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We consider interacting massive scalar quantum field theory in the future Rindler wedge. This is a model
example of quantum field theory in curved space-time. Using this simple example, we show how the
dynamics of correlation functions depends on the choice of the initial Cauchy surface, the basis of modes,
and the choice of the initial state built using the corresponding creation and annihilation operators. We
show which choice of modes in the future Rindler wedge respects the Poincaré symmetry. However, we do
not restrict our attention only to these modes and the corresponding ground state.
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I. INTRODUCTION

In the fundamental quantum field theory, one usually
considers Poincaré invariant actions. Furthermore, usually,
this implies the consideration of such a Fock space ground
state in which propagators are analytic functions of the
geodesic distance between their points. Such propagators
are building blocks of the correlation functions that can be
used to calculate amplitudes and, then, cross sections of
various scattering processes in the vacuum.
However, in a generic curved space-time, there is no

Poincaré symmetry. Furthermore, in time-dependent gravi-
tational backgrounds, the free Hamiltonian is time-
dependent. Hence, the situation is not stationary, and there
is no even such a notion as vacuum, which should not be
confused with the Fock space ground state. In such a
situation, one has to apply the in-in (aka Schwinger-
Keldysh) diagrammatic technique [1,2]. To define uniquely
correlation functions in this technique, one has to specify
the initial state and there is no fundamental reason to
restrict one’s attention only to the Poincaré invariant states,
even if the action is generally covariant [3] or Poincaré
invariant, as it is the case in Minkowski space-time.
Here,wepropose considering in greater detail the situation

in flat Minkowski space-time, but in curvilinear coordinates.
This is just a simple model example for curved space-times.
The seminal example of such coordinates are the static
Rindler ones (see, e.g., [4] or [5]), which cover the right

wedgeof the entire space-time (seeFig. 1). These coordinates
are used to examine the famous Unruh effect [6]. But even
considering this effect, one usually restricts attention to the
Poincaré invariant state (standard Minkowski vacuum),
which is seen as “thermal” in the accelerating frame.
In this paper we propose considering the quantum field

theory in the upper or future wedge of the entire Minkowski
space-time and using the Rindler coordinates there. In
studies of the Unruh effect, one usually restricts attention
to free (Gaussian) field theories. To this end, we explore
interacting fields. The reason to consider such a situation is
that, on the one hand, it is simple enough. On the other hand,
this situation already does containmany features of quantum
fields in general time-dependent curved backgrounds.
Namely, to define correlation functions uniquely in the
present situation, we need to specify an initial Cauchy
surface, a basis of modes, and then a Fock space state built
with the use of the corresponding creation and annihilation
operators. The goal of this paper is to show that for a generic
state, the dynamics of quantum fields can be drastically
different from the one in the Poincaré invariant state.
The paper is organized as follows. In Sec. II, we discuss

the geometry of a kind of “Kasner universe” [7], which is
given by the Rindler coordinates in the upper or future
wedge. In Sec. III, the free massive scalar field is quantized
in the upper wedge in 2D. In this section, we introduce in the
upper wedge an analog of the so-called alpha states in the de
Sitter space-time [8,9]. In Sec. IV, we construct propagators
for the alpha states. In Sec. V, we calculate the expectation
value of the stress-energy tensor of the free theory. In
Sec. VI, we briefly discuss the situation in general dimen-
sions. In Sec. VII, we calculate leading loop corrections for
generalized alpha states. We use the Schwinger–Keldysh
diagrammatic technique. In Sec. VIII, wemake conclusions.
Appendix A presents a curious calculation of the In-Out
transition amplitude in the free (gaussian) theory.
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II. GEOMETRY

In this paper, we use the Rindler coordinates in the upper
(future) wedge, which are related to the Minkowskian
coordinates ðt; x; y; zÞ as:

t ¼ eη cosh ξ; y ¼ y;

x ¼ eη sinh ξ; z ¼ z: ð2:1Þ

Then the metric in the wedge, which follows from the
Minkowskian one, has the following form:

ds24d ¼ dt2 − dx2 − dy2 − dz2

¼ e2ηðdη2 − dξ2Þ − dy2 − dz2: ð2:2Þ

These coordinates cover only the upper or future wedge of
the entire Minkowski space-time, because, in the para-
metrization of (2.1), the restriction t > jxj is implied.
Furthermore, the Cauchy surfaces in this wedge and in
the entire Minkowski space-time have different geometry,
as shown in Fig. 1 by the dashed lines.
To simplify our calculations without any loss of general-

ity, we restrict our attention to the two-dimensional ðη; ξÞ
part of the four-dimensional space-time:

ds2 ¼ e2ηðdη2 − dξ2Þ: ð2:3Þ

As we explain in Sec. VI, our arguments can be straight-
forwardly generalized to any dimension.
The geodesic distance in the two-dimensional Minkowski

space-time in terms of the new coordinates is as follows:

L ¼ ðt2 − t1Þ2 − ðx2 − x1Þ2
¼ e2η2 þ e2η1 − 2eη2þη1 coshðξ2 − ξ1Þ: ð2:4Þ

Lightlike separation in notations of (2.4) (L ¼ 0) is
achieved under the condition that ξ2 − ξ1 ¼ jη2 − η1j.
Below, we also use another function of two points, which

we will call as the antipodal distance:

LA ¼ ðt2 þ t1Þ2 − ðx2 þ x1Þ2
¼ e2η2 þ e2η1 þ 2eη2þη1 coshðξ2 − ξ1Þ: ð2:5Þ

The latter is obtained from (2.4) if one of the points is
reflected with respect to the origin of the Minkowski
space-time.
Note that LA > 0 if both its arguments are inside the

upper wedge, but it is zero when both points are sitting on
the horizon—the lightlike boundary of the upper wedge,
which is depicted by the thick red lines in Fig. 1. Please
keep in mind for the discussion below that taking a point in
the upper wedge to the horizon corresponds to the
limit η → −∞; ξ → �∞.
It is worth mentioning that while such a combination of

two points as (2.4) respects the entire Poincaré symmetry of
the two–dimensional flat space-time, the combination (2.5)
respects only its subgroup that consists of the Lorentz
boosts in the two-dimensional ðη; ξÞ space-time. The point
is that all functions, which depend on the difference
ξ2 − ξ1, are invariant under the Lorentz boosts. In fact,
the Lorentz transformation acts on the coordinates of the
upper wedge as follows:

�
eη

0
coshðξ0Þ

eη
0
sinhðξ0Þ

�
¼

�
cosh α sinh α

sinh α cosh α

��
eη coshðξÞ
eη sinhðξÞ

�

¼
�
eη coshðξþ αÞ
eη sinhðξþ αÞ

�
;

i.e., as the translation ξ → ξþ α.

