbifolds) to make the appendix more self-contained.

1. The Q8 orbifold

We present the group Q8 as hi; j; kji2 ¼ j2 ¼ k2 ¼
ijk ¼ −1i. Its genus one modular orbits are

hZ1;1i ¼ Z1;1; ðA1Þ

hZ1;−1i ¼ Z1;−1 þ Z−1;1 þ Z−1;−1; ðA2Þ

hZ1;ii ¼ Z1;i þ Z1;−i þ Zi;1 þ Z−i;1 þ Zi;i þ Zi;−1

þ Zi;−i þ Z−i;i þ Z−i;−1 þ Z−i;−i þ Z−1;i þ Z−1;−i;

ðA3Þ

hZ1;ji ¼ Z1;jþZ1;−jþZj;1þZ−j;1þZj;jþZj;−1

þZj;−jþZ−j;jþZ−j;−1þZ−j;−jþZ−1;jþZ−1;−j;

ðA4Þ
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hZ1;ki ¼ Z1;k þ Z1;−k þ Zk;1 þ Z−k;1 þ Zk;k þ Zk;−1

þ Zk;−k þ Z−k;k þ Z−k;−1 þ Z−k;−k þ Z−1;k

þ Z−1;−k; ðA5Þ

and its full torus partition function is

1

8
½hZ1;1i þ hZ1;−1i þ hZ1;ii þ hZ1;ji þ hZ1;ki�: ðA6Þ

Note that there is no choice of discrete torsion in this
orbifold—we could see this without even calculating
H2ðQ8; Uð1ÞÞ (which is, in fact, trivial) by noting that all
of the orbits include an untwisted sector partial trace, so all
of the relative coefficients are fixed by modular transfor-
mations. Now we examine the Spð4;ZÞ orbits of the genus
two partial traces Zg1;g2;h1;h2 with g1h1g−11 h−11 g2h2g−12 h−12 ¼
½g1; h1�½g2; h2� ¼ 1, which are

(i) hZ1;1;1;1i with 1 partial trace,
(ii) hZ1;1;1;−1i with 15 partial traces,
(iii) hZ1;1;1;ii with 240 partial traces,
(iv) hZ1;1;1;ji with 240 partial traces,
(v) hZ1;1;1;ki with 240 partial traces, and
(vi) hZ1;1;i;ji with 1440 partial traces.

They form the full genus two partition function as

1

82
½hZ1;1;1;1i þ hZ1;1;1;−1i þ hZ1;1;1;ii þ hZ1;1;1;ji
þ hZ1;1;1;ki þ hZ1;1;i;ji�: ðA7Þ

Note that the orbit hZ1;1;i;ji includes partial traces such as
Zi;i;j;j, which has ½g1; h1� ¼ ½g2; h2� ¼ −1. Under a degen-
eration that takes the genus two surface to a pair of genus one
surfaces connected by a thin tube, these partial traces have a
TDL labeled by the element−1 running through the tube.We
can insert a sum over a complete set of −1-twisted states in
the tube, replacing the genus two partial trace by a weighted
sum of genus one one-point functions. If −1 acts effectively
on the parent theory, then all of these states have positive
conformal weights and in the degeneration limit they will be
subleading to terms where ½g1; h1� ¼ ½g2; h2� ¼ 1 and we
can have the untwisted vacuum state propagating through
the tube.
In total, the genus two Q8 partial traces degenerate to

genus one as (the convention here, as in Sec. II, is that the
ordering of the genus one orbits determines the torus on
which they reside)

hZ1;1;1;1i → hZ1;1ihZ1;1i; ðA8Þ

hZ1;1;1;−1i→ hZ1;1ihZ1;−1iþ hZ1;−1ihZ1;1iþ hZ1;−1ihZ1;−1i;
ðA9Þ

hZ1;1;1;ii → hZ1;1ihZ1;ii þ hZ1;iihZ1;1i þ hZ1;−1ihZ1;ii
þ hZ1;iihZ1;−1i þ hZ1;iihZ1;ii; ðA10Þ

hZ1;1;1;ji → hZ1;1ihZ1;ji þ hZ1;jihZ1;1i þ hZ1;−1ihZ1;ji
þ hZ1;jihZ1;−1i þ hZ1;jihZ1;ji; ðA11Þ

hZ1;1;1;ki → hZ1;1ihZ1;ki þ hZ1;kihZ1;1i þ hZ1;−1ihZ1;ki
þ hZ1;kihZ1;−1i þ hZ1;kihZ1;ki; ðA12Þ

hZ1;1;i;ji → hZ1;iihZ1;ji þ hZ1;jihZ1;ii þ hZ1;iihZ1;ki
þ hZ1;kihZ1;ii þ hZ1;jihZ1;ki þ hZ1;kihZ1;ji
þ hZi;j½−1�ihZi;j½−1�i; ðA13Þ

where in the last line, hZi;j½−1�i represents a genus one
amplitude with TDLs labeled by i and j wrapping the
two cycles of the torus and a TDL labeled by −1 leaving
their crossing point and ending on the insertion of the
lowest weight state in the −1-twisted sector. If −1 acts
effectively, then this operator has positive conformal
weight and this term will not contribute to leading
order in the degeneration. However, if −1 does not act
effectively, then there will be a weight-zero state in the
−1-twisted sector, and this last term will contribute.
This should be a general feature of orbifolds with nonef-
fective subgroups—trivially acting, nonidentity elements in
the commutator subgroup will lead to these additional
contributions.
In the effective case, where we do not need to keep that

last term, degeneration yields a copy of the genus one
partition function (A6) on each torus, as we would expect.

2. Decomposition

Q8 can be cast as a central extension 1 → K ¼ Z2 →
Γ ¼ Q8 → G ¼ Z2 × Z2 → 1, where the extending group
K is generated by the element −1. We write G ¼ Z2 ×
Z2 ¼ f1; a; b; cg such that quotienting Γ by K sends
f1;−1g to 1, fi;−ig to a, fj;−jg to b, and fk;−kg to
c. As a reminder, the genus one Z2 × Z2 orbits are

hZ1;1i ¼ Z1;1; ðA14Þ

hZ1;ai ¼ Z1;a þ Za;1 þ Za;a; ðA15Þ

hZ1;bi ¼ Z1;b þ Zb;1 þ Zb;b; ðA16Þ

hZ1;ci ¼ Z1;c þ Zc;1 þ Zc;c; ðA17Þ

hZa;bi ¼ Za;b þ Za;c þ Zb;a þ Zb;c þ Zc;a þ Zc;b; ðA18Þ

with the full partition function being

Z� ¼ 1

4
½hZ1;1i þ hZ1;ai þ hZ1;bi þ hZ1;ci � hZa;bi�:

ðA19Þ
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We can see the Z2 discrete torsion arising as the coefficient
of the disconnected orbit hZa;bi. At genus two there are six
Z2 × Z2 orbits:

(i) hZ1;1;1;1i with 1 partial trace,
(ii) hZ1;1;1;ai with 15 partial traces,
(iii) hZ1;1;1;bi with 15 partial traces,
(iv) hZ1;1;1;ci with 15 partial traces,
(v) hZ1;1;a;bi with 90 partial traces, and
(vi) hZ1;a;1;bi with 120 partial traces.

These combine into the full partition function as

1

42
½hZ1;1;1;1i þ hZ1;1;1;ai þ hZ1;1;1;bi þ hZ1;1;1;ci
þ hZ1;1;a;bi � hZ1;a;1;bi�: ðA20Þ

The genus two Z2 × Z2 partial traces degenerate to
genus one as

hZ1;1;1;1i → hZ1;1ihZ1;1i; ðA21Þ

hZ1;1;1;ai →hZ1;1ihZ1;ai þ hZ1;aihZ1;1i þ hZ1;aihZ1;ai;
ðA22Þ

hZ1;1;1;bi →hZ1;1ihZ1;bi þ hZ1;bihZ1;1i þ hZ1;bihZ1;bi;
ðA23Þ

hZ1;1;1;ai →hZ1;1ihZ1;ci þ hZ1;cihZ1;1i þ hZ1;cihZ1;ci;
ðA24Þ

hZ1;1;a;bi → hZ1;aihZ1;bi þ hZ1;bihZ1;ai þ hZ1;bihZ1;ci
þ hZ1;cihZ1;bi þ hZ1;cihZ1;ai þ hZ1;aihZ1;ci
þ hZa;bihZa;bi; ðA25Þ

hZ1;a;1;bi → hZ1;1ihZa;bi þ hZa;bihZ1;1i þ hZ1;aihZa;bi
þ hZa;bihZ1;ai þ hZ1;bihZa;bi þ hZa;bihZ1;bi
þ hZ1;cihZa;bi þ hZa;bihZ1;ci: ðA26Þ