III. QUANTIZATION AND MODES

We consider the real massive scalar field theory:

S0 ¼
Z

d2x
ffiffiffiffiffi
jgj

p �
1

2
∂μφ∂μφ −

1

2
m2φ2 −

λ

4
φ4

�
: ð3:1Þ

In this section, we restrict our attention to the free
theory, λ ¼ 0. The interacting theory, λ ≠ 0, will be
discussed below.

FIG. 1. Penrose diagram of the Minkowski space-time. The
right side of the diagram is the well-known Rindler wedge, while
the colored part is the future or upper wedge. The dashed lines
depict the Cauchy surfaces. The upper line is such a surface in the
future wedge, while the lower dashed line depicts such a surface
in the entire Minkowski space-time. The thick red lines corre-
spond to the past horizon—the boundary of the upper wedge.
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The Klein-Gordon equation for such an action in the
background metric (2.3) is

ð∂2
η − ∂2

ξ þm2e2ηÞφðη; ξÞ ¼ 0: ð3:2Þ

By separating the variables, one can represent the modes
as φðη; ξÞ ¼ e−ikξφkðηÞ, where φkðηÞ solves Bessel’s
equation:

φkðηÞ ¼ αke−
πjkj
2 Hð1Þ

ijkjðmeηÞ þ βke
πjkj
2 Hð2Þ

ijkjðmeηÞ: ð3:3Þ

Here Hð1;2Þ
ijkj ðxÞ are Hankel functions. Then the mode

expansion of the field operator has the form:

φ̂ ¼
Z

∞

−∞
dk½e−ikξφkðηÞâ†ðkÞ þ eikξφ�

kðηÞâðkÞ�; ð3:4Þ

where the creation and annihilation operators obey the
standard commutation relations:

½âðkÞ; â†ðk0Þ� ¼ δðk − k0Þ:

To satisfy the canonical commutation relations for φ̂ðη; ξÞ
and its conjugate momentum, π̂ðη; ξÞ:

½φ̂ðη; ξ1Þ; π̂ðη; ξ2Þ� ¼ iδðξ1 − ξ2Þ; ð3:5Þ

constants αk and βk from (3.3) should obey the relation as
follows:

jαkj2 − jβkj2 ¼
1

8
ð3:6Þ

To show this relation, one should use the properties of the
Bessel and Hankel functions, which can be found, e.g.,
in [10].
We will denote as jαi the Fock space ground states,

which are annihilated by âðkÞ operators corresponding to a
concrete choice of αk constant in (3.3) and (3.6). None of
these jαi states is the ground state of the free Hamiltonian
of the theory under consideration since the Hamiltonian
depends on time η.
Let us consider concrete examples of αk and βk. The first

interesting case is when

αk ¼
e
πjkj
2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh πjkjp ; and βk ¼

e
−πjkj
2

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh πjkjp :

We will call the corresponding harmonics as In-modes
because for such a choice of αk and βk the functions φkðηÞ
behave as single waves at past infinity, as η → −∞. These
modes were introduced in [11] because they behave as
positive frequency plane waves near the past horizon of the
wedge. In fact, using the standard relations between the
Bessel and Hankel functions (see, e.g., [10]), one finds that:

φin
k ðηÞ ¼

1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh πjkjp ½Hð1Þ

ijkjðmeηÞ þHð2Þ
ijkjðmeηÞ�

¼ JijkjðmeηÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh πjkjp ∝ eijkjη; as η → −∞: ð3:7Þ

Another interesting case corresponds to

αk ¼
1

2
ffiffiffi
2

p ; and βk ¼ 0

in (3.3). We refer to the corresponding harmonics as Out-
modes because they behave as single waves at future
infinity, as η → þ∞. In fact, using asymptotic behavior
of the Hankel functions [10], we find that:

φout
k ðηÞ ¼ e−

πjkj
2

2
ffiffiffi
2

p Hð1Þ
ijkjðmeηÞ ∝ eimeη ; as η → ∞: ð3:8Þ

To explain the reason why we consider the generic modes
of the type (3.3), let us examine the free Hamiltonian in the
theory under consideration. Before normal ordering, the
free Hamiltonian is

H0ðηÞ ¼
Z þ∞

−∞
dξe2ηT0

0;

where the energy momentum tensor in the free theory,
λ ¼ 0, is

Tμν ¼ ∂μφ∂νφ −
1

2
gμνðgαβ∂αφ∂βφ −m2φ2Þ: ð3:9Þ

In terms of creation and annihilation operators, the free
Hamiltonian acquires the form:

Ĥ0ðηÞ

¼
Z þ∞

−∞
dk½AkðηÞâ†ðkÞâðkÞ þBkðηÞâðkÞâð−kÞ þH:c:�;

ð3:10Þ

where

AkðηÞ ¼
1

2
ðj _φk

2j þ ½k2 þ e2ηm2�jφkj2Þ;

BkðηÞ ¼
1

2
ð _φk

2 þ ½k2 þ e2ηm2�φ2
kÞ and _φk ¼

dφk

dη
:

This Hamiltonian cannot be diagonalized once and forever,
because there is no solution to the Klein-Gordon equa-
tion (3.2) that also solves the equation BkðηÞ ¼ 0, unlike
the situation in Minkowski coordinates. However, one can
approximately diagonalize the free Hamiltonian at the past
infinity by the In-modes. In this region of the upper wedge,
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there is a clear meaning of the positive energy and, hence,
of the notion of particle.
At the same time, there are no modes, which diagonalize

even approximately the Hamiltonian (3.10) in the future
infinity. However, as we will see below, Out-modes lead to
the propagator that respects the Poincaré symmetry. It is for
that reason we consider these modes in this paper.
Interestingly, we have a similar situation in the expanding

Poincaré patch of the de Sitter space-time: There are
In-modes, which are usually referred to as Bunch-Davies
modes, and which diagonalize the free Hamiltonian at past
infinity. At the same time, there are no modes that diago-
nalize the free Hamiltonian at future infinity [12]. It is
probablyworth stressing the similarity between the Poincaré
metric in the 2D de Sitter space-time and (2.3). Meanwhile,
below,wewill see a certain difference between the situations
with the In- and Out-modes in the future Rindler wedge, as
compared to the expanding Poincaré patch.
Let us derive the canonical (Bogoliubov) transformation

between the In- and Out-modes. We denote the set of
annihilation operators corresponding to the In-modes as
âinðkÞ, while the set corresponding to the Out-modes is
denoted as âoutðkÞ. The Fock space ground states for these
modes are defined as follows:

âinðkÞjIni ¼ 0; âoutðkÞjOuti ¼ 0: ð3:11Þ

Using the properties of the solutions of the Bessel
equations, one can find the following Bogoliubov trans-
formation between the âinðkÞ and âoutðkÞ sets:

â†outðkÞ ¼
e
πjkj
2 â†inðkÞ − e

−πjkj
2 âinð−kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 sinh πjkjp : ð3:12Þ

Then the level population of Out-modes in the In-state is as
follows:

hInjâ†outðkÞâoutðk0ÞjIni ¼
δðk − k0Þ
e2πjkj − 1

: ð3:13Þ

The expression that multiplies the delta-function on the
right-hand side (rhs) of this relation looks like the thermal
distribution with jkj in place of energy and with the
temperature equal to 1

2π. But in the situation under consid-
eration, jkj is not the energy. Furthermore, there are also
nonzero anomalous averages:

hInjâ†outðkÞâ†outðk0ÞjIni ¼
δðkþ k0Þ
2 sinh πjkj : ð3:14Þ

Similarly, the expectation values of the level population and
anomalous averages of the In-modes in the Out-state have
the following form:

hOutjâ†inðkÞâinðk0ÞjOuti ¼ δðk − k0Þ
e2πjkj − 1

and

hOutjâ†inðkÞâ†inðk0ÞjOuti ¼ δðkþ k0Þ
2 sinh πjkj : ð3:15Þ

We will use these relations below.
Yet another peculiar solution of the Eq. (3.6), which we

will call as alpha-modes, has the following form:

α ¼ 1

2
ffiffiffi
2

p cosh ρ; β ¼ 1

2
ffiffiffi
2

p sinh ρeiϕ: ð3:16Þ

As we will see below, to some extent, the corresponding
harmonics are similar to the seminal alpha-modes in the de
Sitter space-time [8,9]. Note that in such a case, α and β
parameters do not depend on k and that ρ ¼ 0 case
corresponds to Out-modes. Hence, the latter belong to
the family (3.16). At the same time, in the case of the
In-modes α and β do depend on k. Hence, In-harmonics do
not belong to the family of alpha-modes (3.16).
There is transformation between the creation and anni-

hilation operators corresponding to (3.16) and those of the
In-modes:

â†inðkÞ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh πjkjp

e2jkjπ − 1
½â†αðkÞðe2jkjπα − βÞ

− âαð−kÞejkjπðα − β�Þ�: ð3:17Þ

We will use this relation below.
It is probably worth stressing here that the generic alpha-

modes (3.3), (3.16) have wrong UV behavior. Namely, as
we will see below, the corresponding propagators do not
obey the conditions of the proper Hadamard behavior. The
reason why we consider the alpha-modes is because one
can explicitly find the x-space representation of the tree-
level propagators for their Fock space ground states, as will
be shown in the next section. At the same time, Out- and
In-modes have proper UV behavior.

IV. PROPAGATORS

In this section, we calculate the Wightman two-point
function for different initial Fock space ground states
from the family (3.16). For the Out-state, the Wightman
function is:

Goutðη2; ξ2jη1; ξ1Þ
¼ hOutjφ̂ðη2; ξ2Þφ̂ðη1; ξ1ÞjOuti

¼
Z

∞

−∞

dk
8
eikðξ2−ξ1Þe−πjkjHð1Þ

ijkjðmeη1ÞHð2Þ
−ijkjðmeη2Þ

¼ 1

2π
K0ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−L − i0sgnðη2 − η1Þ

p
Þ: ð4:1Þ
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A very interesting observation, which can be made here, is
that this propagator does depend only on the geodesic
distance (2.4) and can be analytically continued to the
entire Minkowski space-time. Furthermore, (4.1) coincides
with the propagator of the Poincaré invariant state. This is

quite an unexpected result because the Out-modes do not
behave as positive frequency modes near the horizon or
anywhere else in the future wedge.
In terms of the In-modes the two point function (4.1) has

the following expansion:

Goutðη2; ξ2jη1; ξ1Þ ¼
Z

∞

−∞
dkeikðξ2−ξ1Þ

�½φin
k ðη1Þ��φin

k ðη2Þ
e2πjkj − 1

þ φin
k ðη1Þφin

k ðη2Þ
2 sinh πjkj þ H:c:

�
: ð4:2Þ

This expression was found earlier in [11] through a different
way of reasoning. To derive this expression, we used the
relation between the In- andOut-modes (3.13) and (3.14). It
is such a nontrivial state in terms of the In-modes which
respects the Poincaré symmetry. At the same time, it can be
shown that the Fock space ground state for the In-modes
does not respect the Poincaré symmetry. But we do not have

an explicit x-space representation of theWightman function
corresponding to the Fock space ground state for the
In-modes.
The Wightman function of a generic alpha state, Fock

space ground state for the alpha-modes (3.3), (3.16) is as
follows:

Gαðη2; ξ2jη1; ξ1Þ ¼ hαjφ̂ðη2; ξ2Þφ̂ðη1; ξ1Þjαi

¼ cosh2 ρ
2π

K0ðm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−L − i0sgnðη2 − η1Þ

p
Þ þ sinh2 ρ

2π
K0ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Lþ i0sgnðη2 − η1Þ

p
Þ

þ −
cosh ρ sinh ρeiϕ

2π
K0ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−LA þ i0

p
Þ − cosh ρ sinh ρe−iϕ

2π
K0ðm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−LA − i0

p
Þ: ð4:3Þ

The first term in this expression coincides with (4.1) up to
the coefficient cosh2 ρ and the ρ ¼ 0 case exactly reduces
to (4.1).
Also, the first two terms in (4.3) depend on the geodesic

distance between the two arguments of the Wightman
function, while the other two terms depend on what we call
the antipodal distance between the two points (2.5). This
structure of the propagator is similar to the one for alpha
states in the de Sitter space-time [8,9]. From (4.3), one can
see that the Fock space ground state corresponding to a
generic basis of alpha-modes (3.3), (3.16) does not respect
the Poincaré symmetry.
Furthermore the propagator (4.3) for the generic values

of ρ does not possess the proper Hadamard behavior for the
lightlike separation of its points. (This property is also
similar to the one of alpha states in the de Sitter space-
time.) Consider the singularities of the propagator (4.3). All
its terms are proportional to the Macdonald function of zero
order, which is divergent if its argument goes to zero. The
geodesic distance L is zero for the light-like separated
points inside the future wedge. But the geodesic distance
LA from the antipodal point of the source in the propagator
(4.3) is finite everywhere inside the bulk of the future
wedge. At the same time when both arguments of the
propagator are sitting on the horizon, i.e., obey jxj ¼ jtj,
then simultaneously, L and LA are equal to zero. Figure 2
illustrates this fact.

Thus, inside the futurewedge only two terms in the first line
of (4.3) have divergences. Note that this means that here we
encounter wrong (non Hadamard) UV behavior of the
propagator even inside the future wedge. Because the coef-
ficient of the UV singularity is wrong—depends on ρ. At the
same time, all four terms in (4.3) are singularwhenboth points
of the Wightman propagator are residing on the horizon.
The situation is similar to the one encountered in [13–15] in
the rightRindlerwedge, the static de Sitter space-time, and the
Schwarzschild black hole for generic thermal states.

V. STRESS-ENERGY TENSOR
AT THE HORIZON

In this section, we show that for the Fock space ground
states, corresponding to the generic values of ρ in (3.16),
the stress-energy tensor diverges at the horizon. This means
that in such states, the backreaction of quantum effects on
the background geometry is not negligible. Namely, the
expectation value of the renormalized stress-energy tensor
Tμν strongly affects the Einstein equations [16] and,
correspondingly, their solutions.
It is convenient to use In-modes (3.7) for any calcu-

lations near the horizon because of their simple behavior in
its vicinity. Also to consider a relatively generic situation
and to be close to the case described by (3.13) and (3.14),
we consider the states of the form:
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hâinðkÞâinðkÞi ¼ κjkjδðkþ k0Þ; hâ†inðkÞâ†inðkÞi ¼ κ�jkjδðkþ k0Þ;
hâ†inðkÞâinðkÞi ¼ njkjδðk − k0Þ; hâinðkÞâ†inðkÞi ¼ ðnjkj þ 1Þδðk − k0Þ: ð5:1Þ

To regularize the stress-energy tensor, we use the point splitting approach [17]. To find the behavior of the stress-energy
tensor near the horizon (η → −∞ and ξ → �∞), we use the Wightman function, whose form near the horizon follows from
the asymptotic behavior of the Hankel and Bessel functions:

Wð1; 2Þ ≈
Z þ∞

−∞

dkeikðξ1−ξ2Þ

4 sinh πjkj
� κ�jkj
Γð1þ ijkjÞ2

�
m
2

�
ijkj
eijkjðη1þη2Þ þ κjkj

Γð1 − ijkjÞ2
�
m
2

�
−ijkj

e−ijkjðη1þη2Þ

þ njkj
jΓð1þ ijkjÞj2 e

ijkjðη1−η2Þ þ njkj þ 1

jΓð1þ ijkjÞj2 e
−ijkjðη1−η2Þ

�
: ð5:2Þ

The stress-energy tensor operator of the theory under
consideration is given by (3.9). To calculate the expectation
of this operator we use the Wightman function under
consideration and its derivatives. Due to the peculiar
behavior of the components of the metric, as usual, the
mass term in the expectation value is suppressed in the near
horizon limit.