Now if K acts noneffectively, then the genus one Q8

partial traces decompose to Z2 × Z2 partial traces as

hZ1;1i → hZ1;1i; ðA27Þ

hZ1;−1i → 3hZ1;1i; ðA28Þ

hZ1;ii → 4hZ1;ai; ðA29Þ

hZ1;ji → 4hZ1;bi; ðA30Þ

hZ1;ki → 4hZ1;ci; ðA31Þ

and we also have

hZi;j½−1�i → 4hZa;bi: ðA32Þ

At genus two we have

hZ1;1;1;1i → hZ1;1;1;1i; ðA33Þ

hZ1;1;1;−1i → 15hZ1;1;1;1i; ðA34Þ

hZ1;1;1;ii → 16hZ1;1;1;ai; ðA35Þ

hZ1;1;1;ji → 16hZ1;1;1;bi; ðA36Þ

hZ1;1;1;ki → 16hZ1;1;1;ci; ðA37Þ

hZ1;1;i;ji → 16hZ1;1;a;bi: ðA38Þ

Applying these decompositions to the full Q8 partition
function at genus one gives

1

2
½hZ1;1i þ hZ1;ai þ hZ1;bi þ hZ1;ci� ¼ Zþ þ Z−; ðA39Þ

which is the direct sum of two Z2 × Z2 partition functions
with opposite choices of discrete torsion, such that the
disconnected orbits have canceled out. At genus two
decomposition gives us

1

22
½hZ1;1;1;1i þ hZ1;1;1;ai þ hZ1;1;1;bi þ hZ1;1;1ci þ hZ1;1;a;bi�:

ðA40Þ

Now whether we apply decomposition first and then
degeneration, or degeneration first and then decomposition,
the genus two Q8 partition function becomes

ðZþ þ Z−ÞðZþ þ Z−Þ þ ðZþ − Z−ÞðZþ − Z−Þ
¼ 2ZþZþ þ 2Z−Z−: ðA41Þ

On the left-hand side we see the first term is the “usual”
degeneration result (the genus one partition function on
each torus) while the second term is the contribution from
the noneffective weight-zero state −1. The fact that this
expression simplifies to something diagonal matches the
expectation for a disjoint union theory, while the factor of 2
comes from the existence of two weight-zero states in the
orbifold theory. Note that the terms involving hZi;j½−1�i
were necessary for the two possible orderings of degen-
eration and decomposition to agree.

3. Quantum symmetries

Let us turn on a quantum symmetry in the Q8 orbifold.
The possible quantum symmetries are classified by
H1ðZ2 × Z2; Ẑ2Þ ≅ Z2 × Z2. The corresponding phases
enter the partition function under degeneration as
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Zðk1;g1Þ;ðk2;g2Þ →
Bðk2; g1Þ
Bðk1; g2Þ

Zg1;g2 ; ðA42Þ

where Bðk; gÞ is a homomorphism in both of its arguments
and is normalized. Therefore to specify it all we need to
know are the values α ¼ Bð1; aÞ, β ¼ Bð1; bÞ, and
αβ ¼ Bð1; cÞ, with α2 ¼ β2 ¼ 1. Using this notation, the
genus one decomposition relations become

hZ1;1i → hZ1;1i; ðA43Þ

hZ1;−1i → 3hZ1;1i; ðA44Þ

hZ1;ii → 2ð1þ αÞhZ1;ai; ðA45Þ

hZ1;ji → 2ð1þ βÞhZ1;bi; ðA46Þ

hZ1;ki → 2ð1þ αβÞhZ1;ci; ðA47Þ

hZi;j½−1�i → ð1þ αþ β þ αβÞhZa;bi: ðA48Þ

We see that all four combinations ðα; βÞ ¼ ð�1;�1Þ are
consistent with genus one modular invariance—but we
should check genus two as well. The modified decom-
position relations there are

hZ1;1;1;1i → hZ1;1;1;1i; ðA49Þ

hZ1;1;1;−1i → 15hZ1;1;1;1i; ðA50Þ

hZ1;1;1;ii → 8ð1þ αÞhZ1;1;1;ai; ðA51Þ

hZ1;1;1;ji → 8ð1þ βÞhZ1;1;1;bi; ðA52Þ

hZ1;1;1;ki → 8ð1þ αβÞhZ1;1;1;ci; ðA53Þ

hZ1;1;i;ji → 4ð1þ αþ β þ αβÞhZ1;1;a;bi: ðA54Þ

The trivial case α ¼ β ¼ 1 reproduces the results from
Sec. A 2. For the three nontrivial choices of quantum
symmetry given by ðα; βÞ ¼ ð1;−1Þ, ð−1; 1Þ, or ð−1;−1Þ,
the Q8 orbifold is equivalent to the orbifold by one of the
three Z2 subgroups of Z2 × Z2, and this is the consistent
with both the genus one and genus two results. So in this
case, despite the fact that Γ is non-Abelian, the presence of
the quantum symmetry causes it to be equivalent to an
Abelian orbifold, and we do not need to worry about
additional contributions to its decomposition.

APPENDIX B: GENERAL EXTENSIONS AND
QUANTUM SYMMETRIES

We repeat the analysis of Sec. II D, now allowing K to be
a general finite group. In particular, K need no longer be
Abelian or central in Γ. Many of the arguments will carry

through, though we will encounter some cases that present
difficulties.

1. A general finite extension

We examine an extension of the finite group G by
another finite group K, given as before by

1 → K → Γ → G → 1: ðB1Þ

In order to define the group law on Γ we need a few
ingredients. Given a section sðgÞ∶G → Γ, we can construct
a map ψ∶G → AutðKÞ as

ψgðkÞ ¼ sðgÞks−1ðgÞ: ðB2Þ

When K is Abelian, ψ gives it the structure of a G module.
Additionally, we can construct an object

cðg1; g2Þ ¼ sðg1Þsðg2Þs−1ðg1g2Þ: ðB3Þ

We could quotient K by its commutator subgroup to
form its Abelianization Kab; the image of c under this
map belongs to a class in H2ðG;KabÞ which classifies
the possible extensions of G by K. In a slight abuse
of nomenclature we refer to both versions as the extension
class.
Going forward we will abbreviate sðgiÞ ¼ si, ψgiðkÞ ¼

ψ iðkÞ, and cðgi; gjÞ ¼ ci;j in calculations. Note that ψ is a
homomorphism in K since

ψ1ðk2k3Þ ¼ s1k2k3s−11 ¼ s1k2s−11 s1k3s−11 ¼ ψ1ðk2Þψ1ðk3Þ:
ðB4Þ

We can see that c satisfies a closurelike condition [which
descends to genuine closure in H2ðG;KabÞ] by comparing

c1;2c12;3 ¼ s1s2s−112 s12s3s
−1
123 ¼ s1s2s3s−1123 ðB5Þ

with

ψ1ðc2;3Þc1;23 ¼ s1s2s3s−123 s
−1
1 s1s23s−1123 ¼ s1s2s3s−1123; ðB6Þ

so our “closure” condition on c is

dc ¼ 1 ¼ ψ1ðc2;3Þc1;23c−112;3c−11;2: ðB7Þ

When K is non-Abelian, ψgðkÞ will not be a homomor-
phism in G—we can see this from

ψ12ðkÞ ¼ s12ks−112 ¼ s12s−12 s−11 s1s2ks−12 s−11 s1s2s−112

¼ c−11;2ψ1ðψ2ðkÞÞc1;2; ðB8Þ

which also gives us
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ψ1ðψ2ðkÞÞ ¼ c12ψ12ðkÞc−112 : ðB9Þ

Now we can write down group multiplication in Γ. It will
be given by

ðk1; g1Þðk2; g2Þ ¼ ðk1ψg1ðk2Þcðg1; g2Þ; g1g2Þ: ðB10Þ

We can check that this is associative. We have

ððk1; g1Þðk2; g2ÞÞðk3; g3Þ
¼ ðk1ψ1ðk2Þc1;2; g1g2Þðk3; g3Þ
¼ ðk1ψ1ðk2Þc1;2ψ12ðk3Þc12;3; g1g2g3Þ ðB11Þ

and

ðk1; g1Þððk2; g2Þðk3; g3ÞÞ
¼ ðk1; g1Þðk2ψ2ðk3Þc3;2; g2g3Þ
¼ ðk1ψ1ðk2ψ2ðk3Þc2;3Þc1;23; g1g2g3Þ: ðB12Þ