One can see that the first two terms under the integral on
the rhs of (5.2), which contain κjkj, give zero contribution to
(3.9) in the near horizon limit. This is because they are
proportional to ðξ1 − ξ2Þ � ðη1 þ η2Þ and die away in the
limit η → −∞, ξ → �∞. Then only the terms in the second
line of (5.2) contribute to the stress energy-tensor in this
limit. Thus, the dependence on κjkj is lost in the leading
contribution to the expectation value of the stress-energy
tensor operator at the horizon. At the same time, subleading
terms, which are suppressed by powers of e2η, do depend
on κjkj.
Finally, after the standard regularization, we obtain that

(for technical detail, one can see e.g., Appendix of [14,18]):

h∶T̂UU∶i ¼ h∶T̂VV∶i

¼
Z þ∞

0

djkjjkj
2π

njkj−
1

12π
þOðe2ηÞ; as η→−∞;

ð5:3Þ

where U ¼ η − ξ; V ¼ ηþ ξ, and h∶T̂UV∶i ¼ 0. Note that
in ðU;VÞ coordinates, the metric tensor is off-diagonal:
ds2 ¼ eUþVdUdV. At the same time, Eq. (5.3) describes
only diagonal terms. Then, the expectation value of the
renormalized stress-energy tensor for generic njkj is not
proportional to the metric tensor and, hence, the Poincaré
symmetry is broken, which is just another revelation of the
statement we made previously. Such a violation of the
symmetry is similar to the one appearing in the presence of
a gas in the Minkowskian space-time. General covariance is
intact.
Now let us discuss concrete states, i.e., concrete values of

njkj and κjkj. For instance, in the case of the Out-state (3.13)
one has njkj ¼ ðe2πjkj − 1Þ−1 and obtains:

h∶T̂μν∶i → 0; as η → −∞; ð5:4Þ

as it should be for the Poincaré invariant state. At the same
time, from (3.17), it follows that generic alpha state (ρ ≠ 0)
corresponds to:

FIG. 2. The distances L and LA, which are defined in Sec. II
depend on two points, say xμ1 and xμ2. The source point xμ2 is
depicted as the red dot on the picture. Its antipodal point is shown
as the blue dot. Then the dashed red lines depict positions of xμ1,
which correspond to L ¼ 0, while the dashed blue lines depict
those positions of xμ1, which correspond to LA ¼ 0. If xμ2 (red dot)
is sitting inside the Future wedge, then blue lines are residing
outside the future wedge, which means that inside the bulk of the
future wedge LA ≠ 0. But if xμ2 goes to the horizon (boundary of
the wedge), then at least one of the blue lines coincides with one
of the red lines. Hence on the horizon we encounter the situation
that simultaneously L ¼ 0 and LA ¼ 0.
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njkj ¼
16 sinh πjkj
ðe2πjkj − 1Þ2 e

2πjkj½α2ke−πjkj þ β2ke
πjkj − αkðβk þ β�kÞ�

¼ 2 sinh πjkj
ðe2πjkj − 1Þ2 e

2πjkj½e−πjkj cosh ρ2 þ eπjkj sinh ρ2

− 2 cosh ρ sinh ρ cosϕ�;

which leads to a divergence in (5.3) even after the normal
ordering. This happens, because these alpha states do not
obey the proper Hadamard behavior.
From (5.3) it follows that in the In-state, the regularized

stress-energy tensor is equal to

h∶T̂UU∶i ≈ −
1

ð12πÞ ;

near the horizon, because for such a state njkj ¼ 0.

VI. THE SITUATION IN ANY DIMENSION

In this section, we briefly generalize two-dimensional
case (2.3) to arbitrary dimension D, including the four-
dimensional case (2.2). The harmonic expansion of the two
point function (4.1) can be straightforwardly generalized to
the D-dimensional case by adding D − 2 spatial flat
transversal directions. Namely:

Z
∞

−∞

dkdD−2k⊥
8ð2πÞD−2

2

eikðξ2−ξ1Þeik⃗⊥x⃗⊥eπjkjHð1Þ
ijkj
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ k⃗⊥
q

eη1
�
Hð2Þ

−ijkj
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ k⃗⊥
q

eη2
�

¼
Z

∞

−∞

dD−2k⊥
2πð2πÞD−2

2

eik⃗⊥x⃗⊥K0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k⃗⊥

q ffiffiffiffiffiffiffiffiffi
−L2

p �

¼ 1

ð2πÞD2
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−L2 þ jx⃗⊥j2
p

m

�
−D−2

2

KD−2
2

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−L2 þ jx⃗⊥j2

q �
;

where L2 is the geodesic distance in the two-dimensional upper wedge (2.4). (To obtain these relations, we have used table
integrals of the Hankel and Bessel functions.) From the obtained expression, one can immediately see that for arbitrary D,
the Out-state coincides with the Poincaré invariant one, because −L2 is given by (2.4).
Furthermore, if we denote (2.5) as LA

2 , then one can define the alpha-modes and alpha states, for which the Wightman
propagator has the following form:

GD
α ðη2; ξ2jη1; ξ1Þ ¼ hαjφ̂ðη2; ξ2Þφ̂ðη1; ξ1Þjαi

¼ 1

ð2πÞD2 cosh
2ρ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−L2 þ jx⃗⊥j2

p
m

�
−D−2

2

KD−2
2

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−L2 þ jx⃗⊥j2 − i0sgnðη2 − η1Þ

q �

þ 1

ð2πÞD2 sinh
2ρ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−L2 þ jx⃗⊥j2

p
m

�
−D−2

2

KD−2
2

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−L2 þ jx⃗⊥j2 þ i0sgnðη2 − η1Þ

q �

−
1

ð2πÞD2 cosh ρ sinh ρe
−iϕ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−LA

2 þ jx⃗⊥j2
p

m

�
−D−2

2

KD−2
2

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−LA

2 þ jx⃗⊥j2
q

− i0
�

−
1

ð2πÞD2 cosh ρ sinh ρe
þiϕ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−LA

2 þ jx⃗⊥j2
p

m

�
−D−2

2

KD−2
2

�
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−LA

2 þ jx⃗⊥j2
q

þ i0
�
; ð6:1Þ

instead of (4.3). Using these expressions one, can straight-
forwardly generalize all the arguments that are presented in
the previous sections to any dimension.