In order for these to be equal we must have

k1ψ1ðk2Þc1;2ψ12ðk3Þc12;3 ¼ k1ψ1ðk2ψ2ðk3Þc2;3Þc1;23;
ðB13Þ

which holds if

c1;2ψ12ðk3Þc12;3 ¼ ψ1ðψ2ðk3ÞÞψ1ðc2;3Þc1;23: ðB14Þ

Applying (B8), this reduces to the closure condition (B7)
which we have already shown, so our group multiplication
is associative.
Finally we check inverses. We claim that the inverse of

ðk; gÞ is given by

ðk; gÞ−1 ¼ ðc−1ðg−1; gÞψg−1ðk−1Þ; g−1Þ: ðB15Þ

From the left this is straightforward to check:

ðc−1ðg−1; gÞψg−1ðk−1Þ; g−1Þðk; gÞ
¼ ðc−1ðg−1; gÞψ−1

g−1ðkÞψg−1ðkÞcðg−1; gÞ; g−1gÞ ¼ ð1; 1Þ:
ðB16Þ

To see that it is also a right inverse, we first note that the
closure condition (B7) on c implies that

ψgðc−1ðg−1; gÞÞ ¼ c−1ðg; g−1Þ: ðB17Þ

Now we calculate

ðk; gÞðc−1ðg−1; gÞψg−1ðk−1Þ; g−1Þ
¼ ðkψgðc−1ðg−1; gÞÞψgðψg−1ðk−1ÞÞcðg; g−1Þ; 1Þ
¼ ðkc−1ðg; g−1Þψgðψg−1ðk−1ÞÞcðg; g−1Þ; 1Þ
¼ ðkψgg−1ðk−1ÞÞ ¼ ðkk−1; 1Þ ¼ ð1; 1Þ; ðB18Þ

so this inverse works from both sides.

2. Including quantum symmetries

In this section we work with the object Bðk; gÞ which is a
homomorphism in K. Since K is not central in Γ, we will
have an action of G on ϕ ∈ H1ðK;Uð1ÞÞ given by

g · ϕðkÞ ¼ ϕðψg−1ðkÞÞ; ðB19Þ

which satisfies

g1 · g2 · ϕðkÞ ¼ ϕðψg−1
2
ðψg−1

1
ðkÞÞÞ: ðB20Þ

Since we are working in a homomorphism, Eq. (B8) allows
us to swap ψ1ðψ2Þ with ψ12 so we have

g1 · g2 · ϕðkÞ ¼ ϕðψ ðg1g2Þ−1ðkÞÞ ¼ ðg1g2Þ · ϕðkÞ: ðB21Þ

Again we begin under the assumption that K acts
nontrivially on the parent theory, so to guarantee modular
invariance B should assign the same phase to each
partial trace in a given Γ orbit. Consider the partial trace
Zðk1;g1Þ;ðk2;g2Þ. The possible modifications to the action of K
are given by a slight modification of (2.4) as

Bðψg1ðk2Þ; g1Þ
Bðψg2ðk1Þ; g2Þ

Zðk1;g1Þ;ðk2;g2Þ; ðB22Þ

where, as before, B is a homomorphism in its K argument
and is normalized such that Bð1; gÞ ¼ Bðk; 1Þ ¼ 1.
Consider the modular transformation

Zðk1;g1Þ;ðk2;g2Þðτ − 1Þ ¼ Zðk1;g1Þ;ðk1;g1Þðk2;g2ÞðτÞ
¼ Zðk1;g1Þ;ðk1ψ1ðk2Þc1;2;g1g2ÞðτÞ: ðB23Þ

Performing this transformation on (B22) yields

Bðψ1ðk2Þ; g1Þ
Bðψ2ðk1Þ; g2Þ

Zðk1;g1Þ;ðk1ψ1ðk2Þc1;2;g1g2Þ: ðB24Þ

Swapping the order of the modular transformation and
phase assignments yields

Bðψ1ðk1ψ1ðk2Þc1;2Þ; g1Þ
Bðψ12ðk1Þ; g1g2Þ

Zðk1;g1Þ;ðk1ψ1ðk2Þc1;2;g1g2Þ; ðB25Þ

so consistency requires that
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Bðψ1ðk2Þ; g1Þ
Bðψ2ðk1Þ; g2Þ