VII. ONE LOOP CORRECTION

In the Minkowski space-time for the Poincaré invariant
state, a change of the level-population, haþai, and
anomalous average, haþaþi, is forbidden by the energy-
momentum conservation (see e.g., [12]). In fact, if one
turns on and then switches off the interactions adiabatically,
then the true ground state of the free Hamiltonian remains

intact. The same should be true for the Poincaré invariant
state in the future wedge. In fact, in the x-space the tree-
level propagators for the Out-state are the same as in the
Minkowski space-time.
However, in the loops, the vertex integrals are over the

future wedge rather than over the entire Minkowski space-
time. This seems to lead to the breaking of the Poincaré
symmetry in the loops. However, the same argument of
analytical continuation as in the Poincaré patch of the anti
de Sitter space-time for the invariant state (see e.g., [19])
should work in the situation under consideration. Namely,
the loop corrected propagator for the Poincaré invariant
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state in the future wedge will also be a function of the
geodesic distance. That is because the tree-level propaga-
tors for the Poincaré invariant state are analytic functions of
the geodesic distance between their points. (See also
[20,12] for similar situation with the Bunch-Davies state in
the expanding Poincaré patch of the de Sitter space-time.)
However, there is no energy-conservation in the future

wedge, because its metric depends on time. Hence, it is
interesting to see in detail what happens to the level-
population and anomalous average for each momentum
separately.
To make our discussion as general as possible within the

context under consideration, we will look at the loops for
the generalized alpha-modes for which αk and βk depend on
k rather than equal to (3.16). To obey the proper Hadamard
behavior for the correlation functions, we must demand that
βk → 0 as jkj → ∞. This is important in the loops for the
proper UV renormalization. However, for generic αk and
βk, we do not know the explicit form of the propagators in
x-space, but we know their mode expansion.1

Thus, the main question we address in this section is
whether the arbitrary alpha Fock space ground state is stable
under quantum fluctuations if we switch on the self-
interaction term in (3.1). As wewill see only for the invariant
Out-state, there will not be any IR secular memory effects
[3,21]. For all other alpha states, there will be secular growth
in the loop corrections for the level-population and anoma-
lous average, which signals the instability of these states.We
come back to this point below.
Since the free Hamiltonian of the theory depends on time

(3.10), the system under consideration is in a nonstationary
situation, and one has to apply the Schwinger-Keldysh
diagrammatic technique [1,2,22]. We calculate loop cor-
rection to the Keldysh propagator since this propagator
describes the change of the state of the theory (see
[2,22,3,21,12] for the detailed explanation). For the generic
initial state the mode expansion of the tree-level Keldysh
propagator has the following form:

GKðx1; x2Þ ¼
Z

∞

−∞
dk

Z
∞

−∞
dp

�
φ�
kðx1Þφpðx2Þ

�
δðp − kÞ

2
þ hâ†kâpi

�
þ φkðx1Þφpðx2Þhâkâpi þ H:c:

�
; ð7:1Þ

where x1;2 ¼ ðη1;2; ξ1;2Þ. The propagator contains nkp ¼ hâ†kâpi, which coincides with the level-population np when it is
diagonal, i.e., when nkp ¼ npδðp − qÞ; and κkp ¼ hâkâpi is the anomalous quantum average. For the Fock space ground
state nkp ¼ 0 ¼ κkp.
As the initial state, we choose an arbitrary alpha Fock space ground state in the sense described at the beginning of this

section. Then, in the limit when both arguments of the Keldysh propagator are taken to the future infinity
η1þη4

2
¼ η ≫ jη1 − η2j, the loop corrected propagator has the same form as (7.1), where hâ†kâpi ¼ npδðp − qÞ, hâkâpi ¼

κpδðpþ qÞ and:

npðηÞ ∝ λ2
Z

∞

−∞
dq1dq2dq3

Z
η

η0

dη2e2η2
Z

η

η0

dη3e2η3δðpþ q1 þ q2 þ q3Þ

× φ�
pðη2Þφpðη3Þφ�

q1ðη2Þφq1ðη3Þφ�
q2ðη2Þφq2ðη3Þφ�

q3ðη2Þφq3ðη3Þ;

κpðηÞ ∝ λ2
Z

∞

−∞
dq1dq2dq3

Z
η

η0

dη2e2η2
Z

η3

η0

dη3e2η3δðpþ q1 þ q2 þ q3Þ

× φ�
pðη2Þφ�

pðη3Þφ�
q1ðη2Þφq1ðη3Þφ�

q2ðη2Þφq2ðη3Þφ�
q3ðη2Þφq3ðη3Þ: ð7:2Þ

Here, η0 is the time after which the interaction, λφ4, is
switched on.
The largest contribution to (7.2) comes from the region

of integration in which η2;3 ≫ logp=m; log q1;2;3=m as
η → ∞ in units of acceleration, which is the parameter of
the transformation from the Minkowski coordinates to the

upper wedge. (We set it to one at the beginning.) In fact, in
such a regime, the modes (3.3) behave as:

φkðηÞ ≈
�

2

πmeη

�1
2½αkeiðmeη−1

2
ijkjπ−1

4
πÞ þ βke−iðmeη−1

2
ijkjπ−1

4
πÞ�:

ð7:3Þ

Taking the product of such functions in (7.2), one will
encounter the interference terms under η2;3 integrals, which
are independent of η2 þ η3. As the result, one obtains that

1Note that by choosing a proper behavior of αk and βk for low
momenta, one can avoid the problems in the propagators and in
the expectation values of the stress-energy tensor near the
horizon. We mean the problems discussed in Sec. V.
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the leading contributions to np and κp in the limit in
question are as follows:

n1pðηÞ ≈ λ2η2I and κ1pðηÞ ≈ λ2
η2

2
I; ð7:4Þ

where:

I ¼ 9

�
2

πm

�
4
Z

∞

−∞
dq1dq2dq3δðpþ q1 þ q2 þ q3Þ

× jαpαq1βq2βq3e
π
2
ðjpjþjq1j−jq2j−jq3jÞ

þ αq2αq3βpβq1e
−π
2
ðjpjþjq1j−jq2j−jq3jÞj2: ð7:5Þ

The η2 dependence in these expressions appears from the
η2;3 integrals. The remaining terms contain the integrals of
the form:

R
η dη3eimeη3 and do not grow as η → ∞. Hence,

such terms are suppressed by powers of the small coupling
constant λ, which are not accompanied by growing with
η → ∞ factors.
Note that in the case of the Out-state we have that βk ¼ 0

and the coefficient (7.5) vanishes. Thus, as was predicted at
the beginning of this section, for the initial Out-state, loop
corrections do not change it, unlike other generalized alpha
states. This relates to the fact that the Wightman function
for such a state is Poincaré invariant (4.1).
Notably, in (7.4), we have secular growth rather than

secular divergence. The situation is similar to the one in the
Poincaré patch of the de Sitter space-time [3]. Namely, the
dependence on η0 disappears from (7.4). The point is that one
can take η0 → −∞ in (7.2). In fact, consider the contribution
coming from the region η2;3 ≪ logp=m; log q1;2;3=m as
η0 → −∞. In this regime, the modes (3.3) behave as:

φkðηÞ ≈ C1eijkjη þ C2e−ijkjη: ð7:6Þ

Then, in the limit in question, the expressions in (7.4) contain
the integrals of the form (for some Σp;qi ):

Z
d

η0

dη3e
2η3þiη3Σp;qi ¼ e2η3þiη3Σp;qi

2þ iΣp;qi

				
d

η0

; ð7:7Þ

which do not grow as η0 → −∞.
The situation here is somewhat similar to the one in the

expanding Poincaré patch of the de Sitter space-time for the
Bunch-Davies state, because the metric in the upper wedge
(2.3) degenerates as η → −∞ similarly to the one of the
Poincaré patch. Due to this degeneration the volume factor,ffiffiffiffiffijgjp ¼ e2η, in the loop integrals suppresses all contribu-
tions from the past infinity.
Furthermore, the situation in the past (lower) wedge of

Minkowski space-time is similar to the one in the con-
tracting Poincaré patch of the de Sitter space-time. Namely,
in the theory under consideration, all the tree-level two-
point functions will be the same as in the future wedge, but

the loop corrections will grow as η0 → −∞ rather than as
η → þ∞. That is because the lower (past) wedge is the time
reversal of the upper (future) wedge. Particularly, the loop
corrections to the level-population and anomalous averages
will have the form:

n1pðηÞ ≈ λ2η20I and κ1pðηÞ ≈ λ2
η20
2
I; ð7:8Þ

as η0 → −∞ and η → þ∞. Here, I is the same as in (7.5).
Thus, in the past wedge, we have the infrared catastrophe
for the generic alpha state. It means that the initial Cauchy
surface cannot be taken to the past infinity [3]. It is only for
the state with βk ¼ 0 (In-state in the past wedge) that we
can take η0 → −∞. Thus, for the Poincaré invariant state
we are again on the safe side.
An interesting open question is what happens to all other

alpha states in the course of the time evolution? To answer
this question, one must resum the leading, ðλ2η2Þn, cor-
rections from all loops. Because the growth of the leading
correction in η is quadratic rather than linear, this is not a
kinetic regime. In such a case, the resummation is different
from the standard one [23]. That is the general situation in
lower dimensions. For D > 2, the situation is kinetic, i.e.,
the leading contributions are of the form ðλ2ηÞn rather than
ðλ2η2Þn. The result of the resummation and, hence, of the
time evolution is an open question. However, on general
grounds, one may predict that for a certain range of
reasonable initial conditions such, generalized alpha states
will probably evolve to the thermal particle density over the
Poincaré invariant state.
Furthermore, if instead of φ4 self-interaction term one

will consider φ3, the first rather than the second loop
correction will have a similar form to (7.2) but with the
product of a different number of φ’s under the integral over
η2;3 and q1;2;3. Interestingly, in such a situation, the
integrand of the loop correction will be a rapidly oscillating
function, and there will be no any secularly growing terms
for any generalized alpha state. The physical meaning of
this fact is not clear to us.

VIII. CONCLUSION

Thus, quantum field dynamics in curverlinear coordi-
nates can be quite different from Minkowski coordinates, if
one chooses a generic, but still reasonable initial state. To
show this fact, we consider the Rindler coordinates in the
future or upper wedge of the Minkowski space-time. We
introduce an analog of the so called alpha states [8,9]. We
find explicit x-space representation of the propagators for
these states and show that they all violate the Poincaré
symmetry except the one corresponding to the Out-state.
Furthermore, we calculate the expectation value of the
stress-energy tensor and show that it is singular on the
horizon for all alpha states except the Out-one. This means
that the backreaction of such states on the background
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geometry is strong: the expectation value of the stress-
energy tensor on the rhs of Einstein equations does not lead
just to a renormalization of the cosmological constant and
cannot be neglected.
Then we introduce generalized alpha states for which the

regularized stress energy tensor can be regular everywhere
in the wedge, including the horizon. Unlike the ordinary
alpha states the generalized ones lead to the propagators
that have proper Hadamard UV behaviour.
Then, using Schwinger-Keldysh diagrammatic technique

we calculate loop corrections to the propagators for the
generalized alpha states. We show that for all generalized
alpha states, except the Out-state, loop corrections
grow with time, signaling these states’ instability.
Similar growth was observed in other backgrounds
[24,12,25,26,27,21,28,29,23].
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APPENDIX: IN-OUT AMPLITUDES
AND IMAGINARY CONTRIBUTIONS

TO THE EFFECTIVE ACTIONS

In this Appendix, for completeness and integrity, we
make a curious observation as a side remark. Namely, we
present a calculation of the decay rate of the In-state in the
future wedge using the in-out formalism.
We introduced the so-called In- andOut-modes (3.7) and

(3.8), and the Fock space ground states that correspond to
these modes: âinðkÞjIni ¼ 0 and âoutðkÞjOuti ¼ 0. The first
state naively describes such a situation in which there are
no particles at the past infinity of the future wedge, while
the second state seems to describe the situation of the
absence of particles at the future infinity.
As shown above, the In-state does not coincide with the