¼ Bðψ1ðk1ψ1ðk2Þc1;2Þ; g1Þ
Bðψ12ðk1Þ; g1g2Þ

: ðB26Þ

The commutation conditions on the two elements of Γ are

k1ψ1ðk2Þc1;2 ¼ k2ψ2ðk1Þc2;1 and g1g2 ¼ g2g1; ðB27Þ

and we can use this commutation relation to rewrite the
numerator on the right-hand side of (B26) to get

Bðψ1ðk2Þ; g1Þ
Bðψ2ðk1Þ; g2Þ

¼ Bðψ1ðk2ψ2ðk1Þc1;2Þ; g1Þ
Bðψ12ðk1Þ; g1g2Þ

: ðB28Þ

Using the fact that B is a homomorphism in its K argument
we can both split up the numerator of the right-hand side
and replace ψ1ðψ2Þ with ψ12, giving

Bðψ12ðk1Þ; g1g2Þ
¼ Bðψ12ðk1Þ; g1ÞBðψ2ðk1Þ; g2ÞBðψ1ðc1;2Þ; g1Þ: ðB29Þ

Once again we find an obstruction to modular invariance
when Bðψg1ðcðg2; g3ÞÞ; g1Þ is not trivial. The condition that
B is a homomorphism in G has been replaced with

Bðk;g1g2Þ ¼Bðk;g1ÞBðψg−1
1
ðkÞ; g2Þ ¼Bðk;g1Þg1 ·Bðk;g2Þ;

ðB30Þ

which is the condition for being a crossed homomor-
phism in G; i.e., such a quantum symmetry lives
in Z1ðG;H1ðK;Uð1ÞÞÞ: one-cochains in G valued in
H1ðK;Uð1ÞÞ (with nontrivial action on the coefficients).
What do exact elements of Z1ðG;H1ðK;Uð1ÞÞÞ look

like? They take the form

Bðk; gÞ ¼ g · φðkÞ
φðkÞ ¼ φðψg−1ðkÞÞ

φðkÞ ðB31Þ

for φ ∈ H1ðK;Uð1ÞÞ. When the extension is split it is easy
to see that these do not contribute. If we make such a choice
for B, a generic partial trace Zðk1;g1Þ;ðk2;g2Þ receives the phase

Bðψg1ðk2Þ; g1Þ
Bðψg2ðk1Þ; g2Þ

¼ φðk2Þφðψ2ðk1ÞÞ
φðk1Þφðψ1ðk2ÞÞ

¼ φðk2ψ2ðk1ÞÞ
φðk1ψ1ðk2ÞÞ

; ðB32Þ

which we see precisely vanishes for ðk1; g1Þ and ðk2; g2Þ
commuting. Therefore this choice of quantum symmetry,
while nontrivial, does not change the coefficients of
decomposition, and we can mod out by B which are exact.
This means our choice of Bðk; gÞ depends solely on its class
in H1ðG;H1ðK;Uð1ÞÞÞ. When the extension is not split,
Eq. (B32) fails to be trivial by

φðcðg2; g1Þc−1ðg1; g2ÞÞ: ðB33Þ

This would seem to disrupt the conclusion that quan-
tum symmetries for such extensions are classified by
H1ðG;H1ðK;Uð1ÞÞÞ since we do not seem to be able to
disregard exact elements. Our suspicion is that the above
analysis is incomplete, and that H1ðG;H1ðK;Uð1ÞÞÞ
should always classify quantum symmetries—this may
be because our assignment of phases (B22) needs to be
further modified (that expression was assumed rather
than derived). As far as our examples in Sec. V are
concerned, the above issue can only arise in extensions
that are neither central nor split. We present one such
example with Γ ¼ Q8, the group of unit quaternions, in
Sec. VA 3. In that example the extension class is sym-
metric, so (B33) presents no issue.
Finally, in passing, we note that (2.62) holds with the

expected modification—the obstruction to Bðψ1ðk2Þ; g1Þ
defining a two-cocycle on Γ is Bðψ1ðc2;3Þ; g1Þ. So once
again quantum symmetries that are equivalent to discrete
torsion are compatible with modular invariance in Γ.
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