Poincaré invariant vacuum. Hence, if the time evolution of
the theory starts with this state, there, in principle, can be a
particle creation process. In a proper sense, we observed
this process within the in-in formalism in the main part of
this paper. Here, we want to focus on the signs of this
phenomenon in the in-out formalism. In fact, as usual, the
transition probability between these states, jhInjOutij2, if it
is not equal to unity, may hint that there can be particle
creation processes in the future wedge, at least for the initial
In-state in question.
There are two ways to calculate the In=Out-amplitude in

question. The first approach is based on the uses of the

Bogoliubov coefficients between the In- and Out-modes.
This allows finding the imaginary contribution to the
effective action:

jhInjOutij2 ≡ e−ImSeff :

The second approach relies on the calculation of the
imaginary contribution to the effective action using the
Feynman In −Out propagator at the coincidence limit. Let
us start with the first approach. Following e.g., [8,30] to
calculate jhInjOutij2, one should find the absolute proba-
bility of creating no particles with momentum k, which is
denoted as Nk, and then integrate it over all possible values
of k. Namely:

Y
k

Nk ¼ e−ImSeff :

To find Nk, one should use the relation:

Nkð1þ wk þ w2
k þ ::Þ ¼ 1; then; Nk ¼ 1 − wk;

wherewk is the relative probability to produce a pair ofOut-
particles with the opposite momenta k and −k in the initial
In-state:

wk ¼
				 hOutjaoutðkÞaoutð−kÞjInihOutjIni

				
2

; ðA1Þ

while w2
k; w

3
k;… are the probabilities of creating 2; 3;…,

and etc. pairs.
To calculate wk, one should use the Bogoliubov trans-

formation between the In- and Out-modes:

φin
k ¼ μkφ

out
k þ νkφ

out
−k

�: ðA2Þ
A straightforward calculation of (A1) with the use of (A2)
gives Nk ¼

ffiffiffiffiffiffiffijμkj
p

. Then

ImSeff ¼
1

2

Z þ∞

−∞
dk logðjμkjÞ:

In the case under consideration, the Bogoliubov coeffi-
cients are as follows (essentially we have found them in the
main part of the paper):

μk ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − e−2πjkj
p ; νk ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2πjkj − 1

p :

Hence, the amplitude is equal to

jhInjOutij2 ¼ exp
h
−
Z þ∞

−∞
dk logðjμkjÞ

i
¼ e−

π
12: ðA3Þ

Interestingly, the expression in the exponent is not propor-
tional to the volume of space-time, which is quite unusual.
We will see now that the second approach gives a
substantially different result for the probability in question.
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In fact, following, e.g., [31,32], we express the In −Out effective action via the Feynman (T-ordered) propagator. The
relation of the In −Out amplitude to the effective Lagrangian is as follows:

hInjOuti ¼ ei
R

Leffdx ≡
Z

d½φ�eiS½φ�:

Now using the chain of equations as follows:

∂
∂m2

log
Z

d½φ�eiS½φ� ¼ −i
R
dx

R
d½φ�φðxÞφðxÞeiS½φ�R
d½φ�eiS½φ� ¼ −i

Z
dxGFðx; xÞ; ðA4Þ

one can express the effective Lagrangian via the Feynman propagator at coincident points:

Leff ¼
Z

m2

∞
dm̄2GFðx; xÞ:

We are interested in the imaginary part of the effective action. Hence, we need to find the imaginary contribution to:

Gin−outðη2; ξ2; η1; ξ1Þ≡ hInjφ̂ðη2; ξ2Þφ̂ðη1; ξ1ÞjOuti
hInjOuti

¼
Z

∞

−∞

dk
8
eikðξ2−ξ1Þe−πjkj½Hð1Þ

ijkjðmeη1ÞHð2Þ
−ijkjðmeη2Þ þHð2Þ

ijkjðmeη1ÞHð2Þ
−ijkjðmeη2Þ�; ðA5Þ

in the coincidence limit. The first term on the rhs of this equation is proportional to (4.1), i.e., to the invariant propagator. It
is known that such a propagator does not lead to any imaginary contribution at the coincidence limit.
Let us denote the second contribution to the rhs of (A5) as Gim

in−out and rewrite it in the coincidence limit as:

Gim
in−outðx; xÞ ¼

Z
∞

−∞

dk
8
e−πjkjHð2Þ

ijkjðmeηÞHð2Þ
ijkjðmeηÞ ¼ i

16π

Z þ∞

−∞

dτ
π − iτ

Hð2Þ
0 ð2z coshðτÞÞ: ðA6Þ

To obtain the effective action, we have to integrate this expression over the space-time. To take the integrals carefully, we cut
the upper limit of integration over time by some large value η∞, which eventually is taken to the future infinity η∞ → ∞:

Z
η∞

−∞
dηe2ηGim

in−outðx; xÞ ¼
i

64πm2

Z þ∞

−∞

dτ
π2 þ τ2

meη∞

coshðτÞH
ð2Þ
1 ð2meη∞ coshðτÞÞ ≈ −

e−2imeη∞

64π3m2
: ðA7Þ

One can see that (A6) does not depend on the spatial
coordinate ξ. Hence, the integral over ξ in (A4) is divergent.
Let us define the spatial volume as Vξ ≡ R

∞
−∞ dξ. Then the

imaginary part of (A6) is equal to:

ImSeff ¼ −VξIm
Z

m2

−∞
dm2

e−2iz∞

64π3m̃2
¼ −

Vξ

128π2
;

and for the probability, we obtain the following
expression:

jhInjOutij2 ¼ e−
Vξ

128π2 : ðA8Þ

Note that (A3) and (A8) are not equal to each other.
Moreover, the second expression for the decay rate is
proportional to spatial volume, while the first one is finite.
These observations essentially question the applicability of
the in-out formalism in the situation under consideration. The
in-in formalismadopted in themain bodyof the present paper
works perfectly well without any ambiguities.
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